JP6431280B2 - Abrasion resistant alloy with composite microstructure - Google Patents

Abrasion resistant alloy with composite microstructure Download PDF

Info

Publication number
JP6431280B2
JP6431280B2 JP2014092712A JP2014092712A JP6431280B2 JP 6431280 B2 JP6431280 B2 JP 6431280B2 JP 2014092712 A JP2014092712 A JP 2014092712A JP 2014092712 A JP2014092712 A JP 2014092712A JP 6431280 B2 JP6431280 B2 JP 6431280B2
Authority
JP
Japan
Prior art keywords
alloy
wear
added
particles
composite microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014092712A
Other languages
Japanese (ja)
Other versions
JP2014218745A (en
Inventor
熙 三 姜
熙 三 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2014218745A publication Critical patent/JP2014218745A/en
Application granted granted Critical
Publication of JP6431280B2 publication Critical patent/JP6431280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Braking Arrangements (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、耐摩耗性および自己潤滑性が要求され、自動車用部品に用いられるアルミニウム合金およびその製造方法に係り、より詳しくは、耐摩耗性の硬質粒子および自己潤滑性の軟質粒子から構成された複合微細組織を有するアルミニウム合金に関する。   The present invention relates to an aluminum alloy used for automotive parts and its manufacturing method, which requires wear resistance and self-lubrication, and more specifically, is composed of wear-resistant hard particles and self-lubricating soft particles. The present invention relates to an aluminum alloy having a composite microstructure.

一般に、自動車部品用耐摩耗性アルミニウム合金としては、主にシリコン(Si)13.5〜18wt%(すなわち、12wt%以上)および銅(Cu)2〜4wt%を含む過共晶Al−Fe合金が使用されている。前記過共晶Al−Fe合金は、微細組織上に粒径30〜50μmの初晶シリコン(Si)粒子を生成し、一般のAl−Fe合金に比べて優れた耐摩耗性を有し、自動車部品のうち耐摩耗性を要求する部品、例えばシフトフォーク、リアカバー、スワッシュプレートなどに多く用いられている。
代表的な商用合金としては、リヨービ株式会社のR14合金、これと類似した韓国開発の合金であるK14合金、およびモノブロックやアルミニウムライナーに使用されるA390合金などがある。
In general, the wear-resistant aluminum alloy for automobile parts is a hypereutectic Al-Fe alloy mainly containing silicon (Si) 13.5 to 18 wt% (that is, 12 wt% or more) and copper (Cu) 2 to 4 wt%. Is used. The hypereutectic Al—Fe alloy generates primary silicon (Si) particles having a particle size of 30 to 50 μm on a fine structure, and has excellent wear resistance compared to a general Al—Fe alloy. Of the parts, they are often used for parts that require wear resistance, such as shift forks, rear covers, and swash plates.
Typical commercial alloys include R14 alloy from Ryobi Corporation, K14 alloy, which is similar to Korea, and A390 alloy used for monoblocks and aluminum liners.

ところが、このような過共晶合金は、高いSiの含量により鋳造性に劣るうえ、Si粒子のサイズおよび分布の調節に多くの困難を伴い、耐衝撃性にも劣るという欠点がある。さらに、特殊開発された合金であって、一般のアルミニウム合金に比べて価格が非常に高いという欠点もある。   However, such a hypereutectic alloy has the disadvantages that it is inferior in castability due to its high Si content, has many difficulties in adjusting the size and distribution of Si particles, and is inferior in impact resistance. Furthermore, it is a specially developed alloy and has a drawback that its price is very high compared to a general aluminum alloy.

次に、自動車部品用自己潤滑性アルミニウム合金としてはAl−Sn系合金がある。この合金の場合、スズ(Sn)を8〜15wt%も含有しており、微細組織上に自己潤滑性のスズ(Sn)軟質粒子を生成させて摩擦を低減させる特徴を持っているため、主に摩擦の激しいところに使用される金属系ベアリングの原素材として用いられている。   Next, as a self-lubricating aluminum alloy for automobile parts, there is an Al-Sn alloy. In the case of this alloy, tin (Sn) is contained in an amount of 8 to 15 wt%, and self-lubricating tin (Sn) soft particles are generated on the microstructure to reduce friction. It is used as a raw material for metal bearings used in places with high friction.

しかしながら、この合金の場合、シリコン(Si)による強度補強効果にも拘らず、150MPa以下の低い強度を持っているため、構造用部品には使用できないという欠点がある。   However, in the case of this alloy, it has a disadvantage that it cannot be used for structural parts because it has a low strength of 150 MPa or less in spite of the strength reinforcing effect by silicon (Si).

韓国出願公開第10−2008−0102560号明細書Korean Application Publication No. 10-2008-0102560 特開2001−316688号公報JP 2001-316688 A

本発明は前記のような点に鑑みてなされたものであって、本発明の目的は、過共晶Al−Si系合金の耐摩耗性およびAl−Sn系合金の自己潤滑特性を同時に有する新概念の自己潤滑特性を有する高強度耐摩耗性合金を得るために、微細組織上に硬質粒子および軟質粒子を同時に有する複合微細組織新合金を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a new simultaneously having the wear resistance of a hypereutectic Al-Si alloy and the self-lubricating property of an Al-Sn alloy. In order to obtain a high-strength, wear-resistant alloy having the concept of self-lubricating properties, it is an object of the present invention to provide a new composite microstructured alloy having hard particles and soft particles simultaneously on the microstructure.

このような目的を達成するための、本発明の一実施例に係る複合微細組織を有する耐摩耗性合金は、亜鉛(Zn)19〜27wt%、スズ(Sn)3〜5wt%、シリコン(Si)7.6〜11wt%、並びに残部のアルミニウム(Al)および不可避不純物からなる組成を持つことを特徴とする。   In order to achieve such an object, a wear-resistant alloy having a composite microstructure according to an embodiment of the present invention includes zinc (Zn) 19 to 27 wt%, tin (Sn) 3 to 5 wt%, and silicon (Si ) 7.6 to 11 wt%, and the remaining aluminum (Al) and inevitable impurities.

また、銅(Cu)1〜3wt%をさらに含む組成を持つことを特徴とする。   Moreover, it has the composition which further contains 1-3 wt% of copper (Cu).

また、マグネシウム(Mg)0.3〜0.8wt%をさらに含む組成を持つことを特徴とする。   Moreover, it has the composition which further contains magnesium (Mg) 0.3-0.8 wt%.

また、銅(Cu)1〜3wt%およびマグネシウム(Mg)0.3〜0.8wt%をさらに含む組成を持つことを特徴とする。   Moreover, it has the composition which further contains copper (Cu) 1-3 wt% and magnesium (Mg) 0.3-0.8 wt%.

本発明の他の実施例に係る複合微細組織を有する耐摩耗性合金は、亜鉛(Zn)19〜27wt%、ビスマス(Bi)3〜5wt%、シリコン(Si)7.6〜11wt%、並びに残部のアルミニウム(Al)および不可避不純物からなる組成を持つことを特徴とする。   The wear-resistant alloy having a composite microstructure according to another embodiment of the present invention includes zinc (Zn) 19 to 27 wt%, bismuth (Bi) 3 to 5 wt%, silicon (Si) 7.6 to 11 wt%, and It has a composition comprising the balance of aluminum (Al) and inevitable impurities.

上述したような構造の複合微細組織を有する耐摩耗性合金によれば、過共晶Al−Si系合金の耐摩耗性とAl−Sn系合金の自己潤滑特性とを同時に有する、新概念の自己潤滑特性を有する高強度耐摩耗性合金を得ることができる。   According to the wear-resistant alloy having a composite microstructure having the above-described structure, the new concept of self-lubricating, having both the wear resistance of a hypereutectic Al-Si alloy and the self-lubricating property of an Al-Sn alloy. A high strength wear resistant alloy having lubricating properties can be obtained.

本発明に係る複合微細組織を有する耐摩耗性合金の軟質粒子による低摩擦特性を確認するための実施例および比較例に関するグラフである。It is a graph regarding the Example and comparative example for confirming the low friction characteristic by the soft particle | grains of the wear-resistant alloy which has the composite microstructure concerning this invention.

以下、添付図面を参照して、本発明の好適な実施例に係る複合微細組織を有する耐摩耗性合金について説明する。   Hereinafter, with reference to the accompanying drawings, a wear-resistant alloy having a composite microstructure according to a preferred embodiment of the present invention will be described.

本発明は、アルミニウム基地組織内に硬質粒子と軟質粒子を同時に持つ、複合微細組織を有する新合金に関するものである。   The present invention relates to a new alloy having a composite microstructure having both hard particles and soft particles in an aluminum matrix structure.

一般に、アルミニウム合金において自己潤滑性粒子を生成させる合金元素としてはSn、Pb、Bi、Znなどがある。これらの元素は、アルミニウムとの化学的反応性がないため、金属間化合物を生成せず、相分離される独特な特性を持っている。さらに、相対的に低融点を持っているため、摩擦の激しい条件で部分的に溶融しながら潤滑膜を形成する自己潤滑性を有するという独特な特性を持つ。   Generally, there are Sn, Pb, Bi, Zn, and the like as alloy elements that generate self-lubricating particles in an aluminum alloy. Since these elements are not chemically reactive with aluminum, they do not produce intermetallic compounds and have the unique property of being phase separated. Furthermore, since it has a relatively low melting point, it has a unique characteristic of having a self-lubricating property that forms a lubricating film while partially melting under severe friction conditions.

自己潤滑性およびコストの観点からみると、前述した4種の化学元素のうち、Pbが最も良い自己潤滑性粒子の生成元素ではあるが、有害金属元素に分類され、自動車分野では使用が不可能な状況である。よって、SnがPbの代替元素として最も広く用いられており、一部ではBiを同一の用途で使用している事例もある。これに対し、Znの場合、SnとBiに比べて融点が高く自己潤滑特性が大きく劣るという欠点のため、相対的に多量を添加しなければならないという難点を有するが、価格が非常に低い利点を持っているので、素材のコスト競争力を確保するために、高価のSnまたはBiの含量を一部代替する軟質粒子生成元素として使用する。   From the viewpoint of self-lubricity and cost, among the four chemical elements mentioned above, Pb is the best self-lubricant particle-forming element, but it is classified as a hazardous metal element and cannot be used in the automotive field. It is a situation. Therefore, Sn is most widely used as an alternative element for Pb, and in some cases, Bi is used for the same purpose. On the other hand, in the case of Zn, the melting point is higher than that of Sn and Bi, and the self-lubricating property is greatly inferior. Therefore, there is a disadvantage that a relatively large amount must be added, but the price is very low. Therefore, in order to secure the cost competitiveness of the material, it is used as a soft particle generating element that partially replaces the content of expensive Sn or Bi.

次に、硬質粒子生成のための合金元素としてはSiとFeがある。SiとFeは、Alとの共晶反応(Eutectic reaction)特性を有し、特定の含量以上で添加する場合には角付き形状の硬質粒子を生成する特性を持っている。Siは、アルミニウム合金において最も代表的な硬質粒子生成元素であって、Al−Si二元系合金において12.6wt%以上で添加する場合は初晶Si粒子を生成し、耐摩耗性を有する特性を持っている。ところが、軟質粒子生成元素であるZnと共に添加する場合には、硬質粒子の生成のためにZnの含量によってSiの含量が異なるが、例えばZnの含量が10wt%内外であれば、Siの含量は最小7wt%〜最大14wt%の範囲である。この際、最小量未満でSiを添加する場合には硬質粒子が生成しなくなり、最大量以上でSiを添加する場合には硬質粒子が非常に大きくなって機械的物性および耐摩耗性に悪影響を及ぼすという問題点が発生する。   Next, there are Si and Fe as alloy elements for producing hard particles. Si and Fe have a characteristic of eutectic reaction with Al (Eutectic reaction), and when added in a specific amount or more, have a characteristic of generating hard particles with corners. Si is the most representative hard particle forming element in aluminum alloys, and when added at 12.6 wt% or more in an Al—Si binary alloy, it produces primary Si particles and has wear resistance. have. However, when it is added together with Zn, which is a soft particle generating element, the Si content varies depending on the Zn content for the generation of hard particles. For example, if the Zn content is 10 wt% or less, the Si content is The range is from a minimum of 7 wt% to a maximum of 14 wt%. At this time, if Si is added in less than the minimum amount, hard particles will not be generated, and if Si is added in excess of the maximum amount, the hard particles will become very large, adversely affecting the mechanical properties and wear resistance. Problem occurs.

Feの場合、一般にAl−Si系合金は不純物として知られているが、SiのないAl−Fe二元系合金は、0.5wt%以上3wt%未満で添加する場合には耐摩耗性を有するAl−Fe系金属間化合物粒子を形成し、耐摩耗性を有するようにできる反面、3wt%以上で添加する場合には金属間化合物が過度に生成して機械的性質が低下し、溶融点が上昇するという問題点がある。   In the case of Fe, Al—Si alloys are generally known as impurities, but Al—Fe binary alloys without Si have wear resistance when added at 0.5 wt% or more and less than 3 wt%. Al-Fe-based intermetallic compound particles can be formed to have wear resistance, but when added at 3 wt% or more, an intermetallic compound is excessively generated, the mechanical properties are lowered, and the melting point is reduced. There is a problem of rising.

アルミニウム合金の基本強度補強のための合金元素としてCuとMgがある。Cuの場合、Alとの化学反応を介して金属間化合物を形成しかつ強度を高める効果を持つが、Cuの含量、合金の鋳造/冷却条件および熱処理条件によってその効果が異なる。Mgの場合、Si或いはZnとの化学反応を介して金属間化合物を形成しかつ強度を高める効果を持つが、Cuと同様に、含量、合金の鋳造/冷却条件および熱処理条件によってその効果が異なる。   There are Cu and Mg as alloy elements for reinforcing the basic strength of aluminum alloys. In the case of Cu, it has the effect of forming an intermetallic compound through a chemical reaction with Al and increasing the strength, but the effect varies depending on the Cu content, the casting / cooling conditions of the alloy, and the heat treatment conditions. In the case of Mg, it has the effect of forming an intermetallic compound through a chemical reaction with Si or Zn and increasing the strength, but the effect differs depending on the content, the casting / cooling conditions of the alloy and the heat treatment conditions, as with Cu. .

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明に係るアルミニウム合金は、アルミニウム(Al)を主成分とし、ここに亜鉛(Zn)19〜27wt%、スズ(Sn)3〜5wt%、銅(Cu)1〜3wt%、マグネシウム(Mg)0.3〜0.8wt%、および硬質粒子を生成するシリコン(Si)7.6〜11wt%を添加したものである。ここで、前記亜鉛(Zn)は、19wt%以下で添加する場合には軟質粒子であるZn相の生成量が少なくて十分な自己潤滑性を得ることが難しく、27wt%以上で添加する場合には合金の固相線があまり低くなって鋳造の条件上不利である。   The aluminum alloy according to the present invention contains aluminum (Al) as a main component, and zinc (Zn) 19 to 27 wt%, tin (Sn) 3 to 5 wt%, copper (Cu) 1 to 3 wt%, magnesium (Mg) 0.3 to 0.8 wt%, and 7.6 to 11 wt% of silicon (Si) that generates hard particles are added. Here, when the zinc (Zn) is added at 19 wt% or less, it is difficult to obtain a sufficient self-lubricating property due to a small amount of Zn phase generated as soft particles, and when added at 27 wt% or more. This is disadvantageous in terms of casting because the solidus of the alloy is too low.

亜鉛(Zn)よりさらに強力な自己潤滑性を有するが価格は高いスズ(Sn)も、3wt%以下で添加する場合には軟質粒子たるSn相の生成量が少なくてZn相の足りない自己潤滑性を補完することが難しく、5wt%以上で添加する場合には得られる摩擦低減効果が駆動条件上であまり意味がない。よって、効率性の観点から、スズ(Sn)の量を最小化する。   Even if tin (Sn), which has stronger self-lubricating property than zinc (Zn) but is expensive, is added at 3 wt% or less, the amount of Sn phase, which is a soft particle, is small and the self-lubrication is insufficient for the Zn phase. It is difficult to supplement the properties, and when it is added at 5 wt% or more, the obtained friction reduction effect is not very meaningful in terms of driving conditions. Therefore, the amount of tin (Sn) is minimized from the viewpoint of efficiency.

硬質粒子を生成するためのシリコン(Si)は7.6wt%以下で添加する場合には硬質粒子たる初晶Siが十分に生成(0.5%未満)しないため耐摩耗性を確保することが難しく、11wt%以上で添加する場合には硬質粒子が過量(5%超過)に生成し粗大化し、むしろ耐摩耗性および機械的性質に悪影響を及ぼす。   When silicon (Si) for generating hard particles is added at 7.6 wt% or less, primary crystal Si as hard particles is not sufficiently generated (less than 0.5%), so that wear resistance can be ensured. It is difficult, and when added at 11 wt% or more, hard particles are excessively formed (exceeding 5%) and are coarsened, which adversely affects wear resistance and mechanical properties.

機械的性質の向上のために添加する銅(Cu)は、適正の機械的性質を確保するために1wt%以上添加しなければならないが、3wt%を超えて添加すると、その他の元素と金属間化合物が生成し、機械的性質を低下させるおそれがあるので、その量を制限する。代りに、マグネシウム(Mg)を0.3wt%以上添加してさらなる機械的性質の向上を図ることができる。また、マグネシウム(Mg)も、0.8wt%添加する場合には機械的性質に不利な化合物を形成するおそれがあるので、その量を制限する。   Copper (Cu) added to improve mechanical properties must be added in an amount of 1 wt% or more in order to ensure proper mechanical properties, but if added in excess of 3 wt%, between other elements and metals The amount of the compound is limited because it may form a compound and deteriorate the mechanical properties. Instead, 0.3% by weight or more of magnesium (Mg) can be added to further improve the mechanical properties. Further, when adding 0.8 wt% of magnesium (Mg), there is a possibility that a compound disadvantageous in mechanical properties may be formed, so the amount thereof is limited.

本発明に係るAl−Zn−Sn系合金における軟質粒子による低摩擦特性を確認するための実施例および比較例として、図1のグラフに示すように、ZnとSnの含量を変化させて合金を製造し、合金別摩擦係数の変化を観察した。その結果、3wt%Snの条件で、実施例である3Sn−19Zn合金では要求する低摩擦特性(摩擦係数0.150以下)を得、比較例である3Sn−17Zn合金では不満足な結果を得た。この結果より、最小Sn含量3wt%でZnが少なくとも19wt%添加すれば所望の低摩擦特性を得ることができることを確認した。さらにSn、Znの含量を高める場合にもすべて満足すべき低摩擦特性を得ることができた。   As an example and a comparative example for confirming low friction characteristics due to soft particles in an Al-Zn-Sn alloy according to the present invention, as shown in the graph of FIG. Manufactured and observed changes in friction coefficient by alloy. As a result, under the condition of 3 wt% Sn, the required low friction characteristic (friction coefficient 0.150 or less) was obtained with the 3Sn-19Zn alloy as an example, and an unsatisfactory result was obtained with a 3Sn-17Zn alloy as a comparative example. . From this result, it was confirmed that desired low friction characteristics can be obtained if Zn is added at least 19 wt% with a minimum Sn content of 3 wt%. Furthermore, satisfactory low friction characteristics were obtained even when the Sn and Zn contents were increased.

次に、耐摩耗性および機械的性質を評価するための比較例および実施例として、下記表1のようなAl−25Zn−3Sn−xSi系合金を製造し評価を行った。   Next, as comparative examples and examples for evaluating wear resistance and mechanical properties, an Al-25Zn-3Sn-xSi alloy as shown in Table 1 below was produced and evaluated.

Figure 0006431280
Figure 0006431280

表1におけるAl−25Zn−3Sn−xSi合金系をみると、Siの含量が7.4wt%である比較例の場合、硬質粒子たるSi粒子が少量しか生成しないため十分な摩耗性を得ることが難しいが、Siの含量が7.6〜11wt%である実施例の場合、最大5%まで硬質粒子が生成して十分な耐摩耗性を確保できることを確認した。ところがSi粒子を11.2wt%以上含有して5%超過の初晶Si粒子を生成する場合、Si粒子の粗大化および偏析の問題が大きいと判断されるから、その量を制限する。   Looking at the Al-25Zn-3Sn-xSi alloy system in Table 1, in the case of the comparative example in which the Si content is 7.4 wt%, only a small amount of Si particles, which are hard particles, are produced, so that sufficient wear resistance can be obtained. Although it was difficult, in the case of the Example whose Si content is 7.6-11 wt%, it confirmed that hard particle | grains produced | generated to a maximum of 5% and sufficient abrasion resistance was securable. However, in the case where 11.2 wt% or more of Si particles are contained and primary crystal Si particles exceeding 5% are produced, it is judged that the problem of coarsening and segregation of Si particles is large, so the amount is limited.

強度の場合、Siの含有を問わず335〜345MPaを有すると確認され、構造材として使用するには無理がないことが分かる。   In the case of strength, it is confirmed that it has 335 to 345 MPa regardless of the content of Si, and it can be seen that there is no difficulty in using it as a structural material.

一方、本発明の他の実施例に係る複合微細組織を有する耐摩耗性合金は、亜鉛(Zn)19〜27wt%、ビスマス(Bi)3〜5wt%、シリコン(Si)7.6〜11wt%、並びに残部のアルミニウム(Al)および不可避不純物からなる組成を持つ。スズ(Sn)と同様に、ビスマス(Bi)の場合も、強力な自己潤滑性材料であって、スズ(Sn)の代用として使用できる。   Meanwhile, the wear-resistant alloy having a composite microstructure according to another embodiment of the present invention includes zinc (Zn) 19 to 27 wt%, bismuth (Bi) 3 to 5 wt%, and silicon (Si) 7.6 to 11 wt%. And the balance aluminum (Al) and inevitable impurities. Like tin (Sn), bismuth (Bi) is a strong self-lubricating material and can be used as a substitute for tin (Sn).

本発明を特定の実施例に関連し図示および説明したが、特許請求の範囲により提供される本発明の技術的思想を逸脱しない範囲内で、本発明に様々な改良および変化を加え得ることは、当該分野における当業者にとって自明である。   While the invention has been illustrated and described in connection with specific embodiments, it will be understood that various modifications and changes may be made to the invention without departing from the spirit of the invention provided by the claims. This is obvious to those skilled in the art.

本発明は、自動車用部品に用いられ、複合微細組織を有するアルミニウム合金に関する分野に適用できる。   The present invention is used in automotive parts and can be applied to the field related to aluminum alloys having a composite microstructure.

Claims (4)

亜鉛(Zn)19〜27wt%、スズ(Sn)3〜5wt%、シリコン(Si)7.6〜11wt%、並びに残部のアルミニウム(Al)および不可避不純物からなる組成を持つことを特徴とする複合微細組織を有する耐摩耗性合金。 It has a composition comprising zinc (Zn) 19 to 27 wt%, tin (Sn) 3 to 5 wt%, silicon (Si) 7.6 to 11 wt%, and the balance aluminum (Al) and inevitable impurities. A wear-resistant alloy with a composite microstructure. 銅(Cu)1〜3wt%をさらに含む組成を持つことを特徴とする請求項1に記載の複合微細組織を有する耐摩耗性合金。   The wear-resistant alloy having a composite microstructure according to claim 1, further comprising a composition further including 1 to 3 wt% of copper (Cu). マグネシウム(Mg)0.3〜0.8wt%をさらに含む組成を持つことを特徴とする請求項1に記載の複合微細組織を有する耐摩耗性合金。   The wear-resistant alloy having a composite microstructure according to claim 1, further comprising a composition further including 0.3 to 0.8 wt% of magnesium (Mg). 銅(Cu)1〜3wt%およびマグネシウム(Mg)0.3〜0.8wt%をさらに含む組成を持つことを特徴とする請求項1に記載の複合微細組織を有する耐摩耗性合金。
The wear-resistant alloy having a composite microstructure according to claim 1, further comprising a composition further including 1 to 3 wt% of copper (Cu) and 0.3 to 0.8 wt% of magnesium (Mg).
JP2014092712A 2013-05-07 2014-04-28 Abrasion resistant alloy with composite microstructure Expired - Fee Related JP6431280B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0051291 2013-05-07
KR1020130051291A KR101526657B1 (en) 2013-05-07 2013-05-07 Wear-resistant alloys having a complex microstructure

Publications (2)

Publication Number Publication Date
JP2014218745A JP2014218745A (en) 2014-11-20
JP6431280B2 true JP6431280B2 (en) 2018-11-28

Family

ID=51787753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092712A Expired - Fee Related JP6431280B2 (en) 2013-05-07 2014-04-28 Abrasion resistant alloy with composite microstructure

Country Status (5)

Country Link
US (1) US20140334969A1 (en)
JP (1) JP6431280B2 (en)
KR (1) KR101526657B1 (en)
CN (1) CN104141078B (en)
DE (1) DE102014208460B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527881B (en) * 2019-04-23 2021-10-01 华南理工大学 Fast-solidification high-performance high-zinc-content Al-Zn-Mg-Cu-Zr alloy and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769483A (en) * 1953-06-30 1957-03-06 Willi Neu Zinc aluminium alloy and process for the production thereof
JPS607018B2 (en) * 1979-08-27 1985-02-21 財団法人電気磁気材料研究所 Aluminum-based vibration absorbing alloy with large damping capacity and its manufacturing method
JPH072980B2 (en) * 1990-09-20 1995-01-18 大同メタル工業株式会社 Composite sliding material
JPH0578708A (en) * 1991-09-20 1993-03-30 Sumitomo Electric Ind Ltd Production of aluminum-based grain composite alloy
JP4008597B2 (en) * 1998-09-17 2007-11-14 学校法人日本大学 Aluminum-based composite material and manufacturing method thereof
JP2002012959A (en) * 2000-04-26 2002-01-15 Nippon Steel Corp Steel sheet plated with al based metal with corrosion resistance in plated part and end face
US6605370B2 (en) * 2001-07-12 2003-08-12 Corus Aluminum Walzprodukte Gmbh Method of manufacturing an aluminium joined product
AT414128B (en) * 2004-08-03 2006-09-15 Miba Gleitlager Gmbh ALUMINUM ALLOY FOR TRIBOLOGY CLASSIFIED SURFACES
CN1293214C (en) * 2005-01-31 2007-01-03 哈尔滨工业大学 Dibismuth trioxide enveloped ceramic phase reinforced aluminium base composite material
CN1320145C (en) * 2005-10-14 2007-06-06 上海大学 Self-lubricating high-wear-proof hypereutectic Al-Si alloy
CN101144134A (en) * 2007-10-15 2008-03-19 李贞宽 Aluminum-silicon series deforming alloy and manufacturing method thereof
KR101124235B1 (en) 2010-05-29 2012-03-27 주식회사 인터프랙스퀀텀 Aluminium alloy and aluminium alloy casting

Also Published As

Publication number Publication date
CN104141078B (en) 2018-09-21
KR20140132153A (en) 2014-11-17
DE102014208460A1 (en) 2014-11-13
KR101526657B1 (en) 2015-06-05
US20140334969A1 (en) 2014-11-13
JP2014218745A (en) 2014-11-20
DE102014208460B4 (en) 2024-04-18
CN104141078A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP6687322B2 (en) Multi-layer plain bearing
US20100002968A1 (en) Plain Bearing
JP6415097B2 (en) Abrasion resistant alloy with composite microstructure
JP6415096B2 (en) Abrasion resistant alloy with composite microstructure
JP6431280B2 (en) Abrasion resistant alloy with composite microstructure
JP6415098B2 (en) Abrasion resistant alloy with composite microstructure
JP6415089B2 (en) Abrasion resistant alloy with composite microstructure
JP6415091B2 (en) Abrasion resistant alloy with composite microstructure
JP2003293068A (en) FREE-MACHINABLE HYPER-EUTECTIC Al-Si ALLOY
KR20080102558A (en) Wear-resistant al alloy containing sn
JP2001316746A (en) Aluminum alloy having high strength, wear resistance and slidability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6431280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees