JP6438780B2 - Charged particle beam apparatus and aberration correction method - Google Patents

Charged particle beam apparatus and aberration correction method Download PDF

Info

Publication number
JP6438780B2
JP6438780B2 JP2015018549A JP2015018549A JP6438780B2 JP 6438780 B2 JP6438780 B2 JP 6438780B2 JP 2015018549 A JP2015018549 A JP 2015018549A JP 2015018549 A JP2015018549 A JP 2015018549A JP 6438780 B2 JP6438780 B2 JP 6438780B2
Authority
JP
Japan
Prior art keywords
stage
multipole
charged particle
particle beam
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015018549A
Other languages
Japanese (ja)
Other versions
JP2016143558A (en
JP2016143558A5 (en
Inventor
朝則 中野
朝則 中野
琴子 浦野
琴子 浦野
朝暉 程
朝暉 程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2015018549A priority Critical patent/JP6438780B2/en
Publication of JP2016143558A publication Critical patent/JP2016143558A/en
Publication of JP2016143558A5 publication Critical patent/JP2016143558A5/ja
Application granted granted Critical
Publication of JP6438780B2 publication Critical patent/JP6438780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、収差補正器を搭載した荷電粒子線装置および収差補正方法に関する。   The present invention relates to a charged particle beam apparatus equipped with an aberration corrector and an aberration correction method.

走査電子顕微鏡(以下SEMと称する)や走査透過電子顕微鏡(以下STEMと称する)などに代表される荷電粒子線装置では、分解能を向上するために収差補正器の導入が進められている。収差補正器は、多段に設置された多極子レンズにより構成され、電場ないし磁場を発生することにより多極子レンズとして、内部を通過する荷電粒子線に含まれる収差を除去する。収差補正器に関しては、例えば非特許文献1に開示されているように、多極子レンズを4段用いたものがある。荷電粒子線装置では一般的に、不要な収差などによる解像度の低下を防ぐため、荷電粒子線の光軸をレンズの軸に合わせる軸調整が行われている。例えば特許文献1には、加速電圧またはレンズ強度を微動(以下ワブラと称する)し、その際の画像の移動(シフト)をなくすように、レンズそのものを動かすことや、荷電粒子線を偏向することや、絞り位置をずらすことなどによりレンズに入射する荷電粒子線の位置を変えて軸調整を行う方法が開示されている。多極子場のレンズを用いた収差補正器においても同様に、レンズとして作用する4極子場にワブラを加えて、画像の移動をなくすよう荷電粒子線を偏向して軸調整を行うことが特許文献2に開示されている。   In charged particle beam apparatuses typified by a scanning electron microscope (hereinafter referred to as SEM) and a scanning transmission electron microscope (hereinafter referred to as STEM), introduction of aberration correctors has been promoted in order to improve resolution. The aberration corrector is composed of multipole lenses installed in multiple stages, and generates an electric field or a magnetic field to remove aberrations contained in a charged particle beam passing through the interior as a multipole lens. As an aberration corrector, for example, as disclosed in Non-Patent Document 1, there is one using four stages of multipole lenses. In the charged particle beam apparatus, in general, in order to prevent a reduction in resolution due to unnecessary aberrations or the like, axis adjustment is performed to align the optical axis of the charged particle beam with the axis of the lens. For example, in Patent Document 1, the acceleration voltage or the lens intensity is finely moved (hereinafter referred to as a wobbler), and the lens itself is moved or the charged particle beam is deflected so as to eliminate the movement (shift) of the image at that time. Also disclosed is a method of adjusting the axis by changing the position of the charged particle beam incident on the lens by shifting the aperture position. Similarly, in an aberration corrector using a lens of a multipole field, it is also possible to adjust the axis by deflecting a charged particle beam so as to eliminate image movement by adding a wobbler to a quadrupole field acting as a lens. 2 is disclosed.

多段多極子型の収差補正器は、2段以上の多段にレンズを重ねる構成になっており、基本的に全ての段で軸調整が必要である。多段のレンズの通常の軸調整は、レンズを一旦全て停止し、一つのレンズだけをONにして軸調し、その後次のレンズをONにして軸調する作業を順番に行うことで全てのレンズの軸調を実行できる。これに対して収差補正器では、複数の多極子場レンズを一組にして動作させる必要があるため、軸調を行うレンズ以外の多極子場レンズも駆動したまま軸調しなければならず、そのせいで特定の段の軸調を行った後、それより前に軸調を行った段に戻り再度軸調を行うといった繰り返し動作が必要になる。   The multistage multipole type aberration corrector has a configuration in which lenses are stacked in two or more stages, and basically, axis adjustment is required at all stages. For normal axis adjustment of multi-stage lenses, all lenses are temporarily stopped, and only one lens is turned on to adjust the axis, and then the next lens is turned on and adjusted in order. Can be executed. On the other hand, in the aberration corrector, since it is necessary to operate a plurality of multipole field lenses as a set, the multipole field lens other than the lens that performs the axial adjustment must be driven while the axis is adjusted. For this reason, it is necessary to perform a repetitive operation of adjusting the axis of a specific stage and then returning to the stage where the axis was adjusted before that and performing the axis adjustment again.

特開昭58−106746号公報JP 58-106746 A 特開2006−140119号公報JP 2006-140119 A

特許文献1では、一つのレンズの軸調整を対象としており、多段のレンズの調整に関して調整方法は特に言及されていない。また特許文献1の機械的にレンズを動かす方法は、レンズ軸が動的に変化しない場合は一度合わせれば済むため有効であるが、複数の場を重畳する多極子レンズでは、多極子の強度により軸が動的に変化するため、操作者が変化の度に機械的に軸を調整すると操作者への負担が大きくなり、調整時間がかかるとの課題がある。   In Patent Document 1, the axis adjustment of one lens is targeted, and no adjustment method is specifically mentioned regarding the adjustment of multistage lenses. The method of mechanically moving the lens in Patent Document 1 is effective because it is sufficient to adjust the lens axis once if it does not change dynamically. However, in the case of a multipole lens that superimposes a plurality of fields, it depends on the strength of the multipole. Since the shaft changes dynamically, there is a problem that if the operator mechanically adjusts the shaft each time it changes, the burden on the operator increases and adjustment time is required.

特許文献2では、多段多極子の基本的な軸調整法が開示されているが、繰り返しの調整を行うため、レンズの段数に応じて級数的に調整工数が増えてしまい、調整時間が大幅に増大することが危惧される。また、大きく軸調整が必要だった場合、調整を行った段より下段のレンズに対する軸ズレの影響が大きくなり画像ボケが発生することや、荷電粒子線が曲げられ過ぎて極子や外壁などに当たってしまい試料の像が得られなくなるなど、調整そのものができなくなってしまう恐れがある。   Patent Document 2 discloses a basic axis adjustment method of a multi-stage multipole, but because adjustment is performed repeatedly, the adjustment man-hours increase in series according to the number of lens stages, and the adjustment time is greatly increased. It is feared that it will increase. In addition, if a large axis adjustment is necessary, the effect of the axis deviation on the lens below the adjustment stage becomes large, resulting in image blurring, or the charged particle beam is bent too much and hits a pole or an outer wall. There is a risk that adjustment itself cannot be performed, for example, an image of the sample cannot be obtained.

本発明の目的は、多段多極子型の収差補正器を備えた場合であっても、軸調整工数や調整時間を低減できる荷電粒子線装置およびその収差補正方法を提供することにある。   An object of the present invention is to provide a charged particle beam apparatus and an aberration correction method for the charged particle beam apparatus that can reduce the number of adjustment steps and adjustment time even when a multistage multipole aberration corrector is provided.

上記目的を達成するための一実施形態として、荷電粒子線の収差を制御する2段以上の多極子を含む収差補正器と、
前記荷電粒子線を偏向して前記収差補正器への入射位置を調整する第1偏向器と、
前記多極子の各段で独立に4極子強度の微動を行う4極子ワブラ回路を含む電源と、
前記収差補正器、前記第1偏向器及び前記電源を制御する制御部と、
前記4極子強度の微動による像シフト量を算出する軸ズレ算出部と、
各段の4極子強度の微動による前記像シフト量に応じて多極子および第1偏向器へフィードバックする偏向量を算出する偏向量算出部とを有し、
前記偏向量算出部で前記像シフト量に応じて算出される前記偏向量は、前記収差補正器における複数段の偏向を連動して行うことにより求められることを特徴とする荷電粒子線装置とする。
As one embodiment for achieving the above object, an aberration corrector including two or more stages of multipoles for controlling the aberration of a charged particle beam,
A first deflector for deflecting the charged particle beam to adjust an incident position on the aberration corrector;
A power supply including a quadrupole wobbler circuit that performs fine movement of quadrupole intensity independently at each stage of the multipole;
A control unit for controlling the aberration corrector, the first deflector, and the power source;
An axis shift calculation unit for calculating an image shift amount due to the fine movement of the quadrupole intensity;
A deflection amount calculation unit that calculates a deflection amount fed back to the multipole element and the first deflector according to the image shift amount due to the fine movement of the quadrupole intensity at each stage;
The charged particle beam apparatus is characterized in that the deflection amount calculated according to the image shift amount by the deflection amount calculation unit is obtained by interlocking a plurality of stages of deflection in the aberration corrector. .

また、荷電粒子線の収差を制御する2段以上の多極子を含む収差補正器と、
前記荷電粒子線を偏向して前記収差補正器への入射位置を調整する偏向器と、
前記多極子の各段で独立に4極子強度の微動を行う4極子ワブラ回路を含む電源と、
前記収差補正器、前記偏向器、及び前記電源を制御する制御部と、
前記4極子強度の微動による画像シフト量を算出する軸ズレ算出部と、
各段の4極子強度の微動による位置ズレ量に応じて多極子および偏向器へフィードバックする偏向量を算出する偏向量算出部とを有し、
前記偏向量算出部は、軸調整対象段における軸ズレ調整を行うための偏向量と、前記軸対象段の上の段に該偏向量を加えた場合に前記軸調整対象段より下に位置する多極子で生じる像シフト量とを算出するものであることを特徴とする荷電粒子線装置とする。
An aberration corrector including two or more stages of multipoles for controlling the aberration of the charged particle beam;
A deflector that deflects the charged particle beam to adjust the incident position on the aberration corrector;
A power supply including a quadrupole wobbler circuit that performs fine movement of quadrupole intensity independently at each stage of the multipole;
A controller for controlling the aberration corrector, the deflector, and the power source;
An axis shift calculation unit for calculating an image shift amount due to the fine movement of the quadrupole intensity;
A deflection amount calculation unit that calculates a deflection amount to be fed back to the multipole element and the deflector in accordance with a positional deviation amount due to fine movement of the quadrupole intensity of each stage;
The deflection amount calculation unit is positioned below the axis adjustment target stage when the deflection amount for performing the axis deviation adjustment in the axis adjustment target stage and the deflection amount is added to the stage above the axis target stage. The charged particle beam apparatus is characterized in that it calculates an image shift amount generated by a multipole element.

また、少なくとも第1段多極子及び第2段多極子を含む多段多極子型の収差補正器を備えた荷電粒子線装置の収差補正方法において、
基準画像となる第1画像を取得する第1ステップと、
4極子強度の微動により前記第1段多極子を励起し4極子場の強度を変更する第2ステップと、
前記第1段多極子が励起された状態で、第2画像を取得する第3ステップと、
前記第1段多極子の励起を戻す第4ステップと、
前記第2ステップから前記第4ステップ迄のステップを前記第2段多極子に対して行う第5ステップと、
前記第1画像と少なくとも前記第1段多極子及び前記第2段多極子に対して得られた前記第2画像とを用いて各段の像シフト量を求める第6ステップと、
前記像シフト量が閾値を上回る場合、前記各段の像シフト量から軸調整を行うために印加すべき各段の偏向量を求める第7ステップと、
を有することを特徴とする収差補正方法とする。
In the aberration correction method for a charged particle beam apparatus including a multistage multipole type aberration corrector including at least a first stage multipole and a second stage multipole,
A first step of acquiring a first image as a reference image;
A second step of exciting the first stage multipole by a fine movement of the quadrupole intensity to change the intensity of the quadrupole field;
A third step of acquiring a second image with the first stage multipole excited;
A fourth step for returning the excitation of the first stage multipole;
A fifth step of performing the steps from the second step to the fourth step on the second stage multipole;
A sixth step of obtaining an image shift amount of each stage using the first image and at least the second image obtained for the first stage multipole and the second stage multipole;
A seventh step of obtaining a deflection amount of each stage to be applied in order to perform axis adjustment from the image shift amount of each stage when the image shift amount exceeds a threshold;
An aberration correction method characterized by comprising:

本発明によれば、多段多極子型の収差補正器を備えた場合であっても、軸調整工数や調整時間を低減できる荷電粒子線装置およびその収差補正方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a multistage multipole type | mold aberration corrector is provided, the charged particle beam apparatus which can reduce an axis adjustment man-hour and adjustment time, and its aberration correction method can be provided.

本発明の第1の実施例に係る電子線装置(荷電粒子線装置)の1例を示す概略構成図である。It is a schematic block diagram which shows an example of the electron beam apparatus (charged particle beam apparatus) which concerns on 1st Example of this invention. 図1に示す電子線装置における電子光学模式図であり、(a)はy方向(図1において紙面に直交する方向)から見た軌道(x軌道)、(b)はx方向(図1において紙面の左右方向)から見た軌道(y軌道)を示す。FIG. 2 is an electron optical schematic diagram of the electron beam apparatus shown in FIG. 1, where (a) is a trajectory (x trajectory) viewed from the y direction (direction orthogonal to the paper surface in FIG. 1), and (b) is an x direction (in FIG. 1). A trajectory (y trajectory) viewed from the left and right direction of the drawing is shown. 図1に示す電子線装置におけるx軌道の電子光学模式図であり、(a)は多極子113で軸ズレが生じている場合、(b)は(a)に対して多極子113の強度を弱めた場合、(c)は(a)に対して多極子113の強度を強めた場合を示す。FIG. 2 is an electron optical schematic diagram of an x-orbit in the electron beam apparatus shown in FIG. 1, where (a) shows an axial misalignment in the multipole 113, and (b) shows the strength of the multipole 113 with respect to (a). When weakened, (c) shows the case where the strength of the multipole element 113 is strengthened with respect to (a). 本発明の第1の実施例に係る収差補正方法における多段多極子場の軸調整フローチャートである。It is an axis | shaft adjustment flowchart of the multistage multipole field in the aberration correction method which concerns on 1st Example of this invention. 図1に示す電子線装置におけるコンピュータの概略構成図である。It is a schematic block diagram of the computer in the electron beam apparatus shown in FIG. 図1に示す電子線装置における表示部(GUI)の表示例である。It is a display example of the display part (GUI) in the electron beam apparatus shown in FIG. 本発明の第1の実施例に係る収差補正方法における軸調整を説明するための電子光学模式図であり、(a)は各段の多極子で軸ズレが有る状態、(b)は各段の軸ズレを多極子111の1段だけ軸ズレが生じたものに分離した状態、(c)各段の軸ズレを多極子112の1段だけ軸ズレが生じたものに分離した状態、(d)各段の軸ズレを多極子113の1段だけ軸ズレが生じたものに分離した状態、(e)各段の軸ズレを多極子114の1段だけ軸ズレが生じたものに分離した状態を示す。It is an electro-optic schematic diagram for demonstrating the axis adjustment in the aberration correction method which concerns on 1st Example of this invention, (a) is a state which has an axial shift | offset | difference in the multipole of each stage, (b) is each stage. (C) A state in which the shaft misalignment of each stage is separated into one in which the multi-pole element 112 has an axial misalignment, d) A state in which the shaft misalignment of each stage is separated into one in which the multi-pole element 113 has a shaft misalignment, and (e) a shaft misalignment in each stage is separated into one in which the multi-pole element 114 has a shaft misalignment. Shows the state. 図5(a)の状態から多極子112の軸調整を行った場合の電子光学模式図である。FIG. 6 is an electron optical schematic diagram when the axis of the multipole element 112 is adjusted from the state of FIG. 本発明の第2の実施例に係る収差補正方法における軸調整を説明するための電子光学模式図であり、(a)は各段の多極子で軸ズレが有る状態、(b)は多極子111以降の多極子で軸ズレが有る状態、(c)は多極子112以降の多極子で軸ズレが有る状態、(d)は多極子113以降の多極子で軸ズレが有る状態、(e)は多極子114以降の多極子で軸ズレが有る状態を示す。It is an electro-optic schematic diagram for demonstrating the axis adjustment in the aberration correction method which concerns on 2nd Example of this invention, (a) is the state which has an axial shift | offset | difference in the multipole of each stage, (b) is a multipole. (C) is a state where there is an axis shift in the multipole elements after the multipole element 112, (d) is a state where there is an axis shift in the multipole elements after the multipole 113, (e) ) Indicates a state in which there is an axial deviation in the multipole elements after the multipole element 114.

本発明の概略は次のとおりである。即ち、複数段の多極子から構成される多極子型収差補正器の各段の軸調整において、各段で単独のワブラを行い、一連のワブラで得られた各々の像シフトから各段軸ズレ調整量を求め、軸調整を行う段およびその上下段で、軸調整2極子場および付随した2極子場を励起する。このとき、各々の軸ズレを独立な軸ズレとして扱い、各々の軸ズレ調整として、軸調整段より下段の入射軸を変えない値を算出し、最終的な出力はそれぞれの結果を足し合わせて軸調整の2極子場(偏向場)を励起し、一度に多段の軸ズレを調整する。また、軸ズレを計算する際、下段のズレによる上段ズレの影響を計算し、下段による見掛け上の軸ズレを、上段ズレから消去して軸調整量を計算する。これにより、多段多極子レンズの軸調整において、複数段で一括に、かつ1段当たりの調整も少ない工数で行うことができるため、短時間で軸調整が可能になる。   The outline of the present invention is as follows. That is, in the axis adjustment of each stage of a multipole aberration corrector composed of a plurality of stages of multipoles, a single wobbler is performed at each stage, and each stage axis shift is determined from each image shift obtained by a series of wobblers. The adjustment amount is obtained, and the axis adjustment dipole field and the accompanying dipole field are excited at the stage where the axis adjustment is performed and the upper and lower stages thereof. At this time, each axis deviation is treated as an independent axis deviation, and for each axis deviation adjustment, a value that does not change the incident axis below the axis adjustment stage is calculated, and the final output is the sum of the results. Exciting the dipole field (deflection field) of the axis adjustment, and adjust the multi-stage axis deviation at once. Further, when calculating the axis deviation, the influence of the upper stage deviation due to the lower stage deviation is calculated, and the apparent axis deviation due to the lower stage is eliminated from the upper stage deviation to calculate the axis adjustment amount. Thereby, in the axis adjustment of the multistage multipole lens, the adjustment can be performed in a short time because the adjustment can be performed at a plurality of stages all at once and with less man-hours.

以下実施例により詳細に説明する。実施例においては、多段多極子を用いた収差補正器を搭載するSEMを使用した例を用いて説明するが、本発明はこれに限らず、多段多極子型の収差補正器を備えたSEM、STEMならびにTEMをはじめとする電子線装置およびイオンビームを用いたイオンビーム装置を含む荷電粒子線装置全般に適用可能である。なお、簡略化のため説明に必要な部分のみ図示し、検出器やレンズ電源など詳細な構成は省略してある。また、本実施例のx方向、y方向は特定方向を示すために便宜上、呼称する。また、同一符号は同一構成要素を示しており、説明を省略する場合がある。   Examples will be described in detail below. In the embodiment, an example using an SEM equipped with an aberration corrector using a multistage multipole will be described. However, the present invention is not limited thereto, and an SEM provided with a multistage multipole aberration corrector, The present invention can be applied to all charged particle beam apparatuses including electron beam apparatuses such as STEM and TEM and ion beam apparatuses using ion beams. For simplification, only the parts necessary for the description are shown, and detailed configurations such as a detector and a lens power supply are omitted. Further, the x direction and the y direction in this embodiment are referred to for convenience in order to indicate specific directions. Moreover, the same code | symbol has shown the same component and may abbreviate | omit description.

本発明の第1の実施例に係る電子線装置および収差補正方法について図1〜図6を用いて説明する。   An electron beam apparatus and an aberration correction method according to a first embodiment of the present invention will be described with reference to FIGS.

図1は本実施例に係る電子線装置の概略構成図である。電子銃101から放出された1次電子線(図示せず)は、コンデンサレンズ102で平行ビームに成形され、収差補正器103を通過し、コンデンサレンズ104で収束作用をうけて、対物レンズ106で試料107上に収束される。このとき収束されるスポットは、途中、走査コイル105で偏向作用を受けて、試料107上を走査される。また、真空容器140内は真空にされており、電子線は電子銃101から試料107到達まで真空状態が維持された中を進む。収差補正器103では、軸上の色収差ならびに球面収差を補正する。収差補正器103は電源131に接続され、電源131から出力される電圧および電流によって収差補正器103内で電場あるいは磁場の多極子場が励起される。電源131はさらにシステム全体の制御を行うコンピュータ300と接続され、コンピュータ300の命令を受けて、収差補正器103への出力値が変更されるようになっている。なお、符号108、109は偏向器である。   FIG. 1 is a schematic configuration diagram of an electron beam apparatus according to the present embodiment. A primary electron beam (not shown) emitted from the electron gun 101 is shaped into a parallel beam by the condenser lens 102, passes through the aberration corrector 103, is converged by the condenser lens 104, and is then collected by the objective lens 106. Focused on the sample 107. The spot converged at this time is scanned on the sample 107 by being deflected by the scanning coil 105 in the middle. In addition, the inside of the vacuum container 140 is evacuated, and the electron beam travels while the vacuum state is maintained from the electron gun 101 to the sample 107. The aberration corrector 103 corrects axial chromatic aberration and spherical aberration. The aberration corrector 103 is connected to a power source 131, and an electric field or a magnetic multipole field is excited in the aberration corrector 103 by the voltage and current output from the power source 131. The power supply 131 is further connected to a computer 300 that controls the entire system, and an output value to the aberration corrector 103 is changed in response to a command from the computer 300. Reference numerals 108 and 109 denote deflectors.

図4Bにコンピュータ300の概略構成図を示す。コンピュータ300は、電子銃やコンデンサレンズ、対物レンズ等の電源を制御する電源制御部310、多段多極子型の収差補正器における各段へのワブラによる像シフト量を算出する軸ズレ算出部320、ワブラによる像シフト量に応じた偏向量を算出する偏向量算出部330、一連のワブラで得られた各々の像シフトから,下段の軸ズレによる上段のワブラ画像シフト量への影響を計算して上段のシフト量に加算または減算する補正量を算出する補正値算出部340、全体を制御する制御部350、表示部(GUI)、記憶部500を有する。なお、符号510はメモリ、符号520はストレージ、符号530はテーブルデータ、符号531、532は個々のテーブルデータを示す。   FIG. 4B shows a schematic configuration diagram of the computer 300. The computer 300 includes a power supply control unit 310 that controls the power supply of an electron gun, a condenser lens, an objective lens, and the like, an axis shift calculation unit 320 that calculates an image shift amount by a wobbler to each stage in a multistage multipole aberration corrector, The deflection amount calculation unit 330 that calculates the deflection amount according to the image shift amount by the wobbler, calculates the influence on the upper wobbler image shift amount by the lower axis deviation from each image shift obtained by the series of wobblers. A correction value calculation unit 340 that calculates a correction amount to be added to or subtracted from the upper shift amount, a control unit 350 that controls the whole, a display unit (GUI), and a storage unit 500 are provided. Reference numeral 510 indicates a memory, reference numeral 520 indicates storage, reference numeral 530 indicates table data, and reference numerals 531 and 532 indicate individual table data.

図2は収差補正器を通過する電子線151の軌道を示す電子光学模式図である。収差補正器103を通過する電子線151は方向によって軌道が変わるため、図2(a)にy方向(図1において紙面に直交する方向)から見た軌道(x軌道)を、図2(b)にx方向(図1において紙面の左右方向)から見た軌道(y軌道)を示す。収差補正器103は4段の多極子111〜多極子114で構成されており、電子線151の軌道は多極子111で励起する4極子場によってx軌道とy軌道に分離され、その後、多極子112の位置でx方向が、多極子113の位置でy方向が、それぞれ収束され、多極子114を通過後、再びx軌道とy軌道が対称な軌道(平行な軌道)になるよう多極子111〜多極子114それぞれに4極子場が励起される。収差補正器103における軸調整は、これらの軌道形成に用いる4段の4極子場のそれぞれの中心軸に対して、電子線151の光軸150を一致させることである。なお多極子111〜多極子114では2極子場、6極子場、8極子場などが4極子場に重畳される形で励起されるが、軸調整は4極子場の軸に対してのみ行う。これはレンズとして中心軸が存在するのは2回対称な場(多極子としては4n極子,nは自然数)だけであり,かつ,次数が低いものほど軸近傍でのズレの影響が大きいためである。例えば4極子場は8極子場よりも10の3乗程度、ズレの影響が大きい。従って、本発明を4極子場に適用する効果は高い。以降、本実施例では簡単のため、多極子111〜多極子114について、それぞれの図形の中心に4極子場の軸があるものとする。   FIG. 2 is an electron optical schematic diagram showing the trajectory of the electron beam 151 passing through the aberration corrector. Since the trajectory of the electron beam 151 passing through the aberration corrector 103 changes depending on the direction, the trajectory (x trajectory) seen from the y direction (the direction orthogonal to the paper surface in FIG. 1) is shown in FIG. ) Shows a trajectory (y trajectory) viewed from the x direction (left and right direction in FIG. 1). The aberration corrector 103 includes four stages of multipoles 111 to 114, and the orbit of the electron beam 151 is separated into an x orbit and a y orbit by a quadrupole field excited by the multipole 111, and then the multipole. The x-direction at the position 112 and the y-direction at the position of the multipole 113 are converged, and after passing through the multipole 114, the multipole element 111 is such that the x-orbit and y-orbit become symmetrical again (parallel orbit). A quadrupole field is excited in each of the multipole elements 114. The axis adjustment in the aberration corrector 103 is to make the optical axis 150 of the electron beam 151 coincide with the central axis of each of the four-stage quadrupole fields used for forming these trajectories. The multipole elements 111 to 114 are excited in such a manner that a dipole field, a hexapole field, an octupole field, etc. are superimposed on the quadrupole field, but the axis adjustment is performed only on the axis of the quadrupole field. This is because the central axis of the lens exists only in a two-fold symmetric field (4n pole as a multipole, n is a natural number), and the lower the order, the greater the effect of deviation near the axis. is there. For example, a quadrupole field is about 10 to the third power greater than an octupole field, and the influence of deviation is larger. Therefore, the effect of applying the present invention to a quadrupole field is high. Hereinafter, for the sake of simplicity in the present embodiment, it is assumed that the multipole element 111 to the multipole element 114 have a quadrupole field axis at the center of each figure.

軸ズレが生じた例として、図3に電子光学模式図を示す。ここでは多極子113のx軌道で軸ズレが生じており、それ以外の段の軸は光軸150と一致している。図3(a)の状態から多極子113の4極子場の強度を弱めると図3(b)の状態になり、強めると図3(c)の状態になる。このとき、光軸150は多極子113の励起量に応じて移動し、観察されるSEM像は、光軸150が試料107と交差する位置を中心とした画像が形成されるため、多極子113の4極子ワブラによってSEM像がシフトする。また図3(a)の状態で多極子113以外の段では、4極子ワブラを行ってもそれぞれの4極子軸と光軸が一致しているため、像シフトは生じない。このように軸調整は、各段で4極子ワブラを行い、ワブラによって生じる像シフトがなくなるようにすることで行われる。   As an example of the occurrence of the axial misalignment, FIG. 3 shows an electron optical schematic diagram. Here, an axis deviation occurs in the x-orbit of the multipole element 113, and the axes of the other stages coincide with the optical axis 150. When the strength of the quadrupole field of the multipole element 113 is reduced from the state of FIG. 3A, the state of FIG. 3B is obtained, and when it is increased, the state of FIG. 3C is obtained. At this time, the optical axis 150 moves in accordance with the amount of excitation of the multipole element 113, and the observed SEM image is formed with an image centered on the position where the optical axis 150 intersects the sample 107. The quadrupole wobbler shifts the SEM image. In the state shown in FIG. 3A, in the stage other than the multipole 113, even when the quadrupole wobbler is performed, the respective quadrupole axes and the optical axes coincide with each other, so that no image shift occurs. In this way, the axis adjustment is performed by performing a quadrupole wobbler at each stage so that the image shift caused by the wobbler is eliminated.

本実施例に係る収差補正方法における4極子ワブラと像シフト測定および軸調整の流れを図4Aで示すフローチャートを用いて説明し、個別処理の詳細を図5から図6を用いて説明する。図4Aでは軌道形成されており、SEM像が取得可能な状態まで調整されている。収差補正の状態は補正前、補正途中、完了いずれの状態でも良い。また、対物レンズ106やコンデンサレンズ102、104に対する軸調整は適宜行われている。なお、各種条件の設定や変更は、表示部400のGUI上で行うことができる。   The flow of the quadrupole wobbler, image shift measurement, and axis adjustment in the aberration correction method according to the present embodiment will be described with reference to the flowchart shown in FIG. 4A, and details of the individual processing will be described with reference to FIGS. In FIG. 4A, a trajectory is formed and adjusted to a state where an SEM image can be acquired. The state of aberration correction may be any state before correction, during correction, or completion. Moreover, the axis adjustment with respect to the objective lens 106 and the condenser lenses 102 and 104 is appropriately performed. Various conditions can be set or changed on the GUI of the display unit 400.

(ステップS101):軸調整を開始する。初期状態としてコンピュータ300のメモリ510のカウンタn=1に設定される。必要に応じて撮影倍率やスキャンの向きなどを規定値へ変更する。   (Step S101): Axis adjustment is started. As an initial state, the counter n = 1 of the memory 510 of the computer 300 is set. If necessary, change the shooting magnification, scan direction, etc. to the specified values.

(ステップS102):電源131の内部に配置された4極子ワブラ回路による4極子のワブラ前の基準画像としてSEM像Aを取得し、コンピュータ300内のストレージ520に保存する。ステップS102〜ステップS107を実行中はステージ移動やビームシフトなど場所変更を行わないように設定する。   (Step S <b> 102): The SEM image A is acquired as a reference image before the quadrupole wobbler by the quadrupole wobbler circuit arranged inside the power supply 131 and stored in the storage 520 in the computer 300. During the execution of steps S102 to S107, setting is made so as not to change the location such as stage movement or beam shift.

(ステップS103):コンピュータ300の制御部350の命令により電源131内に配置された4極子ワブラ回路により4極子ワブラとして、電源131の出力を変更し、n段目の4極子場の強度を変更する。ここでは、あらかじめ決めておいた4極子場の励起量としてΔQnを付加する。なお、ΔQnの値は段毎に異なる値を設定してもよく、光学縮小率や加速電圧、開き角に応じて値を変更してもよい。また、軸ズレ量が大きくステップS102で取得したSEM像Aと比較して像シフト量が重ならなくなると予想される場合にはΔQnを小さくするなど、同じ条件でも状況に応じて使い分けする。   (Step S103): The output of the power supply 131 is changed as a quadrupole wobbler by the quadrupole wobbling circuit arranged in the power supply 131 according to the instruction of the control unit 350 of the computer 300, and the strength of the n-th quadrupole field is changed. To do. Here, ΔQn is added as a predetermined amount of excitation of a quadrupole field. Note that the value of ΔQn may be set differently for each stage, and may be changed according to the optical reduction ratio, acceleration voltage, and opening angle. Further, when it is predicted that the image shift amount will not overlap as compared with the SEM image A acquired in step S102 due to the large axis deviation amount, ΔQn is decreased, and the proper use is performed according to the situation even under the same conditions.

(ステップS104):ΔQn付加後のSEM像B(n)を取得し、コンピュータ300内のストレージ520に保存する。   (Step S <b> 104): The SEM image B (n) after adding ΔQn is acquired and stored in the storage 520 in the computer 300.

(ステップS105):コンピュータ300の制御部350の命令により、ステップS103で加えたΔQnを減算し、n段の4極子場の励起量をステップS102の状態に戻す。   (Step S105): ΔQn added in Step S103 is subtracted by an instruction of the control unit 350 of the computer 300, and the excitation amount of the n-stage quadrupole field is returned to the state of Step S102.

(ステップS106):コンピュータ300にて、カウンタn=4かを判定する。n=4の場合、4極子ワブラを全段実行済みとしてステップS108へ進み、n≠4の場合はステップS107へ進む。   (Step S106): The computer 300 determines whether the counter n = 4. If n = 4, the quadrupole wobbler has been executed for all stages, and the process proceeds to step S108. If n ≠ 4, the process proceeds to step S107.

(ステップS107):カウンタnに1を加算し、再びステップS103に戻り、ステップS103〜S105の4極子ワブラとSEM像の撮影を、ループ前と異なる段で行う。   (Step S107): 1 is added to the counter n, the process returns to Step S103 again, and the quadrupole wobbler and SEM images of Steps S103 to S105 are taken at a stage different from that before the loop.

(ステップS108):ステップS104で得られた1〜4段のSEM像B(i)(i=1〜4)について、SEM像Aと比較して、4極子ワブラによるi段目の像シフト量(Wix、Wiy)を算出する。像シフト量の算出は、コンピュータ300の軸ズレ算出部320で二次元の正規化相互相関など画像処理による二画像のパターンマッチングから計算できる。また、得られた像シフト量(Wix、Wiy)およびワブラとして設定したΔQiはコンピュータ300のストレージ520に保存される。 (Step S108): The SEM image B (i) (i = 1 to 4) of 1-4 stages obtained in Step S104 is compared with the SEM image A, and the i-th stage image shift amount by the quadrupole wobbler (W ix , W iy ) is calculated. The image shift amount can be calculated from the pattern matching of two images by image processing such as two-dimensional normalized cross-correlation by the axis shift calculation unit 320 of the computer 300. The obtained image shift amount (W ix , W iy ) and ΔQi set as the wobbler are stored in the storage 520 of the computer 300.

(ステップS109):ステップS107で得られたi(=1〜4)段目の像シフト量(Wix、Wiy)について、それぞれのシフト量があらかじめ定めた閾値以下かをコンピュータ300にて判定する。4段全ての像シフト量が閾値以下であれば、軸ズレは小さいと判断され、ステップS112へ進み、閾値を上回ればステップS110に進む。なお、閾値は4極子ワブラで加える励起量に対する像シフト量として、要求される分解能を満たすのに必要な値、もしくは、調整に支障が出ない値を基準に各段それぞれ独立に決められる。ここで定める閾値はコンピュータ300の表示部(GUI)400で可視化でき、必要な精度と調整速度のトレードオフの関係を考慮して変更できる。閾値を設定或いは変更する際のGUI画面の一例を図4Cに示す。 (Step S109): With respect to the image shift amount (W ix , W iy ) of the i (= 1 to 4) stage obtained in Step S107, the computer 300 determines whether each shift amount is equal to or less than a predetermined threshold value. To do. If the image shift amounts of all four stages are less than or equal to the threshold value, it is determined that the axis deviation is small, and the process proceeds to step S112. If the image shift amount exceeds the threshold value, the process proceeds to step S110. The threshold value is determined independently for each stage based on a value necessary for satisfying the required resolution or a value that does not hinder adjustment as an image shift amount with respect to the excitation amount applied by the quadrupole wobbler. The threshold value determined here can be visualized by the display unit (GUI) 400 of the computer 300, and can be changed in consideration of the trade-off relationship between required accuracy and adjustment speed. An example of the GUI screen when setting or changing the threshold is shown in FIG. 4C.

(ステップS110):ステップS109で得られたi(=1〜4)段目の像シフト量(Wix、Wiy)から、軸調整を行うために印加する2極子場(偏向場)の励起量(ΔIix、ΔIiy)をコンピュータ300の偏向量算出部330にて算出する。2極子場の励起量(ΔIix、ΔIiy)の詳細は後述する。なお2極子場は、電場によるものでも磁場によるものでも構わないが、本実施例では磁場で統一し、2極子場の励起量(ΔIix、ΔIiy)=2極子電流量とする。なお、電場で行う場合には、電圧として読み替え、後述する係数の単位も電流でなく電圧で読み替えればよい。 (Step S110): Excitation of a dipole field (deflection field) to be applied to perform axis adjustment from the image shift amount (W ix , W iy ) at the i (= 1 to 4) stage obtained in Step S109. The amount (ΔI ix , ΔI iy ) is calculated by the deflection amount calculation unit 330 of the computer 300. Details of the excitation amount (ΔI ix , ΔI iy ) of the dipole field will be described later. The dipole field may be an electric field or a magnetic field. In this embodiment, the dipole field is unified by the magnetic field, and the excitation amount of the dipole field (ΔI ix , ΔI iy ) = dipole current amount. In the case of using an electric field, it is read as a voltage, and a unit of a coefficient described later may be read as a voltage instead of a current.

(ステップS111):コンピュータ300の制御部350の命令により電源131の出力を変更し、多極子111〜多極子114および偏向器108に2極子電流量(ΔIix、ΔIiy)を加える。合わせて、カウンタn=1に初期化する。本ステップでは、像の汚染対策のためのステージ移動など、観察場所の変更が可能である。また、(ΔIix、ΔIiy)付加に伴いSEM像のフォーカスズレなどが発生した場合は、フォーカス調整を行ってもよい。 (Step S111): The output of the power supply 131 is changed by an instruction from the control unit 350 of the computer 300, and the dipole current amounts (ΔI ix , ΔI iy ) are added to the multipole elements 111 to 114 and the deflector 108. In addition, the counter n is initialized to 1. In this step, it is possible to change the observation location, such as moving the stage to prevent image contamination. Further, when an SEM image focus shift occurs due to the addition of (ΔI ix , ΔI iy ), focus adjustment may be performed.

(ステップS112):軸調整を終了する。本軸調整で測定した像シフト量や調整量をコンピュータ300のストレージ520に保存し、ステップS110の調整に適切な2極子電流量を再計算して次回の軸調整に利用してもよい。   (Step S112): The axis adjustment is finished. The image shift amount and the adjustment amount measured by this axis adjustment may be stored in the storage 520 of the computer 300, and a dipole current amount appropriate for the adjustment in step S110 may be recalculated and used for the next axis adjustment.

本測定例ではn=1から1ずつ足して全ての段を順番に測定したが、順番はどれでも良く、必ずしも全ての段で測定することが必要でない。例えば、繰り返し軸調整を行っている場合、ある測定で1、2段の軸ズレが閾値よりも十分小さく4段目だけ軸調整が必要であったならば、次回は3、4段だけ測定しても実用的には問題ない。また、4極子ワブラに加える励起量をΔQnとして基準画像からの像シフト量を計算したが、±ΔQnワブラ加えたそれぞれの画像から像シフトを計算することも可能である。以上で4極子ワブラによる像シフト測定および軸調整の流れを説明した。   In this measurement example, n = 1 is incremented by 1 and all stages are measured in order. However, any order may be used, and it is not always necessary to measure at all stages. For example, when the axis adjustment is repeated, if the axis deviation of the 1st and 2nd stage is sufficiently smaller than the threshold value and only the 4th stage of the axis adjustment is required in a certain measurement, the next time, only the 3rd and 4th stage are measured. However, there is no problem in practical use. Further, although the image shift amount from the reference image is calculated by setting the excitation amount applied to the quadrupole wobbler as ΔQn, it is also possible to calculate the image shift from each image added with ± ΔQn wobbler. The flow of image shift measurement and axis adjustment by the quadrupole wobbler has been described above.

図4Aで示したフローの中から、個別処理であるステップS110について詳細を説明する。まず、多段多極子の軸調整の基本的な考え方を、図5および図6を用いて説明する。図5(a)の中心軸152は、多極子111〜多極子114およびコンデンサレンズ104、対物レンズ106の中心軸を通り、4極子レンズの軸に一致している。図5(a)の電子ビームの光軸150は多極子111〜多極子114において中心軸152と一致しておらず、各段の多極子で軸ズレが発生している状態である。多段のレンズにおける軸ズレは、特殊なケースを除き、上段で軸ズレが発生すると、上段の軸ズレに伴い下段の軸ズレも発生するため、一見すると依存関係から複雑な調整が必要に見える。しかし、図5(a)のような多段の軸ズレも、一旦、図5(b)〜(e)に示すようにそれぞれ1段だけ軸ズレが生じたものに分離して考え、最終的に足し合わせて多段の軸調整を行うことが可能である。この多段軸調整は、次の制御を例えばコンピュータ300の制御部350で行うことにより実現することができる。   Details of step S110, which is an individual process, will be described from the flow shown in FIG. 4A. First, the basic concept of axis adjustment of a multistage multipole will be described with reference to FIGS. 5 and 6. The central axis 152 in FIG. 5A passes through the central axes of the multipole element 111 to the multipole element 114, the condenser lens 104, and the objective lens 106, and coincides with the axis of the quadrupole lens. The optical axis 150 of the electron beam in FIG. 5 (a) does not coincide with the central axis 152 in the multipole elements 111 to 114, and there is an axial misalignment in each stage of the multipole element. Except for special cases, the shaft misalignment in a multi-stage lens causes a shaft misalignment in the lower stage along with the axis misalignment in the upper stage when it occurs in the upper stage. However, the multi-stage shaft misalignment as shown in FIG. 5 (a) is also considered once separated into those in which one stage of shaft misalignment occurs as shown in FIGS. 5 (b) to 5 (e). In addition, it is possible to perform multi-stage axis adjustment. This multi-stage axis adjustment can be realized by performing the following control by the control unit 350 of the computer 300, for example.

即ち当該制御において、ある特定の段の軸調整を行うために2極子場を印加した際、特定の段の下に配置する段の光軸150の入射位置を変えないよう、付随的な2極子場を印加する。具体例として、図6に図5(a)の状態から多極子112の軸調整を行った例を示す。ここでは図5(a)の状態から多極子111に2極子場を印加し、光軸150の多極子112上の軌道を軌道153から軌道154へ変更し、光軸150が多極子112の中心軸を通るように調整されている。同時に、軌道154は軌道153と同じ多極子113上の座標155を通るように多極子112に付随的な2極子場が印加され、さらに多極子113でも付随的な2極子場を印加して、多極子113以降の軌道が変わらないように制御される。付随する2極子場は、軸調整に使用する2極子場の強度に比例した値を用いる。この制御により、1段分の軸調整による下段への影響をなすことが可能になり、複数段の多極子の軸調整を、単段多極子の軸調整の和として処理することができる。なお、多極子の各段間に荷電粒子線を偏向して多極子への入射位置をより正確に調整するための第2偏向器(図示せず)を配置することもできる。   That is, in this control, when a dipole field is applied to adjust the axis of a specific stage, an incidental dipole is installed so as not to change the incident position of the optical axis 150 of the stage arranged below the specific stage. Apply the field. As a specific example, FIG. 6 shows an example in which the axis of the multipole element 112 is adjusted from the state of FIG. Here, a dipole field is applied to the multipole element 111 from the state of FIG. 5A to change the orbit on the multipole element 112 of the optical axis 150 from the orbit 153 to the orbit 154, and the optical axis 150 is the center of the multipole element 112. It is adjusted to pass through the shaft. At the same time, an additional dipole field is applied to the multipole 112 so that the trajectory 154 passes the coordinates 155 on the same multipole 113 as the orbit 153, and an additional dipole field is applied to the multipole 113. Control is performed so that the trajectory after the multipole element 113 does not change. For the accompanying dipole field, a value proportional to the intensity of the dipole field used for axis adjustment is used. By this control, it is possible to influence the lower stage by the axis adjustment for one stage, and the axis adjustment of the multistage multipole can be processed as the sum of the axis adjustment of the single stage multipole. Note that a second deflector (not shown) for deflecting the charged particle beam and adjusting the incident position on the multipole more accurately can be arranged between each stage of the multipole.

以上の制御についてステップS110での具体的な処理内容を説明する。簡単のため2極子場のx方向、y方向および像シフト量のx方向、y方向は一致しているものとする。方向が一致しない場合でも回転行列を用いて変換すれば、方向が一致した場合の計算結果を利用できる。ステップS110におけるi段目の像シフト量(Wix、Wiy)と軸調整の2極子電流(ΔIix、ΔIiy)の関係は式(1)および式(2)のように表すことができる。 The specific processing content in step S110 for the above control will be described. For simplicity, it is assumed that the x-direction and y-direction of the dipole field and the x-direction and y-direction of the image shift amount coincide. Even if the directions do not match, if the transformation is performed using the rotation matrix, the calculation result when the directions match can be used. The relationship between the image shift amount (W ix , W iy ) at the i-th stage and the axis adjustment dipole current (ΔI ix , ΔI iy ) in step S110 can be expressed as in equations (1) and (2). .

Figure 0006438780
Figure 0006438780

(W:i段単段4極子ワブラ像シフト量[m]、δIix:i段単段軸調整用2極子電流[A]、kix:i段調整係数[m/A]、ただしi=0は偏向器108の係数) (W i : i-stage single-stage quadrupole wobbler image shift amount [m], δI ix : i-stage single-stage axis adjustment dipole current [A], k ix : i-stage adjustment coefficient [m / A], where i = 0 is the coefficient of the deflector 108)

Figure 0006438780
Figure 0006438780

(ΔIi:最終印加2極子電流[A]、aix〜dix:i段従属(振り戻し)係数〜軌道で決まる装置係数)
式(1)は図5の独立制御に相当し、式(2)は図6などの付随する2極子場とそれらの足し合わせに相当する。式(1)の左辺はi段目の4極子ワブラによる像シフト量(Wix、Wiy)を4段分まとめて行列表記している(1目がx方向、2目がy方向、は多極子11〜14段)。これに対し式(1)の右辺は各々の像シフトを打ち消すために必要な2極子電流量とその係数を表す。具体的には(δIix、δIiy)はi段目の2極子電流のx方向、y方向を意味する。なおi=0は偏向器108の2極子電流である。
kixはi段目の電流にかかる係数で、あらかじめテーブルデータとして決められており、テーブルデータ530に格納されている。像シフトWiとδIiの関係は、i段目の4極子ワブラによる像シフトに対し、i−1段目(上段)の2極子場の強度を変更することで調整される。ただし、右辺でゼロの部分は図2(a)の多極子112、図2(b)の多極子113のそれぞれx方向、y方向で収束している部分に相当し、収束しているため4極子ワブラによる像シフトが生じないことによるものである。像シフトが生じないため、
調整も不要となる。また、行列の3段目xと、4段目y方向では2項2変数が含まれるが、これは、右辺のゼロ項と同じ理由で、収束している方向の像シフトが起きないために、
収束している段の2極子およびその上段の2極子場のどちらでも(混合させても)見掛け上、同じように軸ズレが調整できることを意味する。ただし、実用上は2変数あると解が出ないため、どちらか一方のみ使用するといった拘束条件を課する。もしくは、補正に用いる多極子場を印加した際には、印加した段の2極子場を選択してもよい。これは多極子場の励起で意図しない2極子場が生じた場合は、その段で直すのが望ましいためである。
式(2)の左辺は、最終的に印加する2極子電流(ΔIix、ΔIiy)を表しており、
右辺の個別の軸調整等に必要な2極子電流を足し合わせた値が算出される。また式(2)の右辺の係数は、例えば、1段目の軸調整のため偏向器108へ印加する2極子電流δI0に対し付随して印加する係数を表す。具体的には、1段目のx方向に印加する2極子場の係数としてa0xを、2段目のx方向に印加する2極子場の係数としてb0xを、3段目のx方向に印加する2極子場の係数としてc0xを、4段目のx方向に印加する2極子場の係数としてd0xを表す。これらの係数もあらかじめテーブルデータとして決められており、テーブルデータ530に格納されている。ここでは係数は一般化したため、全ての段で記したが、実際には、印加する電流に対して軸調整対象段の下2段分のみを付随させれば良いため、c0xおよびd0xはゼロでよい。また、図2(a)の多極子112、
図2(b)の多極子113のx方向、y方向で収束している部分を挟んだ場合、従属係数にも複数の組合せが可能となるが、b1x、c2yをゼロとするなどとして解が一つに決まるように拘束条件を設定する。
(ΔIi: final applied dipole current [A], aix to dix: i-stage dependent (reverse) coefficient to device coefficient determined by orbit)
Equation (1) corresponds to the independent control of FIG. 5, and Equation (2) corresponds to the accompanying dipole field of FIG. 6 and their addition. The left side of equation (1) is a matrix representation of the image shift amounts (Wix, Wiy) by the i-th quadrupole wobbler for four stages (the first column is the x direction, the second column is the y direction, the row Is multipole 11 to 14 stages). On the other hand, the right side of the equation (1) represents the amount of dipole current necessary to cancel each image shift and its coefficient. Specifically, (δIix, δIiy) means the x direction and y direction of the i-th dipole current. Note that i = 0 is a dipole current of the deflector 108.
kix is a coefficient related to the current of the i-th stage, and is determined as table data in advance and stored in the table data 530. The relationship between the image shift Wi and δIi is adjusted by changing the intensity of the i−1 stage (upper) dipole field with respect to the image shift by the i stage quadrupole wobbler. However, the zero portion on the right side corresponds to the portions of the multipole 112 in FIG. 2A and the multipole 113 in FIG. 2B that converge in the x and y directions, respectively. This is because the image shift due to the pole wobble does not occur. Because there is no image shift,
Adjustment is also unnecessary. In addition, the second and second variables are included in the third stage x and fourth stage y direction of the matrix. This is because the image shift in the convergent direction does not occur for the same reason as the zero term on the right side. ,
It means that the axial deviation can be adjusted in the same manner in both the dipole of the converged stage and the dipole field of the upper stage (even if mixed). However, since there are practically no solutions when there are two variables, a constraint condition is imposed such that only one of them is used. Alternatively, when a multipole field used for correction is applied, the applied dipole field may be selected. This is because when an unintended dipole field is generated by excitation of a multipole field, it is desirable to correct at that stage.
The left side of Equation (2) represents the dipole current (ΔIix, ΔIiiy) to be finally applied,
A value obtained by adding the dipole currents necessary for individual axis adjustment on the right side is calculated. Further, the coefficient on the right side of Expression (2) represents, for example, a coefficient applied incidentally to the dipole current δI0 applied to the deflector 108 for the first stage axis adjustment. Specifically, a0x is applied as the coefficient of the dipole field applied in the x direction of the first stage, and b0x is applied as the coefficient of the dipole field applied in the x direction of the second stage in the x direction of the third stage. C0x is represented as a coefficient of a dipole field, and d0x is represented as a coefficient of a dipole field applied in the x direction of the fourth stage. These coefficients are also determined as table data in advance and are stored in the table data 530. Since the coefficients are generalized here, they are described in all stages. However, in actuality, since only the lower two stages of the axis adjustment target stage need be attached to the applied current, c0x and d0x are zero. Good. Also, the multipole 112 in FIG.
In the case where a portion that converges in the x-direction and y-direction of the multipole element 113 in FIG. 2B is sandwiched, a plurality of combinations can be made for the dependent coefficients, but the solution can be obtained by setting b1x and c2y to zero. Set the constraint condition so that it is determined as one.

ステップS110ではさらに、以下の式(3)で表す補正項を加える。 In step S110 , a correction term expressed by the following equation (3) is further added.

Figure 0006438780
Figure 0006438780

(W:i段単段4極子ワブラ像シフト量[m]、w:i段4極子ワブラ像シフト量測定値[m]、piy〜rix:i段影響係数〜軌道で決まる装置係数)
図5あるいは式(1)の4極子ワブラにおいて各段の像シフトを独立として扱ったが、実際には完全に独立ではなく、下段で軸ズレがあった場合、上段で軸ズレ量よりも大きく像シフトが測定されるため、ここではこの分を打ち消す処理を行っている。式(3)ではWを4極子ワブラによる真の像シフトとし、i段目で実測される像シフトをwとして下段の像シフト量に係数piy〜rixをかけて上段の像シフト量の補正項としている。係数piy〜rixはあらかじめテーブルデータとして決められており、テーブルデータ530に記憶されている。補正項の像シフトは、下段から上段への影響はあるが上段から下段への影響はない片方向の関係になっており、式(3)の右辺の行列は順番に多極子111〜多極子114の4極子ワブラの像シフトの影響に当たる。なおWとwの差はそれほど大きくないため、必ずしも軸調整に本処理が必要ではないが、加えておくことで軸調整の繰り返し回数を削減できる。以上でステップS110の詳細説明を終える。本実施例で用いたpiy〜rixなどの各種係数は、コンピュータ300のGUI上で変更可能になっている。本実施例では、多段の軸調整を一回で行ったが、1段ずつ順番に行うこともできる。
(W i : i-stage single-stage quadrupole wobbler image shift amount [m], w i : i-stage quadrupole wobbler image shift amount measured value [m], p iy to r ix : i-stage influence coefficient to orbit determined apparatus coefficient)
In FIG. 5 or the quadrupole wobbler of Equation (1), the image shift at each stage is treated as independent. However, in reality, it is not completely independent, and when there is an axis shift at the lower stage, the upper stage is larger than the axis shift amount. Since the image shift is measured, a process for canceling this amount is performed here. In Equation (3), W i is the true image shift by the quadrupole wobbler, the image shift measured at the i-th stage is w i , and the upper image shift is multiplied by the coefficients p iy to r ix to the lower-stage image shift amount. A correction term for the quantity. The coefficients p iy to r ix are determined as table data in advance and are stored in the table data 530. The image shift of the correction term has a unidirectional relationship that has an influence from the lower stage to the upper stage but does not have an influence from the upper stage to the lower stage, and the matrix on the right side of the equation (3) is the multipole 111 to the multipole in order. It affects the image shift of 114 quadrupole wobbler. Since the difference between W i and w i is not so large, this processing is not necessarily required for the axis adjustment, but the number of repetitions of the axis adjustment can be reduced by adding the difference. This completes the detailed description of step S110. Various coefficients such as p iy to r ix used in this embodiment can be changed on the GUI of the computer 300. In this embodiment, the multi-stage axis adjustment is performed once, but it can be performed one by one in order.

図1に示す電子線装置及び図4Aに示すフローを用いて収差補正を行った結果、軸調整工数を低減でき、調整時間を従来の数十分の一に低減することができた。   As a result of performing aberration correction using the electron beam apparatus shown in FIG. 1 and the flow shown in FIG. 4A, the man-hour for adjusting the axis can be reduced, and the adjustment time can be reduced to tens of the conventional one.

なお、色分散抑制やビーム傾斜の分解能向上を目的に、意図的に軸ズレを発生させる場合がある。この場合に、式(1)のWを特定の値に設定することで任意の段で任意の量の軸ズレを発生させることができる。さらに、偏向器108で加える2極子場は、2段偏向の電子ビームの平行移動(シフト)を想定している。これに加えてビーム傾斜(チルト)を自由度として用いる場合は、多極子111に加える2極子場と互換であるため、多極子111の2極子場でなく、偏向器108によるビーム傾斜に置き換えて調整してもよい。 In some cases, an axial shift is intentionally generated for the purpose of suppressing chromatic dispersion and improving the resolution of beam tilt. In this case, it is possible to generate any axial deviation amount at any stage of W i by setting a specific value of the formula (1). Further, the dipole field applied by the deflector 108 assumes the parallel movement (shift) of a two-stage deflection electron beam. In addition to this, when the beam tilt (tilt) is used as a degree of freedom, it is compatible with the dipole field applied to the multipole 111, so that the beam tilt by the deflector 108 is used instead of the dipole field of the multipole 111. You may adjust.

なお、制御部350で制御される内容を纏めると以下の通りである。即ち、制御部350は、テーブルデータ530を参照し偏向量算出部330により軸ズレ修正のために算出される複数の偏向量に基づいて、軸ズレの修正対象である多極子の上段の多極子または偏向器(第1偏向器)108で偏向を行い対象多極子の軸ズレを修正し、同時に軸ズレ修正のための偏向量に応じて、軸ズレの修正多極子で偏向を行い軸ズレの修正多極子の下段に位置する多極子またはレンズへの入射位置を変えないように制御する。また、前記テーブルデータ530を参照し偏向量算出部330により算出された軸ズレ修正のための偏向量に応じて、軸ズレの修正多極子の下段の多極子で偏向を加え、さらに下段に位置する多極子またはレンズへの入射位置を変えないように制御する。また、偏向量算出部330で算出された全偏向量を用いて、複数段で同時に偏向信号を入力し、複数段の多極子の軸ズレを同時に調整するように制御する。また、多極子の各段間に荷電粒子線を偏向して多極子への入射位置を調整する第2偏向器(図示せず)を備える場合、制御部は、偏向量算出部330により軸ズレ修正のために算出される複数の偏向量に基づいて、軸ズレの修正対象である多極子の上段の第1偏向器108で偏向を行い対象多極子の軸ズレを修正し、同時に軸ズレ修正のための偏向量に応じて、軸ズレの修正多極子と下段の多極子間に配置された第2偏向器により、軸ズレの修正多極子の下段に位置する多極子またはレンズへの入射位置と角度を変えないように制御する。   The contents controlled by the control unit 350 are summarized as follows. That is, the control unit 350 refers to the table data 530 and based on a plurality of deflection amounts calculated by the deflection amount calculation unit 330 for correcting the axis deviation, the upper multipole element of the multipole that is the target of the axis deviation correction. Alternatively, deflection is performed by the deflector (first deflector) 108 to correct the axis misalignment of the target multipole element, and at the same time, according to the deflection amount for correcting the axis misalignment, the axis misalignment is deflected to correct the axis misalignment. Control is performed so as not to change the incident position on the multipole or lens located in the lower stage of the modified multipole. Further, in accordance with the deflection amount for correcting the shaft misalignment calculated by the deflection amount calculating unit 330 with reference to the table data 530, the deflection is applied at the lower multipole of the misalignment correcting multipole, and the lower position. To control the incident position on the multipole or lens. In addition, using all the deflection amounts calculated by the deflection amount calculation unit 330, a deflection signal is input simultaneously in a plurality of stages, and control is performed so as to simultaneously adjust the axial deviation of the multi-poles in the plurality of stages. When the second deflector (not shown) that deflects the charged particle beam between the stages of the multipole element and adjusts the incident position on the multipole element is provided, the control unit uses the deflection amount calculation unit 330 to shift the axis. Based on a plurality of deflection amounts calculated for correction, the first deflector 108 at the upper stage of the multipole that is the target of correction of the axial deviation is deflected to correct the axial deviation of the target multipole and simultaneously correct the axial deviation. The second deflector disposed between the corrected multi-pole of the axial deviation and the lower multi-pole according to the deflection amount for the incident position on the multi-pole or lens positioned at the lower stage of the corrected multi-pole of the axial deviation And control so as not to change the angle.

補正値算出部は、収差補正器の各段の軸ズレ測定において、一連のワブラで得られた各々の像シフトから、下段の軸ズレによる上段のワブラ画像シフト量への影響を計算して上段のシフト量に加算または減算量を算出する。また、テーブルデータ530は、補正値算出のための係数を含む。また、表示部(GUI)は、テーブルデータ530に含まれる補正値算出のための係数の表示と設定、或いは多極子の各段で許容される像シフト量の閾値を示す閾値パラメータの表示と設定を行うことができる。   The correction value calculation unit calculates the effect of the lower axis shift on the upper wobbler image shift amount from each image shift obtained by a series of wobblers in the axis shift measurement of each stage of the aberration corrector. The amount of addition or subtraction is calculated for the shift amount. The table data 530 includes a coefficient for calculating a correction value. The display unit (GUI) displays and sets a coefficient for calculating a correction value included in the table data 530, or displays and sets a threshold parameter indicating a threshold of an image shift amount allowed in each stage of the multipole. It can be performed.

以上本実施例によれば、多段多極子型の収差補正器を備えた場合であっても、軸調整工数や調整時間を低減できる荷電粒子線装置およびその収差補正方法を提供することができる。   As described above, according to the present embodiment, it is possible to provide a charged particle beam apparatus and an aberration correction method thereof that can reduce the man-hours and the adjustment time even when the multistage multipole aberration corrector is provided.

本発明の第2の実施例について説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。   A second embodiment of the present invention will be described. Note that the matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment as long as there is no particular circumstance.

本実施例は、実施例1のステップS110の軸調整2極子場の強度の算出について、異なる処理を行った例を示す。この処理以外の調整については実施例1と同じである。実施例1では、各段で得られた像シフトを、1段だけ軸ズレが生じたものに分離したが、本実施例では図7に示すように、複数段に軸ズレが生じるものとして分離して処理する。   The present embodiment shows an example in which different processing is performed for the calculation of the intensity of the axis adjustment dipole field in step S110 of the first embodiment. Adjustments other than this processing are the same as those in the first embodiment. In the first embodiment, the image shifts obtained at each stage are separated into those in which only one stage has an axial shift. However, in this embodiment, as shown in FIG. And process.

図7(a)は図5(a)と同じ軸ズレであるが、ここから図7(b)(c)(d)(e)の光学系に分離する。図7(b)は軸ズレがない状態から、偏向器108に2極子場を励起して、多極子111に軸ズレを起こし、それに伴い下段の多極子112〜多極子114で軸ズレも発生したものである。同様に、図7(c)、(d)、(e)はそれぞれ、軸ズレがない状態から、多極子112、多極子113、多極子114に対して軸ずらしを行い、それぞれの軸ずらし段以降の段で軸ズレが発生したものである。なお、コンデンサレンズ104に対して軸調整をおこなった場合、図7(e)と図5(e)とは最も下段のため、単体の軸調整としては同じ処理となる。ただし、図7(e)では図7(b)〜図7(c)に伴う多極子114の軸ズレ調整を行う点、図5(e)は上段調整に付随して発生させる2極子場の励起量を足し合わせる点で考え方および計算方法が異なる。実施例1の式(1)の(Wix、Wiy)と軸調整の2極子電流(ΔIix、ΔIiy)の関係は、本実施例では式(4)のように表すことができる。 FIG. 7A shows the same axial misalignment as that in FIG. 5A, but is separated from this into the optical systems in FIGS. 7B, 7C, 7D, and 7E. In FIG. 7B, the dipole field is excited in the deflector 108 from the state where there is no axis deviation, causing the axis deviation in the multipole element 111, and the axis deviation is also generated in the lower multipole elements 112 to 114. It is a thing. Similarly, in FIGS. 7C, 7D, and 7E, the multipole element 112, the multipole element 113, and the multipole element 114 are shifted from each other in a state where there is no axis shift, and the respective axis shift stages are moved. Axis misalignment occurred in subsequent stages. When the axis adjustment is performed on the condenser lens 104, FIG. 7 (e) and FIG. 5 (e) are at the lowest stage, and the same processing is performed as a single axis adjustment. However, in FIG. 7 (e), the misalignment adjustment of the multipole element 114 according to FIGS. 7 (b) to 7 (c) is performed, and FIG. 5 (e) is a dipole field generated accompanying the upper stage adjustment. The idea and calculation method are different in that the amount of excitation is added. The relationship between (W ix , W iy ) in the formula (1) of the first embodiment and the axis adjustment dipole current (ΔI ix , ΔI iy ) can be expressed as in the formula (4) in this embodiment.

Figure 0006438780
Figure 0006438780

(W:i段単段4極子ワブラ像シフト量[m]、ΔIix:i段軸調整用2極子電流[A]、six〜viy:i段影響係数[m/A]、ただしi=0は偏向器108の係数)
本式を連立方程式として解くと、多極子の軸調整に必要な各段の2極子電流が得られる。ただし、式(4)において、変数ΔIの数4つに対して、式の数は3つのため、このままでは唯一解を得られない。これは実施例1と同様に、図2(a)の多極子112、図2(b)の多極子113のx方向、y方向で収束していることによる。したがって、唯一解を得るためには、ΔI2x=0、ΔI3y=0といった制約条件をあらかじめ設定しておく必要がある。なお、式(4)ではΔIが得られないが、行列を拡張し、コンデンサレンズ104の軸も含めると値を算出できる。
(W i : i-stage single-stage quadrupole wobbler image shift amount [m], ΔI ix : i-stage axis adjustment dipole current [A], s ix to v iy : i-stage influence coefficient [m / A], i = 0 is a coefficient of the deflector 108)
When this equation is solved as a simultaneous equation, a dipole current at each stage necessary for adjusting the axis of the multipole can be obtained. However, in equation (4), the number of equations is three for the number of variables ΔI i , and therefore the only solution cannot be obtained as it is. This is because the multipole elements 112 in FIG. 2A and the multipole elements 113 in FIG. 2B converge in the x and y directions as in the first embodiment. Therefore, in order to obtain a unique solution, it is necessary to set in advance constraints such as ΔI 2x = 0 and ΔI 3y = 0. Note that ΔI 4 cannot be obtained in Equation (4), but a value can be calculated by expanding the matrix and including the axis of the condenser lens 104.

以上でステップS110の軸調整の2極子場の強度算出について、実施例1と異なる処理の例を説明した。なお、実施例1との効果の差としては、下段は調整量に上段の4極子ワブラによる像シフトの測定誤差が積み重なるため、下段の軸が合っている場合でも、上段の軸ズレ量に引っ張られて下段の軸調整量の精度が悪くなり、軸調整の収束性が低下し調整時間が長くなる場合がある。ただし、その場合でもまとめて調整できるため、単独で調整するよりは短い時間で調整が可能である。   The example of the processing different from that of the first embodiment has been described for the calculation of the intensity of the dipole field for the axis adjustment in step S110. Note that the difference from the effect of the first embodiment is that, in the lower stage, the image shift measurement error due to the upper quadrupole wobbler is accumulated on the adjustment amount, so even if the lower axis is aligned, the lower stage is pulled. As a result, the accuracy of the lower axis adjustment amount may deteriorate, the convergence of the axis adjustment may decrease, and the adjustment time may become longer. However, even in that case, since adjustment can be performed collectively, adjustment can be performed in a shorter time than adjustment by itself.

本実施例における偏向量算出部は、軸調整対象段より下に位置する多極子で生じる像シフト量を打ち消すため軸調整対象段に加える偏向量を算出する従属偏向量算出部を備え、該従属偏向量算出部で算出される偏向量と、全軸ズレ調整のための偏向量とを同時に、出力することができる。   The deflection amount calculation unit in the present embodiment includes a dependent deflection amount calculation unit that calculates a deflection amount to be applied to the axis adjustment target stage in order to cancel the image shift amount generated by the multipole element positioned below the axis adjustment target stage. The deflection amount calculated by the deflection amount calculation unit and the deflection amount for adjusting the misalignment of all axes can be output simultaneously.

図1に示す電子線装置及び図4Aに示すフローを用いて収差補正を行った結果、軸調整工数を低減でき、調整時間を低減することができた。   As a result of performing aberration correction using the electron beam apparatus shown in FIG. 1 and the flow shown in FIG. 4A, man-hours for adjusting the axis can be reduced, and adjustment time can be reduced.

以上本実施例によれば、多段多極子型の収差補正器を備えた場合であっても、軸調整工数や調整時間を低減できる荷電粒子線装置およびその収差補正方法を提供することができる。   As described above, according to the present embodiment, it is possible to provide a charged particle beam apparatus and an aberration correction method thereof that can reduce the man-hours and the adjustment time even when the multistage multipole aberration corrector is provided.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

101…電子銃、102…コンデンサレンズ、103…収差補正器、104…コンデンサレンズ、105…走査コイル、106…対物レンズ、107…試料、108…偏向器、109…偏向器、111…1段目多極子、112…2段目多極子、113…3段目多極子、114…4段目多極子、131…電源、140…真空容器、150…光軸、151…電子線、152…中心軸、153…光軸の軌道、154…光軸の軌道、155…座標、300…コンピュータ、310…電源制御部、320…軸ズレ算出部、330…偏向量算出部、340…補正値算出部、350…制御部、400…表示部(GUI)、500…記憶部、510…メモリ、520…ストレージ、530…テーブルデータ、531…個々のテーブルデータ、532…個々のテーブルデータ。 DESCRIPTION OF SYMBOLS 101 ... Electron gun, 102 ... Condenser lens, 103 ... Aberration corrector, 104 ... Condenser lens, 105 ... Scanning coil, 106 ... Objective lens, 107 ... Sample, 108 ... Deflector, 109 ... Deflector, 111 ... First stage Multipole, 112 ... 2nd stage multipole, 113 ... 3rd stage multipole, 114 ... 4th stage multipole, 131 ... Power supply, 140 ... Vacuum vessel, 150 ... Optical axis, 151 ... Electron beam, 152 ... Center axis 153 ... Optical axis trajectory, 154 ... Optical axis trajectory, 155 ... Coordinate, 300 ... Computer, 310 ... Power supply control unit, 320 ... Axis deviation calculation unit, 330 ... Deflection amount calculation unit, 340 ... Correction value calculation unit, 350 ... Control unit, 400 ... Display unit (GUI), 500 ... Storage unit, 510 ... Memory, 520 ... Storage, 530 ... Table data, 531 ... Individual table data, 532 ... Individual table Data.

Claims (13)

荷電粒子線の収差を制御する2段以上の多極子を含む収差補正器と、
前記荷電粒子線を偏向して前記収差補正器への入射位置を調整する第1偏向器と、
前記多極子の各段で独立に4極子強度の微動を行う4極子ワブラ回路を含む電源と、
前記収差補正器、前記第1偏向器及び前記電源を制御する制御部と、
前記4極子強度の微動による像シフト量を算出する軸ズレ算出部と、
各段の前記4極子強度の微動による前記像シフト量に応じて前記多極子および前記第1偏向器へフィードバックする偏向量を算出する偏向量算出部とを有し、
前記制御部は、テーブルデータを参照し前記偏向量算出部により軸ズレ修正のために算出される複数の前記偏向量に基づいて、軸ズレの修正対象である多極子の上段の多極子または前記第1偏向器で偏向を行い前記軸ズレの修正対象である多極子の軸ズレを修正し、
同時に前記軸ズレ修正のための前記偏向量に応じて、前記軸ズレの修正対象である多極子で偏向を行い前記軸ズレの修正対象である多極子の下段に位置する多極子またはレンズへの入射位置を変えないように制御することを特徴とする荷電粒子線装置。
An aberration corrector including two or more multipole elements for controlling the aberration of the charged particle beam;
A first deflector for deflecting the charged particle beam to adjust an incident position on the aberration corrector;
A power supply including a quadrupole wobbler circuit that performs fine movement of quadrupole intensity independently at each stage of the multipole;
A control unit for controlling the aberration corrector, the first deflector, and the power source;
An axis shift calculation unit for calculating an image shift amount due to the fine movement of the quadrupole intensity;
A deflection amount calculation unit that calculates a deflection amount fed back to the multipole element and the first deflector according to the image shift amount due to the fine movement of the quadrupole intensity at each stage;
The control unit refers to the table data, and based on the plurality of deflection amounts calculated by the deflection amount calculation unit for correcting the axis deviation, the upper multipole element of the multipole that is the target of the axis deviation correction or the A deflection is performed by the first deflector to correct the axial shift of the multipole that is the correction target of the axial shift,
At the same time, in accordance with the deflection amount for correcting the axial misalignment, the multipole element that is the correction target of the axial misalignment performs deflection, and the multipole element or the lens that is positioned in the lower stage of the multipolar element that is the correction target of the axial misalignment A charged particle beam apparatus that is controlled so as not to change an incident position.
請求項1記載の荷電粒子線装置において、
前記制御部は、前記テーブルデータを参照し前記偏向量算出部により算出された前記軸ズレ修正のための前記偏向量に応じて、前記軸ズレの修正対象である多極子の下段の前記多極子で偏向を加え、さらに下段に位置する前記多極子または前記レンズへの入射位置を変えないように制御するものであることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The control unit refers to the table data, and in accordance with the deflection amount for correcting the axial deviation calculated by the deflection amount calculating unit, the multipole element in the lower stage of the multipole that is the target of the axial deviation correction The charged particle beam apparatus is characterized in that the control is performed so as not to change the incident position on the multipole element or the lens positioned further below.
請求項1記載の荷電粒子線装置において、
前記収差補正器の各段の軸ズレ測定において、一連のワブラで得られた各々の像シフトから、下段の軸ズレによる上段のワブラ画像シフト量への影響を計算して上段のシフト量に加算または減算量を算出する補正値算出部を有し、前記テーブルデータは、補正値算出のための係数を有することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
In the measurement of the axial shift at each stage of the aberration corrector, the effect of the lower axis shift on the upper wobbler image shift amount is calculated from each image shift obtained by a series of wobblers and added to the upper shift amount. Alternatively, the charged particle beam apparatus includes a correction value calculation unit that calculates a subtraction amount, and the table data includes a coefficient for calculating a correction value.
請求項3の荷電粒子線装置において、
前記テーブルデータに含まれる前記補正値算出のための係数の表示と設定を行うための表示部を更に備えることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 3.
The charged particle beam apparatus further comprising a display unit for displaying and setting a coefficient for calculating the correction value included in the table data.
請求項1記載の荷電粒子線装置において、
前記偏向量に基づいて複数の前記多極子へフィードバックする第2偏向量を計算するためのテーブルデータを更に有し、
前記制御部は、前記第2偏向量を用いて、複数段で同時に偏向信号を入力し、複数段の前記多極子の前記軸ズレを同時に調整するものであることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
Table data for calculating a second deflection amount to be fed back to the plurality of multipoles based on the deflection amount;
The charged particle beam apparatus, wherein the control unit is configured to simultaneously input deflection signals in a plurality of stages using the second deflection amount and simultaneously adjust the axial deviation of the multipoles in a plurality of stages. .
請求項1の荷電粒子線装置において、
さらに前記多極子の各段間に前記荷電粒子線を偏向して多極子への入射位置を調整する第2偏向器を備え、
前記制御部は、前記偏向量算出部により前記軸ズレ修正のために算出される複数の前記偏向量に基づいて、前記軸ズレの修正対象である多極子の上段の前記第1偏向器で偏向を行い前記軸ズレの修正対象である多極子の軸ズレを修正し、同時に前記軸ズレ修正のための前記偏向量に応じて、前記軸ズレの修正対象である多極子と下段の多極子間に配置された前記第2偏向器により、前記軸ズレの修正対象である多極子の下段に位置する多極子または前記レンズへの入射位置と角度を変えないように制御するものであることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 1,
And a second deflector for deflecting the charged particle beam between each stage of the multipole and adjusting an incident position on the multipole,
The control unit deflects with the first deflector in the upper stage of the multipole that is the correction target of the axial deviation based on the plurality of deflection amounts calculated for correcting the axial deviation by the deflection amount calculating unit. To correct the axial deviation of the multipole that is the correction target of the axial deviation, and at the same time, according to the deflection amount for correcting the axial deviation, between the multipole that is the correction target of the axial deviation and the lower multipole. The second deflector arranged at the position is controlled so as not to change the angle and the incident position on the multipole element or the lens located in the lower stage of the multipole element whose axis deviation is to be corrected. A charged particle beam device.
請求項1の荷電粒子線装置において、
前記多極子の各段で許容される前記像シフト量の閾値を示す閾値パラメータの表示と設定を行うための表示部を更に備えることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 1,
A charged particle beam apparatus, further comprising a display unit for displaying and setting a threshold parameter indicating a threshold value of the image shift amount allowed in each stage of the multipole element.
荷電粒子線の収差を制御する2段以上の多極子を含む収差補正器と、
前記荷電粒子線を偏向して前記収差補正器への入射位置を調整する偏向器と、
前記多極子の各段で独立に4極子強度の微動を行う4極子ワブラ回路を含む電源と、
前記収差補正器、前記偏向器、及び前記電源を制御する制御部と、
前記4極子強度の微動による画像シフト量を算出する軸ズレ算出部と、
各段の前記4極子強度の微動による位置ズレ量に応じて前記多極子および前記偏向器へフィードバックする偏向量を算出する偏向量算出部とを有し、
前記偏向量算出部は、軸調整対象段における軸ズレ調整を行うための偏向量と、前記軸調整対象段の上の段に該偏向量を加えた場合に前記軸調整対象段より下に位置する多極子で生じる像シフト量とを算出するものであることを特徴とする荷電粒子線装置。
An aberration corrector including two or more multipole elements for controlling the aberration of the charged particle beam;
A deflector that deflects the charged particle beam to adjust the incident position on the aberration corrector;
A power supply including a quadrupole wobbler circuit that performs fine movement of quadrupole intensity independently at each stage of the multipole;
A controller for controlling the aberration corrector, the deflector, and the power source;
An axis shift calculation unit for calculating an image shift amount due to the fine movement of the quadrupole intensity;
A deflection amount calculation unit that calculates a deflection amount to be fed back to the multipole element and the deflector according to a positional deviation amount due to the fine movement of the quadrupole intensity at each stage;
The deflection amount calculation unit is positioned below the axis adjustment target stage when the deflection amount for performing an axis deviation adjustment in the axis adjustment target stage and the deflection amount is added to the stage above the axis adjustment target stage. A charged particle beam apparatus that calculates an image shift amount generated by a multipole element.
請求項8記載の荷電粒子線装置において、
前記偏向量算出部は、前記軸調整対象段より下に位置する多極子で生じる像シフト量を打ち消すため前記軸調整対象段に加える偏向量を算出する従属偏向量算出部を備え、該従属偏向量算出部で算出される偏向量と、全軸ズレ調整のための偏向量とを同時に、出力することを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 8.
The deflection amount calculation unit includes a dependent deflection amount calculation unit that calculates a deflection amount to be applied to the axis adjustment target stage in order to cancel an image shift amount generated by a multipole element positioned below the axis adjustment target stage. A charged particle beam apparatus characterized by simultaneously outputting a deflection amount calculated by a quantity calculation unit and a deflection amount for adjusting the deviation of all axes.
少なくとも第1段多極子及び第2段多極子を含む多段多極子型の収差補正器を備えた荷電粒子線装置の収差補正方法において、
基準画像となる第1画像を取得する第1ステップと、
4極子強度の微動により前記第1段多極子を励起し4極子場の強度を変更する第2ステップと、
前記第1段多極子が励起された状態で、第2画像を取得する第3ステップと、
前記第1段多極子の励起を前記第1ステップの状態に戻す第4ステップと、
前記第2ステップから前記第4ステップ迄のステップを前記第2段多極子に対して行う第5ステップと、
前記第1画像と少なくとも前記第1段多極子及び前記第2段多極子に対して得られた前記第2画像とを用いて各段の像シフト量を求める第6ステップと、
前記像シフト量が閾値を上回る場合、前記各段の像シフト量から軸調整を行うために印加すべき各段の偏向量を求める第7ステップと、
を有することを特徴とする収差補正方法。
In an aberration correction method for a charged particle beam apparatus including a multistage multipole type aberration corrector including at least a first stage multipole and a second stage multipole,
A first step of acquiring a first image as a reference image;
A second step of exciting the first stage multipole by a fine movement of the quadrupole intensity to change the intensity of the quadrupole field;
A third step of acquiring a second image with the first stage multipole excited;
A fourth step of returning the excitation of the first stage multipole to the state of the first step ;
A fifth step of performing the steps from the second step to the fourth step on the second stage multipole;
A sixth step of obtaining an image shift amount of each stage using the first image and at least the second image obtained for the first stage multipole and the second stage multipole;
A seventh step of obtaining a deflection amount of each stage to be applied in order to perform axis adjustment from the image shift amount of each stage when the image shift amount exceeds a threshold;
An aberration correction method comprising:
請求項10記載の収差補正方法において、
前記第1画像に代えて、前記第2ステップとは異なる条件での4極子ワブラにおいて取得した画像を標準画像として用いることを特徴とする収差補正方法。
The aberration correction method according to claim 10.
An aberration correction method characterized by using, as a standard image, an image acquired by a quadrupole wobbler under a condition different from that of the second step, instead of the first image.
請求項10記載の収差補正方法において、
前記第7ステップは、特定の段の多極子の中心軸と光軸とが一致するような、かつ前記特定の段の下段以降の荷電粒子線の軌道が変わらないような励起量と、前記像シフト量との関係を求め、前記励起量を用いて前記偏向量を求めるステップであることを特徴とする収差補正方法。
The aberration correction method according to claim 10.
The seventh step includes an excitation amount such that a central axis of a specific stage multipole coincides with an optical axis, and a charged particle beam orbit after the lower stage of the specific stage does not change, and the image An aberration correction method comprising: obtaining a relationship with a shift amount, and obtaining the deflection amount using the excitation amount.
請求項12記載の収差補正方法において、
前記励起量は、軸調整2極子場及び付随した2極子場に対する励起量であることを特徴とする収差補正方法。
The aberration correction method according to claim 12, wherein
3. The aberration correction method according to claim 1, wherein the excitation amount is an excitation amount for an axis-adjusted dipole field and an accompanying dipole field.
JP2015018549A 2015-02-02 2015-02-02 Charged particle beam apparatus and aberration correction method Active JP6438780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018549A JP6438780B2 (en) 2015-02-02 2015-02-02 Charged particle beam apparatus and aberration correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018549A JP6438780B2 (en) 2015-02-02 2015-02-02 Charged particle beam apparatus and aberration correction method

Publications (3)

Publication Number Publication Date
JP2016143558A JP2016143558A (en) 2016-08-08
JP2016143558A5 JP2016143558A5 (en) 2017-04-13
JP6438780B2 true JP6438780B2 (en) 2018-12-19

Family

ID=56570678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018549A Active JP6438780B2 (en) 2015-02-02 2015-02-02 Charged particle beam apparatus and aberration correction method

Country Status (1)

Country Link
JP (1) JP6438780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821471B2 (en) * 2017-02-28 2021-01-27 株式会社荏原製作所 Optical axis adjustment method and electron beam inspection device
WO2023152978A1 (en) * 2022-02-14 2023-08-17 株式会社日立ハイテク Charged particle beam device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006163A (en) * 2002-06-03 2004-01-08 Shimadzu Corp Adjustment method of charged particle beam axis and charged particle beam application apparatus
JP4628076B2 (en) * 2004-10-14 2011-02-09 日本電子株式会社 Aberration correction method and aberration correction apparatus
EP1670028B1 (en) * 2004-12-07 2017-02-08 JEOL Ltd. Apparatus for automatically correcting a charged-particle beam
JP2008112718A (en) * 2006-10-02 2008-05-15 Jeol Ltd Automatic axis adjustment method in electron beam apparatus
JP6150991B2 (en) * 2012-07-18 2017-06-21 株式会社日立ハイテクノロジーズ Electron beam irradiation device
JP6134145B2 (en) * 2013-01-24 2017-05-24 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus

Also Published As

Publication number Publication date
JP2016143558A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US20090014649A1 (en) Electron beam apparatus
JP4275441B2 (en) Electron beam device with aberration corrector
US7633063B2 (en) Charged particle beam apparatus
US10446361B2 (en) Aberration correction method, aberration correction system, and charged particle beam apparatus
JP6037693B2 (en) Charged particle beam equipment
US10910194B2 (en) Charged particle beam device and optical-axis adjusting method thereof
WO2012101927A1 (en) Charged particle beam device
US9530614B2 (en) Charged particle beam device and arithmetic device
JP4299195B2 (en) Charged particle beam apparatus and optical axis adjustment method thereof
JP6647854B2 (en) Aberration correction method and charged particle beam device
JP4291827B2 (en) Method for adjusting scanning electron microscope or length measuring SEM
JP2009218079A (en) Aberration correction device and aberration correction method of scanning transmission electron microscope
JP4851268B2 (en) Aberration correction method and electron beam apparatus
US8772732B2 (en) Scanning charged particle beam device and method for correcting chromatic spherical combination aberration
JP6438780B2 (en) Charged particle beam apparatus and aberration correction method
WO2015174268A1 (en) Charged-particle-beam device
US7095031B2 (en) Method of automatically correcting aberrations in charged-particle beam and apparatus therefor
US11239042B2 (en) Beam irradiation device
JP2006216299A (en) Charged particle beam device, and axis adjusting method of aberration correction device of the same
JP2008153131A (en) Charged particle beam apparatus
WO2021100172A1 (en) Charged particle beam device and aberration correction method
JP2006140119A (en) Alignment automatic correction method and device, and control method of aberration corrector
US11967482B2 (en) Charged particle beam device
EP3731255B1 (en) Energy filter and charged particle beam apparatus
JP2001229866A (en) Automatic stigma adjustment apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6438780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350