JP6442064B2 - High rigidity polypropylene resin composition with excellent flowability, heat resistance and external shape - Google Patents

High rigidity polypropylene resin composition with excellent flowability, heat resistance and external shape Download PDF

Info

Publication number
JP6442064B2
JP6442064B2 JP2017538152A JP2017538152A JP6442064B2 JP 6442064 B2 JP6442064 B2 JP 6442064B2 JP 2017538152 A JP2017538152 A JP 2017538152A JP 2017538152 A JP2017538152 A JP 2017538152A JP 6442064 B2 JP6442064 B2 JP 6442064B2
Authority
JP
Japan
Prior art keywords
ethylene
propylene
polypropylene resin
block copolymer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017538152A
Other languages
Japanese (ja)
Other versions
JP2017530249A (en
Inventor
ソク キム ボン
ソク キム ボン
ソン チュン ヨン
ソン チュン ヨン
Original Assignee
ハンファ トータル ペトロケミカル カンパニー リミテッド
ハンファ トータル ペトロケミカル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハンファ トータル ペトロケミカル カンパニー リミテッド, ハンファ トータル ペトロケミカル カンパニー リミテッド filed Critical ハンファ トータル ペトロケミカル カンパニー リミテッド
Publication of JP2017530249A publication Critical patent/JP2017530249A/en
Application granted granted Critical
Publication of JP6442064B2 publication Critical patent/JP6442064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties

Description

本発明は、射出成形に適したポリプロピレン樹脂に関する。詳しくは、流れ性と耐熱性に優れて、光沢、透明性など外形に優れて、成形性、物性および外形に優れた射出製品用ポリプロピレン樹脂に関する。より詳しくは、サクシネート系内部電子供与体を含むチーグラ−ナッタ触媒による分子量分布が広い高立体規則性の高剛性ポリプロピレン樹脂を基本にして、プロピレン単独重合体とエチレン−プロピレンゴム重合体が段階的に重合されたエチレン−プロピレンブロック共重合体で、エチレン−プロピレンブロック共重合体のエチレン含有量、エチレン−プロピレンゴム含有量およびエチレン−プロピレンゴムの固有粘度を調節し、有機金属系核剤を含むことを特徴とする流れ性、耐熱性および外形に優れた高剛性ポリプロピレン樹脂組成物に関する。   The present invention relates to a polypropylene resin suitable for injection molding. More specifically, the present invention relates to a polypropylene resin for injection products that is excellent in flowability and heat resistance, excellent in outer shape such as gloss and transparency, and excellent in moldability, physical properties, and outer shape. More specifically, propylene homopolymer and ethylene-propylene rubber polymer are stepwise based on high stereoregular high rigidity polypropylene resin with wide molecular weight distribution by Ziegler-Natta catalyst containing succinate internal electron donor. A polymerized ethylene-propylene block copolymer that contains an organometallic nucleating agent by adjusting the ethylene content of the ethylene-propylene block copolymer, the ethylene-propylene rubber content and the intrinsic viscosity of the ethylene-propylene rubber. The present invention relates to a high-rigidity polypropylene resin composition excellent in flowability, heat resistance and outer shape.

ポリプロピレン樹脂は他のポリオレフィン系樹脂に比べて、剛性、耐薬品性、成形性に優れ、工業的に利用範囲が非常に広く、広範囲で使用されている素材である。しかし、プロピレンが単独で重合されたポリプロピレンは、剛性、硬度、耐熱性に優れているが、低い衝撃強度により使用上の制約がある。このような低い衝撃強度を改善するために、ポリプロピレンを重合するとき、エチレンが共重合されたエチレン−プロピレンブロック共重合体が開発された。しかしながら、エチレン−プロピレンブロック共重合体は、エチレン−プロピレンゴム状とすることで衝撃特性は向上されるが、プロピレン単独重合体に比べて剛性と耐熱性が低下し、ゴム状の分散により不透明で光沢が低下する問題がある。特許文献1などにおいて、ポリプロピレン樹脂に無機充填剤およびゴムなどをブレンディングして機械的物性を向上させた組成物を提示したものの、充填剤によって光沢が低下し、ブレンディングによる材料費および加工費が上昇するようになった。ポリプロピレンの機械的物性、特に耐熱性を向上させる低価の充填剤としてタルクも多く使用されているが、同様に光沢が低下し、タルク自体の硬度が低くてタルクが充填されたポリプロピレン樹脂の耐スクラッチ性が劣勢でキズによって外形が損傷しやすい。ポリプロピレンの光沢を向上させる方法としては、特許文献2において、アルミニウム調色顔料を添加して混練することが開示されているが、このような外部添加剤を適用する方法は、材料費および混練による加工費が上昇し、製造工程が複雑になる短所がある。   Polypropylene resin is a material that is excellent in rigidity, chemical resistance, and moldability compared to other polyolefin resins, has a very wide range of industrial use, and is widely used. However, polypropylene obtained by polymerizing propylene alone is excellent in rigidity, hardness, and heat resistance, but has a limitation in use due to low impact strength. In order to improve such low impact strength, an ethylene-propylene block copolymer in which ethylene is copolymerized when polypropylene is polymerized has been developed. However, the impact characteristics of the ethylene-propylene block copolymer are improved by making it an ethylene-propylene rubber, but the rigidity and heat resistance are lower than that of the propylene homopolymer, and the rubber-like dispersion makes it opaque. There is a problem that gloss decreases. In Patent Document 1, etc., a composition in which an inorganic filler and rubber were blended with polypropylene resin to improve mechanical properties was presented, but the gloss was lowered by the filler, and the material cost and processing cost due to blending increased. It was way. Talc is also often used as a low-cost filler to improve the mechanical properties of polypropylene, especially heat resistance. Scratch is inferior and the outer shape is easily damaged by scratches. As a method for improving the gloss of polypropylene, Patent Document 2 discloses that an aluminum toning pigment is added and kneaded. However, the method of applying such an external additive depends on material costs and kneading. There are disadvantages that the processing cost increases and the manufacturing process becomes complicated.

特開昭53−64257号公報JP-A-53-64257 韓国公開特許第2006−0104109号公報Korean Patent Publication No. 2006-0104109

上記課題を解決するため、本発明の目的は、耐熱性および機械的強度に優れて大型射出製品やリブが多い複雑な形態の製品成形に適した優れた流れ性を有するポリプロピレン樹脂組成物であって、エチレン−プロピレンゴムの組成および含有量と固有粘度を調節して光沢および透明性が向上したポリプロピレン樹脂組成物を提供することにある。   In order to solve the above-mentioned problems, an object of the present invention is a polypropylene resin composition having excellent flowability suitable for molding large-sized injection products and products having complicated ribs with excellent heat resistance and mechanical strength. Thus, an object of the present invention is to provide a polypropylene resin composition having improved gloss and transparency by adjusting the composition and content and intrinsic viscosity of ethylene-propylene rubber.

本発明のポリプロピレン樹脂組成物は、エチレン含有量が2〜4重量%であるエチレン−プロピレンブロック共重合体および有機金属系核剤を含むポリプロピレン樹脂組成物において、前記エチレン−プロピレンブロック共重合体は、(a)プロピレン単独重合体と、(b)エチレン−プロピレンゴム重合体が重合された共重合体であって、前記エチレン−プロピレンブロック共重合体100重量部に対して(a)プロピレン単独重合体85〜92重量部、および(b)エチレン−プロピレンゴム重合体8〜15重量部であり、前記有機金属系核剤の含有量は、エチレン−プロピレンブロック共重合体の100重量部に対して0.05〜0.3重量部であり、前記(a)プロピレン単独重合体の多分散性指数は6〜15であり、前記エチレン−プロピレンブロック共重合体中の溶剤抽出物の固有粘度に対する前記エチレン−プロピレンブロック共重合体中の溶剤不溶分の固有粘度比は0.5〜1.6であることを特徴とする。   The polypropylene resin composition of the present invention is a polypropylene resin composition comprising an ethylene-propylene block copolymer having an ethylene content of 2 to 4% by weight and an organometallic nucleating agent, wherein the ethylene-propylene block copolymer comprises: (A) a propylene homopolymer, and (b) a copolymer obtained by polymerizing an ethylene-propylene rubber polymer, wherein (a) propylene homopolymer is added to 100 parts by weight of the ethylene-propylene block copolymer. 85 to 92 parts by weight of the polymer, and 8 to 15 parts by weight of the (b) ethylene-propylene rubber polymer, and the content of the organometallic nucleating agent is 100 parts by weight of the ethylene-propylene block copolymer. 0.05 to 0.3 parts by weight, the polydispersity index of the propylene homopolymer (a) is 6 to 15, and the ethylene The relative intrinsic viscosity of the solvent extract of propylene block copolymer ethylene - intrinsic viscosity ratio of the solvent-insoluble fraction of the propylene block copolymer is characterized in that it is a 0.5 to 1.6.

本発明に係るポリプロピレン系樹脂は、耐熱性および機械的強度に優れて、大型射出製品や複雑な形態の製品成形に適した優れた流れ性を有する。また、光沢を高めるための添加剤の適用なしにエチレン−プロピレンゴムの組成および含有量と固有粘度の調節で既存の樹脂に比べて優れた光沢を示し、透明性も向上して優れた外形を有する。   The polypropylene resin according to the present invention is excellent in heat resistance and mechanical strength, and has excellent flowability suitable for molding large-sized injection products and products having complicated shapes. In addition, by adjusting the composition and content of ethylene-propylene rubber and the intrinsic viscosity without the application of additives to increase gloss, it exhibits superior gloss compared to existing resins, and improved transparency and excellent outer shape. Have.

以下、本発明についてより詳細に説明する。
本発明のポリプロピレン樹脂組成物は、エチレン含有量が2〜4重量%であるエチレン−プロピレンブロック共重合体および有機金属系核剤を含むポリプロピレン樹脂組成物において、前記エチレン−プロピレンブロック共重合体は、(a)プロピレン単独重合体と(b)エチレン−プロピレンゴム重合体が重合された共重合体であって、前記エチレン−プロピレンブロック共重合体100重量部に対して(a)プロピレン単独重合体85〜92重量部、および(b)エチレン−プロピレンゴム重合体8〜15重量部であり、前記有機金属系核剤の含有量は、エチレン−プロピレンブロック共重合体の100重量部に対して0.05〜0.3重量部であり、前記(a)プロピレン単独重合体の多分散性指数は6〜15であり、前記エチレン−プロピレンブロック共重合体中の溶剤抽出物の固有粘度に対する前記エチレン−プロピレンブロック共重合体中の溶剤不溶分の固有粘度比は0.5〜1.6であることを特徴とする。
Hereinafter, the present invention will be described in more detail.
The polypropylene resin composition of the present invention is a polypropylene resin composition comprising an ethylene-propylene block copolymer having an ethylene content of 2 to 4% by weight and an organometallic nucleating agent, wherein the ethylene-propylene block copolymer comprises: (A) a copolymer obtained by polymerizing a propylene homopolymer and (b) an ethylene-propylene rubber polymer, and (a) a propylene homopolymer based on 100 parts by weight of the ethylene-propylene block copolymer 85 to 92 parts by weight, and (b) 8 to 15 parts by weight of the ethylene-propylene rubber polymer, and the content of the organometallic nucleating agent is 0 with respect to 100 parts by weight of the ethylene-propylene block copolymer. 0.05 to 0.3 parts by weight, and the polydispersity index of the propylene homopolymer (a) is 6 to 15, and the ethylene- The ethylene for intrinsic viscosity of the solvent extract of b pyrene block copolymer - intrinsic viscosity ratio of the solvent-insoluble fraction of the propylene block copolymer is characterized in that it is a 0.5 to 1.6.

本発明において前記ポリプロピレン樹脂組成物は、サクシネート系内部電子供与体を含むチーグラ−ナッタ触媒を使って重合され、(a)プロピレン単独重合体と、(b)エチレン−プロピレンゴム重合体と、からなるエチレン−プロピレンブロック共重合体で、有機金属核剤を含んで製造される。より具体的には、前記エチレン−プロピレンブロック共重合体は、プロピレン単独重合体とエチレン−プロピレンゴム重合体とが一連の反応器内で段階的に重合される。   In the present invention, the polypropylene resin composition is polymerized using a Ziegler-Natta catalyst containing a succinate-based internal electron donor, and comprises (a) a propylene homopolymer and (b) an ethylene-propylene rubber polymer. An ethylene-propylene block copolymer produced with an organometallic nucleating agent. More specifically, in the ethylene-propylene block copolymer, a propylene homopolymer and an ethylene-propylene rubber polymer are polymerized stepwise in a series of reactors.

本発明における「重合」とは、単独重合だけでなく、共重合も含む意味で用いられる。また、「重合体」とは、単独重合体だけでなく、共重合体も含む意味で用いられる。   “Polymerization” in the present invention is used to mean not only homopolymerization but also copolymerization. The term “polymer” is used to mean not only a homopolymer but also a copolymer.

本発明においてチーグラ−ナッタ触媒といわれるオレフィン重合用触媒は、遷移金属化合物が主成分である主触媒、有機金属化合物である助触媒、そして電子供与体の組み合わせからなる触媒系をいい、チタン、マグネシウムおよびハロゲン化合物を中心とした固体触媒成分と助触媒である有機アルミニウム化合物システムからなる。前記チーグラ−ナッタ触媒は、一般的なオレフィン重合用として使用されるものであれば、特に制限なしに使用することができる。   The olefin polymerization catalyst referred to as a Ziegler-Natta catalyst in the present invention refers to a catalyst system comprising a combination of a main catalyst mainly composed of a transition metal compound, a cocatalyst composed of an organometallic compound, and an electron donor. And a solid catalyst component mainly composed of a halogen compound and an organoaluminum compound system as a promoter. The Ziegler-Natta catalyst can be used without particular limitation as long as it is used for general olefin polymerization.

<成分(a)プロピレン単独重合体>
本発明において前記成分(a)プロピレン単独重合体は、重合反応装置でプロピレンが単独で注入されて重合される。前記重合体の重合方法は、その技術分野で公知の通常の方法によるものを用いることができ、特に制限されない。
<Component (a) Propylene Homopolymer>
In the present invention, the component (a) propylene homopolymer is polymerized by injecting propylene alone in a polymerization reactor. The method for polymerizing the polymer may be any conventional method known in the technical field, and is not particularly limited.

本発明において前記成分(a)プロピレン単独重合体は、エチレン−プロピレンブロック共重合体100重量部に対して85ないし92重量部である。前記成分(a)プロピレン単独重合体の含有量が85重量部未満であれば、結晶化度が低下して耐熱性および機械的強度が低くなり、92重量部を超過すれば耐衝撃性が低下して望ましくない。   In the present invention, the component (a) propylene homopolymer is 85 to 92 parts by weight with respect to 100 parts by weight of the ethylene-propylene block copolymer. If the content of the component (a) propylene homopolymer is less than 85 parts by weight, the degree of crystallinity is lowered and heat resistance and mechanical strength are lowered, and if it exceeds 92 parts by weight, impact resistance is lowered. It is not desirable.

本発明において前記成分(a)プロピレン単独重合体の分子量分布は、流変学的方法で測定される多分散性指数(Polydispersity index)として6〜15である。多分散性指数が6未満であれば、流れ性が低下して大型射出品や複雑な射出物を成形するときに未成形の恐れがあり、また、高分子量部分による奇核形成と配向が発生しないため、耐熱性および機械的強度が低下することになる。多分散性指数が15を超過すれば、射出時に計量時間が長くなり生産性低下をもたらすこととなり望ましくない。   In the present invention, the molecular weight distribution of the propylene homopolymer (a) is 6 to 15 as a polydispersity index measured by a rheological method. If the polydispersity index is less than 6, there is a risk that the flowability will decrease and unmolded when molding large injection products or complex injection products, and the formation and orientation of odd nuclei due to high molecular weight will occur. Therefore, heat resistance and mechanical strength are reduced. If the polydispersity index exceeds 15, the metering time becomes longer at the time of injection, which leads to a decrease in productivity.

本発明において前記成分(a)プロピレン単独重合体は、核磁気共鳴法で測定される立体規則度指数がペンタッド法基準で95%以上である、高立体規則性ポリプロピレン単独重合体であるのが好ましい。立体規則度指数がペンタッド法基準で95%未満であれば、ポリプロピレン樹脂の耐熱性および機械的強度が落ちることになる。前記核磁気共鳴法は外部磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象であり、この固有の周波数が分子内でその原子の環境によって微細に変化することを利用して物質を分析する方法である。   In the present invention, the propylene homopolymer (a) is preferably a highly stereoregular polypropylene homopolymer having a stereoregularity index measured by a nuclear magnetic resonance method of 95% or more based on the pentad method. . If the stereoregularity index is less than 95% based on the pentad method, the heat resistance and mechanical strength of the polypropylene resin will decrease. The nuclear magnetic resonance method is a phenomenon in which a nucleus placed in an external magnetic field interacts with an electromagnetic wave having a specific frequency, and a substance utilizing the fact that this specific frequency changes minutely in the molecule depending on the environment of the atom. It is a method to analyze.

<成分(b)エチレン−プロピレンゴム共重合体>
本発明において前記成分(b)エチレン−プロピレンゴム共重合体は、前記成分(a)プロピレン単独重合体を重合した後、続く重合反応装置で前記成分(a)プロピレン単独重合体の存在下で連続的に重合され、成分(b)エチレン−プロピレンゴム共重合体はエチレン−プロピレンブロック共重合体100重量部に対して8ないし15重量部で重合される。前記ゴム共重合体の重合方法は、その技術分野で公知の通常の方法によるもので、特に制限されない。前記成分(b)エチレン−プロピレンゴム共重合体の重合時に共重合されるエチレンの含有量は、エチレン−プロピレンブロック共重合体に対して2ないし4重量%である。エチレンの含有量が2重量%未満であれば、ゴムの弾性が減少して耐衝撃性が低下し、4重量%を超えれば成分(a)プロピレン単独重合体と成分(b)エチレン−プロピレンゴム共重合体の相溶性が低くなりゴム状の大きさが大きくなるため、光沢と透明性が低下し分散性が低下して耐衝撃強度も低くなるようになる。
<Component (b) Ethylene-propylene rubber copolymer>
In the present invention, the component (b) ethylene-propylene rubber copolymer is polymerized from the component (a) propylene homopolymer and then continuously in the presence of the component (a) propylene homopolymer in a subsequent polymerization reactor. The component (b) ethylene-propylene rubber copolymer is polymerized at 8 to 15 parts by weight with respect to 100 parts by weight of the ethylene-propylene block copolymer. The method for polymerizing the rubber copolymer is not particularly limited, and is a conventional method known in the technical field. The content of ethylene copolymerized during the polymerization of the component (b) ethylene-propylene rubber copolymer is 2 to 4% by weight based on the ethylene-propylene block copolymer. If the ethylene content is less than 2% by weight, the elasticity of the rubber is reduced and the impact resistance is reduced. If it exceeds 4% by weight, the component (a) propylene homopolymer and the component (b) ethylene-propylene rubber Since the compatibility of the copolymer is lowered and the rubbery size is increased, the gloss and transparency are lowered, the dispersibility is lowered, and the impact strength is also lowered.

本発明のポリプロピレン樹脂組成物を構成する有機金属系核剤の含有量は、エチレン−ブロック共重合体100重量部に対して0.05〜0.3重量部を添加するのが望ましい。有機金属系核剤の含有量が0.05重量部未満である場合には十分な耐熱性、機械的剛性および透明性を得にくく、0.3重量部を超える場合にはそれ以上の物性向上にならない。前記有機金属系核剤としては、通常知られたポリプロピレン用有機金属系核剤が用いられ、好ましくはアルミニウムパラターシャリーブチル安息香酸、安息香酸ナトリウム、安息香酸カルシウムなどが挙げられる。   As for content of the organometallic nucleating agent which comprises the polypropylene resin composition of this invention, it is desirable to add 0.05-0.3 weight part with respect to 100 weight part of ethylene-block copolymers. When the content of the organometallic nucleating agent is less than 0.05 parts by weight, it is difficult to obtain sufficient heat resistance, mechanical rigidity and transparency, and when it exceeds 0.3 parts by weight, further improvement in physical properties is achieved. do not become. As the organometallic nucleating agent, a conventionally known organometallic nucleating agent for polypropylene is used, and preferable examples include aluminum para-tert-butyl benzoic acid, sodium benzoate, and calcium benzoate.

本発明において、前記成分(b)エチレン−プロピレンゴム共重合体で溶剤抽出物の固有粘度(キシレン溶剤)は、1.0〜2.0dl/gが望ましい。前記固有粘度が1.0dl/g未満であればゴム成分の大きさが小さくなり、ゴム成分の分子量が小さくなって衝撃特性が低下する。固有粘度が2.0dl/gを超過すると、ゴム成分の大きさが大きくなり、かたまりが発生して光沢および透明性が低下してしまい、外形が秀麗ではない。また、ゴムの分散は、成分(a)プロピレン単独重合体と成分(b)エチレン−プロピレン−ゴム共重合体の粘度差によって発生するため、溶剤不溶分の固有粘度と溶剤抽出物の固有粘度比{(溶剤抽出物の固有粘度)/(溶剤不溶分の固有粘度)}は、エチレン−プロピレンブロック共重合体中の溶剤抽出物の固有粘度に対するエチレン−プロピレンブロック共重合体中の溶剤不溶分の固有粘度比として、0.5〜1.6が望ましい。前記固有粘度比が0.5未満であるとゴム成分の大きさが小さくなって衝撃特性が低下し、1.6を超過するとゴム成分のかたまりが発生して外形特性が低下する。   In the present invention, the intrinsic viscosity (xylene solvent) of the solvent extract of the component (b) ethylene-propylene rubber copolymer is preferably 1.0 to 2.0 dl / g. If the intrinsic viscosity is less than 1.0 dl / g, the size of the rubber component is reduced, the molecular weight of the rubber component is reduced, and the impact characteristics are deteriorated. When the intrinsic viscosity exceeds 2.0 dl / g, the size of the rubber component becomes large, a lump is generated, the gloss and transparency are lowered, and the outer shape is not excellent. In addition, since the rubber dispersion is caused by the difference in viscosity between the component (a) propylene homopolymer and the component (b) ethylene-propylene-rubber copolymer, the intrinsic viscosity ratio of the solvent insoluble matter and the intrinsic viscosity of the solvent extract. {(Intrinsic Viscosity of Solvent Extract) / (Intrinsic Viscosity of Solvent Insoluble Content)} is the solvent insoluble content in the ethylene-propylene block copolymer relative to the intrinsic viscosity of the solvent extract in the ethylene-propylene block copolymer. The intrinsic viscosity ratio is preferably 0.5 to 1.6. When the intrinsic viscosity ratio is less than 0.5, the size of the rubber component is reduced and the impact characteristics are deteriorated. When it exceeds 1.6, a lump of the rubber component is generated and the external characteristics are deteriorated.

本発明において前記ポリプロピレン樹脂の溶融指数は、4〜30g/10分(ASTM D 1238)であるのが好ましい。前記溶融指数が4g/10分未満であると、溶融樹脂の流れ性が低下して大型または複雑な形態の射出を加工するときに流れ性が不足して未成形が発生し得、30g/10分を超過すると衝撃強度が急激に低下して望ましくない。   In the present invention, the polypropylene resin preferably has a melt index of 4 to 30 g / 10 min (ASTM D 1238). When the melt index is less than 4 g / 10 min, the flowability of the molten resin is lowered, and when processing a large or complicated injection, the flowability is insufficient and unmolding may occur, and 30 g / 10 Exceeding the minute is not desirable because the impact strength decreases rapidly.

本発明のポリプロピレン樹脂としては、中和剤、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、滑剤、耐ブロッキング剤、顔料、染料などのような各種添加剤を、本発明の特徴から外れない範囲内で添加することができる。   As the polypropylene resin of the present invention, various additives such as a neutralizing agent, an antioxidant, a heat stabilizer, a weather stabilizer, an antistatic agent, a lubricant, an antiblocking agent, a pigment, and a dye are included in the present invention. Can be added within a range not departing from the above.

本発明のポリプロピレン樹脂は、ジアルコキシマグネシウムを有機溶媒の存在下でチタン化合物および内部電子供与体と反応させることによって製造される多孔性の固体粒子触媒(以下、「プロピレン重合用触媒」という)を利用して製造できる。より詳しくは、前記触媒は、ジアルコキシマグネシウムを有機溶媒の存在下でチタン化合物と1次反応させた後、その反応物を有機溶媒の存在下でチタン化合物および内部電子供与体と2次反応させることで製造することができる。前記プロピレン重合用触媒の製造に使用されるジアルコキシマグネシウムは、金属マグネシウムとアルコールを反応させて製造される、一般式Mg(OR(ここで、Rは炭素数1〜6のアルキル基である)で表示される球形粒子であって、これを担体として使用する。前記プロピレン重合用触媒の製造において1次および2次反応で使用するチタン化合物としては、特に制限はないが、ハロゲン化チタン化合物、特に四塩化チタンを使用するのが好ましい。前記プロピレン重合用触媒の製造に使用される内部電子供与体としては、ジカルボン酸エステル系化合物から選択された一つ以上の化合物を混合して使用することができる。前記ジカルボン酸エステル系化合物の具体的な例としては、ジメチルサクシネート、ジエチルサクシネート、ジノーマルプロピルサクシネート、ジイソプロピルサクシネート、1,1−ジメチル−ジメチルサクシネート、1,1−ジメチル−ジエチルサクシネート、1,1−ジメチル−ジノーマルプロピルサクシネート、1,1−ジメチル−ジイソプロピルサクシネート、1,2−ジメチル−ジメチルサクシネート、1,2−ジメチル−ジエチルサクシネート、エチル−ジメチルサクシネート、エチル−ジエチルサクシネートなどが挙げられる。前記プロピレン重合用触媒の製造に使用される有機溶媒としては、炭素数6〜12の脂肪族炭化水素または芳香族炭化水素が用いられ、好ましくは炭素数7〜10の飽和脂肪族炭化水素または芳香族炭化水素が用いられ、その具体的な例としては、オクタン、ノナン、デカン、またはトルエン、キシレンなどが用いられる。前記方法で製造されたプロピレン重合用触媒は、マグネシウム、チタン、内部電子供与体、ハロゲン原子を含有し、各成分の含有量は特に限定されないが、好ましくはマグネシウム15〜25重量%、チタン1〜5重量%、内部電子供与体5〜15重量%、ハロゲン原子55〜79重量%である。前記プロピレン重合用触媒(A)を利用したプロピレンの重合は、助触媒としてアルキルアルミニウム(B)および外部電子供与体(C)と混合し、プロピレンと反応させることで行われる。前記プロピレン重合に使用されるアルキルアルミニウム(B)は、一般式Al(R(ここで、Rは炭素数1〜4のアルキル基である)で表示される化合物であって、その具体的な例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウムなどが挙げられる。前記プロピレン重合に使用される外部電子供与体(C)は、好ましくは、一般式R Si(OR4−m(ここで、Rは炭素数1〜10のアルキル基、シクロアルキル基またはアリール基を示し、Rは炭素数1〜3のアルキル基であり、mは1または2である)で表示される化合物(C−1)と化学式CSi(OCで表示されるビニルトリエトキシシラン化合物(C−2)の混合物であって、前記化合物(C−1)の具体的な例としては、n−CSi(OCH、(n−CSi(OCH、i−CSi(OCH、(i−CSi(OCH、n−CSi(OCH、(n−CSi(OCH、i−CSi(OCH、(i−CSi(OCH、t−CSi(OCH、(t−CSi(OCH、n−C11Si(OCH、(n−C11Si(OCH)、(シクロペンチル)Si(OCH、(シクロペンチル)Si(OCH、(シクロヘキシル)Si(OCH、(シクロヘキシル)Si(OCH、(シクロヘプチル)Si(OCH、(シクロヘプチル)Si(OCH、(フェニル)Si(OCH、(フェニル)Si(OCH、n−CSi(OC、(n−CSi(OC、i−CSi(OC、(i−CSi(OC、n−CSi(OC、(n−CSi(OC、i−CSi(OC、(i−CSi(OC、t−CSi(OC、(t−CSi(OC、n−C11Si(OC、(n−C11Si(OC、(シクロペンチル)Si(OC、(シクロペンチル)Si(OC、(シクロヘキシル)Si(OC、(シクロヘキシル)Si(OC、(シクロヘプチル)Si(OC、(シクロヘプチル)Si(OC、(フェニル)Si(OC)、(フェニル)Si(OCなどが用いられ、特に、ジシクロペンチルジメトキシシラン、ジイソプロピルジメトキシシラン、ジシクロヘキシルジメトキシシランのようなジアルキルジアルコキシシラン系化合物がさらに望ましい。 The polypropylene resin of the present invention comprises a porous solid particle catalyst produced by reacting dialkoxymagnesium with a titanium compound and an internal electron donor in the presence of an organic solvent (hereinafter referred to as “propylene polymerization catalyst”). Can be manufactured using. More specifically, the catalyst first reacts dialkoxymagnesium with a titanium compound in the presence of an organic solvent, and then secondarily reacts the reaction product with the titanium compound and an internal electron donor in the presence of the organic solvent. Can be manufactured. The dialkoxymagnesium used for the production of the propylene polymerization catalyst is produced by reacting metal magnesium with an alcohol. The general formula Mg (OR 1 ) 2 (where R 1 is an alkyl having 1 to 6 carbon atoms). Spherical particles, which are used as a carrier. Although there is no restriction | limiting in particular as a titanium compound used by the primary and secondary reaction in manufacture of the said catalyst for propylene polymerization, It is preferable to use a titanium halide compound, especially titanium tetrachloride. As the internal electron donor used in the production of the propylene polymerization catalyst, one or more compounds selected from dicarboxylic acid ester compounds can be mixed and used. Specific examples of the dicarboxylic acid ester compounds include dimethyl succinate, diethyl succinate, dinormal propyl succinate, diisopropyl succinate, 1,1-dimethyl-dimethyl succinate, 1,1-dimethyl-diethyl succinate. 1,1-dimethyl-dinormalpropyl succinate, 1,1-dimethyl-diisopropyl succinate, 1,2-dimethyl-dimethyl succinate, 1,2-dimethyl-diethyl succinate, ethyl-dimethyl succinate, Examples include ethyl-diethyl succinate. As the organic solvent used in the production of the propylene polymerization catalyst, an aliphatic hydrocarbon or aromatic hydrocarbon having 6 to 12 carbon atoms is used, preferably a saturated aliphatic hydrocarbon or aromatic having 7 to 10 carbon atoms. Group hydrocarbons are used, and specific examples thereof include octane, nonane, decane, toluene, xylene, and the like. The catalyst for propylene polymerization produced by the above method contains magnesium, titanium, an internal electron donor, and a halogen atom, and the content of each component is not particularly limited, but is preferably 15 to 25% by weight of magnesium, 1 to 1 of titanium. 5% by weight, internal electron donor 5 to 15% by weight, halogen atom 55 to 79% by weight. The polymerization of propylene using the propylene polymerization catalyst (A) is carried out by mixing with alkylaluminum (B) and an external electron donor (C) as a co-catalyst and reacting with propylene. The alkylaluminum (B) used for the propylene polymerization is a compound represented by the general formula Al (R 2 ) 3 (wherein R 2 is an alkyl group having 1 to 4 carbon atoms), Specific examples include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum and the like. The external electron donor (C) used for the propylene polymerization preferably has the general formula R 3 m Si (OR 4 ) 4-m (where R 3 is an alkyl group having 1 to 10 carbon atoms, cycloalkyl) R 4 is an alkyl group having 1 to 3 carbon atoms, m is 1 or 2, and a compound (C-1) represented by the chemical formula C 2 H 3 Si (OC 2 H 5 ) A mixture of vinyltriethoxysilane compounds (C-2) represented by 3 , and specific examples of the compound (C-1) include n-C 3 H 7 Si (OCH 3 ) 3 , (n-C 3 H 7 ) 2 Si (OCH 3) 2, i-C 3 H 7 Si (OCH 3) 3, (i-C 3 H 7) 2 Si (OCH 3) 2, n-C 4 H 9 Si (OCH 3) 3 , (n-C 4 H 9) 2 Si (OCH ) 2, i-C 4 H 9 Si (OCH 3) 3, (i-C 4 H 9) 2 Si (OCH 3) 2, t-C 4 H 9 Si (OCH 3) 3, (t-C 4 H 9) 2 Si (OCH 3 ) 2, n-C 5 H 11 Si (OCH 3) 3, (n-C 5 H 11) 2 Si (OCH 3), ( cyclopentyl) Si (OCH 3) 3, ( Cyclopentyl) 2 Si (OCH 3 ) 2 , (cyclohexyl) Si (OCH 3 ) 3 , (cyclohexyl) 2 Si (OCH 3 ) 2 , (cycloheptyl) Si (OCH 3 ) 3 , (cycloheptyl) 2 Si (OCH 3) 2, (phenyl) Si (OCH 3) 3, (phenyl) 2 Si (OCH 3) 2 , n-C 3 H 7 Si (OC 2 H 5) 3, (n-C 3 H 7) 2 Si (OC 2 H 5 ) 2, i-C 3 H 7 Si (OC 2 H 5) 3, (i-C 3 H 7) 2 Si (OC 2 H 5) 2, n-C 4 H 9 Si (OC 2 H 5) 3, (n-C 4 H 9) 2 Si (OC 2 H 5) 2, i-C 4 H 9 Si (OC 2 H 5) 3, (i-C 4 H 9) 2 Si (OC 2 H 5) 2 , t-C 4 H 9 Si (OC 2 H 5) 3, (t-C 4 H 9) 2 Si (OC 2 H 5) 2, n-C 5 H 11 Si (OC 2 H 5) 3, ( n-C 5 H 11) 2 Si (OC 2 H 5) 2, ( cyclopentyl) Si (OC 2 H 5) 3, ( cyclopentyl) 2 Si (OC 2 H 5 ) 2, ( cyclohexyl) Si (OC 2 H 5) 3, (cyclohexyl) 2 Si (OC 2 H 5 ) 2, ( cycloheptyl) Si (OC 2 5) 3, (cycloheptyl) 2 Si (OC 2 H 5 ) 2 , (phenyl) Si (OC 2 H 5), (phenyl) 2 Si (OC 2 H 5 ) 2 and the like are used, in particular, dicyclopentyl More desirable are dialkyl dialkoxysilane compounds such as dimethoxysilane, diisopropyldimethoxysilane, and dicyclohexyldimethoxysilane.

本発明を以下の実施例および比較例によってより具体的に理解できる。以下の実施例は本発明を例示するためのものであって、本発明の保護範囲を制限するものではない。   The present invention can be more specifically understood by the following examples and comparative examples. The following examples are intended to illustrate the present invention and are not intended to limit the protection scope of the present invention.

実施例1〜2および比較例1、3〜5
触媒の製造
窒素に十分に置換された1リットル大きさの撹拌機が設けられたガラス反応器に、トルエン150mlとジエトキシマグネシウム(平均粒径が60μmの球形であり、粒度分布指数が0.86であり、見掛け密度が0.32g/ccである。)25gを投入し、10℃に維持した。四塩化チタン25mlをトルエン50mlで希釈して1時間にわたって投入した後、反応器の温度を60℃まで分当り0.5℃の速度で昇温させた。前記反応混合物を60℃で1時間攪拌した後、攪拌を止めて固体生成物が沈殿するのを待ち、上澄液を除去し新たなトルエン200mlを添加して15分間攪拌した後、1回洗浄した。
前記四塩化チタンで処理された固体生成物にトルエン150mlを添加して温度を30℃に維持した状態で、250rpmで攪拌しながら四塩化チタン50mlを1時間にわたって一定の速度で投入した。四塩化チタンの投入が完了した後、1,2−ジイソブチル−ジエチルサクシネート2.5gを投入し、反応器の温度を110℃まで80分間にわたって一定の速度で昇温させた(分当り1℃の速度で昇温)。昇温過程で反応器の温度が60℃に到達したとき、1,2−イソブチル−ジエチルサクシネート2.5gをさらに投入した。前記混合物を110℃で1時間維持した後、90℃で温度を下げて攪拌を止めて上澄液を除去した後、トルエン200mlを添加して1回洗浄した。ここに、トルエン150mlと四塩化チタン50mlを投入して温度を110℃まで上げて1時間維持、熟成させた。熟成過程が終わった前記のスラリー混合物を毎回当りトルエン200mlで2回洗浄し、ノルマルヘキサンを用いて40℃で毎回当り200mlずつ5回洗浄して、薄黄色の固体触媒成分を得た。窒素流下で18時間乾燥して得られた固体触媒成分中のチタン含有量は2.72重量%であった。
Examples 1-2 and Comparative Examples 1, 3-5
Production of catalyst Into a glass reactor equipped with a 1 liter stirrer sufficiently substituted with nitrogen, 150 ml of toluene and diethoxymagnesium (spherical shape having an average particle diameter of 60 μm and a particle size distribution index of 0.86) The apparent density is 0.32 g / cc.) 25 g was charged and maintained at 10 ° C. After 25 ml of titanium tetrachloride was diluted with 50 ml of toluene and charged over 1 hour, the temperature of the reactor was raised to 60 ° C. at a rate of 0.5 ° C. per minute. After stirring the reaction mixture at 60 ° C. for 1 hour, the stirring was stopped and the solid product was allowed to precipitate, the supernatant was removed, 200 ml of new toluene was added, and the mixture was stirred for 15 minutes and then washed once. did.
In a state where 150 ml of toluene was added to the solid product treated with titanium tetrachloride and the temperature was maintained at 30 ° C., 50 ml of titanium tetrachloride was added at a constant rate over 1 hour while stirring at 250 rpm. After the addition of titanium tetrachloride was completed, 2.5 g of 1,2-diisobutyl-diethyl succinate was added and the reactor temperature was raised to 110 ° C. at a constant rate over 80 minutes (1 ° C. per minute). Temperature increase). When the temperature of the reactor reached 60 ° C. during the temperature raising process, 2.5 g of 1,2-isobutyl-diethyl succinate was further added. After maintaining the mixture at 110 ° C. for 1 hour, the temperature was lowered at 90 ° C., stirring was stopped to remove the supernatant, and then 200 ml of toluene was added and washed once. To this, 150 ml of toluene and 50 ml of titanium tetrachloride were added, the temperature was raised to 110 ° C., and maintained and aged for 1 hour. The slurry mixture after the aging process was washed twice with 200 ml of toluene each time, and washed with 200 ml each time at 40 ° C. with normal hexane to obtain a light yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying for 18 hours under a nitrogen flow was 2.72% by weight.

ポリプロピレン樹脂の製造
バルク−気相重合反応器から構成されたハイポールポリプロピレン製造工程(Hypol Process)を利用して、当業者に公知の重合方法によって表1のような組成でポリプロピレン樹脂を製造した。
Production of Polypropylene Resin Polypropylene resin was produced with the composition shown in Table 1 by a polymerization method known to those skilled in the art using a Hypol polypropylene production process (Hypol Process) constituted of a bulk-gas phase polymerization reactor.

比較例2
フタレート系内部電子供与体を含有する通常のチーグラ−ナッタ触媒を利用して、表1のような組成でポリプロピレン樹脂を製造した。
Comparative Example 2
Polypropylene resin was produced with the composition shown in Table 1 using a normal Ziegler-Natta catalyst containing a phthalate internal electron donor.

試験例
本発明において用いた実験方法を以下に整理した。
物性測定方法
(1)溶融指数(Melt Index)
ASTM D1238条件により230℃、2.16kg荷重で測定した。
(2)立体規則度(Isotactic index、II)
核磁気共鳴分光器(Nuclear Magnetic Resonance Spectrometer、NMR)のペンタッド法(Pentad)でポリプロピレンに重合されたプロピレンの方向性を測定して立体規則度を測定した。
(3)多分散性指数(Polydispersity index、PI)
分子量分布を測定する方法で流変学的特性を利用して、レオメトリックダイナミックスペクトロメータ(Rheometrics Dynamic Spectrometer)で200℃の温度で貯蔵弾性率(storage modulus)と損失弾性率(loss modulus)を測定し、その交点である交差弾性率(crossover modulus)(Gc)を利用して、以下の式から多分散性指数を測定した。

Figure 0006442064
(4)エチレン含有量
赤外線吸収スペクトル(FT−IR)を使って、720、730cm−1特性ピークを利用してエチレン含有量を測定した。
(5)固有粘度
135℃ デカリン(Dekalin)溶液下で粘度測定器を利用して固有粘度を測定した。
(6)屈曲弾性率
ASTM D790方法により測定した。
(7)アイゾット(Izod)衝撃強さ
ASTM D256方法により常温で測定した。
(8)熱変形温度
ASTM D648方法により測定した。
(9)光沢度
ASTM D523−89方法により測定した。
(10)曇り度
ASTM D1003方法により測定した。
(11)流れ性
同一条件で射出したとき(射出温度230℃)、ポリプロピレン樹脂が最大に流れる長さで測定した。
Figure 0006442064
Test Examples The experimental methods used in the present invention are summarized below.
Physical property measuring method (1) Melt index
Measurements were made at 230 ° C. and 2.16 kg load according to ASTM D1238 conditions.
(2) Stereoregularity (Isotactic index, II)
Stereoregularity was measured by measuring the directionality of propylene polymerized on polypropylene by the pentad method (Pentad) of a nuclear magnetic resonance spectrometer (Nuclear Magnetic Resonance Spectrometer, NMR).
(3) Polydispersity index (PI)
Measure storage modulus and loss modulus at a temperature of 200 ° C with a rheometrics dynamic spectrometer using rheological properties in a method of measuring molecular weight distribution And the polydispersity index was measured from the following formula | equation using the cross modulus (Cc) which is the intersection.
Figure 0006442064
(4) Ethylene content Using infrared absorption spectrum (FT-IR), ethylene content was measured using 720 and 730 cm -1 characteristic peaks.
(5) Intrinsic Viscosity Intrinsic viscosity was measured using a viscometer under a Decalin solution at 135 ° C.
(6) Flexural modulus Measured by the ASTM D790 method.
(7) Izod Impact Strength Measured at room temperature by the ASTM D256 method.
(8) Thermal deformation temperature Measured by the ASTM D648 method.
(9) Glossiness Measured by the ASTM D523-89 method.
(10) Haze Measured by the ASTM D1003 method.
(11) Flowability When injected under the same conditions (injection temperature 230 ° C.), the flow was measured by the length at which the polypropylene resin flows to the maximum.
Figure 0006442064

上記表1に示されるように、本発明に係るポリプロピレン樹脂は、流れ性に優れて、高い耐熱性および機械的物性の均衡に優れて、外形特性である光沢度と透明性に優れていることが明らかとなった。反面、比較例1のポリプロピレン樹脂は、有機金属系核剤がなくて耐熱性および機械的物性が劣勢で、透明性が低いことが明らかとなった。比較例2においては、触媒の内部電子供与体としてフタレート系が使用されたもので、成分(a)の分子量分布が狭いので耐熱性および機械的強度が低く、流れ性が劣勢であることが分かる。比較例3においては、エチレン−プロピレンブロック共重合体の重合時にエチレン含有量が高くて機械的強度は良好であるが、光沢度と透明性が劣勢であった。比較例4においては、成分(a)の含有量が低く、成分(b)の含有量が高くて機械的剛性が低く、光沢度と透明性は多少劣勢であることが分かった。比較例5においては、耐熱性、機械的剛性および流れ性は良好であるが、溶剤抽出物の固有粘度と固有粘度比が高くて光沢度と透明性が非常に低いことが明らかとなった。   As shown in Table 1 above, the polypropylene resin according to the present invention is excellent in flowability, excellent in balance of high heat resistance and mechanical properties, and excellent in glossiness and transparency as outer characteristics. Became clear. On the other hand, the polypropylene resin of Comparative Example 1 was found to have no organometallic nucleating agent, poor heat resistance and mechanical properties, and low transparency. In Comparative Example 2, a phthalate system was used as the internal electron donor of the catalyst, and since the molecular weight distribution of component (a) was narrow, it was found that heat resistance and mechanical strength were low and flowability was inferior. . In Comparative Example 3, the ethylene content was high during polymerization of the ethylene-propylene block copolymer and the mechanical strength was good, but the glossiness and transparency were inferior. In Comparative Example 4, it was found that the content of component (a) was low, the content of component (b) was high and the mechanical rigidity was low, and the glossiness and transparency were somewhat inferior. In Comparative Example 5, the heat resistance, mechanical rigidity, and flowability were good, but it was revealed that the intrinsic viscosity and intrinsic viscosity ratio of the solvent extract were high and the glossiness and transparency were very low.

本発明に係るポリプロピレン系樹脂は、耐熱性および機械的強度に優れ、大型射出製品や複雑な形態の製品成形に適した優れた流れ性を有する。また、光沢を高めるための添加剤の適用なしにエチレン−プロピレンゴムの組成および含有量と固有粘度の調節で既存の樹脂に比べて優れた光沢を示し、透明性も向上して優れた外形を有する。   The polypropylene resin according to the present invention is excellent in heat resistance and mechanical strength, and has excellent flowability suitable for molding large-sized injection products and products having complicated shapes. In addition, by adjusting the composition and content of ethylene-propylene rubber and the intrinsic viscosity without the application of additives to increase gloss, it exhibits superior gloss compared to existing resins, and improved transparency and excellent outer shape. Have.

Claims (5)

エチレン含有量が2〜4重量%のエチレン−プロピレンブロック共重合体および有機金属系核剤を含むポリプロピレン樹脂組成物において、
前記エチレン−プロピレンブロック共重合体は、(a)プロピレン単独重合体と(b)エチレン−プロピレンゴム重合体が重合された共重合体であって、
前記エチレン−プロピレンブロック共重合体100重量部に対して(a)プロピレン単独重合体85〜92重量部、および(b)エチレン−プロピレンゴム重合体8〜15重量部であり、
前記有機金属系核剤の含有量は、エチレン−プロピレンブロック共重合体の100重量部に対して0.05〜0.3重量部であり、
前記(a)プロピレン単独重合体の多分散性指数は6〜15であり、前記多分散性指数は、レオメトリックダイナミックスペクトロメータ(Rheometrics Dynamic Spectrometer)で200℃の温度で貯蔵弾性率(storage modulus)と損失弾性率(loss modulus)を測定し、その交点である交差弾性率(crossover modulus)(Gc)を利用して下記の式から測定されたものであり、
Figure 0006442064
デカリン溶液中、135℃で測定した場合の、前記エチレン−プロピレンブロック共重合体中の溶剤抽出物の固有粘度に対する前記エチレン−プロピレンブロック共重合体中の溶剤不溶分の固有粘度比は0.5〜1.6であり、
前記エチレン−プロピレンブロック共重合体において、溶剤抽出物の固有粘度(キシレン溶剤)は1.0〜2.0dl/gであることを特徴とする、ポリプロピレン樹脂組成物。
In a polypropylene resin composition comprising an ethylene-propylene block copolymer having an ethylene content of 2 to 4% by weight and an organometallic nucleating agent,
The ethylene-propylene block copolymer is a copolymer obtained by polymerizing (a) a propylene homopolymer and (b) an ethylene-propylene rubber polymer,
(A) propylene homopolymer 85-92 parts by weight and (b) ethylene-propylene rubber polymer 8-15 parts by weight with respect to 100 parts by weight of the ethylene-propylene block copolymer,
The content of the organometallic nucleating agent is 0.05 to 0.3 parts by weight with respect to 100 parts by weight of the ethylene-propylene block copolymer.
The polydispersity index of the propylene homopolymer (a) is 6 to 15, and the polydispersity index is a storage modulus at a temperature of 200 ° C. using a rheometrics dynamic spectrometer. And the loss modulus (loss modulus) was measured from the following equation using the cross modulus (Gc) that is the intersection of the loss modulus and the loss modulus (loss modulus):
Figure 0006442064
The intrinsic viscosity ratio of the solvent-insoluble component in the ethylene-propylene block copolymer to the intrinsic viscosity of the solvent extract in the ethylene-propylene block copolymer when measured at 135 ° C. in a decalin solution is 0.5. ~1.6 der is,
In the ethylene-propylene block copolymer, the inherent viscosity (xylene solvent) of the solvent extract is 1.0 to 2.0 dl / g .
前記エチレン−プロピレンブロック共重合体の溶融指数は、ASTM D1238の230℃、4〜30g/10分であることを特徴とする、請求項1に記載のポリプロピレン樹脂組成物。   2. The polypropylene resin composition according to claim 1, wherein a melt index of the ethylene-propylene block copolymer is 230 ° C. and 4 to 30 g / 10 minutes of ASTM D1238. 前記(a)プロピレン単独重合体の立体規則度指数は、ペンタッド分率で95%以上であることを特徴とする、請求項1に記載のポリプロピレン樹脂組成物。   2. The polypropylene resin composition according to claim 1, wherein the (a) propylene homopolymer has a stereoregularity index of 95% or more in terms of a pentad fraction. 前記ポリプロピレン樹脂組成物は、中和剤、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、滑剤、耐ブロッキング剤、顔料、染料の中から選択される1種以上の添加剤をさらに含むことを特徴とする、請求項1に記載のポリプロピレン樹脂組成物。   The polypropylene resin composition further includes at least one additive selected from a neutralizing agent, an antioxidant, a heat stabilizer, a weather stabilizer, an antistatic agent, a lubricant, an antiblocking agent, a pigment, and a dye. The polypropylene resin composition according to claim 1, comprising: a polypropylene resin composition according to claim 1. 前記有機金属系核剤はアルミニウム塩、ナトリウム塩およびカルシウム塩からなる群から選択される金属塩であることを特徴とする、請求項1に記載のポリプロピレン樹脂組成物。
The polypropylene resin composition according to claim 1, wherein the organometallic nucleating agent is a metal salt selected from the group consisting of an aluminum salt, a sodium salt, and a calcium salt.
JP2017538152A 2014-11-24 2015-06-17 High rigidity polypropylene resin composition with excellent flowability, heat resistance and external shape Active JP6442064B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0164648 2014-11-24
KR1020140164648A KR101699589B1 (en) 2014-11-24 2014-11-24 Stiff polypropylene resin composition having excellent flowability, heat resistance and good appearance
PCT/KR2015/006123 WO2016085074A1 (en) 2014-11-24 2015-06-17 High-stiffness polypropylene resin composition having excellent flowability, heat resistance and aesthetic appearance

Publications (2)

Publication Number Publication Date
JP2017530249A JP2017530249A (en) 2017-10-12
JP6442064B2 true JP6442064B2 (en) 2018-12-19

Family

ID=56074593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017538152A Active JP6442064B2 (en) 2014-11-24 2015-06-17 High rigidity polypropylene resin composition with excellent flowability, heat resistance and external shape

Country Status (4)

Country Link
JP (1) JP6442064B2 (en)
KR (1) KR101699589B1 (en)
CN (1) CN107075200B (en)
WO (1) WO2016085074A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988156B1 (en) 2018-01-22 2019-06-11 한화토탈 주식회사 Polypropylene Resin for Insulating Power Cables
JP7114361B2 (en) 2018-06-19 2022-08-08 サンアロマー株式会社 Polypropylene composition and molded article
KR102223243B1 (en) 2019-09-16 2021-03-04 한화토탈 주식회사 Polypropylene Resin Composition with Excellent Stress-whitening Resistance and Heat Resistance, Process for Preparing the Same, and Article Molded Therefrom
CN112745625A (en) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 High-fluidity high-gloss polypropylene composition and preparation method thereof
KR102339989B1 (en) 2020-07-21 2021-12-15 한화토탈 주식회사 Polypropylene Resin Composition with Excellent Transparency and Long-term Thermal Stability and Article Molded Therefrom
KR102356502B1 (en) * 2020-09-15 2022-02-07 한화토탈 주식회사 Polypropylene Resin Composition with Excellent Transparency and Impact Resistance, and Article Molded Therefrom

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574287B1 (en) * 1998-12-30 2006-08-03 삼성토탈 주식회사 Polypropylene resin composition excellent in rigidity and impact resistance
KR100585329B1 (en) * 1999-06-04 2006-05-30 삼성토탈 주식회사 High isotactic polypropylene compositions
KR20020049854A (en) * 2000-12-20 2002-06-26 유현식 Polypropylene Resin Composition Having High Crystallinity
CN100443536C (en) * 2003-08-05 2008-12-17 巴塞尔聚烯烃意大利有限责任公司 Polyolefin articles
US7737069B2 (en) * 2004-04-23 2010-06-15 Idemitsu Kosan Co., Ltd. Magnesium compound, catalyst for olefin polymerization and method for producing olefin polymer
JP2009013333A (en) 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Polypropylene-based resin composition
BRPI0915663B1 (en) * 2008-07-14 2020-09-24 Borealis Ag LOW CLTE POLYOLEFIN COMPOSITION, ITS USE, AND MOLDED ARTICLE
EP2426171A1 (en) * 2010-08-30 2012-03-07 Borealis AG Heterophasic polypropylene with high flowability and enhanced mechanical properties
JP6095947B2 (en) * 2012-11-02 2017-03-15 サンアロマー株式会社 Polypropylene resin composition for compression molding and molded product

Also Published As

Publication number Publication date
KR101699589B1 (en) 2017-01-24
CN107075200B (en) 2019-09-24
WO2016085074A1 (en) 2016-06-02
CN107075200A (en) 2017-08-18
KR20160061788A (en) 2016-06-01
JP2017530249A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6442064B2 (en) High rigidity polypropylene resin composition with excellent flowability, heat resistance and external shape
JP5775142B2 (en) Heterogeneous polyolefin composition
CN108699303B (en) Polypropylene resin composition
CN103649206B (en) There is the heterophasic polypropylene of low CLTE and high rigidity
KR102231819B1 (en) Master batch composition
WO2015089688A1 (en) Polypropylene composition with low coefficient of linear thermal expansion and high dimension stability
KR20110083478A (en) A solid catalyst for olefin polymerization and a method for preparing the same
KR20110064618A (en) A method for preparation of a solid catalyst for polymerization of propylene
WO2015161398A1 (en) Pp compounds with high flowability and balanced mechanical properties
JP2020084180A (en) Polypropylene resin composition, method for preparing the same, and molded article produced therefrom
US11505685B2 (en) High impact polypropylene impact copolymer
KR101834078B1 (en) Polypropylene resin composition with low shrinkage and good appearance
US20180155461A1 (en) Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
US20120123068A1 (en) Novel combinations of silane electron donors for use in catalyst compositions
JP6831218B2 (en) Masterbatch composition and polypropylene resin composition containing it
US11319431B2 (en) Polypropylene composition and molded article
JP6259751B2 (en) Polypropylene resin composition and use thereof
JP7134743B2 (en) Propylene-based polymer, catalyst for olefin polymerization and molding
JP7195897B2 (en) Propylene-based resin composition and molded article
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR20120079691A (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
JP7186594B2 (en) Method for producing propylene polymer
JP2014214202A (en) Polypropylene resin composition
KR101540513B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101473354B1 (en) Catalyst composition for polymerization of olefin, preparing method of the same, and process for polymerization of olefin using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6442064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250