JP6433447B2 - 3D 3D modeling powder and 3D 3D modeling - Google Patents

3D 3D modeling powder and 3D 3D modeling Download PDF

Info

Publication number
JP6433447B2
JP6433447B2 JP2016038755A JP2016038755A JP6433447B2 JP 6433447 B2 JP6433447 B2 JP 6433447B2 JP 2016038755 A JP2016038755 A JP 2016038755A JP 2016038755 A JP2016038755 A JP 2016038755A JP 6433447 B2 JP6433447 B2 JP 6433447B2
Authority
JP
Japan
Prior art keywords
dimensional
particles
water
modeling
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038755A
Other languages
Japanese (ja)
Other versions
JP2017155276A (en
Inventor
吉川 大士
大士 吉川
明弘 岡下
明弘 岡下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2016038755A priority Critical patent/JP6433447B2/en
Publication of JP2017155276A publication Critical patent/JP2017155276A/en
Application granted granted Critical
Publication of JP6433447B2 publication Critical patent/JP6433447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、三次元立体造形用粉体および三次元立体造形物に関する。   The present invention relates to a powder for three-dimensional solid modeling and a three-dimensional solid modeling object.

三次元立体造形用粉体の薄層の少なくとも一部に水を含む造形液を混合して固化させ、該固化した薄層を繰り返し積層することで、三次元立体造形物を造形する技術が知られている(例えば特許文献1、2)。この種の積層造形に用いられる三次元立体造形用粉体の代表的な構成として、充填材および水溶性接着剤を含む構成が挙げられる。例えば、特許文献1には、充填材および水溶性接着剤を含み、充填材として澱粉、水溶性接着剤としてスクロースを含む粒子混合物が開示されている。同公報には、水を溶媒とする活性化流体を粒子混合物の層に射出した際、粒子混合物に含まれる水溶性接着剤が溶解して粒子混合物を湿潤し、充填材間を接着結合することで、物品の断面部分が形成されることが記載されている。   The technology for modeling 3D 3D objects is known by mixing and solidifying a modeling liquid containing water to at least a part of the 3D 3D modeling powder thin layer, and repeatedly laminating the solidified thin layer. (For example, Patent Documents 1 and 2). A typical configuration of the three-dimensional three-dimensional modeling powder used in this type of additive manufacturing includes a configuration including a filler and a water-soluble adhesive. For example, Patent Document 1 discloses a particle mixture including a filler and a water-soluble adhesive, starch as a filler, and sucrose as a water-soluble adhesive. In this publication, when an activation fluid containing water as a solvent is injected into a particle mixture layer, the water-soluble adhesive contained in the particle mixture dissolves to wet the particle mixture and adhesively bond between the fillers. It is described that a cross-sectional portion of the article is formed.

特許第3607300号公報Japanese Patent No. 3607300 特許第5589817号公報Japanese Patent No. 5589817

ところで、上記積層造形に用いられる三次元立体造形用粉体としては、得られた三次元立体造形物が破損を免れるように機械的強度に優れていることが求められてきている。特許文献1には、セルロースなどの強化用繊維を含む粒子混合物を用いることにより、最終的な物品の強度を補強する技術が記載されている。しかし、かかる技術を適用しても、調合によっては複雑な反応を経て造形体が形成されるため、成形直後に十分な強度が得られない場合があり得る。また、特許文献2には、三次元造形に用いられる粉体材料において、パウダーレオメータ測定により、トータルエネルギー量が特定範囲と測定される流動性を備えることで、平坦性を向上させる技術が記載されている。しかし、粉体材料の流動性に着目するのみでは上述のような高強度の三次元立体造形物を得ることはできない。   By the way, as the powder for 3D three-dimensional modeling used for the layered modeling, it is required that the obtained three-dimensional three-dimensional model is excellent in mechanical strength so as to avoid damage. Patent Document 1 describes a technique for reinforcing the strength of a final article by using a particle mixture containing reinforcing fibers such as cellulose. However, even if such a technique is applied, a modeled body is formed through a complex reaction depending on the formulation, so that sufficient strength may not be obtained immediately after molding. Patent Document 2 describes a technique for improving the flatness of a powder material used for three-dimensional modeling by providing fluidity in which the total energy amount is measured within a specific range by powder rheometer measurement. ing. However, it is not possible to obtain a high-strength three-dimensional three-dimensional structure as described above only by focusing on the fluidity of the powder material.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、機械的強度に優れた三次元立体造形物を造形し得る、好適な三次元立体造形用粉体を提供することである。関連する他の目的は、そのような三次元立体造形用粉体を用いて造形された高強度の三次元立体造形物を提供することである。   The present invention has been made in view of such points, and its main object is to provide a suitable powder for three-dimensional solid modeling that can form a three-dimensional solid model having excellent mechanical strength. It is. Another related object is to provide a high-strength three-dimensional three-dimensional structure formed using such a three-dimensional three-dimensional structure forming powder.

上記目的を実現するべく、本発明により三次元立体造形用粉体が提供される。ここで開示される三次元立体造形用粉体は、非水和反応母材粒子と水溶性接着粒子とを含んでいる。そして、前記非水和反応母材粒子の平均粒子径をX(μm)とし、前記三次元立体造形用粉体の見かけ体積に占める前記水溶性接着粒子の体積割合をY(体積%)とした場合に、以下の関係:5≦X≦60;0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51);を満たす。   In order to achieve the above object, the present invention provides a powder for three-dimensional solid modeling. The powder for three-dimensional solid modeling disclosed here includes non-hydration reaction base material particles and water-soluble adhesive particles. The average particle diameter of the non-hydrated reaction base material particles is X (μm), and the volume ratio of the water-soluble adhesive particles in the apparent volume of the three-dimensional solid modeling powder is Y (volume%). In this case, the following relationship is satisfied: 5 ≦ X ≦ 60; 0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51).

ここで開示される三次元立体造形用粉体は、非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとが上記特定の関係を有する結果、水を含む造形液と混合した際、水溶性接着粒子が溶解して非水和反応母材粒子間に適切に行き渡るので、非水和反応母材粒子間に強い接着強度が発現する。そのため、上記構成の三次元立体造形用粉体を用いれば、従来に比して機械的強度に優れた、高品質な三次元立体造形物を製造することができる。   The powder for three-dimensional three-dimensional modeling disclosed here is a modeling liquid containing water as a result of the above-mentioned specific relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. When mixed with water, the water-soluble adhesive particles are dissolved and appropriately spread between the non-hydrated reaction base material particles, so that strong adhesive strength is developed between the non-hydrated reaction base material particles. Therefore, if the powder for three-dimensional solid modeling having the above-described configuration is used, a high-quality three-dimensional solid model having excellent mechanical strength as compared with the conventional one can be manufactured.

ここで開示される三次元立体造形用粉体の好ましい一態様では、前記非水和反応母材粒子の平均粒子径X(μm)が、10≦X≦50である。このような非水和反応母材粒子の平均粒子径の範囲内であると、機械的強度の向上がより高いレベルで実現され得る。   In a preferred embodiment of the powder for three-dimensional solid modeling disclosed herein, the average particle diameter X (μm) of the non-hydrated reaction base material particles is 10 ≦ X ≦ 50. Within such a range of the average particle diameter of the non-hydrated reaction base material particles, the mechanical strength can be improved at a higher level.

ここで開示される三次元立体造形用粉体の好ましい一態様では、前記水溶性接着粒子は、熱可塑性樹脂、熱硬化性樹脂および多糖類からなる群から選択される少なくとも1種を主体として構成されている。熱可塑性樹脂、熱硬化性樹脂および多糖類のうちのいずれかを用いることで、非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとが前記特定の関係を有することによる性能向上効果(例えば機械的強度向上効果)が発揮されやすくなる。前記水溶性接着粒子は、ポリビニルアルコールまたはその誘導体を含むことが好ましい。   In a preferred aspect of the three-dimensional three-dimensional modeling powder disclosed herein, the water-soluble adhesive particles are mainly composed of at least one selected from the group consisting of thermoplastic resins, thermosetting resins and polysaccharides. Has been. By using any one of a thermoplastic resin, a thermosetting resin, and a polysaccharide, the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles have the specific relationship. The performance improvement effect (for example, mechanical strength improvement effect) by this becomes easy to be exhibited. The water-soluble adhesive particles preferably include polyvinyl alcohol or a derivative thereof.

ここで開示される三次元立体造形用粉体の好ましい一態様では、前記非水和反応母材粒子は、Al、Zr,Ti、Zn、NiおよびFeからなる群から選択される少なくとも1種の元素を含む金属またはそれらの合金を主体として構成されている。これらの元素を含む金属または合金は、高硬度かつ水に対して高い安定性を示すため、本発明の目的に適した非水和反応母材粒子として好適に使用し得る。   In a preferred aspect of the three-dimensional three-dimensional modeling powder disclosed herein, the non-hydrated reaction base material particles are at least one selected from the group consisting of Al, Zr, Ti, Zn, Ni, and Fe. It is composed mainly of a metal containing an element or an alloy thereof. Since metals or alloys containing these elements have high hardness and high stability to water, they can be suitably used as non-hydrated reaction matrix particles suitable for the purpose of the present invention.

ここで開示される三次元立体造形用粉体の好ましい一態様では、前記非水和反応母材粒子は、Al、Zr,Ti、Zn、Ni、FeおよびSiからなる群から選択される少なくとも1種の元素を含む酸化物を主体として構成されている。これらの金属元素または半金属元素を含む酸化物は、高硬度かつ水に対して高い安定性を示すため、本発明の目的に適した非水和反応母材粒子として好適に使用し得る。   In a preferred aspect of the three-dimensional solid modeling powder disclosed herein, the non-hydrated reaction base material particles are at least one selected from the group consisting of Al, Zr, Ti, Zn, Ni, Fe, and Si. It is mainly composed of oxides containing seed elements. Oxides containing these metal elements or metalloid elements can be suitably used as non-hydrated reaction matrix particles suitable for the purpose of the present invention because they exhibit high hardness and high stability to water.

また、本発明によると、ここに開示されるいずれかの三次元立体造形用粉体の固化物(すなわち水を含む造形液と混合した後の溶解固化物、硬化物)からなる三次元立体造形物が提供される。この三次元立体造形物は、上述した三次元立体造形用粉体を用いて造形されていることから、従来に比して機械的強度に優れたものであり得る。   In addition, according to the present invention, a three-dimensional three-dimensional modeling comprising a solidified product of any of the powders for three-dimensional three-dimensional modeling disclosed herein (that is, a dissolved solidified product and a cured product after mixing with a modeling liquid containing water). Things are provided. Since this three-dimensional three-dimensional structure is formed using the above-described three-dimensional three-dimensional structure forming powder, it can be excellent in mechanical strength as compared with the conventional one.

図1は水溶性接着粒子の体積割合Yと曲げ強度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the volume ratio Y of water-soluble adhesive particles and the bending strength. 図2は水溶性接着粒子の体積割合Yと曲げ強度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the volume ratio Y of the water-soluble adhesive particles and the bending strength. 図3は非水溶性母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Y(極大値)との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the average particle diameter X of the water-insoluble matrix particles and the volume ratio Y (maximum value) of the water-soluble adhesive particles.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

<三次元立体造形用粉体>
ここに開示される技術の好ましい一態様に係る三次元立体造形用粉体は、三次元立体造形物を造形するために用いられる三次元立体造形用粉体である。この三次元立体造形用粉体は、少なくとも非水和反応母材粒子と水溶性接着粒子とを含む混合粉体からなる。そして、非水和反応母材粒子の平均粒子径をX(μm)とし、三次元立体造形用粉体の見かけ体積に占める水溶性接着粒子の体積割合をY(体積%)とした場合に、
以下の関係:
5≦X≦60;
0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51);
を満たす。
<Powder for 3D solid modeling>
The powder for three-dimensional solid modeling according to a preferred embodiment of the technology disclosed herein is a powder for three-dimensional solid modeling used for modeling a three-dimensional solid model. This three-dimensional three-dimensional modeling powder is composed of a mixed powder containing at least non-hydration reaction base material particles and water-soluble adhesive particles. And, when the average particle diameter of the non-hydrated reaction base material particles is X (μm), and the volume ratio of the water-soluble adhesive particles in the apparent volume of the three-dimensional three-dimensional modeling powder is Y (volume%),
The following relationships:
5 ≦ X ≦ 60;
0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51);
Meet.

ここで「見かけ体積」とは、粒子間の隙間を含む体積をいう。三次元立体造形用粉体の見かけ体積に対する水溶性接着粒子の体積割合Yは、三次元立体造形用粉体を構成する粉体材料のかさ密度と含有量とから算出することができる。具体的には、三次元立体造形用粉体が例えば非水和反応母材粒子および水溶性接着粒子のみを含む場合、以下の式(1)を用いてYを求めることができる。
Y(体積%)=100×(B/A)÷{(B/A)+(D/C)} (1)
A:非水和反応母材粒子のゆるめ嵩密度(g/cm
B:三次元立体造形用粉体中の非水和反応母材粒子の含有量(質量%)
C:水溶性接着粒子のゆるめ嵩密度(g/cm
D:三次元立体造形用粉体中の水溶性接着粒子の含有量(質量%)
ここでゆるめ嵩密度とは、初期嵩密度もしくは嵩比重ともいい、内体積が既知の容器に圧力を掛けずに粉体材料を流し入れて充填したときに、充填した粉体の質量を容器の内体積で除した値をいう。この際、容器のタッピングは行わないものとする。非水和反応母材粒子のゆるめ嵩密度は、例えばJIS R 1628に準拠して測定された値が採用され得る。また、水溶性接着粒子のゆるめ嵩密度は、例えばJIS R 1628に準拠して測定された値が採用され得る。
Here, the “apparent volume” means a volume including a gap between particles. The volume ratio Y of the water-soluble adhesive particles to the apparent volume of the three-dimensional three-dimensional modeling powder can be calculated from the bulk density and the content of the powder material constituting the three-dimensional three-dimensional modeling powder. Specifically, when the three-dimensional three-dimensional modeling powder includes, for example, only non-hydrated reaction base material particles and water-soluble adhesive particles, Y can be obtained using the following formula (1).
Y (volume%) = 100 × (B / A) ÷ {(B / A) + (D / C)} (1)
A: Loose bulk density (g / cm 3 ) of non-hydrated reaction base material particles
B: Content (% by mass) of non-hydrated reaction base material particles in the powder for three-dimensional solid modeling
C: Loose bulk density of water-soluble adhesive particles (g / cm 3 )
D: Content (% by mass) of water-soluble adhesive particles in the powder for three-dimensional solid modeling
Here, loose bulk density is also referred to as initial bulk density or bulk specific gravity. When powder material is poured into a container having a known internal volume without applying pressure and filled, the mass of the filled powder is determined within the container. The value divided by the volume. At this time, the container is not tapped. As the loose bulk density of the non-hydrated reaction base material particles, for example, a value measured in accordance with JIS R 1628 can be adopted. For the loose bulk density of the water-soluble adhesive particles, for example, a value measured according to JIS R 1628 can be adopted.

ここに開示される三次元立体造形用粉体は、上記式(1)で求められる水溶性接着粒子の体積割合Yが非水和反応母材粒子の平均粒子径Xとの間で0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51)の関係を満たすように設定されている。このことにより、前記関係を満たさない従来の三次元立体造形用粉体に比較して、水を含む造形液と混合した際、機械的強度に優れた三次元立体造形物を造形することができる。このような効果が得られる理由としては、特に限定的に解釈されるものではないが、例えば以下のように考えられる。すなわち、水溶性接着粒子の体積割合Yが0.8×(−0.77X+51)よりも小さい三次元立体造形用粉体は、非水和反応母材粒子の周囲に水溶性接着粒子が少ないため、水を含む造形液と混合した際、非水和反応母材粒子同士をつなぐ接着成分が不足する。そのため、得られた三次元立体造形物の機械的強度が低下傾向になり得る。また、水溶性接着粒子の体積割合Yが1.2×(−0.77X+51)よりも大きい三次元立体造形用粉体は、非水和反応母材粒子の周囲に水溶性接着粒子が多量に存在するため、水を含む造形液と混合した際、水溶性接着粒子に造形液が吸収されてしまい、三次元立体造形物全体が柔らかくなる。そのため、三次元立体造形物の機械的強度が反って低下傾向になり得る。これに対し、0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51)を満足する三次元立体造形用粉体は、平均粒子径Xの非水和反応母材粒子の周囲に水溶性接着粒子が適量存在しているため、水を含む造形液を混合した際、水溶性接着粒子が溶解して非水和反応母材粒子間に適切に行き渡る。そのため、非水和反応母材粒子間に強い接着強度が発現し、また三次元立体造形物全体の柔軟化も起こりにくい。このことが三次元立体造形物の機械的強度の向上に寄与するものと考えられる。   In the three-dimensional solid modeling powder disclosed here, the volume ratio Y of the water-soluble adhesive particles obtained by the above formula (1) is 0.8 between the average particle diameter X of the non-hydrated reaction base material particles. It is set so as to satisfy the relationship of × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51). By this, compared with the conventional powder for three-dimensional solid modeling that does not satisfy the above relationship, a three-dimensional solid model having excellent mechanical strength can be formed when mixed with a modeling liquid containing water. . The reason why such an effect is obtained is not particularly limited, but may be considered as follows, for example. That is, the powder for three-dimensional solid modeling in which the volume ratio Y of the water-soluble adhesive particles is smaller than 0.8 × (−0.77X + 51) has few water-soluble adhesive particles around the non-hydrated reaction base material particles. When mixed with a modeling liquid containing water, the adhesive component that connects the non-hydrated reaction base material particles is insufficient. Therefore, the mechanical strength of the obtained three-dimensional three-dimensional structure may tend to decrease. Further, the powder for three-dimensional solid modeling in which the volume ratio Y of the water-soluble adhesive particles is larger than 1.2 × (−0.77X + 51) has a large amount of water-soluble adhesive particles around the non-hydrated reaction base material particles. Therefore, when mixed with a modeling liquid containing water, the modeling liquid is absorbed by the water-soluble adhesive particles, and the entire three-dimensional three-dimensional model is softened. For this reason, the mechanical strength of the three-dimensional three-dimensional structure is warped and tends to decrease. On the other hand, the three-dimensional solid modeling powder satisfying 0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51) is a non-hydration reaction base material having an average particle diameter X. Since an appropriate amount of water-soluble adhesive particles are present around the particles, when the modeling liquid containing water is mixed, the water-soluble adhesive particles are dissolved and appropriately spread between the non-hydrated reaction base material particles. Therefore, strong adhesive strength is developed between the non-hydrated reaction base material particles, and softening of the entire three-dimensional three-dimensional structure hardly occurs. This is considered to contribute to the improvement of the mechanical strength of the three-dimensional three-dimensional structure.

ここに開示される三次元立体造形用粉体としては、水溶性接着粒子の体積割合Yが、非水和反応母材粒子の平均粒子径Xとの間で、0.85×(−0.77X+51)≦Y≦1.15×(−0.77X+51)を満足するように設定されていることがより好ましく、0.9×(−0.77X+51)≦Y≦1.1×(−0.77X+51)であることがさらに好ましく、0.95×(−0.77X+51)≦Y≦1.05×(−0.77X+51)であることが特に好ましい。水溶性接着粒子の体積割合Yが−0.77X+51に近い値を示す三次元立体造形用粉体は、溶解した水溶性接着粒子が非水和反応母材粒子間に適切に行き渡り、三次元立体造形物全体の柔軟化が起こりにくい。したがって、ここに開示される技術の適用効果が適切に発揮され得る。ここに開示される技術は、例えば水溶性接着粒子の体積割合Yと非水和反応母材粒子の平均粒子径Xとの関係が0.98×(−0.77X+51)≦Y≦1.02×(−0.77X+51)である態様で特に好ましく実施され得る。   As the powder for three-dimensional solid modeling disclosed here, the volume ratio Y of the water-soluble adhesive particles is 0.85 × (−0. 77X + 51) ≦ Y ≦ 1.15 × (−0.77X + 51) is more preferable, and 0.9 × (−0.77X + 51) ≦ Y ≦ 1.1 × (−0. 77X + 51) is more preferable, and 0.95 × (−0.77X + 51) ≦ Y ≦ 1.05 × (−0.77X + 51) is particularly preferable. The powder for three-dimensional solid modeling in which the volume ratio Y of the water-soluble adhesive particles shows a value close to −0.77X + 51, the dissolved water-soluble adhesive particles are properly distributed between the non-hydrated reaction base material particles, and the three-dimensional solid powder. Softening of the entire model is unlikely to occur. Therefore, the application effect of the technique disclosed herein can be appropriately exhibited. In the technique disclosed herein, for example, the relationship between the volume ratio Y of water-soluble adhesive particles and the average particle diameter X of non-hydrated reaction base particles is 0.98 × (−0.77X + 51) ≦ Y ≦ 1.02. It can be implemented particularly preferably in the embodiment of × (−0.77X + 51).

<非水和反応母材粒子>
ここに開示される三次元立体造形用粉体は、非水和反応母材粒子を含有する。ここで「非水和反応母材粒子」とは、該粒子に水が接触したときに水和反応(典型的には水和物の生成や水酸化物の生成)が起こらない、あるいは起こったとしても該粒子の表面の微視的な範囲のみに限定され、該粒子の大部分は実質的に水と反応しない物質をいう。したがって、例えば非水和反応母材粒子1モルに対して微量(例えば0.1モル以下、好ましくは0.01モル以下、より好ましくは0.001モル以下)の水分子が該粒子表面で局所的に反応する場合は、ここでいう非水和反応母材粒子の概念に包含され得る。水和反応が起こる物質の典型例として、石膏、セメントなどが挙げられる。非水和反応母材粒子は、造形対象である三次元立体造形物の母材を構成する成分である。
<Non-hydrated reaction matrix particles>
The powder for three-dimensional solid modeling disclosed here contains non-hydrated reaction base material particles. Here, “non-hydrated reaction base material particles” means that hydration reaction (typically hydrate formation or hydroxide generation) does not occur or has occurred when water comes into contact with the particles. However, it is limited only to the microscopic range of the surface of the particle, and most of the particle refers to a substance that does not substantially react with water. Therefore, for example, a small amount (for example, 0.1 mol or less, preferably 0.01 mol or less, more preferably 0.001 mol or less) of water molecules is locally present on the particle surface with respect to 1 mol of non-hydrated reaction base material particles. Can be included in the concept of non-hydrated reaction matrix particles. Typical examples of substances that cause a hydration reaction include gypsum and cement. The non-hydration reaction base material particles are components constituting the base material of the three-dimensional three-dimensional structure that is a modeling target.

非水和反応母材粒子の材質や性状は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はない。例えば、非水和反応母材粒子は無機粒子、有機粒子および有機無機複合粒子のいずれかであり得る。非水和反応母材粒子としては、無機粒子が好ましく、なかでも金属または半金属の化合物からなる粒子が好ましい。例えば、周期表の第4族〜第14族に属するいずれかの元素を含む酸化物、窒化物、炭化物;等を主体として構成される非水和反応母材粒子を好適に用いることができる。なかでもAl、Zr,Ti、Zn、Ni、FeおよびSiのうちのいずれかの金属元素または半金属元素を含む酸化物、窒化物、炭化物;等を主体として構成される非水和反応母材粒子が好ましい。あるいは、周期表の第4族〜第13族に属するいずれかの元素を含む金属またはそれらの合金を主体として構成された非水和反応母材粒子を採用してもよい。なかでもAl、Zr,Ti、Zn、NiおよびFeのうちのいずれかの金属元素を含む金属またはそれらの合金を主体として構成された非水和反応母材粒子が好ましい。   The material and properties of the non-hydrated reaction base material particles are such that the three-dimensional solid modeling powder satisfies the above relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. As long as there is no particular limitation. For example, the non-hydrated reaction matrix particles can be any of inorganic particles, organic particles, and organic-inorganic composite particles. As the non-hydrated reaction base material particles, inorganic particles are preferable, and particles made of a metal or metalloid compound are particularly preferable. For example, non-hydrated reaction base particles composed mainly of oxides, nitrides, carbides, etc. containing any element belonging to Groups 4 to 14 of the periodic table can be suitably used. Among them, a non-hydration reaction base material mainly composed of an oxide, nitride, carbide or the like containing any metal element or metalloid element of Al, Zr, Ti, Zn, Ni, Fe and Si; Particles are preferred. Or you may employ | adopt the non-hydration reaction base material particle | grains comprised mainly by the metal or those alloys containing any element which belongs to the 4th group-13th group of a periodic table. Of these, non-hydrated reaction matrix particles mainly composed of a metal containing any metal element of Al, Zr, Ti, Zn, Ni and Fe or an alloy thereof are preferable.

具体的には、酸化アルミニウム(例えばアルミナ)粒子、酸化ジルコニウム(例えばジルコニア)粒子、酸化チタン(例えばチタニア)粒子、酸化ケイ素(例えばシリカ)粒子、酸化亜鉛粒子、酸化鉄粒子、酸化ニッケル粒子、酸化セリウム(例えばセリア)粒子、酸化マグネシウム(例えばマグネシア)粒子、酸化クロム粒子、二酸化マンガン粒子、チタン酸バリウム粒子、炭酸カルシウム粒子、炭酸バリウム粒子等の酸化物粒子;アルミニウム粒子、ニッケル粒子、鉄粒子等の金属粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;等のいずれかを主体として構成される非水和反応母材粒子が挙げられる。非水和反応母材粒子は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。なかでも、アルミナ粒子、ジルコニア粒子、チタニア粒子、シリカ粒子、酸化亜鉛粒子、チタン酸バリウム粒子、アルミニウム粒子、ニッケル粒子、鉄粒子は、高強度の三次元立体造形物を形成し得る点で好ましい。そのなかでも、アルミナ粒子、ジルコニア粒子、チタニア粒子、シリカ粒子がさらに好ましく、アルミナ粒子が特に好ましい。   Specifically, aluminum oxide (eg alumina) particles, zirconium oxide (eg zirconia) particles, titanium oxide (eg titania) particles, silicon oxide (eg silica) particles, zinc oxide particles, iron oxide particles, nickel oxide particles, oxidation Cerium (eg, ceria) particles, magnesium oxide (eg, magnesia) particles, chromium oxide particles, manganese dioxide particles, barium titanate particles, calcium carbonate particles, barium carbonate particles and other oxide particles; aluminum particles, nickel particles, iron particles, etc. Non-hydration reaction base material particles mainly composed of any of the following: metal particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; One type of non-hydration reaction base material particles may be used alone, or two or more types may be used in combination. Among these, alumina particles, zirconia particles, titania particles, silica particles, zinc oxide particles, barium titanate particles, aluminum particles, nickel particles, and iron particles are preferable in that a high-strength three-dimensional three-dimensional structure can be formed. Among these, alumina particles, zirconia particles, titania particles, and silica particles are more preferable, and alumina particles are particularly preferable.

なお、本明細書において、非水和反応母材粒子の組成について「Aを主体として構成される」とは、当該非水和反応母材粒子に占めるAの割合(Aの純度)が、質量基準で90%以上(好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、例えば99%以上)であることをいう。   In the present specification, the composition of the non-hydrated reaction base material particles “consisting mainly of A” means that the proportion of A in the non-hydrated reaction base material particles (the purity of A) is mass. It is 90% or more on the basis (preferably 95% or more, more preferably 97% or more, further preferably 98% or more, for example 99% or more).

非水和反応母材粒子の形状(外形)は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はない。球形であってもよく、非球形であってもよい。機械的強度、製造容易性等の観点から、略球形の非水和反応母材粒子を好ましく使用し得る。   The shape (outer shape) of the non-hydrated reaction base material particles is the same as the relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. There is no particular limitation as long as it is satisfied. It may be spherical or non-spherical. From the viewpoints of mechanical strength, manufacturability, etc., substantially spherical non-hydrated reaction matrix particles can be preferably used.

非水和反応母材粒子の平均粒子径Xは、5μm≦X≦60μmであり得る。非水和反応母材粒子の平均粒子径Xが小さすぎると、三次元立体造形用粉体が流動しにくくなるため、造形時に該粉体を薄層状に充填する際の成形性が低下する場合があり得る。上記非水和反応母材粒子の平均粒子径Xは、成形性等の観点からは、好ましくは10μm以上、より好ましくは20μm以上、特に好ましくは30μm以上(例えば40μm以上)である。また、非水和反応母材粒子の平均粒子径Xは、概ね60μm以下である。非水和反応母材粒子の平均粒子径Xが大きすぎると、造形時に該粉体を薄層状に充填した後、該粉体が流動しやすくなるため、三次元立体造形物の各層が積層ずれを起こす場合があり得る。上記非水和反応母材粒子の平均粒子径Xは、積層ずれを抑制する等の観点からは、好ましくは55μm以下、より好ましくは50μm以下、特に好ましくは45μm以下である。例えば平均粒子径Xが10μm≦X≦50μm(典型的には30μm≦X≦50μm)である非水和反応母材粒子が、成形性と積層ずれ抑制とを両立させる観点から好適である。   The average particle diameter X of the non-hydrated reaction base material particles may be 5 μm ≦ X ≦ 60 μm. When the average particle diameter X of the non-hydrated reaction base material particles is too small, the powder for three-dimensional solid modeling is difficult to flow, and thus the moldability when filling the powder into a thin layer during modeling is reduced. There can be. The average particle diameter X of the non-hydrated reaction base material particles is preferably 10 μm or more, more preferably 20 μm or more, and particularly preferably 30 μm or more (for example, 40 μm or more) from the viewpoint of moldability and the like. The average particle diameter X of the non-hydrated reaction base material particles is approximately 60 μm or less. If the average particle size X of the non-hydrated reaction base material particles is too large, the powder tends to flow after filling the powder into a thin layer during modeling. May occur. The average particle diameter X of the non-hydrated reaction base material particles is preferably 55 μm or less, more preferably 50 μm or less, and particularly preferably 45 μm or less from the viewpoint of suppressing stacking deviation. For example, non-hydrated reaction matrix particles having an average particle diameter X of 10 μm ≦ X ≦ 50 μm (typically 30 μm ≦ X ≦ 50 μm) are suitable from the viewpoint of achieving both formability and suppression of stacking deviation.

なお、本明細書中において「平均粒子径」とは、特記しない限り、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布における積算値50%での粒子径、すなわち50%体積平均粒子径(D50径)を意味するものとする。より具体的には、レーザ回析・散乱式粒度分布測定装置を用い、圧縮空気による粒子の分散は行わず、乾式測定した50%体積平均粒子径である。   In the present specification, “average particle size” means, unless otherwise specified, a particle size at an integrated value of 50% in a particle size distribution measured based on a particle size distribution measuring apparatus based on a laser scattering / diffraction method, that is, 50%. It means the volume average particle diameter (D50 diameter). More specifically, it is a 50% volume average particle diameter measured dry using a laser diffraction / scattering type particle size distribution measuring device without dispersing particles with compressed air.

非水和反応母材粒子のゆるめ嵩密度は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はないが、概ね0.8g/cm以上であり得る。非水和反応母材粒子のゆるめ嵩密度は、好ましくは0.9g/cm以上、より好ましくは1g/cm以上である。非水和反応母材粒子のゆるめ嵩密度は、例えば1.25g/cm以上、典型的には1.5g/cm以上であってもよい。非水和反応母材粒子のゆるめ嵩密度の上限は特に限定されないが、例えば3g/cm以下にすることが適当であり、好ましくは2.5g/cm以下、より好ましくは2g/cm以下(例えば1.8g/cm以下)である。ここに開示される技術は、例えば非水和反応母材粒子のゆるめ嵩密度が、1g/cm以上2.1g/cm以下である態様で特に好ましく実施され得る。 The loose bulk density of the non-hydrated reaction base material particles is such that the three-dimensional three-dimensional modeling powder satisfies the above relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. not particularly limited as long as it may be generally 0.8 g / cm 3 or more. The loose bulk density of the non-hydrated reaction base material particles is preferably 0.9 g / cm 3 or more, more preferably 1 g / cm 3 or more. The loose bulk density of the non-hydrated reaction matrix particles may be, for example, 1.25 g / cm 3 or more, typically 1.5 g / cm 3 or more. The upper limit of the loose bulk density of the non-hydrated reaction base material particles is not particularly limited, but is suitably 3 g / cm 3 or less, for example, preferably 2.5 g / cm 3 or less, more preferably 2 g / cm 3. The following (for example, 1.8 g / cm 3 or less). The technique disclosed herein can be particularly preferably implemented in an embodiment in which, for example, the loose bulk density of the non-hydrated reaction base material particles is 1 g / cm 3 or more and 2.1 g / cm 3 or less.

三次元立体造形用粉体における非水和反応母材粒子の含有量は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はない。非水和反応母材粒子の含有量は、三次元立体造形用粉体の全量を100質量部とした場合に、通常は60質量部以上であり、機械的強度向上等の観点から、好ましくは65質量部以上、より好ましくは75質量部以上、例えば80質量部以上、典型的には85質量部以上、例えば90質量部以上であってもよい。非水和反応母材粒子の含有量の上限は、特に限定されないが、好ましくは99質量部以下であり、より好ましくは98質量部以下であり、例えば96質量部以下であってもよい。このような非水和反応母材粒子の含有量の範囲内であると、本構成の効果を一層高いレベルで発揮することができる。   The content of the non-hydrated reaction base material particles in the three-dimensional three-dimensional modeling powder is determined by the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. There is no particular limitation as long as the above relationship is satisfied. The content of the non-hydrated reaction base material particles is usually 60 parts by mass or more when the total amount of the three-dimensional solid modeling powder is 100 parts by mass, preferably from the viewpoint of improving mechanical strength, etc. It may be 65 parts by mass or more, more preferably 75 parts by mass or more, for example 80 parts by mass or more, typically 85 parts by mass or more, for example 90 parts by mass or more. The upper limit of the content of the non-hydrated reaction base material particles is not particularly limited, but is preferably 99 parts by mass or less, more preferably 98 parts by mass or less, for example, 96 parts by mass or less. When it is within the range of the content of such non-hydration reaction base material particles, the effect of this configuration can be exhibited at a higher level.

<水溶性接着粒子>
ここに開示される三次元立体造形用粉体は水溶性接着粒子を含有する。ここで「水溶性接着粒子」とは、液温90℃の水100質量部に接着粒子2質量部を添加し4時間攪拌したときに、該接着粒子の全部もしくは一部が溶解することで、該接着粒子を溶解した水溶液が水よりも高い粘性を発現する樹脂粒子をいう。好ましい一態様では、上記水の粘度をA(mPa・s)とした場合に、上記接着粒子が溶解した水溶液の粘度が1.2×A(好ましくは1.5×A、より好ましくは2.0×A)を上回る程度に粘性が発現する。水溶性接着粒子は、水を含む造形液と混合した際、水に溶解して非水和反応母材粒子同士を接着する成分である。
<Water-soluble adhesive particles>
The powder for three-dimensional three-dimensional modeling disclosed here contains water-soluble adhesive particles. Here, “water-soluble adhesive particles” means that when 2 parts by mass of adhesive particles are added to 100 parts by mass of water at a liquid temperature of 90 ° C. and stirred for 4 hours, all or part of the adhesive particles are dissolved. Resin particles in which an aqueous solution in which the adhesive particles are dissolved expresses a higher viscosity than water. In a preferable embodiment, when the viscosity of the water is A (mPa · s), the viscosity of the aqueous solution in which the adhesive particles are dissolved is 1.2 × A (preferably 1.5 × A, more preferably 2. Viscosity develops to the extent that it exceeds 0 × A). The water-soluble adhesive particles are components that dissolve in water and adhere the non-hydrated reaction base material particles together when mixed with a modeling liquid containing water.

水溶性接着粒子の材質や性状は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はない。例えば、熱可塑性樹脂、熱硬化性樹脂および多糖類のいずれかを主体として構成された水溶性接着粒子が好ましく用いられる。   The material and properties of the water-soluble adhesive particles are particularly limited as long as the three-dimensional three-dimensional modeling powder satisfies the above relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. There is no limit. For example, water-soluble adhesive particles mainly composed of any one of a thermoplastic resin, a thermosetting resin, and a polysaccharide are preferably used.

熱可塑性樹脂の好適例として、例えばビニルアルコール系樹脂、イソブチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等が例示される。ビニルアルコール系樹脂は、典型的には、主たる繰返し単位としてビニルアルコール単位を含む樹脂(PVA)である。当該樹脂において、全繰返し単位のモル数に占めるビニルアルコール単位のモル数の割合は、通常は50%以上(例えば50%〜90%)であり、好ましくは65%以上、より好ましくは75%以上、例えば85%以上である。全繰返し単位が実質的にビニルアルコール単位から構成されていてもよい。PVAにおいて、ビニルアルコール単位以外の繰返し単位の種類は特に限定されず、例えば酢酸ビニル単位等であり得る。カルボキシル基変性PVA、スルホン酸基変性PVA、リン酸基変性PVAなどのアニオン変性PVA、カチオン変性PVA、あるいはエチレン、長鎖アルキル基を有するビニルエーテル、ビニルエステル、(メタ)アクリルアミド、アルファオレフィンなどを共重合した変性PVA;等を使用してもよい。PVAの重合度については特に制限されないが、例えば100〜5000(好ましくは500〜3000)であり得る。イソブチレン系樹脂は、イソブチレンの単独重合体であってもよいし、イソブチレンと他の単量体との共重合体(イソブチレン共重合体)であってもよい。イソブチレン共重合体において、イソブチレンと共重合する他の単量体としては特に限定されない。例えば、エチレン性二重結合を有するモノマーが挙げられる。エチレン性二重結合を有するモノマーとしては、例えば、(無水)マレイン酸、アクリル酸、メタクリル酸、(無水)フタル酸、(無水)イタコン酸などのエチレン性不飽和カルボン等が挙げられる。化学変性したイソブチレン共重合体を用いてもよい。イソブチレン共重合体の分子量については特に制限されないが、例えば3×10〜2×10(好ましくは5×10〜1.7×10)であり得る。ポリアミド系樹脂としては、例えばポリカプロアミド(ナイロン−6)などのナイロンを化学変性した水溶性ナイロンが挙げられる。ポリエステル系樹脂としては、例えば親水性基を有する成分がポリエステル中に共重合成分として導入された水溶性ポリエステルが挙げられる。これらの熱可塑性樹脂の中でも、ビニルアルコール系樹脂およびイソブチレン系樹脂は強接着力を有する点で好ましく用いることができる。 Preferable examples of the thermoplastic resin include vinyl alcohol resin, isobutylene resin, polyamide resin, polyester resin and the like. The vinyl alcohol-based resin is typically a resin (PVA) containing a vinyl alcohol unit as a main repeating unit. In the resin, the ratio of the number of moles of vinyl alcohol units to the number of moles of all repeating units is usually 50% or more (for example, 50% to 90%), preferably 65% or more, more preferably 75% or more. For example, it is 85% or more. All repeating units may consist essentially of vinyl alcohol units. In PVA, the kind of repeating unit other than the vinyl alcohol unit is not particularly limited, and may be, for example, a vinyl acetate unit. Anion-modified PVA such as carboxyl group-modified PVA, sulfonic acid group-modified PVA, and phosphate group-modified PVA, cation-modified PVA, or ethylene, vinyl ether having a long chain alkyl group, vinyl ester, (meth) acrylamide, alpha olefin, etc. Polymerized modified PVA; etc. may be used. Although it does not restrict | limit especially about the polymerization degree of PVA, For example, it may be 100-5000 (preferably 500-3000). The isobutylene resin may be a homopolymer of isobutylene or a copolymer of isobutylene and another monomer (isobutylene copolymer). In the isobutylene copolymer, the other monomer copolymerized with isobutylene is not particularly limited. For example, the monomer which has an ethylenic double bond is mentioned. Examples of the monomer having an ethylenic double bond include ethylenically unsaturated carboxylic acids such as (anhydrous) maleic acid, acrylic acid, methacrylic acid, (anhydrous) phthalic acid, and (anhydrous) itaconic acid. A chemically modified isobutylene copolymer may be used. The molecular weight of the isobutylene copolymer is not particularly limited, but may be, for example, 3 × 10 3 to 2 × 10 5 (preferably 5 × 10 3 to 1.7 × 10 5 ). Examples of the polyamide-based resin include water-soluble nylon obtained by chemically modifying nylon such as polycaproamide (nylon-6). Examples of the polyester-based resin include water-soluble polyesters in which a component having a hydrophilic group is introduced into the polyester as a copolymerization component. Among these thermoplastic resins, vinyl alcohol resins and isobutylene resins can be preferably used in that they have strong adhesive strength.

熱硬化性樹脂の好適例としては、例えばメラミン系樹脂が例示される。メラミン系樹脂は、メラミンとアルデヒドとの重合反応によって得られるメラミン樹脂であってもよいし、メラミン樹脂の形成に用いられる単量体(またはその初期重合体)と他の単量体(またはその初期重合体)との共重合体樹脂であってもよい。メラミン樹脂において、メラミンと重合するアルデヒドとしては特に限定されない。例えばメラミンとホルムアルデヒドとの重合反応によって得られるメラミン樹脂を好ましく用いることができる。   As a suitable example of a thermosetting resin, a melamine-type resin is illustrated, for example. The melamine resin may be a melamine resin obtained by a polymerization reaction of melamine and an aldehyde, or a monomer (or its initial polymer) used for forming a melamine resin and another monomer (or its) It may be a copolymer resin with an initial polymer). In the melamine resin, the aldehyde polymerized with melamine is not particularly limited. For example, a melamine resin obtained by a polymerization reaction of melamine and formaldehyde can be preferably used.

多糖類の好適例としては、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体;アラビアゴム、キサンタンゴム、カードラン、澱粉、デキストリン、グルコマンナン、アガロース、カラギナン、グアーガム、ローカストビーンガム、トラガントガム、クインシードガム、プルラン、寒天、コンニャクマンナンなどの天然高分子化合物;が例示される。なかでも、接着性等の観点から、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、メチルセルロース、アラビアゴム、キサンタンゴムを好ましく用いることができる。   Preferable examples of the polysaccharide include hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, carboxymethylcellulose and the like; gum arabic, xanthan gum, curdlan, starch, dextrin And natural polymer compounds such as glucomannan, agarose, carrageenan, guar gum, locust bean gum, tragacanth gum, quinseed gum, pullulan, agar, konjac mannan; Of these, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, methylcellulose, gum arabic, and xanthan gum can be preferably used from the viewpoint of adhesiveness and the like.

ここに開示される三次元立体造形用粉体に含有させ得る水溶性接着粒子の他の例として、ポリエチレングリコール、ポリアクリル酸ナトリウム部分中和物、ポリビニルピロリドン、ポリビニルピロリドンの共重合体、ポリアクリル酸ナトリウム、ポリアクリル酸ナトリウムの共重合体、アルギン酸ナトリウム、スクロース、デキストロース、フルクトース、ラクトース、ゼラチン;等を主体として構成された水溶性接着粒子が挙げられる。上述した水溶性接着粒子は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。   Other examples of water-soluble adhesive particles that can be contained in the three-dimensional three-dimensional modeling powder disclosed herein include polyethylene glycol, sodium polyacrylate partial neutralized product, polyvinylpyrrolidone, polyvinylpyrrolidone copolymer, polyacrylic Examples thereof include water-soluble adhesive particles mainly composed of sodium acid, sodium polyacrylate copolymer, sodium alginate, sucrose, dextrose, fructose, lactose, gelatin; and the like. The water-soluble adhesive particles described above may be used alone or in combination of two or more.

なお、本明細書において、水溶性接着粒子の組成について「Aを主体として構成される」とは、当該水溶性接着粒子に占めるAの割合(Aの純度)が、質量基準で90%以上(好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、例えば99%以上)であることをいう。   In the present specification, the composition of the water-soluble adhesive particles “consisting mainly of A” means that the proportion of A in the water-soluble adhesive particles (A purity) is 90% or more on a mass basis ( Preferably it is 95% or more, more preferably 97% or more, still more preferably 98% or more, for example 99% or more.

特に制限されるものではないが、水溶性接着粒子の平均粒子径は、通常は0.1μm以上であり、好ましくは1μm以上である。水溶性接着粒子の平均粒子径の上限は、凡そ250μm以下とすることが適当であり、好ましくは200μm以下である。   Although not particularly limited, the average particle diameter of the water-soluble adhesive particles is usually 0.1 μm or more, preferably 1 μm or more. The upper limit of the average particle diameter of the water-soluble adhesive particles is suitably about 250 μm or less, preferably 200 μm or less.

水溶性接着粒子のゆるめ嵩密度は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はないが、概ね0.2g/cm以上であり得る。水溶性接着粒子のゆるめ嵩密度は、好ましくは0.3g/cm以上、より好ましくは0.4g/cm以上である。水溶性接着粒子のゆるめ嵩密度は、例えば0.5g/cm以上であってもよい。水溶性接着粒子のゆるめ嵩密度の上限は特に限定されないが、例えば1g/cm以下にすることが適当であり、好ましくは0.8g/cm以下、より好ましくは0.7g/cm以下(例えば0.6g/cm以下)である。ここに開示される技術は、例えば水溶性接着粒子のゆるめ嵩密度が、0.3g/cm以上0.6g/cm以下である態様で特に好ましく実施され得る。 The loose bulk density of the water-soluble adhesive particles is particularly limited as long as the three-dimensional three-dimensional modeling powder satisfies the above relationship between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. There is no limit, but it can be generally 0.2 g / cm 3 or more. The loose bulk density of the water-soluble adhesive particles is preferably 0.3 g / cm 3 or more, more preferably 0.4 g / cm 3 or more. The loose bulk density of the water-soluble adhesive particles may be, for example, 0.5 g / cm 3 or more. The upper limit of the loose bulk density of the water-soluble adhesive particles is not particularly limited, but for example, it is suitable to be 1 g / cm 3 or less, preferably 0.8 g / cm 3 or less, more preferably 0.7 g / cm 3 or less. (For example, 0.6 g / cm 3 or less). The technique disclosed herein can be particularly preferably implemented in an embodiment in which, for example, the loose bulk density of the water-soluble adhesive particles is 0.3 g / cm 3 or more and 0.6 g / cm 3 or less.

三次元立体造形用粉体における水溶性接着粒子の含有量は、三次元立体造形用粉体が非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとの間で前記関係を満たす限りにおいて特に制限はない。水溶性接着粒子の含有量は、三次元立体造形用粉体の全量を100質量部とした場合に、通常は1質量部以上であり、機械的強度向上等の観点から、好ましくは2質量部以上、例えば4質量部以上、典型的には8質量部以上であってもよい。水溶性接着粒子の含有量の上限は、特に限定されないが、例えば40質量部以下であり、機械的強度向上等の観点から、好ましくは35質量部以下、例えば30質量部以下、例えば20質量部以下、典型的には15質量部以下、例えば10質量部以下であってもよい。   The content of the water-soluble adhesive particles in the three-dimensional three-dimensional modeling powder is such that the three-dimensional three-dimensional modeling powder is between the average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y of the water-soluble adhesive particles. There is no particular limitation as long as the above relationship is satisfied. The content of the water-soluble adhesive particles is usually 1 part by mass or more when the total amount of the powder for three-dimensional solid modeling is 100 parts by mass, and preferably 2 parts by mass from the viewpoint of improving mechanical strength. For example, it may be 4 parts by mass or more, typically 8 parts by mass or more. The upper limit of the content of the water-soluble adhesive particles is not particularly limited, but is, for example, 40 parts by mass or less, and preferably 35 parts by mass or less, for example, 30 parts by mass or less, for example, 20 parts by mass, from the viewpoint of improving mechanical strength. Hereinafter, it may be typically 15 parts by mass or less, for example, 10 parts by mass or less.

ここに開示される技術において、水溶性接着粒子と非水和反応母材粒子とは、相互に接着しておらず、それぞれ独立した粒子として存在していてもよい。このように水溶性接着粒子と非水和反応母材粒子とがそれぞれ独立した粒子として存在することで、所望の三次元立体造形用粉体を簡易に実現できる。あるいは、非水和反応母材粒子の表面に水溶性接着粒子を付着させてもよい。すなわち、非水和反応母材粒子の一部または全部を水溶性接着粒子で被覆(コーティング)してもよい。このことによって、非水和反応母材粒子間に所要量の水溶性接着粒子が確実に存在するため、水溶性接着粒子を溶解した水が非水和反応母材粒子間に効率よく行き渡る。そのため、前述した三次元立体造形物強度向上効果をより効果的に発揮させることができる。   In the technology disclosed herein, the water-soluble adhesive particles and the non-hydrated reaction base material particles may not be bonded to each other and may exist as independent particles. As described above, since the water-soluble adhesive particles and the non-hydration reaction base material particles exist as independent particles, a desired three-dimensional solid modeling powder can be easily realized. Alternatively, water-soluble adhesive particles may be attached to the surface of the non-hydrated reaction base material particles. That is, part or all of the non-hydrated reaction base material particles may be coated (coated) with water-soluble adhesive particles. This ensures that a required amount of water-soluble adhesive particles are present between the non-hydrated reaction matrix particles, so that water in which the water-soluble adhesive particles are dissolved efficiently spreads between the non-hydrated reaction matrix particles. Therefore, the above-described effect of improving the strength of the three-dimensional three-dimensional structure can be exhibited more effectively.

ここに開示される三次元立体造形用粉体は、本構成の効果を損なわない範囲で、分散剤、増粘剤、印刷助剤等の、三次元立体造形用粉体に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。   The three-dimensional three-dimensional modeling powder disclosed herein is a known one that can be used for a three-dimensional three-dimensional modeling powder, such as a dispersant, a thickener, and a printing aid, as long as the effects of the present configuration are not impaired. You may further contain an additive as needed. The content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.

ここに開示される三次元立体造形用粉体の調製方法は特に限定されない。例えば、ポリミックス等の周知の混合方法を用いて、三次元立体造形用粉体に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。   The preparation method of the powder for three-dimensional solid modeling disclosed here is not particularly limited. For example, each component contained in the powder for three-dimensional solid modeling may be mixed using a known mixing method such as polymix. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.

ここに開示される三次元立体造形用粉体は、層状に充填した三次元立体造形用粉体の薄層の少なくとも一部に水を含む造形液を混合して固化させ、該固化した薄層を繰り返し積層することにより三次元立体造形物を造形する積層造形に用いられ得る。造形される三次元立体造形物の形状はとくに制限されない。ここに開示される三次元立体造形用粉体は、種々の三次元立体形状の造形物の造形に好ましく適用され得る。   The three-dimensional three-dimensional modeling powder disclosed here is solidified by mixing and solidifying a modeling liquid containing water in at least a part of the thin layer of the three-dimensional three-dimensional modeling powder filled in a layer shape. Can be used for layered modeling for modeling a three-dimensional three-dimensional model. The shape of the 3D three-dimensional object to be formed is not particularly limited. The powder for three-dimensional solid modeling disclosed here can be preferably applied to modeling of various three-dimensional solid modeling objects.

<造形液>
ここに開示される三次元立体造形用粉体は、典型的には水を含む造形液と混合される態様で、三次元立体造形物の造形に用いられる。上記造形液に用いられる溶媒は、水を含むものであればよい。溶媒としては、純水、超純水、イオン交換水(脱イオン水)、蒸留水等を好ましく用いることができる。ここに開示される造形液は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、造形液に含まれる溶媒の40体積%以上が水であることが好ましく、50体積%以上(典型的には50〜100体積%)が水であることがより好ましい。かかる造形液は、造形時に三次元立体造形用粉体100質量部に対して例えば20質量部〜80質量部(典型的には40質量部〜60質量部)の比率で混合され得る。
<Modeling liquid>
The three-dimensional three-dimensional modeling powder disclosed herein is typically mixed with a modeling liquid containing water and used for modeling a three-dimensional three-dimensional modeled object. The solvent used for the said modeling liquid should just contain water. As the solvent, pure water, ultrapure water, ion exchange water (deionized water), distilled water or the like can be preferably used. The modeling liquid disclosed here may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, 40% by volume or more of the solvent contained in the modeling liquid is preferably water, and more preferably 50% by volume or more (typically 50 to 100% by volume) is water. Such modeling liquid may be mixed at a ratio of, for example, 20 parts by mass to 80 parts by mass (typically 40 parts by mass to 60 parts by mass) with respect to 100 parts by mass of the powder for three-dimensional solid modeling at the time of modeling.

ここに開示される造形液は、本構成の効果を損なわない範囲で、染料、有機顔料、無機顔料、湿潤剤、流量増加剤等の、造形液に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。   The modeling liquid disclosed here requires known additives that can be used in the modeling liquid, such as dyes, organic pigments, inorganic pigments, wetting agents, flow rate increasing agents, etc., as long as the effects of this configuration are not impaired. You may further contain according to it. The content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.

<造形方法>
ここに開示される三次元立体造形用粉体は、例えば以下の操作を含む態様で、三次元立体造形物の造形(製造)に使用することができる。以下、ここに開示される三次元立体造形用粉体を用いて三次元立体造形物を造形する方法の好適な一態様につき説明する。この造形は、造形対象となる三次元立体造形物に対応する三次元データ等に基づいて立体を造形する3Dプリンタを用いて行われ得る。かかる3Dプリンタは、水を含む造形液を滴下するインクジェットと、三次元立体造形用粉体が配置される裁置台とを有し得る。
<Modeling method>
The powder for 3D three-dimensional modeling disclosed here can be used for modeling (manufacture) of a three-dimensional three-dimensional model | molding in the aspect containing the following operation, for example. Hereinafter, a preferred embodiment of a method of modeling a three-dimensional solid object using the three-dimensional solid modeling powder disclosed herein will be described. This modeling can be performed using a 3D printer that models a three-dimensional object based on three-dimensional data corresponding to a three-dimensional three-dimensional object to be modeled. Such a 3D printer may include an inkjet that drops a modeling liquid containing water and a table on which a three-dimensional three-dimensional modeling powder is disposed.

三次元立体造形物を造形するに際しては、ここに開示されるいずれかの三次元立体造形用粉体を用意する。三次元立体造形用粉体を用意することには、ポリミックス等の周知の混合方法を用いて三次元立体造形用粉体に含まれる各成分を混合する、等が含まれる。   When modeling a three-dimensional three-dimensional modeled object, one of the three-dimensional three-dimensional modeled powders disclosed herein is prepared. Preparing the powder for three-dimensional three-dimensional modeling includes mixing each component contained in the powder for three-dimensional three-dimensional modeling using a known mixing method such as polymix.

次いで、下記の操作1〜3を繰り返すことで、層状固形物を順次積層して三次元立体造形物を造形する。
操作1:上記三次元立体造形用粉体を、造形対象となる三次元立体造形物の各層に対応する厚さ(例えば0.01mm〜0.3mm)となるように、裁置台上に層状に充填する。
操作2:層状に充填された三次元立体造形用粉体のうち固化すべき部分(すなわち造形対象となる三次元立体造形物の一部に相当する部分)に対してインクジェットヘッドから水を含む造形液を滴下する。そして当該滴下部分に含まれる水溶性接着粒子を溶解して非水和反応母材粒子間を接着することで、層状固形物を形成(固化)する。
操作3:裁置台を鉛直下方に上記三次元立体造形物の各層に対応する厚さの分だけ下降させる。
Next, the following operations 1 to 3 are repeated to sequentially laminate the layered solids to form a three-dimensional solid object.
Step 1: The powder for 3D solid modeling is layered on the table so as to have a thickness (for example, 0.01 mm to 0.3 mm) corresponding to each layer of the 3D solid model to be modeled. Fill.
Operation 2: modeling including water from an inkjet head for a portion to be solidified (that is, a portion corresponding to a part of a three-dimensional three-dimensional object to be modeled) of the powder for three-dimensional three-dimensional modeling filled in layers Add the solution dropwise. Then, the water-soluble adhesive particles contained in the dripping portion are dissolved to bond the non-hydrated reaction base material particles, thereby forming (solidifying) a layered solid.
Operation 3: The table is moved down vertically by the thickness corresponding to each layer of the three-dimensional structure.

その後、固化されなかった三次元立体造形用粉体を最終的に取り除くことで、三次元立体造形物の造形が完了する。ここに開示される三次元立体造形用粉体を用いて造形された三次元立体造形物は、造形後に焼成してもよい。焼成の温度は、特に制限されず、例えば600℃〜1800℃の範囲とすることが好ましい。これにより、より高強度な三次元立体造形物が形成され得る。また必要に応じて、造形後の三次元立体造形物を焼成助剤に浸してから焼成してもよい。これにより一層高強度な三次元立体造形物が形成され得る。   Thereafter, the powder for 3D solid modeling that has not been solidified is finally removed to complete the modeling of the 3D solid model. The three-dimensional three-dimensional modeled object modeled using the three-dimensional three-dimensional modeled powder disclosed herein may be fired after modeling. The firing temperature is not particularly limited, and is preferably in the range of 600 ° C. to 1800 ° C., for example. Thereby, a higher-strength three-dimensional three-dimensional structure can be formed. Further, if necessary, the three-dimensional three-dimensional structure after modeling may be baked after being immersed in a baking aid. Thereby, a higher-strength three-dimensional three-dimensional structure can be formed.

<三次元立体造形物の製造方法>
ここに開示される技術には、例えば、三次元立体造形物の製造方法の提供が含まれ得る。すなわち、ここに開示される技術によると、非水和反応母材粒子と水溶性接着粒子とを含む三次元立体造形用粉体を用意する工程と、層状に充填した該三次元立体造形用粉体の薄層の少なくとも一部に水を含む造形液を混合して固化させ、該固化した薄層を繰り返し積層することにより三次元立体造形物を造形する工程と、を含む三次元立体造形物の製造方法が提供される。この三次元立体造形物の製造方法では、上記三次元立体造形用粉体を用意する工程において、非水和反応母材粒子の平均粒子径X(μm)が5≦X≦60であり、かつ、該非水和反応母材粒子の平均粒子径Xと三次元立体造形用粉体のみかけ体積に占める水溶性接着粒子の体積割合Y(体積%)とが0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51)を満足するように設定された三次元立体造形用粉体が用意される。上記製造方法は、ここに開示される三次元立体造形用粉体および造形方法の内容を好ましく適用することにより実施され得る。上記製造方法によると、従来に比して機械的強度に優れた、高品質な三次元立体造形物が提供される。
<Method for producing a three-dimensional solid object>
The technology disclosed herein can include, for example, providing a method for manufacturing a three-dimensional three-dimensional structure. That is, according to the technology disclosed herein, a step of preparing a powder for three-dimensional solid modeling including non-hydration reaction base material particles and water-soluble adhesive particles, and the powder for three-dimensional solid modeling filled in layers 3D three-dimensional structure including a step of mixing a solidification liquid containing water into at least a part of a thin layer of the body to solidify and forming a three-dimensional three-dimensional object by repeatedly laminating the solidified thin layer A manufacturing method is provided. In the method for producing a three-dimensional three-dimensional structure, in the step of preparing the powder for three-dimensional three-dimensional structure, the average particle diameter X (μm) of the non-hydrated reaction base material particles is 5 ≦ X ≦ 60, and The average particle diameter X of the non-hydrated reaction base material particles and the volume ratio Y (volume%) of the water-soluble adhesive particles to the apparent volume of the three-dimensional solid modeling powder are 0.8 × (−0.77X + 51). A powder for three-dimensional solid modeling set to satisfy ≦ Y ≦ 1.2 × (−0.77X + 51) is prepared. The said manufacturing method may be implemented by preferably applying the content of the powder for three-dimensional solid modeling and the modeling method disclosed here. According to the manufacturing method described above, a high-quality three-dimensional three-dimensional structure having excellent mechanical strength as compared with the conventional one is provided.

以下、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。   Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples.

<三次元立体造形用粉体>
非水和反応母材粒子および水溶性接着粒子をポリミックスで30秒間攪拌して各例に係る三次元立体造形用粉体を調製した。各例に係る三次元立体造形用粉体について、使用した非水和反応母材粒子の種類、含有量、平均粒子径X、水溶性接着粒子の種類、含有量、体積割合Yを表1,2に纏めて示す。なお、各例の非水和反応母材粒子の平均粒子径Xは、前述の方法に準じて求めたものである。また、各例の三次元立体造形用粉体における水溶性接着粒子の体積割合Yは、前述の方法に準じて求めたものである。なお、PVAとしては日本酢ビ・ポバール株式会社製ポバールJP−05Sを使用した。また、アルミナとしては、昭和電工株式会社製砥材WA240〜2500を使用した。
<Powder for 3D solid modeling>
The non-hydrated reaction base material particles and the water-soluble adhesive particles were stirred with a polymix for 30 seconds to prepare the three-dimensional solid modeling powder according to each example. For the three-dimensional three-dimensional modeling powder according to each example, Table 1 shows the type, content, average particle diameter X, type, content, and volume ratio Y of the non-hydrated reaction base material particles used. These are summarized in 2. In addition, the average particle diameter X of the non-hydration reaction base material particles of each example is obtained according to the above-described method. Moreover, the volume ratio Y of the water-soluble adhesive particles in the three-dimensional three-dimensional modeling powder of each example is obtained according to the above-described method. As PVA, POVAR JP-05S manufactured by Nippon Vinegar Poval Co., Ltd. was used. Moreover, as alumina, Showa Denko Co., Ltd. abrasive material WA240-2500 was used.

Figure 0006433447
Figure 0006433447

Figure 0006433447
Figure 0006433447

<圧壊強度測定>
各例の三次元立体造形用粉体を用いて三次元積層造形物を造形した。具体的には、3D Systems社製ProJet460Plusを使用して縦4mm×横40mm×厚さ3mmの試験片を造形し、室温で24時間乾燥した。そして、該試験片の曲げ強度(圧壊強度)をJIS R 1601に準拠する方法で測定した。結果を表1、2の「強度」欄および図1、2に示す。図1は、例A〜Eについて水溶性接着粒子の体積割合Y(体積%)と曲げ強度(MPa)との関係を示すグラフである。図2は、例F〜Hについて水溶性接着粒子の体積割合Y(体積%)と曲げ強度(MPa)との関係を示すグラフである。ここでは曲げ強度が0.3MPa以上のものを良品と判定した。かかる曲げ強度は、造形後の三次元立体造形物を造形装置から破損なく取り出し得るために必要な強度である。
<Measurement of crushing strength>
A three-dimensional layered object was modeled using the three-dimensional solid modeling powder of each example. Specifically, a test piece having a length of 4 mm, a width of 40 mm, and a thickness of 3 mm was formed using ProJet 460 Plus manufactured by 3D Systems, and dried at room temperature for 24 hours. And the bending strength (crushing strength) of this test piece was measured by the method based on JISR1601. The results are shown in the “strength” column of Tables 1 and 2 and FIGS. FIG. 1 is a graph showing the relationship between the volume ratio Y (volume%) of water-soluble adhesive particles and the bending strength (MPa) for Examples A to E. FIG. 2 is a graph showing the relationship between the volume ratio Y (volume%) of the water-soluble adhesive particles and the bending strength (MPa) for Examples F to H. Here, those having a bending strength of 0.3 MPa or more were determined as non-defective products. Such bending strength is a strength necessary for taking out a three-dimensional three-dimensional modeled object after modeling from the modeling apparatus without breakage.

表1、2および図1、2に示されるように、非水和反応母材粒子の平均粒子径Xにかかわらず、水溶性接着粒子の体積割合Yを0(ゼロ)から増加させると、曲げ強度はいったん増大傾向を示し、そして中間で極大値をとった後、再び減少傾向に転じた。すなわち、水溶性接着粒子の体積割合Yが多すぎても少なすぎても、曲げ強度は低下傾向を示すことが確認された。また、非水和反応母材粒子の平均粒子径Xが小さくなるに従い、水溶性接着粒子の体積割合Yが小さい側に曲げ強度の極大値がシフトした。このことから、非水和反応母材粒子の平均粒子径Xが小さくなるに従い、同様の強度を得るための水溶性接着粒子の体積割合Yが増えることが確認された。   As shown in Tables 1 and 2 and FIGS. 1 and 2, when the volume ratio Y of the water-soluble adhesive particles is increased from 0 (zero) regardless of the average particle diameter X of the non-hydrated reaction base material particles, bending occurs. The strength once showed an increasing tendency, and after having reached a maximum value in the middle, it turned to a decreasing tendency again. That is, it was confirmed that the bending strength tends to decrease even if the volume ratio Y of the water-soluble adhesive particles is too much or too little. Further, as the average particle diameter X of the non-hydrated reaction base material particles was decreased, the maximum value of the bending strength was shifted to the side where the volume ratio Y of the water-soluble adhesive particles was small. From this, it was confirmed that the volume ratio Y of the water-soluble adhesive particles for obtaining the same strength increases as the average particle diameter X of the non-hydrated reaction base material particles decreases.

非水和反応母材粒子の平均粒子径Xを横軸に、各平均粒子径Xにおいて上記極大値を示したときの水溶性接着粒子の体積割合Yを縦軸に取ったときのグラフを図3に示す。すなわち、図3は非水溶性母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yの極大値との関係を示すグラフである。   The graph shows the average particle diameter X of the non-hydrated reaction base material particles on the horizontal axis and the volume ratio Y of the water-soluble adhesive particles when the above average value is shown for each average particle diameter X on the vertical axis. 3 shows. That is, FIG. 3 is a graph showing the relationship between the average particle diameter X of the water-insoluble matrix particles and the maximum value of the volume ratio Y of the water-soluble adhesive particles.

図3に示すように、プロットされた各点は概ね直線上に乗り、直線近似を行うと、Y=−0.77X+51となった。そして、曲げ強度0.3MPa以上を実現し得る水溶性接着粒子の体積割合Yは、概ね0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51)の範囲であった。この結果から、0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51)を満たす三次元立体造形用粉体を用いることにより、三次元立体造形物の機械的強度を向上し得ることが確認できた。   As shown in FIG. 3, each plotted point is approximately on a straight line, and when linear approximation is performed, Y = −0.77X + 51 is obtained. The volume ratio Y of the water-soluble adhesive particles capable of realizing a bending strength of 0.3 MPa or more is approximately in the range of 0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51). It was. From this result, by using the powder for three-dimensional solid modeling satisfying 0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51), the mechanical strength of the three-dimensional solid model is obtained. It has been confirmed that it can be improved.

なお、アルミナに代えてシリカもしくはジルコニアを用いた例F〜Hの三次元立体造形用粉体ならびにPVAに代えてデキストリンを用いた例I〜Jの三次元立体造形用粉体についても、アルミナおよびPVAを用いた例A〜Eの三次元立体造形用粉体と同様に、Y=−0.77X+51の直線上に乗り、ほほ同様の性能を有していた。このことから、非水和反応母材粒子の平均粒子径Xと水溶性接着粒子の体積割合Yとをここに開示される適切な関係に調整することよる性能向上効果(機械的強度向上効果)は、非水和反応母材粒子および水溶性接着粒子の種類に関係なく得られることが確かめされた。   Note that the three-dimensional three-dimensional modeling powders of Examples F to H using silica or zirconia instead of alumina and the three-dimensional three-dimensional modeling powders of Examples I to J using dextrin instead of PVA are also used for alumina and Similar to the powders for three-dimensional three-dimensional modeling of Examples A to E using PVA, it rides on a straight line of Y = −0.77X + 51 and has almost the same performance. From this, the performance improvement effect (mechanical strength improvement effect) by adjusting the average particle diameter X of the non-hydration reaction base material particle and the volume ratio Y of the water-soluble adhesive particle to an appropriate relationship disclosed herein. Has been confirmed to be obtained regardless of the type of non-hydrated reaction matrix particles and water-soluble adhesive particles.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (6)

非水和反応母材粒子と水溶性接着粒子とを含む三次元立体造形用粉体であって、
前記非水和反応母材粒子の平均粒子径をX(μm)とし、前記三次元立体造形用粉体の見かけ体積に占める前記水溶性接着粒子の体積割合をY(体積%)とした場合に、
以下の関係:
5≦X≦60;
0.8×(−0.77X+51)≦Y≦1.2×(−0.77X+51);
を満たす、三次元立体造形用粉体。
A powder for three-dimensional three-dimensional modeling including non-hydrated reaction base material particles and water-soluble adhesive particles,
When the average particle diameter of the non-hydrated reaction base material particles is X (μm) and the volume ratio of the water-soluble adhesive particles in the apparent volume of the three-dimensional solid modeling powder is Y (volume%) ,
The following relationships:
5 ≦ X ≦ 60;
0.8 × (−0.77X + 51) ≦ Y ≦ 1.2 × (−0.77X + 51);
Satisfying 3D 3D modeling powder.
前記非水和反応母材粒子の平均粒子径X(μm)が、10≦X≦50である、請求項1に記載の三次元立体造形用粉体。   The powder for three-dimensional solid modeling according to claim 1, wherein an average particle diameter X (μm) of the non-hydration reaction base material particles is 10 ≦ X ≦ 50. 前記水溶性接着粒子は、熱可塑性樹脂、熱硬化性樹脂および多糖類からなる群から選択される少なくとも1種を主体として構成されている、請求項1または2に記載の三次元立体造形用粉体。   The three-dimensional solid modeling powder according to claim 1 or 2, wherein the water-soluble adhesive particles are mainly composed of at least one selected from the group consisting of a thermoplastic resin, a thermosetting resin, and a polysaccharide. body. 前記水溶性接着粒子は、ポリビニルアルコールまたはその誘導体を含む、請求項1〜3の何れか一つに記載の三次元立体造形用粉体。   The powder for three-dimensional solid modeling according to any one of claims 1 to 3, wherein the water-soluble adhesive particles include polyvinyl alcohol or a derivative thereof. 前記非水和反応母材粒子は、Al、Zr,Ti、Zn、NiおよびFeからなる群から選択される少なくとも1種の元素を含む金属またはそれらの合金を主体として構成されている、請求項1〜4の何れか一つに記載の三次元立体造形用粉体。   The non-hydration reaction base material particles are mainly composed of a metal containing at least one element selected from the group consisting of Al, Zr, Ti, Zn, Ni, and Fe, or an alloy thereof. The powder for three-dimensional three-dimensional modeling as described in any one of 1-4. 前記非水和反応母材粒子は、Al、Zr,Ti、Zn、Ni、FeおよびSiからなる群から選択される少なくとも1種の元素を含む酸化物を主体として構成されている、請求項1〜の何れか一つに記載の三次元立体造形用粉体。 The non-hydration reaction base material particles are mainly composed of an oxide containing at least one element selected from the group consisting of Al, Zr, Ti, Zn, Ni, Fe and Si. The powder for three-dimensional solid modeling according to any one of 4 to 4 .
JP2016038755A 2016-03-01 2016-03-01 3D 3D modeling powder and 3D 3D modeling Active JP6433447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038755A JP6433447B2 (en) 2016-03-01 2016-03-01 3D 3D modeling powder and 3D 3D modeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038755A JP6433447B2 (en) 2016-03-01 2016-03-01 3D 3D modeling powder and 3D 3D modeling

Publications (2)

Publication Number Publication Date
JP2017155276A JP2017155276A (en) 2017-09-07
JP6433447B2 true JP6433447B2 (en) 2018-12-05

Family

ID=59808064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038755A Active JP6433447B2 (en) 2016-03-01 2016-03-01 3D 3D modeling powder and 3D 3D modeling

Country Status (1)

Country Link
JP (1) JP6433447B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011713B (en) * 2020-08-30 2021-11-23 中南大学 Method for eliminating cracks of 3D printing nickel-based superalloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902441A (en) * 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
JP3433219B2 (en) * 1998-11-17 2003-08-04 独立行政法人産業技術総合研究所 Manufacturing method of metal or ceramic products
JP5589817B2 (en) * 2010-12-15 2014-09-17 ブラザー工業株式会社 A powder material, a three-dimensional modeling apparatus using the powder material, and a three-dimensional modeling method using the powder material.
JP6398178B2 (en) * 2013-11-14 2018-10-03 セイコーエプソン株式会社 Three-dimensional modeling powder, three-dimensional modeling composition and three-dimensional modeling manufacturing method
JPWO2015199244A1 (en) * 2014-06-27 2017-04-27 株式会社フジミインコーポレーテッド Forming material and forming method used for forming structure
JP2017132246A (en) * 2016-01-27 2017-08-03 株式会社リコー Powder material for three-dimensional molding

Also Published As

Publication number Publication date
JP2017155276A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6373220B2 (en) 3D 3D modeling powder and 3D 3D modeling
JP5862739B1 (en) Three-dimensional modeling powder material, curing liquid, three-dimensional modeling kit, and three-dimensional model manufacturing method and manufacturing apparatus
JP6633677B2 (en) Powder material used for powder additive manufacturing and powder additive manufacturing method using the same
JP6428241B2 (en) Three-dimensional modeling powder material, three-dimensional modeling set, and three-dimensional model manufacturing method and manufacturing apparatus
US10030154B2 (en) Powder material for three-dimensional modeling, material set for 3D modeling, method of manufacturing three-dimensional object, device for manufacturing three-dimensional object, and three-dimensional object
JP6546135B2 (en) Lamination molding sintered body, manufacturing method of lamination molding sintered body, and kit for manufacturing lamination molding sintered body
JP6536107B2 (en) Composition liquid for three-dimensional modeling and three-dimensional modeling material set, and method and apparatus for manufacturing three-dimensional article
JP2016128547A (en) Curing solution for three-dimensional molding, material set for three-dimensional molding and method and apparatus for manufacturing three-dimensional molded article
JP2019157217A (en) Powder material for laminate molding used for binder jet method
JP6433447B2 (en) 3D 3D modeling powder and 3D 3D modeling
JP2016187918A (en) Powder material for three-dimensional molding, three-dimensional molding kit, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
JP6864457B2 (en) Manufacturing method of laminated molding firing powder, laminated molding fired body and laminated molding fired body
JP6471863B2 (en) 3D modeling apparatus, 3D molding method, program
JP7261413B2 (en) particle composition
US10632671B2 (en) Powder comprising PVA resin particles for layer manufacturing and layered shaped article
JP2017007208A (en) Three-dimensional molding device, three-dimensional molding method, three-dimensional molding program and information processor
JP2024509814A (en) Abrasive article and method for forming the same
JP6536122B2 (en) Three-dimensional modeling apparatus, three-dimensional model production method, program
JP6879405B2 (en) Three-dimensional modeling device and three-dimensional modeling method
WO2022091978A1 (en) Particulate composition and molded object
JP6614992B2 (en) Ceramic material, method for producing molded body, and molded body
JP2024509813A (en) Abrasive article and method for forming the same
JP2022142066A (en) Method for improving strength of molded article and method for producing strengthened molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6433447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250