JP6430326B2 - Hydrostatic mechanical seal device - Google Patents

Hydrostatic mechanical seal device Download PDF

Info

Publication number
JP6430326B2
JP6430326B2 JP2015087193A JP2015087193A JP6430326B2 JP 6430326 B2 JP6430326 B2 JP 6430326B2 JP 2015087193 A JP2015087193 A JP 2015087193A JP 2015087193 A JP2015087193 A JP 2015087193A JP 6430326 B2 JP6430326 B2 JP 6430326B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
sealing ring
side sealing
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015087193A
Other languages
Japanese (ja)
Other versions
JP2016205508A (en
Inventor
雅和 喜藤
雅和 喜藤
悠高 奥園
悠高 奥園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
EagleBurgmann Japan Co Ltd
Original Assignee
Eagle Industry Co Ltd
EagleBurgmann Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd, EagleBurgmann Japan Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2015087193A priority Critical patent/JP6430326B2/en
Publication of JP2016205508A publication Critical patent/JP2016205508A/en
Application granted granted Critical
Publication of JP6430326B2 publication Critical patent/JP6430326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

本発明は、装置外部から摺動面間に圧力流体を導入・噴出させることで摺動面間に隙間を生じさせ非接触状態で摺動させる静圧型メカニカルシール装置に関する。   The present invention relates to a hydrostatic mechanical seal device that slides in a non-contact state by introducing and ejecting a pressure fluid between sliding surfaces from outside the device to create a gap between the sliding surfaces.

従来、メカニカルシール装置において、機内の被密封流体の機外への漏洩を抑制するため、又はコンタミネーションの発生を抑制するために静圧型メカニカルシール装置が用いられている。   2. Description of the Related Art Conventionally, in a mechanical seal device, a static pressure type mechanical seal device has been used in order to suppress leakage of a sealed fluid in the machine to the outside of the machine or to suppress generation of contamination.

例えば、静止側密封環の摺動面に高圧のシールガスを導入し摺動面間に噴出させることにより対向する摺動面同士を離す方向に作用する力(離間力)と、静止側密封環の背面の背圧室に加圧された流体を導くことにより摺動面同士を近づける方向に作用する力(接近力)をバランスさせて、対向する摺動面間に隙間を生じさせ、摺動面同士を非接触として、被密封流体が機外に漏洩することを防止する静圧型メカニカルシール装置が提案されている。   For example, a force (separation force) acting in a direction to separate the opposing sliding surfaces by introducing a high-pressure seal gas into the sliding surface of the stationary seal ring and ejecting between the sliding surfaces, and the stationary seal ring By sliding the pressurized fluid into the back pressure chamber on the back of the balance, the force (approaching force) acting in the direction to bring the sliding surfaces closer to each other is balanced, creating a gap between the opposing sliding surfaces, and sliding There has been proposed a static pressure type mechanical seal device that prevents the sealed fluid from leaking out of the apparatus while the surfaces are not in contact with each other.

さらに、機内の被密封流体を静止側密封環の背圧室に導入し、この被密封流体の圧力により、当該接近力を得ることが提案されている。(例えば、特許文献1の[0009]、図1を参照。)   Further, it has been proposed to introduce the sealed fluid in the machine into the back pressure chamber of the stationary side sealing ring and obtain the approach force by the pressure of the sealed fluid. (For example, refer to [0009] of Patent Document 1 and FIG. 1.)

また、静止側密封環の背圧室にシールガスを導入し、このシールガスの圧力により、当該接近力を得ること、及び静止側密封環の形状、ハウジングの形状、Oリングの配置位置等を変更することにより、背圧室の形状を変えて、当該接近力を変更することが提案されている。(例えば、特許文献2の[0032]、図1、図2を参照。)   In addition, a sealing gas is introduced into the back pressure chamber of the stationary side sealing ring, and the approaching force is obtained by the pressure of the sealing gas, and the shape of the stationary side sealing ring, the shape of the housing, the arrangement position of the O-ring, etc. It has been proposed to change the approach force by changing the shape of the back pressure chamber. (For example, see [0032] of Patent Document 2 and FIGS. 1 and 2)

特開平4−224373号公報([0009]、図1)JP-A-4-224373 ([0009], FIG. 1) 特開2006−105365号公報([0032]、図1、図2)JP 2006-105365 A ([0032], FIGS. 1 and 2)

特許文献1にあっては、静止側密封環の背圧室に導かれる流体として機内の被密封流体を用いるため、背圧室を形成するハウジング等の部材にも被密封流体が接触することとなり、被密封流体が接触する部材の全てを被密封流体に対応する材質、例えば耐腐食性の材質とする必要があった。   In Patent Document 1, since the sealed fluid in the machine is used as the fluid guided to the back pressure chamber of the stationary side sealing ring, the sealed fluid also comes into contact with a member such as a housing forming the back pressure chamber. Therefore, it is necessary to make all the members that come into contact with the sealed fluid a material corresponding to the sealed fluid, for example, a corrosion-resistant material.

一方、特許文献2にあっては、静止側密封環の背圧室に導かれる流体としてシールガスを用いるため、上述のような背圧室を形成するハウジング等の部材に材質の問題は生じない。   On the other hand, in Patent Document 2, since a sealing gas is used as a fluid guided to the back pressure chamber of the stationary-side sealing ring, there is no problem in material of members such as a housing forming the back pressure chamber as described above. .

しかしながら、特許文献2にあっては、接近力を変更するために、静止側密封環の形状、ハウジングの形状、Oリングの配置位置等を変更する必要があるため、仕様に応じて静止側密封環、ハウジングを用意する必要がある。また、背圧室はOリングにより密閉された空間であるため、シールガスの供給側が異常により高圧になると、背圧室は供給側の圧力に応じて圧力が高くなる、一方摺動面間に導入されるシールガスの大部分は外部に逃がされるため摺動面間の圧力はさほど上昇しない。このことから、シールガスの供給側が異常により高圧になると、静止側密封環に作用する接近力が相対的に高くなりシール性に悪影響を及ぼすおそれがあった。   However, in Patent Document 2, it is necessary to change the shape of the stationary seal ring, the shape of the housing, the arrangement position of the O-ring, etc. in order to change the approach force. It is necessary to prepare a ring and a housing. In addition, since the back pressure chamber is a space sealed by an O-ring, when the supply side of the seal gas becomes abnormally high, the back pressure chamber increases in pressure according to the pressure on the supply side. Since most of the introduced sealing gas is released to the outside, the pressure between the sliding surfaces does not increase so much. For this reason, when the supply side of the seal gas becomes abnormally high in pressure, the approaching force acting on the stationary seal ring is relatively high, which may adversely affect the sealing performance.

本発明は、このような問題点に着目してなされたもので、圧力流体の給源側の圧力変化による影響が小さく、かつ各種仕様に対応できる静圧型メカニカルシール装置を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a static pressure type mechanical seal device that is less affected by pressure change on the supply side of the pressurized fluid and can cope with various specifications. .

前記課題を解決するために、本発明の静圧型メカニカルシール装置は、
ハウジングと回転軸との間を密封し、摺動面間に圧力流体を導入・噴出させる静圧型メカニカルシール装置であって、
前記回転軸とともに回転する回転側密封環と、
前記回転側密封環に対向して設けられ、前記摺動面間に前記圧力流体を供給する供給路を有する静止側密封環と、
前記ハウジングと前記静止側密封環とにより当該静止側密封環の摺動面とは反対側に形成され、圧力流体が流入孔から供給される背圧室と、
前記背圧室の圧力流体を外部に流出させて当該背圧室の圧力を調整する圧力調整部と
を備えたことを特徴としている。
この特徴によれば、圧力調整部により背圧室の圧力流体を外部に流出させて所期の圧力を得ることができ、密封環背面の圧力による摺動面への押付け力を所期の力に調整することができる。また、圧力流体の供給側の圧力が高圧となってもその影響が小さい。更に、圧力調整部を調整・変更することにより各種仕様に対応することができる。
In order to solve the above problems, the static pressure mechanical seal device of the present invention is:
A hydrostatic mechanical seal device that seals between a housing and a rotating shaft and introduces and ejects a pressure fluid between sliding surfaces.
A rotating side sealing ring that rotates together with the rotating shaft;
A stationary side sealing ring provided opposite to the rotation side sealing ring and having a supply path for supplying the pressure fluid between the sliding surfaces;
A back pressure chamber formed on the opposite side of the sliding surface of the stationary side sealing ring by the housing and the stationary side sealing ring, and pressure fluid is supplied from an inflow hole;
And a pressure adjusting unit that adjusts the pressure in the back pressure chamber by allowing the pressure fluid in the back pressure chamber to flow out.
According to this feature, the pressure adjusting unit can flow the pressure fluid in the back pressure chamber to the outside to obtain the desired pressure, and the pressing force on the sliding surface due to the pressure on the back surface of the sealing ring can be reduced to the desired force. Can be adjusted. Even if the pressure on the supply side of the pressurized fluid becomes high, the influence is small. Furthermore, various specifications can be accommodated by adjusting / changing the pressure adjusting unit.

前記流入孔に絞りが設けられていることを特徴としている。
この特徴によれば、流入孔に絞りを設けたため、供給側の圧力流体の圧力が急上昇しても、背圧室に急激に圧力流体が流れ込むことがなく、背圧室の圧力が急激に上昇することがない。
The inflow hole is provided with a throttle.
According to this feature, since the throttle is provided in the inflow hole, the pressure fluid does not flow suddenly into the back pressure chamber even if the pressure fluid pressure on the supply side suddenly rises, and the pressure in the back pressure chamber rises rapidly. There is nothing to do.

前記圧力流体を前記供給路と前記流入孔に分岐させる分岐室を有することを特徴としている。
この特徴によれば、分岐室から同じ圧力流体が供給路及び背圧室に供給されるため個別の圧力流体供給源は不要となるのみならず、摺動面間に隙間を生じせしめる圧力流体と同じ圧力流体供給源からの圧力流体が供給されその圧力を圧力調整部によって圧力調整して背圧室に所期の圧力が得られるため、構造が簡単になる。
It has a branch chamber which branches the pressure fluid into the supply path and the inflow hole.
According to this feature, since the same pressure fluid is supplied from the branch chamber to the supply path and the back pressure chamber, not only a separate pressure fluid supply source is required, but also a pressure fluid that creates a gap between the sliding surfaces. Since the pressure fluid from the same pressure fluid supply source is supplied and the pressure is adjusted by the pressure adjusting unit to obtain the desired pressure in the back pressure chamber, the structure is simplified.

前記圧力調整部は前記ハウジング又は前記静止側密封環に着脱可能に設けられた圧力調整器であることを特徴としている。
この特徴によれば、圧力調整器はハウジング又は静止側密封環に着脱可能であるため、用途に応じた圧力調整量の圧力調整器を用いることにより、静止側密封環やハウジングの構造を変更する必要がない。このため、静止側密封環とハウジングとにより形成される背圧室の形状の設計自由度が高い。
The pressure adjusting unit is a pressure regulator that is detachably provided on the housing or the stationary side sealing ring.
According to this feature, since the pressure regulator can be attached to and detached from the housing or the stationary side sealing ring, the structure of the stationary side sealing ring and the housing is changed by using a pressure regulator of a pressure adjustment amount according to the application. There is no need. For this reason, the design freedom of the shape of the back pressure chamber formed by the stationary side sealing ring and the housing is high.

前記摺動面間から漏れ出る流体と、前記圧力調整部から流出する圧力流体とを合流して排出する排出路を備えたことを特徴としている。
この特徴によれば、摺動面間から漏れ出る流体は圧力調整部から流出する圧力流体に合流されて排出されるため、摺動面間から漏れ出る流体の流路と、圧力調整部から流出する流体の流路とを別に設ける必要が無く、流路を別に設ける場合に比べ、加工の手間を省き、また、ハウジングの強度を低下させることなく、また、流路確保のためにハウジングを大型化することも無く、更には、摺動面間から漏れ出る流体に圧力流体以外の被密封流体が含まれていてもこの被密封流体を圧力流体により希釈することができる。
A discharge path for discharging the fluid leaking from between the sliding surfaces and the pressure fluid flowing out of the pressure adjusting unit is provided.
According to this feature, the fluid leaking from between the sliding surfaces merges with the pressure fluid flowing out from the pressure adjusting unit and is discharged, so the flow path of the fluid leaking from between the sliding surfaces and the pressure adjusting unit flows out. There is no need to provide a separate flow path for the fluid to be used. Compared to the case where a separate flow path is provided, the processing work is saved, the strength of the housing is not reduced, and the housing is large in order to secure the flow path. Furthermore, even if the fluid leaking from between the sliding surfaces contains a fluid to be sealed other than the pressure fluid, the fluid to be sealed can be diluted with the pressure fluid.

実施例1における静圧型メカニカルシール装置を示す断面図である。It is sectional drawing which shows the static pressure type mechanical seal apparatus in Example 1. FIG. 図1の要部を示す断面図である。It is sectional drawing which shows the principal part of FIG. 実施例2の要部を示す断面図である。6 is a cross-sectional view showing a main part of Example 2. FIG.

本発明に係る静圧型メカニカルシール装置を実施するための形態を実施例に基づいて以下に説明する。   EMBODIMENT OF THE INVENTION The form for implementing the static pressure type mechanical seal apparatus which concerns on this invention is demonstrated below based on an Example.

実施例1に係る静圧型メカニカルシール装置につき、図1、図2を参照して説明する。以下、図1の回転軸の中心線を軸方向、中心線から放射状に延びる方向を径方向、中心線から等距離に沿う方向を周方向として説明する。図1、図2中、断面略長円乃至スタジアム形の部材はOリング等の二次シールである。   The hydrostatic mechanical seal device according to the first embodiment will be described with reference to FIGS. 1 and 2. In the following description, the center line of the rotating shaft in FIG. 1 is described as the axial direction, the direction extending radially from the center line is the radial direction, and the direction along the same distance from the center line is the circumferential direction. In FIGS. 1 and 2, a member having a substantially oval cross section or a stadium shape is a secondary seal such as an O-ring.

図1を参照して、静圧型メカニカルシール装置100は、回転側密封環10、静止側密封環20、ハウジング30、圧力流体路40、圧力流体60から主に構成されている。回転側密封環10と静止側密封環20の協働により機内側Mの被密封流体を密封する。   Referring to FIG. 1, a static pressure type mechanical seal device 100 mainly includes a rotary side seal ring 10, a static side seal ring 20, a housing 30, a pressure fluid path 40, and a pressure fluid 60. The fluid to be sealed in the machine interior M is sealed by the cooperation of the rotating side sealing ring 10 and the stationary side sealing ring 20.

回転側密封環10は、回転軸1にホルダ11及びスリーブ12により一体で回転可能となるように取り付けられている。回転側密封環10は、SiCやAl等から形成されている。 The rotation-side sealing ring 10 is attached to the rotation shaft 1 so as to be integrally rotatable by a holder 11 and a sleeve 12. The rotation-side sealing ring 10 is made of SiC, Al 2 O 3 or the like.

静止側密封環20は、回転側密封環10に対向して配置され、ハウジング30の凹部に収容されたスプリング21により軸方向に押圧されている。また、静止側密封環20の凹溝23にハウジング30に固定されたノックピン22が挿入されている。これにより、静止側密封環20は軸方向に移動可能かつ周方向に回動しないように取り付けられている。スプリング21及びノックピン22の個数は問わないが周方向に均等に複数設けるとよい。静止側密封環20はSiCやCにより形成されている。スプリング21は、機器の使用しない時、すなわち後述する背圧室49の圧力が略大気圧になっている時に、静止側密封環20を回転側密封環10に密封状態に押圧する押圧力のものを選定すればよい。   The stationary side sealing ring 20 is arranged opposite to the rotation side sealing ring 10 and is pressed in the axial direction by a spring 21 accommodated in a recess of the housing 30. A knock pin 22 fixed to the housing 30 is inserted into the concave groove 23 of the stationary side sealing ring 20. Thereby, the stationary side sealing ring 20 is attached so as to be movable in the axial direction and not to rotate in the circumferential direction. The number of springs 21 and knock pins 22 is not limited, but a plurality of springs 21 and knock pins 22 may be equally provided in the circumferential direction. The stationary seal ring 20 is made of SiC or C. The spring 21 has a pressing force for pressing the stationary seal ring 20 against the rotary seal ring 10 in a sealed state when the device is not used, that is, when the pressure of the back pressure chamber 49 described later is substantially atmospheric pressure. Should be selected.

ハウジング30は、ハウジング本体31と、静止側密封環20が内周に取り付けられる環状のケース32とから主に構成されている。ハウジング本体31及びケース32は金属材料、例えばステンレス鋼により構成されている。ハウジング本体31の大気側Aの端部には、PTFE等からなるブッシュ33がボルト及び取付プレート34により取り付けられている。スリーブ12の外周面とハウジング本体31の内周面とにより画成される空間はブッシュ33により大気側A(図1における軸方向右側)に対し密封されている。なお、取付プレート34とスリーブ12とは非接触となる状態で取り付けられている。   The housing 30 is mainly composed of a housing body 31 and an annular case 32 to which the stationary side sealing ring 20 is attached on the inner periphery. The housing body 31 and the case 32 are made of a metal material such as stainless steel. A bush 33 made of PTFE or the like is attached to the end of the housing body 31 on the atmosphere side A by bolts and a mounting plate 34. A space defined by the outer peripheral surface of the sleeve 12 and the inner peripheral surface of the housing body 31 is sealed with respect to the atmosphere side A (the right side in the axial direction in FIG. 1) by the bush 33. The attachment plate 34 and the sleeve 12 are attached in a non-contact state.

圧力流体路40は圧力流体60を供給する供給側流路41と圧力流体60を排出する排出側流路51とから主に構成されている。ハウジング本体31の径方向外周には、圧力流体供給装置2(圧力流体供給源)が供給管3を介して供給側流路41に接続されるとともに、排出側流路51には排出管4を介して回収容器5が接続されている。圧力流体供給装置2は例えばポンプを有し、一定の圧力の圧力流体60を吐出するものである。   The pressure fluid path 40 mainly includes a supply side channel 41 that supplies the pressure fluid 60 and a discharge side channel 51 that discharges the pressure fluid 60. A pressure fluid supply device 2 (pressure fluid supply source) is connected to the supply side flow path 41 via the supply pipe 3 on the outer periphery in the radial direction of the housing body 31, and the discharge pipe 4 is connected to the discharge side flow path 51. A recovery container 5 is connected via the connector. The pressure fluid supply device 2 has a pump, for example, and discharges the pressure fluid 60 having a constant pressure.

図2を参照して、供給側流路41は、ハウジング本体31の外周から径方向内側に延びる穴42と、ハウジング本体31とケース32とにより形成され穴42に連通するハウジング30内部に形成された分岐室43と、ケース32に形成され分岐室43に連通する貫通孔44と、静止側密封環20に形成され貫通孔44に連通する貫通孔46を有する。貫通孔46の上流側には第1絞り45が設けられ、貫通孔46の下流側は回転側密封環10の摺動面に対向している。また、貫通孔46の下流側には、貫通孔46に連なって摺動面に沿って延びる溝が設けられている。回転側密封環10にも当該溝に対向する位置に摺動面に沿って延びる溝が設けられている。これら摺動面に設けられた溝は周知の構成であり、形状や大きさは適宜決め得る。穴42及び分岐室43により形成される流路を第1流路61という。分岐室43、貫通孔44及び貫通孔46により形成される第2流路を供給路62という。   With reference to FIG. 2, the supply-side flow path 41 is formed inside the housing 30 formed by the hole 42 extending radially inward from the outer periphery of the housing body 31, the housing body 31 and the case 32, and communicating with the hole 42. A branch hole 43 formed in the case 32 and communicating with the branch chamber 43, and a through hole 46 formed in the stationary-side sealing ring 20 and communicating with the through hole 44. A first throttle 45 is provided on the upstream side of the through hole 46, and the downstream side of the through hole 46 faces the sliding surface of the rotation-side sealing ring 10. Further, on the downstream side of the through hole 46, a groove extending along the sliding surface is provided so as to continue to the through hole 46. The rotation-side seal ring 10 is also provided with a groove extending along the sliding surface at a position facing the groove. The grooves provided on these sliding surfaces have a well-known configuration, and the shape and size can be determined as appropriate. A flow path formed by the hole 42 and the branch chamber 43 is referred to as a first flow path 61. The second flow path formed by the branch chamber 43, the through hole 44 and the through hole 46 is referred to as a supply path 62.

また、供給側流路41は、分岐室43から分岐する第4流路である分岐路64を有する。分岐路64は、ケース32に形成され分岐室43に連通する流入孔48と、静止側密封環20、ハウジング本体31、ケース32により形成され流入孔48に連通する背圧室49とから形成されている。流入孔48には第2絞り47が設けられている。   The supply-side flow path 41 has a branch path 64 that is a fourth flow path that branches from the branch chamber 43. The branch path 64 is formed by an inflow hole 48 formed in the case 32 and communicating with the branch chamber 43, and a back pressure chamber 49 formed by the stationary side sealing ring 20, the housing body 31, and the case 32 and communicating with the inflow hole 48. ing. A second restrictor 47 is provided in the inflow hole 48.

排出側流路51は、ハウジング本体31に軸方向に延在して形成され背圧室49に連通する貫通孔53、ハウジング本体31に径方向に延在して形成され貫通孔53に連通する貫通孔54を有する。貫通孔53には第3絞り52(圧力調整部)が設けられている。貫通孔54の径方向外側の一端は、前述した排出管4が接続されている。また、貫通孔54の他端は、回転側密封環10、静止側密封環20、スリーブ12、ハウジング本体31、ブッシュ33により形成される排出室55が連通されている。摺動面間から排出室55に至る流路を第3流路63、貫通孔53を通る流路を第5流路65、貫通孔54を通る第6流路を排出路66という。   The discharge-side flow path 51 is formed to extend in the axial direction in the housing body 31 and communicate with the back pressure chamber 49, and is formed to extend in the radial direction in the housing body 31 and communicates with the through-hole 53. A through hole 54 is provided. The through hole 53 is provided with a third throttle 52 (pressure adjusting unit). The above-described discharge pipe 4 is connected to one end on the radially outer side of the through hole 54. In addition, the other end of the through hole 54 communicates with a discharge chamber 55 formed by the rotation-side sealing ring 10, the stationary-side sealing ring 20, the sleeve 12, the housing body 31, and the bush 33. A flow path extending between the sliding surfaces to the discharge chamber 55 is referred to as a third flow path 63, a flow path passing through the through hole 53 is referred to as a fifth flow path 65, and a sixth flow path passing through the through hole 54 is referred to as a discharge path 66.

ここで、圧力流体60のハウジング30内の流れについて簡単に説明する。第1流路61に供給された圧力流体60は分岐室43で供給路62と分岐路64に分岐して供給される。第3流路63と第5流路65からの流体を合流させて排出路66から外部に排出している。   Here, the flow of the pressure fluid 60 in the housing 30 will be briefly described. The pressurized fluid 60 supplied to the first flow path 61 is branched and supplied to the supply path 62 and the branch path 64 in the branch chamber 43. Fluids from the third flow path 63 and the fifth flow path 65 are merged and discharged from the discharge path 66 to the outside.

ここで、第1絞り45、第2絞り47、第3絞り52は、圧力を所定の値に調整する固定絞りであり、これらの外周はそれぞれ貫通孔46、流入孔48、貫通孔53に密封状態に設けられている。
また、圧力流体60はその圧力が機内側Mの被密封流体よりも少し高くされている。圧力流体60は窒素ガスなど、人体や静圧型メカニカルシール装置100にとって無害なものを用いることが好ましい。
Here, the first restrictor 45, the second restrictor 47, and the third restrictor 52 are fixed restrictors that adjust the pressure to a predetermined value, and the outer periphery thereof is sealed in the through hole 46, the inflow hole 48, and the through hole 53, respectively. It is provided in the state.
Further, the pressure fluid 60 is slightly higher in pressure than the sealed fluid in the machine interior M. It is preferable to use a pressure fluid 60 that is harmless to the human body or the static pressure mechanical seal device 100, such as nitrogen gas.

機器の運転時には回転軸1が回転され、圧力流体60が貫通孔46から回転側密封環10の摺動面と静止側密封環20の摺動面との間(単に摺動面間ともいう。)に吐出され、摺動面間を離間させる離間力F1を静止側密封環20に発生させる。一方、静止側密封環20には、スプリング21の押圧力と背圧室49の圧力P49により生じる力の合力である接近力F2が作用する。 When the device is in operation, the rotary shaft 1 is rotated, and the pressure fluid 60 passes through the through hole 46 between the sliding surface of the rotating side sealing ring 10 and the sliding surface of the stationary side sealing ring 20 (also simply referred to as between the sliding surfaces). ) And a separation force F <b> 1 that separates the sliding surfaces is generated in the stationary seal ring 20. On the other hand, the stationary seal ring 20, approaching force F2 is a resultant force of the forces caused by the pressure P 49 in the pressing force to the back pressure chamber 49 of the spring 21 acts.

離間力F1>接近力F2となるように、スプリング21の張力、背圧室49に臨む静止側密封環20の断面積(投影面積)、摺動面間に供給する圧力流体の圧力P、背圧室49の圧力P49を設定する。これにより、離間力F1と接近力F2とがバランスし、摺動面間は所期の隙間を保った非接触状態に維持される。この状態では、摺動面間に静圧の流体膜が形成されることにより被密封流体は密封される。 The tension of the spring 21, the cross-sectional area (projected area) of the stationary seal ring 20 facing the back pressure chamber 49, the pressure P S of the pressure fluid supplied between the sliding surfaces, so that the separation force F1> the approach force F2 The pressure P 49 of the back pressure chamber 49 is set. Thereby, the separation force F1 and the approach force F2 are balanced, and the sliding surfaces are maintained in a non-contact state with an intended gap maintained. In this state, the fluid to be sealed is sealed by forming a static pressure fluid film between the sliding surfaces.

供給路62に第1絞り45を設けているため、機器の運転時に摺動面間が狭くなると貫通孔46内の圧力Pが高まり、摺動面間を離そうとする力が働く。逆に、摺動面間が広くなると貫通孔46内の圧力Pが低くなり、摺動面間を近づけようとする力が働く。このようにして、摺動面間は所期の隙間が維持される。 Since the first aperture 45 provided in the supply passage 62, between the sliding surfaces becomes narrow and increases the pressure P S in the through hole 46 during operation of the apparatus, to force acts trying Hanaso between sliding surfaces. Conversely, the lower the pressure P S in the through hole 46 between the sliding surfaces is widened, to force acts attempts tend to bring said between sliding surfaces. In this way, the desired gap is maintained between the sliding surfaces.

背圧室49の圧力流体60は第3絞り52を介して貫通孔54(外部)に逃がされているため、背圧室49を所期の圧力P49とすることができる。すなわち、背圧室49の圧力P49が異常に高くなることが抑制できる。例えば、圧力流体供給装置2が異常となり、分岐室43の圧力P43が異常に高くなる場合、背圧室49の圧力P49も高くなるが、圧力流体60は第3絞り52を介して貫通孔54に逃がされるため、過剰に上昇することが無く、接近力F2が過大になることが無い。これに対して、従来のように背圧室49を密閉空間で形成すると、背圧室49の流体が排出されることなく、溜まるため、圧力が過剰に上昇し、接近力F2が離間力F1に比較して著しく大きくなる。そのため、摺動面間を所期の隙間に保てなくなり、シール性に悪影響を与えるおそれがある。 Since the pressure fluid 60 in the back pressure chamber 49 which is released into the through-hole 54 through the third aperture 52 (outside), it is possible to make the back pressure chamber 49 with the desired pressure P 49. That is, it suppressed the pressure P 49 in the back pressure chamber 49 becomes too high. For example, when the pressure fluid supply device 2 becomes abnormal and the pressure P 43 in the branch chamber 43 becomes abnormally high, the pressure P 49 in the back pressure chamber 49 also increases, but the pressure fluid 60 passes through the third throttle 52. Since it escapes to the hole 54, it does not rise excessively and the approach force F2 does not become excessive. On the other hand, when the back pressure chamber 49 is formed in a sealed space as in the prior art, the fluid in the back pressure chamber 49 accumulates without being discharged, so that the pressure rises excessively and the approach force F2 becomes the separation force F1. Is significantly larger than For this reason, the desired gap between the sliding surfaces cannot be maintained, and the sealing performance may be adversely affected.

また、第3絞り52を変更することにより、必要に応じて第1絞り45、第2絞り47も変更することにより、背圧室49に維持させる所期の圧力P49を変更することができ、各種仕様に対応することができる。すなわち、静止側密封環20やハウジング本体31、ケース32の構造を変更する必要がなく、静止側密封環20とハウジング本体31、ケース32とにより形成される背圧室49の形状の設計自由度が高い。 Further, by changing the third diaphragm 52, the first aperture 45 if necessary, by also changing the second diaphragm 47, it is possible to change the desired pressure P 49 to maintain the back pressure chamber 49 It can correspond to various specifications. That is, there is no need to change the structure of the stationary seal ring 20, the housing body 31, and the case 32, and the degree of freedom in designing the shape of the back pressure chamber 49 formed by the stationary seal ring 20, the housing body 31, and the case 32. Is expensive.

また、第1絞り45、第2絞り47、第3絞り52を固定絞りとしたため、圧力を所期の値に設定可能である。さらに、第1絞り45、第2絞り47、第3絞り52を着脱可能な構造とすると、絞り量の変更がより簡単である。   Further, since the first diaphragm 45, the second diaphragm 47, and the third diaphragm 52 are fixed diaphragms, the pressure can be set to an intended value. Furthermore, if the first diaphragm 45, the second diaphragm 47, and the third diaphragm 52 are detachable, it is easier to change the diaphragm amount.

また、分岐路64を有し、同じ圧力流体60が供給路62及び背圧室49に供給されるため個別の圧力流体供給装置2は不要となり構造が簡単になる。さらに、摺動面間に隙間を生じせしめる圧力流体60と同じ圧力流体供給装置2からの圧力流体60が供給され、その圧力を第3絞り52によって圧力調整して背圧室49に所期の圧力を得られるため構造が簡単になる。   Further, since the same pressure fluid 60 is supplied to the supply passage 62 and the back pressure chamber 49 because the branch passage 64 is provided, the individual pressure fluid supply device 2 becomes unnecessary, and the structure is simplified. Further, the pressure fluid 60 from the same pressure fluid supply device 2 as the pressure fluid 60 causing a gap between the sliding surfaces is supplied, and the pressure is adjusted by the third restriction 52 to the back pressure chamber 49. Since the pressure can be obtained, the structure becomes simple.

また、摺動面間から漏れ出る流体は第3絞り52から流出する圧力流体60と貫通孔54にて混合されて回収容器5に排出される。このため、摺動面間から漏れ出る流体に圧力流体60以外の被密封流体が含まれていてもこの被密封流体を含む流体を圧力流体60により希釈することができる。例えば、被密封流体が腐食性流体であっても、希釈により腐食性を低下させることができる。また、ブッシュ33をハウジング本体31の内周に配置し、排出室55を背圧室49及び貫通孔54の近傍に形成しているため、ハウジング本体31をコンパクトに構成できる。   Further, the fluid leaking from between the sliding surfaces is mixed with the pressure fluid 60 flowing out from the third throttle 52 and the through hole 54 and is discharged to the collection container 5. For this reason, even if the fluid leaking from between the sliding surfaces contains a sealed fluid other than the pressure fluid 60, the fluid containing the sealed fluid can be diluted with the pressure fluid 60. For example, even if the sealed fluid is a corrosive fluid, the corrosivity can be reduced by dilution. Further, since the bush 33 is arranged on the inner periphery of the housing body 31 and the discharge chamber 55 is formed in the vicinity of the back pressure chamber 49 and the through hole 54, the housing body 31 can be configured compactly.

さらに、摺動面間から被密封流体が漏れない形態で使用する場合には、摺動面間から漏れ出る流体は圧力流体60のみであり、貫通孔54から排出される流体も圧力流体60のみであるため、回収された流体を圧力流体60として再利用する構成とすることもできる。   Furthermore, when used in a form in which the sealed fluid does not leak from between the sliding surfaces, the fluid that leaks from between the sliding surfaces is only the pressure fluid 60, and the fluid discharged from the through hole 54 is only the pressure fluid 60. Therefore, the recovered fluid can be reused as the pressure fluid 60.

次に、実施例2に係る静圧型メカニカルシール装置につき、図3を参照して説明する。実施例2では、第2絞り47が設けられていない点が実施例1と主に相違する。なお、実施例1と同一構成で重複する構成を省略する。   Next, a hydrostatic mechanical seal device according to Example 2 will be described with reference to FIG. The second embodiment is mainly different from the first embodiment in that the second diaphragm 47 is not provided. In addition, the same structure as Example 1 and the overlapping structure are abbreviate | omitted.

図3に示されるように、供給側流路41の分岐路64は、分岐室43から、ケース32に形成され分岐室43に連通する流入孔48’、静止側密封環20、ハウジング本体31、ケース32により形成され流入孔48’に連通する背圧室49により形成されている。分岐室43と背圧室49は絞りを有しない流入孔48’により接続されているため、分岐室43の圧力P43と背圧室49の圧力P49とは略等しくされている。このように構成することで、機器を使用する時に背圧室49に高い圧力P49を確保できるため、大きな接近力F2を得ることができる。 As shown in FIG. 3, the branch path 64 of the supply-side channel 41 includes an inflow hole 48 ′ formed in the case 32 and communicating with the branch chamber 43 from the branch chamber 43, the stationary-side sealing ring 20, the housing body 31, The back pressure chamber 49 is formed by the case 32 and communicates with the inflow hole 48 ′. Because they are connected by no inflow hole 48 'to stop distributing chamber 43 and the back pressure chamber 49 is substantially equal to the pressure P 49 in the pressure P 43 and the back pressure chamber 49 of the distributing chamber 43. With this configuration, it is possible to ensure a high pressure P 49 in the back pressure chamber 49 when using the device, it is possible to obtain a large approaching force F2.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

例えば、前記実施例では、第1絞り45、第2絞り47、第3絞り52を固定絞りとするとよい。固定絞りとすることにより圧力を所期の値に設定可能である。また、固定絞りとしては、絞り器であっても、貫通孔や流入孔自体を細径としたものでもよい。   For example, in the embodiment, the first diaphragm 45, the second diaphragm 47, and the third diaphragm 52 may be fixed diaphragms. By using a fixed throttle, the pressure can be set to a desired value. Further, as the fixed throttle, a throttling device or a through-hole or inflow hole itself having a small diameter may be used.

また、背圧室49の圧力P49を調整する圧力調整部として、第3絞り52を例に説明したが、背圧室49の圧力流体60を外部に流出させて圧力を調整するものであれば絞り以外、例えば、所定以上の圧力で圧力流体60を外部に流出させるリリーフ弁であってもよい。第2絞り47及び第3絞り52をリリーフ弁とし、機器を使用しない時に静止側密封環20を回転側密封環10に密封状態で押圧する圧力を背圧室49に発生させ得る構成とすれば、必ずしもスプリング21は必要ではない。 Further, the pressure adjustment unit for adjusting the pressure P 49 in the back pressure chamber 49, as long as have been described third aperture 52 as an example, which drained the pressure fluid 60 in the back pressure chamber 49 to the outside to adjust the pressure For example, a relief valve that allows the pressure fluid 60 to flow out to the outside at a predetermined pressure or more may be used other than the throttle. If the second throttle 47 and the third throttle 52 are relief valves, the back pressure chamber 49 can generate a pressure that presses the stationary seal ring 20 against the rotary seal ring 10 in a sealed state when the device is not used. The spring 21 is not always necessary.

また、第3絞り52をハウジング本体31に設ける例について説明したが、静止側密封環20又はケース32に設けてもよい。   Moreover, although the example which provides the 3rd aperture_diaphragm | restriction 52 in the housing main body 31 was demonstrated, you may provide in the stationary side sealing ring 20 or the case 32. FIG.

また、圧力流体供給装置2から供給される圧力流体60を分岐室43により分岐させて背圧室49に供給する例について説明したが、分岐室43を用いることなく、摺動面間及び背圧室に圧力流体を直接供給する圧力流体供給装置を個別に設けてもよい。   Further, the example in which the pressure fluid 60 supplied from the pressure fluid supply device 2 is branched by the branch chamber 43 and supplied to the back pressure chamber 49 has been described. You may provide the pressure fluid supply apparatus which supplies a pressure fluid directly to a chamber separately.

1 回転軸
2 圧力流体供給装置(圧力流体供給源)
5 回収容器
10 回転側密封環
20 静止側密封環
30 ハウジング
31 ハウジング本体
32 ケース
33 ブッシュ
40 圧力流体路
43 分岐室
45 第1絞り
46 貫通孔
47 第2絞り
48 流入孔
48’ 流入孔
49 背圧室
51 排出側流路
52 第3絞り(圧力調整部)
53 貫通孔(外部)
54 貫通孔
55 排出室
60 圧力流体
62 供給路
64 分岐路
66 排出路
100 静圧型メカニカルシール装置
A 大気側
M 機内側
F1 離間力
F2 接近力
43 分岐室の圧力
49 背圧室の圧力
1 Rotating shaft 2 Pressure fluid supply device (Pressure fluid supply source)
5 Recovery Container 10 Rotating Side Seal Ring 20 Stationary Side Seal Ring 30 Housing 31 Housing Body 32 Case 33 Bush 40 Pressure Fluid Path 43 Branch Chamber 45 First Restriction 46 Through Hole 47 Second Restriction 48 Inflow Hole 48 ′ Inflow Hole 49 Back Pressure Chamber 51 Discharge-side flow path 52 Third restriction (pressure adjusting part)
53 Through hole (external)
54 Through-hole 55 Discharge chamber 60 Pressure fluid 62 Supply path 64 Branch path 66 Discharge path 100 Static pressure type mechanical seal device A Atmospheric side M Machine inside F1 Separation force F2 Approach force P 43 Branch chamber pressure P 49 Back pressure chamber pressure

Claims (4)

ハウジングと回転軸との間を密封し、摺動面間に圧力流体を導入・噴出させる静圧型メカニカルシール装置であって、
前記回転軸とともに回転する回転側密封環と、
前記回転側密封環に対向して設けられ、前記摺動面間に前記圧力流体を供給する供給路を有する静止側密封環と、
前記ハウジングと前記静止側密封環とにより当該静止側密封環の摺動面とは反対側に形成され、圧力流体が流入孔から供給される背圧室と、
前記背圧室の圧力流体を外部に流出させて当該背圧室の圧力を調整する圧力調整部とを備え、前記摺動面間から漏れ出る流体と、前記圧力調整部から流出する圧力流体とを合流して排出する排出路を備えたことを特徴とする静圧型メカニカルシール装置。
A hydrostatic mechanical seal device that seals between a housing and a rotating shaft and introduces and ejects a pressure fluid between sliding surfaces.
A rotating side sealing ring that rotates together with the rotating shaft;
A stationary side sealing ring provided opposite to the rotation side sealing ring and having a supply path for supplying the pressure fluid between the sliding surfaces;
A back pressure chamber formed on the opposite side of the sliding surface of the stationary side sealing ring by the housing and the stationary side sealing ring, and pressure fluid is supplied from an inflow hole;
A pressure adjusting unit that adjusts the pressure of the back pressure chamber by causing the pressure fluid in the back pressure chamber to flow out to the outside, a fluid that leaks from between the sliding surfaces, and a pressure fluid that flows out of the pressure adjusting unit; A hydrostatic mechanical seal device characterized by comprising a discharge path for joining and discharging .
前記流入孔に絞りが設けられていることを特徴とする請求項1に記載の静圧型メカニカルシール装置。   The hydrostatic mechanical seal device according to claim 1, wherein a throttle is provided in the inflow hole. 前記圧力流体を前記供給路と前記流入孔に分岐させる分岐室を有することを特徴とする請求項1又は2に記載の静圧型メカニカルシール装置。   The hydrostatic mechanical seal device according to claim 1, further comprising a branch chamber that branches the pressure fluid into the supply path and the inflow hole. 前記圧力調整部は前記ハウジング又は前記静止側密封環に着脱可能に設けられた圧力調整器であることを特徴とする請求項1乃至3のいずれかに記載の静圧型メカニカルシール装置。   The hydrostatic mechanical seal device according to any one of claims 1 to 3, wherein the pressure adjusting unit is a pressure regulator that is detachably provided on the housing or the stationary side sealing ring.
JP2015087193A 2015-04-22 2015-04-22 Hydrostatic mechanical seal device Active JP6430326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087193A JP6430326B2 (en) 2015-04-22 2015-04-22 Hydrostatic mechanical seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087193A JP6430326B2 (en) 2015-04-22 2015-04-22 Hydrostatic mechanical seal device

Publications (2)

Publication Number Publication Date
JP2016205508A JP2016205508A (en) 2016-12-08
JP6430326B2 true JP6430326B2 (en) 2018-11-28

Family

ID=57487089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087193A Active JP6430326B2 (en) 2015-04-22 2015-04-22 Hydrostatic mechanical seal device

Country Status (1)

Country Link
JP (1) JP6430326B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345443B1 (en) * 2017-12-28 2021-02-01 Tocircle Ind As A sealing arrangement and method of sealing
CN108302204B (en) * 2018-02-27 2024-06-04 清华大学 Adjustable mechanical sealing device
DE102018208519A1 (en) * 2018-05-29 2019-12-05 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal assembly for zero emission
JP2022060818A (en) * 2020-10-05 2022-04-15 株式会社東芝 Spindle water sealing device of hydraulic machine and hydraulic machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4523625Y1 (en) * 1968-12-14 1970-09-17
JP5158975B2 (en) * 2009-05-12 2013-03-06 日本ピラー工業株式会社 Non-contact type sealing device

Also Published As

Publication number Publication date
JP2016205508A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP7062349B2 (en) Sealing device
JP6430326B2 (en) Hydrostatic mechanical seal device
JP6861730B2 (en) Sliding parts
JP6219367B2 (en) Mechanical seal device
US6135458A (en) Static pressure non-contact gas seal
WO2014061544A1 (en) Slide part
JP6279474B2 (en) Sliding parts
JP5367423B2 (en) Sealing device
JP5519346B2 (en) Dry contact mechanical seal
WO2016067490A1 (en) Main shaft device
JP6941479B2 (en) Seal structure and mechanical seal
JP6111096B2 (en) Hydrostatic non-contact gas seal
KR102661123B1 (en) sliding member
US10563766B2 (en) Packing case for reciprocating machine and method of assembling the same
JP7055579B2 (en) Segment seal
JP6266376B2 (en) Hydrostatic non-contact mechanical seal
JPH08277941A (en) Mechanical seal
KR20200140790A (en) Sealing device
JP2014084910A (en) Shaft seal device
JP5178385B2 (en) Rotating shaft sealing device
JP2017089800A (en) Sealing device
JP4906660B2 (en) Non-contact sealing device
JP6502823B2 (en) mechanical seal
JP2016176407A (en) Liquid pressure rotation device
JP6128600B2 (en) Mechanical seal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250