JP6440293B2 - Morphing wings - Google Patents

Morphing wings Download PDF

Info

Publication number
JP6440293B2
JP6440293B2 JP2014122339A JP2014122339A JP6440293B2 JP 6440293 B2 JP6440293 B2 JP 6440293B2 JP 2014122339 A JP2014122339 A JP 2014122339A JP 2014122339 A JP2014122339 A JP 2014122339A JP 6440293 B2 JP6440293 B2 JP 6440293B2
Authority
JP
Japan
Prior art keywords
blade
wing
morphing
elements
blade elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122339A
Other languages
Japanese (ja)
Other versions
JP2016002790A (en
Inventor
緑 牧
緑 牧
大輔 平林
大輔 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2014122339A priority Critical patent/JP6440293B2/en
Priority to PCT/JP2015/053078 priority patent/WO2015190124A1/en
Publication of JP2016002790A publication Critical patent/JP2016002790A/en
Application granted granted Critical
Publication of JP6440293B2 publication Critical patent/JP6440293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C3/48Varying camber by relatively-movable parts of wing structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots

Description

本発明は、流体中で揚力を発生させるための翼型を、通常用いられる固定翼ではなく、全体又は一部領域が翼弦方向の複数の翼素に分割して翼列化され、複数の翼素の相対的な位置関係を変更する駆動機構を備え、適時制御することにより、揚力/抗力・ローリングモーメントなどを自在に変化させるモーフィング翼に関し、航空機用をはじめ、垂直軸風車、船舶搭載型大型硬翼などの翼変形などに適用されるモーフィング翼に関する。   In the present invention, the airfoil for generating lift in the fluid is not a fixed wing that is normally used, but the whole or a partial region is divided into a plurality of blade elements in the chord direction to form a cascade. Equipped with a drive mechanism that changes the relative positional relationship of the blade elements, and with timely control, morphing blades that can freely change lift / drag, rolling moment, etc. The present invention relates to a morphing wing applied to wing deformation such as a large hard wing.

一般的に、航空機の翼型は、一様流中で最小抗力で効率よく揚力を発生するよう設計されており、流れに対する翼姿勢角(迎角)が一定範囲内に収まっていれば望ましい空力特性が保証される。
しかしながら、迎角がその範囲を逸脱すると流れの剥離が始まり、急速に揚力が低下、同時に抗力が急増し、この空力特性劣化に伴い、飛行制御は著しく困難となり、きりもみなど異常姿勢に入り、場合によっては回復不能となる。
そこで、翼形を変化させるモーフィング翼に関して、特に航空機分野において数多く提案されてきた(例えば、非特許文献1、2等参照。)。
翼に変形自由度(ねじり、反り、平面形状の変化など)を与え、原理的に多様な飛行条件とミッション要求に対応するものである。
In general, an aircraft airfoil is designed to generate lift efficiently with minimal drag in a uniform flow, and it is desirable if the wing attitude angle (attack angle) with respect to the flow is within a certain range. Properties are guaranteed.
However, when the angle of attack deviates from that range, flow separation begins, the lift rapidly decreases, and at the same time the drag increases rapidly.With this aerodynamic characteristic degradation, flight control becomes extremely difficult, and abnormal postures such as drilling are entered, In some cases, it cannot be recovered.
Thus, many morphing wings that change the airfoil have been proposed particularly in the aircraft field (see, for example, Non-Patent Documents 1 and 2).
It gives the wings freedom of deformation (twisting, warping, changes in planar shape, etc.), and in principle meets a variety of flight conditions and mission requirements.

また、航空機の低速時の揚力増大のために、中央母翼(揚力発生の主領域)に加えて、前縁スラット、後縁フラップを追加し、翼面積増大効果、キャンバ比増効果を狙う方法が公知である。
これらのものでは、スラットとフラップの形態(スロット有無、フラップ枚数など)、駆動方式は多岐にわたる(例えば、非特許文献3等参照。)。
また、翼表面へアクティブあるいはパッシブに運動エネルギーを供給することにより剥離を遅らせる方法が提案されている。
特に、主翼後縁のフラップの上面あるいは下面からの高圧ジェット噴射、翼表面強制振動など擾乱付加、渦発生装置取り付け、最近ではこれら機能のマイクロアクチュエータによる実現法が提案されている(例えば、非特許文献4等参照。)。
Also, in order to increase the lift at low speeds of the aircraft, in addition to the central main wing (the main region of lift generation), a leading edge slat and a trailing edge flap are added to increase the wing area and camber ratio. Is known.
In these types, there are various types of slats and flaps (slot presence / absence, number of flaps, etc.) and driving methods (see, for example, Non-Patent Document 3).
In addition, a method of delaying separation by supplying kinetic energy to the blade surface actively or passively has been proposed.
In particular, high pressure jet injection from the upper or lower surface of the flap at the trailing edge of the main wing, disturbance addition such as forced vibration on the wing surface, attachment of a vortex generator, and recently a method for realizing these functions using microactuators has been proposed (for example, non-patent Reference 4 etc.).

玉山、モーフィングに関する動向、ながれ 28 pp.277−284 (2009)Tamayama, Trends on Morphing, Flow 28 pp. 277-284 (2009) Barbarino et al., ”A Review of Morphing Aircraft”, Journal of Material Systems and Structures, Vol. 22 June (2011)Barbarino et al. "A Review of Morphing Aircraft", Journal of Material Systems and Structures, Vol. 22 June (2011) 最適化技術を応用した高揚力装置の設計技術開発、革新航空機技術に関する調査研究:成果報告書 No.2215Development of design technology for high-lift devices using optimization technology, research on innovative aircraft technology: Result report No. 2215 マイクロアクチュエータを用いた乱流制御、剥離制御技術の研究、革新航空機技術に関する調査研究:成果報告書 No.1103Research on turbulent flow control using microactuators, separation control technology, research on innovative aircraft technology: Result report No. 1103

一般的な航空機は翼形態が固定されているために、乱気流遭遇により容易に失速に陥り、特に離着陸時の低速領域では復航が不可能となり、特に小型軽量の低翼面荷重低速機において顕著である。
例えば、航空機が悪天候下や山間部、あるいは離着陸時の乱気流に遭遇した時の安全性は喫緊に解決すべき課題と広く認識されているが、特に小型軽量飛行機は、エアラインが運航する大型旅客機に比べて、翼面荷重が一桁小さいため耐乱気流性能が著しく不足しており、より安全性の向上が求められている。
通常、固定翼航空機の着陸においては、フラップなどの高揚力デバイスを用いても経路角3〜5°のアプローチとなるため、滑走路周辺は障害物のない十分広い空域が必要になる。
Because general wings have a fixed wing configuration, they can easily stall due to turbulent encounters, making it impossible to return in the low-speed area during take-off and landing, especially in small and lightweight low-wing surface-load low-speed aircraft. is there.
For example, safety is widely recognized as an urgent issue to be solved when an aircraft encounters bad weather, mountains, or turbulence during takeoff and landing, but small and light aircraft are particularly large passenger aircraft operated by airlines. Compared with, turbulent airflow resistance is significantly insufficient because the blade load is an order of magnitude smaller, and further improvement in safety is required.
Usually, when landing on a fixed-wing aircraft, even if a high lift device such as a flap is used, an approach with a path angle of 3 to 5 ° is used, so a sufficiently wide air space without an obstacle is required around the runway.

また、風向風速によっては横風制限により滑走路方向への安全なアプローチが困難な場合もあり、さらに、エンジン停止など緊急時を想定した場合も含め、滑走路以外に着陸可能エリアがないことは、搭乗者、機体の安全のみならず、対地安全の観点からも問題がある。
日本のように国土が狭くその70%を山間部が占める地理的環境においては、小型軽量飛行機の市場は非常に小さいため、周辺に障害物のない航空機専用離発着場を数多く整備・維持することはコスト的に成立しない。
逆に、小型軽量飛行機用インフラが整備されないことが小型軽量飛行機の産業活性化、無人機利用拡大の阻害要因となっている。
これらの課題は、前述したような公知のモーフィング翼、スラットとフラップを備えた翼、翼表面への運動エネルギーを供給する翼等を適用しても、充分に解決できるものではない。
Also, depending on the wind direction and wind speed, a safe approach to the runway direction may be difficult due to crosswind restrictions, and there is no landing area other than the runway, including in case of emergency such as engine stop, There is a problem from the viewpoint of ground safety as well as passenger and aircraft safety.
In a geographical environment like Japan where the country is small and 70% is mountainous, the market for small and light aircraft is very small. Not cost effective.
On the other hand, the lack of infrastructure for small and light aircraft is an impediment to the industrial activation of small and light aircraft and the expansion of use of unmanned aircraft.
These problems cannot be sufficiently solved even by applying the above-described known morphing wings, wings having slats and flaps, wings supplying kinetic energy to the wing surface, and the like.

非特許文献1、2に記載されたようなモーフィング翼は、実現のためのさまざまなコンセプトが提案されてきたが、変形構造や、追加アクチュエータによる重量増が、翼変形によるアドバンテージを相殺してしまうため、上記課題を充分に解決することができず、実用化に至った例は極めて少ない。
非特許文献3に記載されたようなスラットとフラップを備えた翼は、翼面積増大効果、キャンバ比増効果はあるものの、上述のモーフィング翼のような翼変形に比べると、上記課題を充分に解決するためのアドバンテージは小さい。
非特許文献4に記載されたような翼表面への運動エネルギーを供給する翼は、空力特性の向上には効果はあるが、そのための擾乱付加、渦発生装置等を追加する必要があり、また、このことによる空力特性の向上のみでは、やはり、上記課題を充分に解決することができなかった。
Various concepts for realizing morphing wings as described in Non-Patent Documents 1 and 2 have been proposed, but the deformation structure and weight increase due to additional actuators offset the advantage of blade deformation. For this reason, the above problems cannot be solved sufficiently, and there are very few examples that have been put to practical use.
Although the wing provided with the slat and the flap as described in Non-Patent Document 3 has an effect of increasing the wing area and an effect of increasing the camber ratio, the above problems are sufficiently compared with the wing deformation like the morphing wing described above. The advantage to solve is small.
A blade that supplies kinetic energy to the blade surface as described in Non-Patent Document 4 is effective in improving aerodynamic characteristics, but it is necessary to add a disturbance, a vortex generator, etc. However, the improvement of the aerodynamic characteristics by this alone has not sufficiently solved the above problem.

そこで、本発明は前述した課題を解決するものであり、構造を複雑化、大型化することなく、軽量で単純な機構で翼列化された領域全体形状を大きく変形することができ、翼面積増大効果やキャンバ比増効果に優れ、特に、小型軽量飛行機に適用した際に、乱気流遭遇時でも失速しにくく、アプローチ角度の深い低速高迎角着陸が可能で、安全性を飛躍的に向上することが可能なモーフィング翼を提供することを目的とする。   Therefore, the present invention solves the above-described problems, and can greatly deform the entire shape of the region of the blade array with a light and simple mechanism without complicating and increasing the size of the structure. Excellent increase effect and camber ratio increase effect, especially when applied to small and light aircraft, it is difficult to stall even when encountering turbulence, landing at low speed and high angle of attack with a deep approach angle is possible, dramatically improving safety An object of the present invention is to provide a morphing wing capable of performing the above.

本発明に係るモーフィング翼は、翼全体又は一部領域が翼弦方向の複数の翼素に分割して翼列化され、前記複数の翼素の相対的な位置関係を変更する駆動機構を備え、翼列化された領域全体の形状が変更されるモーフィング翼であって、前記複数の翼素が、1枚の中央翼素と、前記中央翼素の前方及び後方にそれぞれ1枚以上配置された可動翼素とを有し、前記駆動機構が、隣接する前記翼素の相対位置を変更可能とするように構成され、前記駆動機構が、前記中央翼素の下方に固定されたベース部材と、前記可動翼素の下方に固定され前記ベース部材に回動連結部を介して回動可能に連結されたアーム部材と、複数の前記アーム部材の回動を連動させるリンク部材とを備えていることにより、前記課題を解決するものである。 A morphing wing according to the present invention includes a drive mechanism in which the entire wing or a partial region is divided into a plurality of blade elements in a chord direction to form a cascade, and the relative positional relationship of the plurality of blade elements is changed. A morphing wing whose shape of the entire bladed region is changed, wherein the plurality of blade elements are arranged at one central blade element and at least one front blade element at the front and rear of the central blade element. A base member fixed to a position below the central blade element , wherein the drive mechanism is configured to change a relative position of the adjacent blade elements. An arm member fixed below the movable blade element and rotatably connected to the base member via a rotation connecting portion; and a link member that interlocks the rotation of the plurality of arm members . This solves the problem.

請求項1に係るモーフィング翼によれば、複数の翼素が、1枚の中央翼素と、中央翼素の前方及び後方にそれぞれ1枚以上配置された可動翼素とを有し、駆動機構が、隣接する翼素の相対位置を変更可能とし、翼列化された領域全体の形状を大きく変形可能とすることで、翼面積増大効果やキャンバ比増効果を奏することができる。
また、中央翼素を含み、全ての翼素を、小さく構成することができ、構造を複雑化、大型化することなく、軽量で単純な機構とすることが可能となる。
さらに、分割された各翼素は、いずれも単翼素としては十分な揚力を発生することができない低レイノルズ数翼(例えば、各翼素の翼弦方向の長さが、閉じた状態の翼弦全体の長さに対して、最大のものでも50%以下)でありながら、翼全体を低レイノルズ数翼素の集合体として固定翼よりも大きな揚力を発生させることが可能となる。
また、駆動機構が、中央翼素の下方に固定されたベース部材と、可動翼素の下方に固定されベース部材に回動連結部を介して回動可能に連結されたアーム部材と、複数のアーム部材の回動を連動させるリンク部材とを備えていることにより、複数の翼素の翼弦方向の移動や迎角の変更を連動させることができるため、1つのアクチュエータで翼全体の変形を制御することが可能となり、構造を複雑化、大型化することなく、軽量で単純な機構とすることが可能となる。
According to the morphing wing according to claim 1, the plurality of wing elements include one central wing element and one or more movable wing elements arranged in front and rear of the central wing element, respectively, and a driving mechanism However, by making it possible to change the relative positions of adjacent blade elements and making it possible to greatly deform the shape of the entire blade region, it is possible to achieve a blade area increase effect and a camber ratio increase effect.
Further, all the blade elements including the central blade element can be configured to be small, and it is possible to obtain a light and simple mechanism without making the structure complicated and large.
Furthermore, each of the divided blade elements has a low Reynolds number blade that cannot generate sufficient lift as a single blade element (for example, a blade in which the chord length of each blade element is closed). Although the maximum length is 50% or less with respect to the length of the entire string, it is possible to generate a higher lift than the fixed wing as an aggregate of low Reynolds number blade elements.
Further, the drive mechanism includes a base member fixed below the central blade element, an arm member fixed below the movable blade element and rotatably connected to the base member via a rotation connecting portion, and a plurality of arm members By providing a link member that interlocks the rotation of the arm member, the movement of the chord direction of a plurality of blade elements and the change in the angle of attack can be interlocked, so the entire blade can be deformed with one actuator. It becomes possible to control, and it becomes possible to make a light and simple mechanism without complicating and increasing the size of the structure.

本請求項2に記載の構成によれば、複数の翼素は、隣接する翼素と間にスロットが形成されるように構成されていることにより、複数の翼素の移動に応じ、翼下面の運動エネルギーを翼上面に供給して剥離を遅らせることが可能となり、他の擾乱付加、渦発生装置等を追加することなく、空力特性を向上させることができる。
本請求項3に記載の構成によれば、駆動機構が、複数の翼素の迎角をそれぞれ変更可能に構成されていることにより、さらに翼全体の形状を大きく変化させることができ、キャンバ比増効果を大きくすることが可能となる
According to the configuration of the present invention, the plurality of blade elements are configured such that slots are formed between adjacent blade elements. Can be supplied to the upper surface of the blade to delay the separation, and aerodynamic characteristics can be improved without adding other disturbances or adding a vortex generator.
According to the configuration of the third aspect of the present invention, since the drive mechanism is configured to be able to change the angle of attack of each of the plurality of blade elements, the shape of the entire blade can be further greatly changed, and the camber ratio The increase effect can be increased .

本発明の一実施形態に係るモーフィング翼の変形説明図。The modification explanatory view of the morphing wings concerning one embodiment of the present invention. 本発明の一実施形態に係るモーフィング翼の60°形態及び30°形態の流れの説明図。Explanatory drawing of the flow of the 60 degree form and 30 degree form of the morphing wing | blade which concerns on one Embodiment of this invention. 本発明の一実施形態に係るモーフィング翼の60°形態の斜視説明図。The perspective explanatory drawing of the 60 degrees form of the morphing wings concerning one embodiment of the present invention. 本発明の一実施形態に係るモーフィング翼の特性グラフ。The characteristic graph of the morphing wings concerning one embodiment of the present invention. 本発明の一実施形態に係るモーフィング翼の断面図。Sectional drawing of the morphing wing | blade which concerns on one Embodiment of this invention. 本発明の一実施形態に係るモーフィング翼のカットモデルの巡航形態の参考写真。The reference photograph of the cruise form of the cut model of the morphing wings concerning one embodiment of the present invention. 本発明の一実施形態に係るモーフィング翼のカットモデルの60°形態の参考写真。The reference photograph of the 60 degree form of the cut model of the morphing wings concerning one embodiment of the present invention. 本発明の一実施形態に係るモーフィング翼を有する実機モデルの着陸時の参考写真。The reference photograph at the time of landing of the real machine model which has the morphing wings concerning one embodiment of the present invention.

本発明のモーフィング翼は、翼全体又は一部領域が翼弦方向の複数の翼素に分割して翼列化され、複数の翼素の相対的な位置関係を変更する駆動機構を備え、翼列化された領域全体の形状が変更されるモーフィング翼であって、複数の翼素が、1枚の中央翼素と、中央翼素の前方及び後方にそれぞれ1枚以上配置された可動翼素とを有し、駆動機構が、隣接する翼素の相対位置を変更可能とするように構成され、駆動機構が、中央翼素の下方に固定されたベース部材と、可動翼素の下方に固定されベース部材に回動連結部を介して回動可能に連結されたアーム部材と、複数のアーム部材の回動を連動させるリンク部材とを備え、構造を複雑化、大型化することなく、軽量で単純な機構で翼全体を大きく変形することができ、翼面積増大効果やキャンバ比増効果に優れたものであれば、その具体的な実施態様はいかなるものであっても良い。
The morphing wing of the present invention includes a drive mechanism in which the entire wing or a partial region is divided into a plurality of blade elements in the chord direction to form a cascade, and the relative positional relationship of the plurality of blade elements is changed. A morphing wing in which the shape of the entire arrayed region is changed, and a plurality of wing elements are arranged with one central wing element and at least one movable wing element in front and behind the central wing element. The drive mechanism is configured to be able to change the relative position of adjacent blade elements, and the drive mechanism is fixed below the central blade element and fixed below the movable blade element. The arm member is rotatably connected to the base member via the rotation connecting portion, and the link member that interlocks the rotation of the plurality of arm members is provided, and the structure is lightweight without complicating and increasing the size. With a simple mechanism, the entire wing can be greatly deformed. As long as it has excellent Yanba rose effect, specific embodiments thereof may be any one.

本発明の一例として、翼列を中央翼素111の前側に可動翼素112a、112bを、後側に可動翼素112c、112dを配置した5枚の翼素からなり、キャンバ比4%〜24%、最後部の可動翼素112dが0°〜60°に変形可能なモーフィング翼を、図1に示す。
この例では、巡航時形態では、一体の固定翼と同等であり、変形することで隣接する翼素間にスロットSが形成される。
変形時には、この計4列のスロットSによって、図2、図3に示すように、翼下面の運動エネルギーが翼上面に供給されて乱流境界層を保持して剥離遅延効果が得られ、急激な揚力の低下を抑制することができる。
一方、翼下面の流れがこの4列のスロットSに流入通過する際発生する摩擦抵抗により、抗力は固定翼の場合より大きくなる。
ただし、揚力、抗力の迎角に対する変化は滑らかであり、剥離直後での揚力急減、抗力急増がなく、スロット開閉度を流れに応じて調整することにより滑らかな揚抗比制御が可能となる。
As an example of the present invention, the blade row is composed of five blade elements in which the movable blade elements 112a and 112b are arranged on the front side of the central blade element 111 and the movable blade elements 112c and 112d are arranged on the rear side, and the camber ratio is 4% to 24 FIG. 1 shows a morphing wing in which the movable wing element 112d at the rearmost part can be deformed from 0 ° to 60 °.
In this example, the cruise mode is equivalent to an integral fixed wing, and a slot S is formed between adjacent wing elements by deformation.
At the time of deformation, as shown in FIGS. 2 and 3, the kinetic energy of the lower surface of the blade is supplied to the upper surface of the blade to hold the turbulent boundary layer, and the separation delay effect is obtained. Reduction of the lift force can be suppressed.
On the other hand, due to the frictional resistance generated when the flow on the lower surface of the blade flows into and passes through the four rows of slots S, the drag is greater than in the case of the fixed blade.
However, the changes in lift and drag with respect to the angle of attack are smooth, there is no sudden decrease in lift and drag immediately after peeling, and smooth lift-drag ratio control is possible by adjusting the slot opening / closing degree according to the flow.

これらの特性を、図4のグラフに示す。
図中のCLは揚力、CDは抗力を示し、1及び4は固定翼(本発明の巡航時形態とほぼ同じ)のグラフ、2及び5はキャンバ比24%とした固定翼のグラフ、3及び6は本発明の一例のモーフィング翼を60°形態に変形した時の、それぞれ横軸を迎角としたグラフである。
このグラフからわかるように、本発明の一例のモーフィング翼では、翼列開度を大きくすることにより、翼面積増大効果、キャンバ比増大効果を奏し、どの迎角領域においても固定翼(図中のCL(Original)1)よりも大きな揚力を発生でき、迎角1°〜45°の範囲では、キャンバ比24%とした固定翼(CL(24%CamberSingle)2)よりも大きな揚力を発生できる。
また、剥離開始迎角は、固定翼(図中のCL(Original)1)の14°から本発明の一例のモーフィング翼を60°形態に変形した時(図中のCL(Morphing60deg)3)では30°へと移行しており、航空機の場合、失速を遅らせ粘ることができる。
These characteristics are shown in the graph of FIG.
In the figure, CL indicates lift, CD indicates drag, 1 and 4 are graphs of fixed wings (substantially the same as the cruise mode of the present invention), 2 and 5 are graphs of fixed wings with a camber ratio of 24%, 3 and 6 is a graph in which the horizontal axis represents the angle of attack when the morphing wing of an example of the present invention is transformed into a 60 ° form.
As can be seen from this graph, in the morphing blade of the present invention, by increasing the blade row opening degree, the blade area increasing effect and camber ratio increasing effect are achieved, and the fixed blade (in the figure) A lift higher than that of CL (Original) 1) can be generated, and a lift higher than that of a fixed blade (CL (24% Chamber Single) 2) having a camber ratio of 24% can be generated in a range of angles of attack of 1 ° to 45 °.
Further, when the morphing blade of the example of the present invention is deformed from 14 ° of the fixed blade (CL (Original) 1 in the figure) to 60 ° form (CL (Morphing 60 deg) 3 in the drawing) It has shifted to 30 °, and in the case of an aircraft, stall can be delayed and sticky.

さらに、本発明の一例のモーフィング翼を60°形態に変形した時(図中のCL(Morphing60deg)3)は、迎角が大きくなり(>30度)剥離が始まっても揚力は急減せず、非常になだらかに減少する。
したがって、ピッチングモーメントも剥離とともに急変せず、抗力(図中のCD(Morphing60deg)6)も急増がなくゆっくりと増加しないことから、航空機に適用した場合、ピッチ角0°付近に維持したまま、高迎角(45°程度)での低速高降下着陸が達成できる。
例えば、試作機による実飛行において、固定翼では不可能な高迎角(20度)で、図8に示す参考写真のように、深いアプローチ角(25度)が実現されている。
Furthermore, when the morphing wing of an example of the present invention is deformed to a 60 ° form (CL (Morphing 60 deg) 3 in the figure), the angle of attack becomes large (> 30 degrees), and the lift does not decrease rapidly even when peeling begins. Decrease very gently.
Therefore, since the pitching moment does not change suddenly with separation and the drag (CD (Morphing 60 deg) 6 in the figure) does not increase rapidly and does not increase slowly, when applied to an aircraft, it remains high at a pitch angle of about 0 °. Low speed high descent landing at angle of attack (about 45 °) can be achieved.
For example, in actual flight using a prototype, a deep approach angle (25 degrees) is realized at a high angle of attack (20 degrees), which is impossible with a fixed wing, as shown in the reference photograph shown in FIG.

本発明の一実施形態に係るモーフィング翼100の機構を、図5乃至図7に示す。
モーフィング翼100は、翼全体を翼弦方向の複数の翼素に分割して翼列化されており、中央翼素111の前側に可動翼素112a、112bを、後側に可動翼素112c、112dを配置した5枚の翼素からなり、中央翼素111に対する各可動翼素112a〜dの相対的な位置関係及び姿勢を変更する駆動機構120を備えている。
駆動機構120は、中央翼素111に固定されたベース部材121と、各可動翼素112a〜dにそれぞれ固定されベース部材121に対して回動可能に連結されたアーム部材122a〜dと、各アーム部材122a〜dの回動を連動させるリンク部材123a〜d、sとを備えている。
The mechanism of the morphing wing 100 according to one embodiment of the present invention is shown in FIGS.
The morphing blade 100 is divided into a plurality of blade elements in the chord direction by dividing the entire blade into a plurality of blade elements. The movable blade elements 112a and 112b are disposed on the front side of the central blade element 111, and the movable blade elements 112c are disposed on the rear side. A drive mechanism 120 is provided which includes five blade elements with 112d disposed therein and changes the relative positional relationship and posture of each movable blade element 112a to 112d with respect to the central blade element 111.
The drive mechanism 120 includes a base member 121 fixed to the central blade element 111, arm members 122a to 122d fixed to the movable blade elements 112a to 112d and rotatably connected to the base member 121, and Link members 123a to 123d for interlocking the rotation of the arm members 122a to 122d are provided.

リンク部材123sは、ベース部材121に対して回転中心Cを中心に回動自在に設けられ、リンク部材123a〜dは、一端をそれぞれ各アーム部材122a〜dに、他端をリンク部材123sに回動可能に連結されている。
リンク部材123sが1個のアクチュエータ(図示しない)によってベース部材121に対して回動することにより、図7の参考写真に示すように、各リンク部材123a〜dを介して各アーム部材122a〜dをベース部材121に対して同時に回動させ、中央翼素111に対する各可動翼素112a〜dの相対的な位置関係及び姿勢が変更され、モーフィング翼100が変形する。
The link member 123s is provided so as to be rotatable around the rotation center C with respect to the base member 121. The link members 123a to 123d rotate at one end to the arm members 122a to 122d and the other end to the link member 123s, respectively. It is linked movably.
When the link member 123s is rotated with respect to the base member 121 by one actuator (not shown), the arm members 122a to 122d are connected to the arm members 122a to 123d via the link members 123a to 123d as shown in the reference photograph of FIG. Are simultaneously rotated with respect to the base member 121, the relative positional relationship and posture of each movable blade 112a-d with respect to the central blade 111 are changed, and the morphing blade 100 is deformed.

なお、各リンク部材123a〜d、s、各アーム部材122a〜dの少なくともいずれか1つの回動連結部(図5の黒点で示す)を回動すれば全ての部材が連動するため、アクチュエータは、任意の位置で任意の部材を駆動すればよい。
また、駆動力を考慮して、アクチュエータを複数設けてもよい。
さらに、各リンク部材123a〜d、s、各アーム部材122a〜dの長さ、回動連結部の位置を任意に変更することで、各可動翼素112a〜dの位置や姿勢の変化を任意に規定でき、翼全体を任意の形状に変形させることができる。
また、上記実施形態では可動翼素112の数を4枚としたが、任意の数で構成すればよく、一部の可動翼素をリンク部材と連結せず独立して駆動し個別に位置や迎角の制御可能としてもよい。
また、ベース部材、アーム部材、リンク部材の以外の運動機構、例えばカムとカムフォロアー、ギヤ、チェーン等による運動機構により、あるいは、それらを適宜組み合わせて可動翼素を駆動してもよい。
In addition, since all members interlock | cooperate if at least any one rotation connection part (it shows with the black dot of FIG. 5) of each link member 123a-d and s and each arm member 122a-d rotates, an actuator is Any member may be driven at any position.
In consideration of driving force, a plurality of actuators may be provided.
Furthermore, by changing the length of each link member 123a-d, s, the length of each arm member 122a-d, and the position of the rotation connecting portion, the position and posture of each movable blade 112a-d can be changed arbitrarily. The entire wing can be deformed into an arbitrary shape.
In the above embodiment, the number of movable blade elements 112 is four. However, any number of movable blade elements may be used, and some movable blade elements are driven independently without being connected to the link member, and the position and position of the movable blade elements are individually determined. The angle of attack may be controllable.
Further, the movable blade element may be driven by a motion mechanism other than the base member, the arm member, and the link member, for example, a motion mechanism using a cam and a cam follower, a gear, a chain, or the like, or by appropriately combining them.

駆動機構120は、翼の幅方向のいずれの位置に設けられてもよく、また、幅方向に複数設けられてもよい。
例えば、航空機の場合、モーフィング翼の機体側及び翼端側の両側に駆動機構120を設けるのが好適である。
また、中央翼素及び可動翼素を幅方向で形状の異なるものとしてもよく、両端に駆動機構を設けた場合、変形時の動作を両端で異なるように規定してもよい。
さらに、モーフィング翼が変形した際にスロットが形成されないよう、中央翼素及び可動翼素の上面側後端部を後方に延ばした形状としたり、モーフィング翼の上面に弾性変形可能な膜状体で覆うように構成してもよい。
The drive mechanism 120 may be provided at any position in the width direction of the blade, and a plurality of drive mechanisms 120 may be provided in the width direction.
For example, in the case of an aircraft, it is preferable to provide drive mechanisms 120 on both sides of the morphing wing on the fuselage side and wing tip side.
Further, the central blade element and the movable blade element may have different shapes in the width direction, and when a drive mechanism is provided at both ends, the operation at the time of deformation may be defined to be different at both ends.
Furthermore, in order to prevent the slot from being formed when the morphing wing is deformed, the rear end of the upper surface side of the central wing element and the movable wing element is extended rearward, or the upper surface of the morphing wing is made of an elastically deformable membrane. You may comprise so that it may cover.

中央翼素を中空構造としたり、図6、図7に示す参考写真のように、可動翼素112a〜dを中空構造としたり、これらを、ハニカム構造、凹凸構造等とすることで、強度や剛性を担保しつつ軽量化することも可能である。
また、ベース部材、アーム部材、リンク部材等の各部材についても、中空構造、ハニカム構造、凹凸構造等を採用することで、強度や剛性を担保しつつ軽量化することが可能である。
さらに、アーム部材、リンク部材等の一部あるいは全部を弾性変形可能な材料で構成することにより、外力に応じたモーフィング翼の受動的な変形を許容してもよい。
The central blade element has a hollow structure, or the movable blade elements 112a to 112d have a hollow structure, as shown in the reference photos shown in FIGS. It is also possible to reduce the weight while ensuring rigidity.
Further, each member such as a base member, an arm member, and a link member can also be reduced in weight while ensuring strength and rigidity by adopting a hollow structure, a honeycomb structure, an uneven structure, or the like.
Furthermore, passive deformation of the morphing wing according to the external force may be allowed by configuring part or all of the arm member, the link member, etc. with a material that can be elastically deformed.

以上のように、本発明のモーフィング翼によれば、構造を複雑化、大型化することなく、軽量で単純な機構で翼全体を大きく変形することができ、翼面積増大効果やキャンバ比増効果を向上することが可能となる。
本発明のモーフィング翼は、航空機を対象とした耐乱気流性能向上、高迎角高降下角着陸(Semi−VTOL機能)の実現に特に有効であり、そのことにより、機体喪失確率低減による航空安全向上、小型航空機の利用拡大、無人機の利用拡大等の大きな効果がある。
また、垂直軸風車の発電効率向上や、船舶搭載硬翼帆への適用による推進効率向上等、様々な用途の翼として応用可能である。
As described above, according to the morphing wing of the present invention, the entire wing can be greatly deformed with a light and simple mechanism without complicating and increasing the size of the structure, and the wing area increasing effect and camber ratio increasing effect Can be improved.
The morphing wing of the present invention is particularly effective in improving turbulence resistance performance for aircraft and realizing high angle-of-attack and high descent landing (Semi-VTOL function), thereby improving aviation safety by reducing the probability of aircraft loss There are significant effects such as expanding the use of small aircraft and expanding the use of unmanned aircraft.
Moreover, it can be applied as a blade for various purposes such as improving the power generation efficiency of a vertical axis wind turbine and improving the propulsion efficiency by applying it to a ship-mounted hard blade sail.

100 ・・・ モーフィング翼
111 ・・・ 中央翼素
112 ・・・ 可動翼素
120 ・・・ 駆動機構
121 ・・・ ベース部材
122 ・・・ アーム部材
123 ・・・ リンク部材
C ・・・ 回転中心
S ・・・ スロット
DESCRIPTION OF SYMBOLS 100 ... Morphing blade 111 ... Central blade element 112 ... Movable blade element 120 ... Drive mechanism 121 ... Base member 122 ... Arm member 123 ... Link member C ... Center of rotation S ... Slot

Claims (3)

翼全体又は一部領域が翼弦方向の複数の翼素に分割して翼列化され、前記複数の翼素の相対的な位置関係を変更する駆動機構を備え、前記翼列化された領域全体の形状が変更されるモーフィング翼であって、
前記複数の翼素が、1枚の中央翼素と、前記中央翼素の前方及び後方にそれぞれ1枚以上配置された可動翼素とを有し、
前記駆動機構が、隣接する前記翼素の相対位置を変更可能とするように構成され
前記駆動機構が、前記中央翼素の下方に固定されたベース部材と、前記可動翼素の下方に固定され前記ベース部材に回動連結部を介して回動可能に連結されたアーム部材と、複数の前記アーム部材の回動を連動させるリンク部材とを備えていることを特徴とするモーフィング翼。
The entire blade or part of the blade is divided into a plurality of blade elements in the chord direction to form a blade row, and includes a drive mechanism that changes the relative positional relationship of the plurality of blade blades, and the blade row region A morphing wing whose overall shape is changed,
The plurality of blade elements include one central blade element and one or more movable blade elements arranged in front and rear of the central blade element,
The drive mechanism is configured to be able to change the relative position of the adjacent blade elements ;
A base member fixed below the central blade element; an arm member fixed below the movable blade element and rotatably connected to the base member via a rotation connecting portion; A morphing wing comprising a link member that interlocks the rotation of the plurality of arm members .
前記複数の翼素は、隣接する翼素と間にスロットが形成されるように構成されていることを特徴とする請求項1に記載のモーフィング翼。   The morphing wing according to claim 1, wherein the plurality of blade elements are configured such that a slot is formed between adjacent blade elements. 前記駆動機構が、前記複数の翼素の迎角をそれぞれ変更可能に構成されていることを特徴とする請求項1又は請求項2に記載のモーフィング翼。   The morphing wing according to claim 1, wherein the drive mechanism is configured to be able to change angles of attack of the plurality of blade elements.
JP2014122339A 2014-06-13 2014-06-13 Morphing wings Active JP6440293B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014122339A JP6440293B2 (en) 2014-06-13 2014-06-13 Morphing wings
PCT/JP2015/053078 WO2015190124A1 (en) 2014-06-13 2015-02-04 Morphing wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122339A JP6440293B2 (en) 2014-06-13 2014-06-13 Morphing wings

Publications (2)

Publication Number Publication Date
JP2016002790A JP2016002790A (en) 2016-01-12
JP6440293B2 true JP6440293B2 (en) 2018-12-19

Family

ID=54833235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122339A Active JP6440293B2 (en) 2014-06-13 2014-06-13 Morphing wings

Country Status (2)

Country Link
JP (1) JP6440293B2 (en)
WO (1) WO2015190124A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269635A1 (en) 2016-07-12 2018-01-17 The Aircraft Performance Company UG Airplane wing
CN106426969B (en) * 2016-09-09 2018-10-16 北京航空航天大学 A kind of preparation process of high intensity and flexible covering that moderate finite deformation may be implemented
WO2019011395A1 (en) 2017-07-12 2019-01-17 The Aircraft Performance Company Gmbh Airplane wing with at least two winglets
EP3498597B1 (en) 2017-12-15 2020-08-05 The Aircraft Performance Company GmbH Airplane wing
EP3511243B1 (en) 2018-01-15 2021-12-29 The Aircraft Performance Company GmbH Airplane wing
CA3048431A1 (en) 2019-07-03 2021-01-03 Jaye Mangione Deforming foil structure for bridging curved fluid-dynamic surface
CN115723939A (en) * 2022-12-05 2023-03-03 北京理工大学 Morphing wing based on bistable superstructure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB172109A (en) * 1920-08-31 1921-11-30 Frederick Handley Page Improvements in wings for aircraft
GB289517A (en) * 1927-01-25 1928-04-25 Ronald Mckinnon Wood Improvements in or relating to the wings or supporting planes of aircraft
US5312070A (en) * 1992-04-02 1994-05-17 Grumman Aerospace Corporation Segmented variable sweep wing aircraft
US6328265B1 (en) * 1999-05-25 2001-12-11 Faruk Dizdarevic Slot forming segments and slot changing spoilers
PL202380B1 (en) * 2003-07-11 2009-06-30 Inst Lotnictwa Aircraft wing
GB0708335D0 (en) * 2007-04-30 2007-06-06 Airbus Uk Ltd Aerofoil
US8366057B2 (en) * 2009-07-28 2013-02-05 University Of Kansas Method and apparatus for pressure adaptive morphing structure
US8763958B2 (en) * 2011-04-18 2014-07-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-element airfoil system

Also Published As

Publication number Publication date
WO2015190124A1 (en) 2015-12-17
JP2016002790A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6440293B2 (en) Morphing wings
EP2864195B1 (en) Morphing wing for an aircraft
CN105882959B (en) It is capable of the flight equipment of VTOL
US10343763B2 (en) Lifting surfaces and associated method
US9555895B2 (en) Motor pylons for a kite and airborne power generation system using same
JP6196795B2 (en) Performance-enhanced winglet system and method
US8870124B2 (en) Application of elastomeric vortex generators
US9709026B2 (en) Airfoil for a flying wind turbine
WO2008118232A2 (en) Vortex generators on rotor blades to delay an onset of large oscillatory pitching moments and increase maximum lift
US11242141B2 (en) Method of drag reduction on vehicle with internal rotors
EP3348472B1 (en) Lifting surface
US20170253322A1 (en) Split Winglet Lateral Control
US10730606B2 (en) Systems, methods, and apparatuses for airfoil configuration in aircraft
JP2021187325A (en) Flight efficiency improving system in compound helicopter
KR101067017B1 (en) Rotor blade for rotorcraft to change sweep-back angle of the blade tip actively
Dal Monte et al. A retrospective of high-lift device technology
Murugan et al. Concept study for adaptive gas turbine rotor blade
US11325701B2 (en) Aircraft propulsion system, method of manufacture and use thereof
EP3822162B1 (en) Aircraft lifting surface
US10589842B2 (en) Spinners for use on tiltrotor aircraft
EP3766780B1 (en) Passive rotor alignment in a free-wheeling state
WO2011105887A1 (en) Windmill propeller blades with built-in extendable flaps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6440293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250