JP6432817B2 - Sample optical measurement method - Google Patents

Sample optical measurement method Download PDF

Info

Publication number
JP6432817B2
JP6432817B2 JP2014044701A JP2014044701A JP6432817B2 JP 6432817 B2 JP6432817 B2 JP 6432817B2 JP 2014044701 A JP2014044701 A JP 2014044701A JP 2014044701 A JP2014044701 A JP 2014044701A JP 6432817 B2 JP6432817 B2 JP 6432817B2
Authority
JP
Japan
Prior art keywords
sample
thin film
optical member
optical
measurement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014044701A
Other languages
Japanese (ja)
Other versions
JP2015169543A (en
Inventor
幸子 古橋
幸子 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2014044701A priority Critical patent/JP6432817B2/en
Publication of JP2015169543A publication Critical patent/JP2015169543A/en
Application granted granted Critical
Publication of JP6432817B2 publication Critical patent/JP6432817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、試料をフーリエ変換赤外分光計や赤外分光計などで測定するのに有用な光学測定方法に関する。詳細には、試料と接触する光学部材の表面に、高分子薄膜を形成することで、試料が直接光学部材の表面と接触することを防止するとともに、試料が接触することによって汚染された高分子薄膜を除去することで、光学部材の表面を清浄に保つことができる光学測定方法に関する。   The present invention relates to an optical measurement method useful for measuring a sample with a Fourier transform infrared spectrometer or an infrared spectrometer. Specifically, a polymer thin film is formed on the surface of the optical member that comes into contact with the sample to prevent the sample from coming into direct contact with the surface of the optical member, and the polymer contaminated by the sample coming into contact with it. The present invention relates to an optical measurement method capable of keeping the surface of an optical member clean by removing a thin film.

カメラ、望遠鏡、顕微鏡などの光学機器や電子デバイス製造に用いられる投影露光装置などの光学装置に備えられている、レンズやミラーなどの光学部材は、外部環境に曝されることで表面に異物が付着し、光線の透過率低下や照度斑等が生じて、本来の光学性能が得られなくなってくる。そのため、これらの光学部材の表面に付着した異物を、乾いた布や不織布、あるいは、水やアルコールなどを含浸させた布や不織布等で拭取って除去することが一般的に行われている。   Optical members such as lenses and mirrors that are provided in optical equipment such as cameras, telescopes, microscopes, and projection devices used in the manufacture of electronic devices are exposed to the external environment, and foreign objects are exposed to the surface. Adhering causes a decrease in light transmittance and illuminance unevenness, and the original optical performance cannot be obtained. For this reason, it is common practice to remove foreign substances adhering to the surface of these optical members by wiping them with a dry cloth or nonwoven fabric or a cloth or nonwoven fabric impregnated with water or alcohol.

例えば、特許文献1には、半導体素子などの電子デバイスの製造に用いられる投影露光装置の光学部材の表面の付着物を取り除く方法として、不織布を用いて、まず純水で拭取り、次いでメタノールなどのアルコールで拭取る方法が開示されている。また、特許文献2には、半導体素子などの電子デバイスの製造に用いられる投影露光装置の光学部材の表面の付着物を取り除く方法として、フッ化水素酸を含むエッチング液で拭取り、次いで残存するエッチング液を水や有機溶剤で拭取る方法が開示されている。   For example, in Patent Document 1, as a method of removing deposits on the surface of an optical member of a projection exposure apparatus used for manufacturing an electronic device such as a semiconductor element, first, wipe with pure water, then methanol, etc. using a nonwoven fabric A method of wiping with alcohol is disclosed. Further, in Patent Document 2, as a method for removing deposits on the surface of an optical member of a projection exposure apparatus used for manufacturing an electronic device such as a semiconductor element, it is wiped with an etching solution containing hydrofluoric acid and then remains. A method of wiping off the etching solution with water or an organic solvent is disclosed.

一方、物質の分析や同定に用いられる分光光度計のような光学装置の中で、ATR法によるフーリエ変換赤外分光計のように、対象となる試料を光学部材であるATRクリスタル(プリズム)に接触させて測定する方式の分光計では、光学部材に試料が付着して残留する場合が多いため、測定終了後、光学部材の表面に付着残留した試料を除去する必要がある。除去操作は、簡便、迅速、かつ効果的なものでなければならない。   On the other hand, in an optical device such as a spectrophotometer used for analyzing and identifying a substance, a target sample is placed on an ATR crystal (prism) as an optical member, like a Fourier transform infrared spectrometer using the ATR method. In the spectrometer of the type that is brought into contact with the sample, the sample often adheres and remains on the optical member. Therefore, after the measurement is completed, it is necessary to remove the sample remaining on the surface of the optical member. The removal operation must be simple, quick and effective.

しかしながら、試料が粘着性を有している場合は、光学部材の表面に多量の試料が付着残留したり、強固に付着したりするために、溶剤を含浸させた不織布などで一度拭取るだけでは完全に除去できず、拭取り作業を繰り返さねばならないことがあり、作業が面倒で煩雑となる。付着物が粒状物質の場合には、拭取り操作を繰り返すことで、光学部材の表面を傷つける恐れがある。   However, if the sample is sticky, a large amount of sample remains on the surface of the optical member, or it adheres firmly, so just wipe it with a nonwoven fabric impregnated with a solvent. It may not be completely removed and the wiping operation may have to be repeated, which makes the operation cumbersome and cumbersome. When the deposit is a granular substance, the surface of the optical member may be damaged by repeating the wiping operation.

上記のフーリエ変換赤外分光計のような分析装置の場合は、その特性から、対象となる試料が未知の物質であることが多く、拭取り作業用に予め準備した溶剤が付着した試料の除去に効果を示さないことがあり、試行錯誤で溶剤の種類を替えながら拭取り操作を繰り返さねばならず、拭き取り操作が極めて煩雑な作業になることもある。こうした試行錯誤による拭取り操作を避けるためには、予め、試料に対して親和性を示す溶剤を別途探しておかねばならず、やはり煩雑な作業を必要とすることになる。   In the case of an analyzer such as the above-described Fourier transform infrared spectrometer, due to its characteristics, the target sample is often an unknown substance, and removal of the sample to which a solvent prepared in advance for wiping work is attached In some cases, the wiping operation must be repeated while changing the type of the solvent by trial and error, and the wiping operation may be an extremely complicated operation. In order to avoid such a wiping operation by trial and error, it is necessary to separately search for a solvent having an affinity for the sample in advance, which also requires complicated work.

さらに、試料に管理区域内でのみ取扱いが認められている放射性物質や有害物質が付着している場合もある。この場合には、光学部材表面の付着物に触れること自体が危険であることから、拭取り作業による付着物との接触をできるだけ回避するとともに、放射性物質や有害物質を含んだ不織布等の廃棄物の発生を削減することが必要となる。更に、光学部材に残留付着物が生じた場合には、高価な測定装置を管理区域外で使用することができなくなる。そのため、できるだけ簡便な操作で、かつ安全に測定できる方法が求められている。   In addition, there may be cases where radioactive or harmful substances that are permitted to be handled only within the controlled area are attached to the sample. In this case, since it is dangerous to touch the deposits on the surface of the optical member, avoid contact with the deposits by wiping work as much as possible, and waste such as non-woven fabric containing radioactive substances and harmful substances It is necessary to reduce the occurrence of Furthermore, when a residual deposit is generated on the optical member, an expensive measuring device cannot be used outside the management area. Therefore, there is a demand for a method that can be measured safely with the simplest possible operation.

特開2002−336804号公報JP 2002-336804 A 再公表WO2004/050266号公報Republished WO 2004/050266

本発明は、光学部材の表面に付着残留する試料(本発明では、これを「残留試料」という。)が、光学部材の表面に付着残留することによって生じる光学部材の汚染を防止するとともに、測定に悪影響を及ぼすことが無く、作業の迅速性、安全性を確保することのできる光学測定方法を提供することを目的とする。   The present invention prevents contamination of the optical member caused by adhesion of the sample remaining on the surface of the optical member (in the present invention, this is referred to as “residual sample”) to remain on the surface of the optical member. It is an object of the present invention to provide an optical measurement method that can ensure work speed and safety without adversely affecting the operation.

上記課題を解決するため、本発明者は鋭意検討した結果、光学部材の表面に、透明かつ柔軟な皮膜を形成する高分子化合物を揮発性溶媒に溶解させた希薄溶液を塗布して高分子薄膜を形成しておき、測定後に、高分子薄膜を除去することで、光学測定に悪影響を及ぼすこと無く、光学部材の汚染を防止でき、作業の迅速性および安全性を確保できることを見出し、本発明に到達した。
すなわち、本発明は以下の通りである。
In order to solve the above-mentioned problems, the present inventor has intensively studied, and as a result, applied to the surface of the optical member is a polymer thin film by applying a dilute solution in which a polymer compound that forms a transparent and flexible film is dissolved in a volatile solvent. It is found that by removing the polymer thin film after measurement, contamination of the optical member can be prevented without adversely affecting the optical measurement, and the speed and safety of the operation can be secured. Reached.
That is, the present invention is as follows.

(1)試料の光学測定法であって、該試料が直接接触する光学部材の表面に、炭化水素系の揮発性溶媒に溶解させたゴム系の高分子化合物の希薄溶液を塗布して厚さが0.5μm以下の高分子薄膜を形成し、該試料と光学部材の表面が直接接触しない状態で光学測定を行った後、高分子薄膜を除去することを特徴とする光学測定方法。
(2)ゴム系の高分子化合物がクロロプレンゴムである、前記(1)に記載の光学測定方法。
(3)光学部材が、レンズ、プリズム、ミラーまたはセルである、前記(1)または(2)に記載の光学測定方法。
(4)光学部材がフーリエ変換赤外分光計のプリズムである、前記(1)または(2)に記載の光学測定方法。
(1) an optical measurement of the sample, the surface of the optical member sample is in direct contact, the thickness of the dilute solution of the polymer compound of rubber dissolved in a volatile solvent of hydrocarbon by coating of Forming a polymer thin film having a thickness of 0.5 μm or less, performing optical measurement in a state where the sample and the surface of the optical member are not in direct contact, and then removing the polymer thin film.
(2) The optical measurement method according to (1), wherein the rubber-based polymer compound is chloroprene rubber.
(3) The optical measurement method according to (1) or (2), wherein the optical member is a lens, a prism, a mirror, or a cell.
(4) The optical measurement method according to (1) or (2), wherein the optical member is a prism of a Fourier transform infrared spectrometer.

本発明に係る光学測定方法によれば、揮発性溶媒に溶解させたゴム系の高分子化合物の希薄溶液を光学部材の表面に塗布して高分子薄膜を形成することで、光学部材の表面に試料が付着残留するのを防止できるとともに、試料が付着残留した高分子薄膜を除去することで、光学部材の表面を常に清浄に保つことができる。また、光学部材の表面に形成した高分子薄膜を除去すれば、残留試料を簡単に取り除くことができるので、作業者ならびに測定装置の安全性を確保することができ、管理区域内での管理が必要な試料が付着残留した場合でも管理区域内での処分が可能になる。
According to the optical measurement method of the present invention, a dilute solution of a rubber-based polymer compound dissolved in a volatile solvent is applied to the surface of the optical member to form a polymer thin film. The sample can be prevented from adhering and remaining, and the surface of the optical member can always be kept clean by removing the polymer thin film to which the sample has adhered and remained. Moreover, if the polymer thin film formed on the surface of the optical member is removed, the residual sample can be easily removed, so that the safety of the operator and the measuring device can be ensured, and the management within the management area is possible. Even if necessary samples remain attached, they can be disposed of in the controlled area.

フーリエ変換赤外分光計のATRクリスタル(プリズム)表面に、本発明のクロロプレンゴムの薄膜を形成する前後で測定した試料(ポリプロピレン)について、赤外スペクトルを対比して示した図である。It is the figure which contrasted and showed the infrared spectrum about the sample (polypropylene) measured before and after forming the thin film of the chloroprene rubber of this invention in the surface of the ATR crystal (prism) of a Fourier-transform infrared spectrometer.

本発明は、試料の光学測定方法であって、該試料と接触する光学部材の表面に、揮発性溶媒に溶解させた高分子化合物の希薄溶液を塗布して高分子薄膜を形成し、該試料と光学部材の表面とが直接接触しない状態で光学測定を行った後、試料と接触することによって試料が付着残留した高分子薄膜を除去することを特徴とするものである。   The present invention is a method for optical measurement of a sample, wherein a thin film of a polymer compound dissolved in a volatile solvent is applied to the surface of an optical member in contact with the sample to form a polymer thin film. And the surface of the optical member are not in direct contact with each other, and then the polymer thin film to which the sample is adhered and removed is removed by contact with the sample.

上記の光学部材としては、光学測定用の試料と直接接触する部材であれば、特に限定されない。例えば、可視光線、赤外線、紫外線あるいはレーザー光線などの電磁波の透過、屈折、反射に用いられるレンズやプリズム、ミラーなどの光学部材、該試料を挟持する測定用セルなどを挙げることができる。   The optical member is not particularly limited as long as it is a member that directly contacts an optical measurement sample. Examples thereof include optical members such as lenses, prisms, and mirrors used for transmission, refraction, and reflection of electromagnetic waves such as visible light, infrared light, ultraviolet light, and laser light, and measurement cells that sandwich the sample.

本発明の光学測定方法において、光学部材の表面に高分子薄膜を形成するために用いられる高分子化合物としては、高分子薄膜を除去する際に薄膜が破れる恐れがなく、光線透過率が高く光学測定に悪影響を及ぼす恐れが少ない点で、透明かつ柔軟な皮膜を形成する化合物が好ましい。特にフーリエ変換赤外分光計では、測定対象となる試料は、加圧治具によりATRクリスタル(プリズム)の表面に押圧されるので、高分子薄膜が硬い場合は、高分子薄膜が破れたり割れたりする恐れがある。   In the optical measurement method of the present invention, the polymer compound used to form the polymer thin film on the surface of the optical member is not susceptible to tearing when the polymer thin film is removed, and has a high light transmittance and optical properties. A compound that forms a transparent and flexible film is preferred in that it has a low possibility of adversely affecting the measurement. In particular, in a Fourier transform infrared spectrometer, the sample to be measured is pressed against the surface of the ATR crystal (prism) by a pressurizing jig, so that if the polymer thin film is hard, the polymer thin film may be torn or cracked. There is a fear.

このような高分子化合物としては、ゴム系の高分子化合物が用いられ、クロロプレンゴムやニトリルゴム、スチレン−ブタジエンゴム、ブチルゴム、天然ゴムなどが挙げられるが、皮膜の柔軟性や可撓性に優れている、クロロプレンゴムが特に好ましい。
As such a polymer compound, a rubber-based polymer compound is used , and examples thereof include chloroprene rubber, nitrile rubber, styrene-butadiene rubber, butyl rubber, and natural rubber. Particularly preferred is chloroprene rubber.

高分子薄膜の厚みは、光学測定に悪影響を及ぼさないことが求められるため、光学部材の種類に応じて任意に決定することができるが、測定精度を考慮すると0.5μm以下である。例えば、ATR法によるフーリエ変換赤外分光法では、試料側に染み出す赤外光は、使用するATRクリスタルの種類(ダイヤモンド、ZSe、ゲルマニウム、シリコンなど)や入射角により制御されるが、通常深さ方向に0.5〜2.0μm程度であり、この領域に存在する試料の赤外線吸収スペクトルを測定することになる。したがって、ATRクリスタル(プリズム)の表面に形成する高分子薄膜の厚みを0.5μm以下にすることで、試料の赤外線吸収スペクトルの測定に影響を及ぼさなくなるからである。
The thickness of the polymer thin film is required not to adversely affect the optical measurement, and can be arbitrarily determined according to the type of the optical member, but is 0.5 μm or less in consideration of measurement accuracy. For example, in the Fourier transform infrared spectroscopy by ATR method infrared light exuding to the sample side, ATR crystal kind used (diamond, Z n Se, germanium, silicon, etc.) is controlled by and angle of incidence, Usually, it is about 0.5 to 2.0 μm in the depth direction, and an infrared absorption spectrum of a sample existing in this region is measured. Therefore, when the thickness of the polymer thin film formed on the surface of the ATR crystal (prism) is 0.5 μm or less, the measurement of the infrared absorption spectrum of the sample is not affected.

上記の高分子薄膜を形成する際には、ゴム系の高分子化合物の希薄溶液を用いる。ゴム系の高分子化合物の濃度としては、好ましくは0.1〜1.0質量%、より好ましくは0.3〜0.7質量%、特に好ましくは0.4〜0.6質量%とするのが良い。濃度が0.1質量%以上であれば、光学部材の表面の性質や微細な凹凸などによって高分子薄膜が存在しない箇所が発生するのを防止でき、光学部材の表面を隈なく覆って高分子薄膜を形成することができる。また、濃度が1.0質量%以下であれば、溶液の粘度の増大を避けられるので、ゴム系の高分子化合物の希薄溶液を光学部材の表面に均一に広げることができ、かつ、高分子膜が厚くなりすぎることがないので、光学部材本来の機能を阻害することがない。例えばATRクリスタル(プリズム)の場合は、濃度0.5質量%のゴム系の高分子化合物の希薄溶液を1平方センチメートル当り0.1mg以下となるように塗布すれば良い。
In forming the polymer thin film is Ru with a dilute solution of the polymer compound of rubber. The concentration of the rubber-based polymer compound is preferably 0.1 to 1.0% by mass, more preferably 0.3 to 0.7% by mass, and particularly preferably 0.4 to 0.6% by mass. Is good. When the concentration is 0.1% by mass or more, it is possible to prevent the occurrence of a portion where the polymer thin film does not exist due to the properties of the surface of the optical member, fine irregularities, etc. A thin film can be formed. If the concentration is 1.0% by mass or less, an increase in the viscosity of the solution can be avoided, so that a dilute solution of a rubber-based polymer compound can be uniformly spread on the surface of the optical member, and the polymer Since the film does not become too thick, the original function of the optical member is not hindered. For example, in the case of an ATR crystal (prism), a dilute solution of a rubber-based polymer compound having a concentration of 0.5% by mass may be applied so as to be 0.1 mg or less per square centimeter.

ゴム系の高分子化合物の希薄溶液を調製する際には、揮発性溶媒を用いる。この揮発性溶媒は、光学部材の素材に応じて適宜選択でき、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素などの炭化水素系溶媒を用いる。これらの溶媒の中でも、ゴム系の高分子化合物の溶解性や適度の揮発性を有する点で、芳香族炭化水素が好ましく、特にトルエンが好ましい。
When preparing a dilute solution of a rubber-based polymer compound, a volatile solvent is used. The volatile solvent can be appropriately selected depending on the optical element material, for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, Ru a hydrocarbon solvent such as a halogenated hydrocarbon. Among these solvents, aromatic hydrocarbons are preferable and toluene is particularly preferable from the viewpoint of solubility of rubber-based polymer compounds and appropriate volatility.

ゴム系の高分子化合物の希薄溶液の塗布方法は特に限定されるものではなく、ゴム系の高分子化合物の希薄溶液を光学部材の表面に滴下して自然に広げる方法や、刷毛やスパチュラなどを用いて塗り広げる方法、スプレー噴霧する方法などを用いれば良い。また、膜厚を大きくする場合にはゴム系の高分子化合物の希薄溶液を複数回に渡って塗布するのが良い。ゴム系の高分子化合物の希薄溶液を塗布後、自然乾燥することで薄膜が形成される。なお、複数回に渡って塗布する場合、あるいは形成される薄膜の表面に多少の凹凸が生じても構わない場合には、薄膜の形成速度を速めるために温風を吹き付けて乾燥させても良い。
The method of applying the dilute solution of the rubber-based polymer compound is not particularly limited, and a method of spreading the dilute solution of the rubber-based polymer compound on the surface of the optical member and spreading it naturally, or using a brush or a spatula, etc. A method of spreading by using, a method of spraying, etc. may be used. When the film thickness is increased, a dilute solution of a rubber-based polymer compound is preferably applied a plurality of times. After applying a dilute solution of a rubber-based polymer compound, the thin film is formed by natural drying. In addition, when applying several times, or when a certain unevenness | corrugation may arise in the surface of the thin film formed, in order to increase the formation speed of a thin film, you may blow and dry with warm air .

本発明に係る光学測定方法は、公知の光学測定方法に幅広く適用することができる。例えば、設置式あるいは可搬式のフーリエ変換赤外分光計や赤外分光計による試料の分析、ファイバースコープによる地中埋設物の観察、測定物質が偶然付着すると除去が困難な各種顕微鏡による観察などが挙げられる。特に、放射性物質や有害物質が付着した試料の分析に好適である。
上記のうち、ATR法によるフーリエ変換赤外分光分析(以下、「ATR法FT−IR」という。)において、極めて優れた効果を発揮する。すなわち、ATR法FT−IRは、屈折率の高い媒質から屈折率の低い媒質に電磁波が入射する場合に、入射角をある臨界角以上にすると電磁波は界面ではなく低屈折率の媒質側に少し染み出してから反射してくる現象(この反射される電磁波はエバネッセント波と呼ばれる)を応用する測定法である。測定対象となる試料をATRクリスタルと呼ばれるプリズムに接触させておき、赤外光がATRクリスタルに入射すると、赤外光は試料側に少し染み出してから反射してくるが、試料化合物は、その化合物特有の波長の赤外光を吸収するので、反射される赤外光は試料特有の赤外線吸収スペクトルを示すことになり、そのスペクトルから試料化合物の分子構造などを解析することができるからである。
The optical measurement method according to the present invention can be widely applied to known optical measurement methods. For example, sample analysis using a stationary or portable Fourier transform infrared spectrometer or infrared spectrometer, observation of underground objects with a fiberscope, observation with various microscopes that are difficult to remove if the measurement substance adheres accidentally Can be mentioned. In particular, it is suitable for analysis of samples to which radioactive substances or harmful substances are attached.
Among the above, in the Fourier transform infrared spectroscopic analysis by the ATR method (hereinafter referred to as “ATR method FT-IR”), an extremely excellent effect is exhibited. In other words, in the ATR method FT-IR, when an electromagnetic wave is incident on a medium having a low refractive index from a medium having a high refractive index, if the incident angle is set to a certain critical angle or more, the electromagnetic wave is not slightly on the medium side having a low refractive index but on the interface. This is a measurement method that applies the phenomenon of oozing and reflecting (this reflected electromagnetic wave is called an evanescent wave). When a sample to be measured is brought into contact with a prism called an ATR crystal and infrared light is incident on the ATR crystal, the infrared light oozes out to the sample side and then reflects. Because it absorbs infrared light with a wavelength specific to the compound, the reflected infrared light shows a sample-specific infrared absorption spectrum, and the molecular structure of the sample compound can be analyzed from the spectrum. .

光学部材の表面に形成された高分子薄膜上には、残留試料が付着しているが、綿棒やピンセットなどを用いて光学部材の表面から高分子薄膜を除去することで、残留試料も同時除去されるので、作業自体極めて簡便である。また、通常の場合は、不織布等に残留試料を付着させて拭取る必要があり、複数回に渡る場合もあるため、大量の廃棄物が発生するが、本発明は残留試料が付着した高分子薄膜を廃棄するのみであり、廃棄物の発生量を削減することができる。こうして、光学部材の表面を常に清浄な状態に維持することができる。なお、高分子薄膜の光学部材表面からの剥離除去が困難な場合には、該高分子化合物を溶解する溶剤を含浸させた布、不織布、綿棒などを用いて拭取れば、付着した残留試料と高分子薄膜を同時に除去することができる。   Residual sample adheres to the polymer thin film formed on the surface of the optical member. By removing the polymer thin film from the surface of the optical member using a cotton swab or tweezers, the residual sample is also removed simultaneously. Therefore, the operation itself is very simple. In addition, in the normal case, it is necessary to attach a residual sample to a non-woven fabric and wipe it off, and there may be multiple times, so a large amount of waste is generated. Only the thin film is discarded, and the amount of waste generated can be reduced. Thus, the surface of the optical member can always be kept clean. If it is difficult to remove the polymer thin film from the surface of the optical member, wipe it off using a cloth, nonwoven fabric or cotton swab impregnated with a solvent that dissolves the polymer compound. The polymer thin film can be removed simultaneously.

以下、本発明を実施例を用いて具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited only to a following example.

(実施例1)
可搬式FT−IR(4100 ExoscanハンドヘルドFT−IR、アジレント・テクノロジー社製)を用いて試験を行った。ATR法で赤外線吸収スペクトル測定するためのATRクリスタルとして、ダイヤモンドクリスタルを使用し、測定試料にはポリプロピレンフィルムを用いた。高分子化合物の希薄溶液として、クロロプレンゴムの0.5%トルエン溶液を使用した。クロロプレンはネオプレン(登録商標)を使用した。
Example 1
The test was conducted using a portable FT-IR (4100 Exoscan handheld FT-IR, manufactured by Agilent Technologies). A diamond crystal was used as an ATR crystal for measuring an infrared absorption spectrum by the ATR method, and a polypropylene film was used as a measurement sample. As a dilute solution of the polymer compound, a 0.5% toluene solution of chloroprene rubber was used. Chloroprene was neoprene (registered trademark).

ダイヤモンドクリスタルの試料を載置する側の面上に、クロロプレンゴム溶液を1滴(約0.1mg)たらし、面上に広げて自然乾燥し、厚み約0.5μmのクロロプレンゴム薄膜を形成した。その上に試料であるポリプロピレンフィルムを載置し、加圧治具でポリプロピレンフィルムをATRクリスタルに押付け、赤外線吸収スペクトル(図1の「試料+クロロプレンゴム薄膜」スペクトル」)を測定した。測定終了後、ATRクリスタル表面に残ったクロロプレンゴム薄膜を、エタノールを含浸した綿棒で擦り取って除去した。   A drop of chloroprene rubber solution (about 0.1 mg) was placed on the surface on which the diamond crystal sample was placed, spread on the surface and air-dried to form a chloroprene rubber thin film having a thickness of about 0.5 μm. . A polypropylene film as a sample was placed thereon, the polypropylene film was pressed against the ATR crystal with a pressure jig, and an infrared absorption spectrum (“sample + chloroprene rubber thin film spectrum” in FIG. 1) was measured. After the measurement, the chloroprene rubber thin film remaining on the surface of the ATR crystal was removed by scraping with a cotton swab impregnated with ethanol.

一方、ATRクリスタル上に直接、ポリプロピレンフィルムを載置し、加圧治具で押し付けた後、前記「試料+クロロプレンゴム薄膜」と同じ測定条件で、赤外線吸収スペクトル(図1の「試料のみ」スペクトル)を測定した。   On the other hand, after placing a polypropylene film directly on the ATR crystal and pressing it with a pressure jig, an infrared absorption spectrum (“sample only” spectrum in FIG. 1) under the same measurement conditions as the above “sample + chloroprene rubber thin film”. ) Was measured.

図1に、上記2つの赤外線吸収スペクトルを対比して示した。図1より、両者のスペクトルは同じであり、クロロプレンゴムに由来する赤外線吸収スペクトルは観察されないことがわかる。
また、上記の実施例1より、ATRクリスタルの表面に形成するクロロプレンゴム薄膜の膜厚を、ATR法FT−IRの測定深度より小さくすることで、クロロプレンゴム薄膜の影響を受けることなく試料の赤外線吸収スペクトルを測定できること、そして、赤外線吸収スペクトル測定後のクロロプレンゴム薄膜は、溶剤で拭取ることにより簡単に除去できることが分かった。
FIG. 1 shows the two infrared absorption spectra in comparison. FIG. 1 shows that both spectra are the same, and an infrared absorption spectrum derived from chloroprene rubber is not observed.
In addition, from Example 1 above, the film thickness of the chloroprene rubber thin film formed on the surface of the ATR crystal is made smaller than the measurement depth of the ATR method FT-IR, so that the sample infrared rays are not affected by the chloroprene rubber thin film. It was found that the absorption spectrum can be measured, and the chloroprene rubber thin film after the infrared absorption spectrum measurement can be easily removed by wiping with a solvent.

本発明の光学測定方法は、試料の光学測定方法として災害現場や建設現場などで有用である。   The optical measurement method of the present invention is useful as a sample optical measurement method in disaster sites and construction sites.

Claims (4)

試料の光学測定法であって、該試料が直接接触する光学部材の表面に、炭化水素系の揮発性溶媒に溶解させたゴム系の高分子化合物の希薄溶液を塗布して厚さが0.5μm以下の高分子薄膜を形成し、該試料と光学部材の表面が直接接触しない状態で光学測定を行った後、高分子薄膜を除去することを特徴とする光学測定方法。 An optical measurement method for a sample, in which a dilute solution of a rubber-based polymer compound dissolved in a hydrocarbon-based volatile solvent is applied to the surface of an optical member in direct contact with the sample to obtain a thickness of 0. An optical measurement method comprising: forming a polymer thin film of 5 μm or less, performing optical measurement in a state where the sample and the surface of the optical member are not in direct contact, and then removing the polymer thin film. ゴム系の高分子化合物がクロロプレンゴムである、請求項1に記載の光学測定方法。   The optical measurement method according to claim 1, wherein the rubber-based polymer compound is chloroprene rubber. 光学部材が、レンズ、プリズム、ミラーまたはセルである、請求項1または2に記載の光学測定方法。The optical measurement method according to claim 1, wherein the optical member is a lens, a prism, a mirror, or a cell. 光学部材がフーリエ変換赤外分光計のプリズムである、請求項1または2に記載の光学測定方法。
The optical measurement method according to claim 1, wherein the optical member is a prism of a Fourier transform infrared spectrometer.
JP2014044701A 2014-03-07 2014-03-07 Sample optical measurement method Active JP6432817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044701A JP6432817B2 (en) 2014-03-07 2014-03-07 Sample optical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044701A JP6432817B2 (en) 2014-03-07 2014-03-07 Sample optical measurement method

Publications (2)

Publication Number Publication Date
JP2015169543A JP2015169543A (en) 2015-09-28
JP6432817B2 true JP6432817B2 (en) 2018-12-05

Family

ID=54202398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044701A Active JP6432817B2 (en) 2014-03-07 2014-03-07 Sample optical measurement method

Country Status (1)

Country Link
JP (1) JP6432817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110765B2 (en) * 2018-06-29 2022-08-02 株式会社島津製作所 Measurement method, measurement processing program and measurement device for measuring content of four substances

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186140A (en) * 1990-11-21 1992-07-02 Hitachi Ltd Optical cell
JPH062206U (en) * 1992-06-15 1994-01-14 日立電線株式会社 Insulator salt damage sensor
JP2706920B2 (en) * 1992-09-28 1998-01-28 株式会社堀場製作所 Surface treatment method for optical materials
JPH10267840A (en) * 1997-03-21 1998-10-09 Hoechst Japan Ltd Leakage detector for volatile organic substance with water-proof mechanism
JP3801914B2 (en) * 2001-12-25 2006-07-26 富士写真フイルム株式会社 How to reuse measurement tips
US8859267B2 (en) * 2006-06-12 2014-10-14 Nippon Telegraph And Telephone Corporation Chip for optical analysis
JP2010223610A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Self-forming optical waveguide sensor
JP2012034824A (en) * 2010-08-06 2012-02-23 Panasonic Electric Works Co Ltd Interface member and interface member peeling mechanism
JP2012078185A (en) * 2010-09-30 2012-04-19 Toshiba Corp Optical waveguide type biosensor chip and optical waveguide type biosensor chip manufacturing method
CA2823716C (en) * 2011-01-04 2018-02-13 Exxonmobil Upstream Research Company Method and apparatus for a mid-infrared (mir) system for real time detection of petroleum in colloidal suspensions of sediments and drilling muds during drilling, logging, and production operations
CN103298525A (en) * 2011-04-07 2013-09-11 松下电器产业株式会社 Phototherapy apparatus

Also Published As

Publication number Publication date
JP2015169543A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
Lu et al. A sum frequency generation vibrational study of the interference effect in poly (n-butyl methacrylate) thin films sandwiched between silica and water
Malyk et al. Vibrational sum frequency spectroscopic investigation of the azimuthal anisotropy and rotational dynamics of methyl-terminated silicon (111) surfaces
Chen et al. Sum frequency generation vibrational spectroscopy studies on “buried” polymer/polymer interfaces
Kurian et al. Unusual surface aging of poly (dimethylsiloxane) elastomers
JP6432817B2 (en) Sample optical measurement method
Gautam et al. Molecular structure of hydrophobic alkyl side chains at comb polymer-air interface
Hsiao et al. Hydrophobic but hygroscopic polymer films–Identifying interfacial species and understanding water ingress behavior
Ghasemi et al. Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength
WO2019074861A3 (en) Optical measurement of a highly absorbing film layer over highly reflective film stacks
Barrios et al. Compact discs as versatile cost-effective substrates for releasable nanopatterned aluminium films
Romagnoli et al. Making graphene visible on transparent dielectric substrates: Brewster angle imaging
CN101709952A (en) Non-contact type wafer thickness measuring device and method
Zamarreño et al. Lossy-mode resonance-based refractometers by means of indium oxide coatings fabricated onto optical fibers
CA2922038A1 (en) Method intended for assessing the damage to a paint-covered composite material by measuring two separate criteria on the spectrogram
Wilson et al. Laser damage of silica optical windows with random antireflective structured surfaces
Lin et al. High-Q mid-infrared chalcogenide glass resonators for chemical sensing
Goh et al. Highly compact linear variable filter in the mid infrared region for acetone level monitoring
Chang et al. Surface-enhanced infrared absorption-based CO 2 sensor using photonic crystal slab
Abdulla et al. Sensing platform based on micro-ring resonator and on-chip reference sensors in SOI
Chow et al. Cleanliness validation of NIF small optics
JP2002243594A (en) Sampling jig and infrared spectrometric method using it
Martham et al. Refractive index modification of SU-8 polymer based waveguide via fabrication parameters
US9090461B2 (en) Temporary optical wave diffusion-promoting film adhered to lidded MEMS wafer for testing using interferometer
Johnson et al. Appropriate Backside Roughening is Key for Good Spectroscopic Ellipsometry Analysis of Transparent Materials
Sharpe et al. Fabrication and characterization of optical waveguides and grating couplers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6432817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150