JP6430241B2 - Transmission belt manufacturing method - Google Patents

Transmission belt manufacturing method Download PDF

Info

Publication number
JP6430241B2
JP6430241B2 JP2014265446A JP2014265446A JP6430241B2 JP 6430241 B2 JP6430241 B2 JP 6430241B2 JP 2014265446 A JP2014265446 A JP 2014265446A JP 2014265446 A JP2014265446 A JP 2014265446A JP 6430241 B2 JP6430241 B2 JP 6430241B2
Authority
JP
Japan
Prior art keywords
sleeve
convex portion
peripheral surface
outer peripheral
portion forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014265446A
Other languages
Japanese (ja)
Other versions
JP2016124160A (en
Inventor
崇 西尾
崇 西尾
原 浩孝
浩孝 原
誠一 林
誠一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2014265446A priority Critical patent/JP6430241B2/en
Publication of JP2016124160A publication Critical patent/JP2016124160A/en
Application granted granted Critical
Publication of JP6430241B2 publication Critical patent/JP6430241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、伝動ベルト(Vリブドベルト、コグ付きVベルト、歯付きベルト等)の製造方法に関する。   The present invention relates to a method for manufacturing a transmission belt (V-ribbed belt, cogged V-belt, toothed belt, etc.).

伝動ベルトの製造方法としては、例えばVリブドベルトの場合、圧縮層を含む環状のスリーブを形成し、当該スリーブを加硫した後、スリーブの圧縮層を研削してリブを形成し、ベルト幅に合わせたスリーブの輪切り等を行う。また、研削によりリブを形成する場合は材料のロスが生じるため、材料のロスを抑制すべく、研削によらずにリブを形成する方法も知られている(例えば、特許文献1参照)。特許文献1には、拡縮可能な内型と、内周面にリブを形成するためのリブ溝を有する外型とを用い、圧縮層を含む第1スリーブを内型の外周面に装着し、内型を拡張させて第1スリーブを外型に押し込むことで、リブを形成すること、さらにその後、外型に第1スリーブを保持した状態で、内型の外周面に心線や伸長層を含む第2スリーブを形成し、内型を拡張させて第2スリーブを第1スリーブと一体化させ、加硫を行うことが記載されている。   For example, in the case of a V-ribbed belt, a transmission sleeve is manufactured by forming an annular sleeve including a compression layer, vulcanizing the sleeve, then grinding the compression layer of the sleeve to form a rib, and adjusting to the belt width. Cut the sleeves. Further, when ribs are formed by grinding, a material loss occurs. Therefore, in order to suppress material loss, a method of forming ribs without grinding is also known (for example, see Patent Document 1). Patent Document 1 uses an inner mold that can be expanded and contracted and an outer mold having a rib groove for forming a rib on the inner circumferential surface, and a first sleeve including a compression layer is attached to the outer circumferential surface of the inner mold, The inner mold is expanded and the first sleeve is pushed into the outer mold to form a rib. After that, the core and the stretched layer are formed on the outer peripheral surface of the inner mold with the first sleeve held by the outer mold. It is described that the second sleeve is formed, the inner mold is expanded, the second sleeve is integrated with the first sleeve, and vulcanization is performed.

特許第4256204号公報Japanese Patent No. 4256204

しかしながら、特許文献1に記載の方法では、第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成であるため、心線の整列状態を良好に保持し難く、さらに、心線の材料に高弾性率のものを用い難い等、心線の材料に制約が生じ得る。また、特許文献1に記載の方法において、第1スリーブと第2スリーブとの間隙を小さくして、第2スリーブを第1スリーブと一体化させるときの心線の伸び量を抑えることも考えられる。しかし、第1スリーブに外型からの浮き上がりが生じている場合に、上記間隙が小さいと、第2スリーブを形成するとき第2スリーブが第1スリーブに接触し、スリーブ間の擦れや捲れが生じ得る。上記間隙はベルト周長が短くなるほど小さくなるため、ベルト周長が短くなるほど上記の問題は顕著化する。したがって、特許文献1に記載の方法では、ベルト周長にも制約が生じ得る。   However, in the method described in Patent Document 1, since the core wire is extended when the second sleeve is integrated with the first sleeve, it is difficult to maintain the alignment of the core wires well. There may be restrictions on the material of the core wire, such as difficulty in using a material with a high elastic modulus. Further, in the method described in Patent Document 1, it is also conceivable to reduce the extension of the core wire when the second sleeve is integrated with the first sleeve by reducing the gap between the first sleeve and the second sleeve. . However, when the first sleeve is lifted from the outer mold, if the gap is small, the second sleeve comes into contact with the first sleeve when the second sleeve is formed, and rubbing or twisting between the sleeves occurs. obtain. Since the gap becomes smaller as the belt circumferential length becomes shorter, the above problem becomes more prominent as the belt circumferential length becomes shorter. Therefore, in the method described in Patent Document 1, the belt circumferential length may be restricted.

本発明の目的は、材料のロスを抑制することができると共に、心線の整列状態を良好に保持することができ、かつ、心線の材料やベルト周長等に制約が生じ難い、伝動ベルトの製造方法を提供することにある。   An object of the present invention is to provide a transmission belt that can suppress loss of material, can maintain the alignment of the cores well, and is less likely to be restricted in the material of the cores and the belt circumference. It is in providing the manufacturing method of.

本発明の観点によると、一方の面にベルト長手方向又はベルト幅方向に延在する複数の凸部を有する圧縮層と、前記圧縮層における前記一方の面と反対側の他方の面において前記ベルト長手方向に延在する心線とを含む伝動ベルトの製造方法において、前記圧縮層を含む環状のスリーブを形成する、スリーブ形成工程と、前記スリーブ形成工程の後、前記スリーブにおける前記圧縮層の前記一方の面に前記複数の凸部を形成する、凸部形成工程と、前記凸部形成工程の後、前記スリーブを加硫する、加硫工程と、を備え、前記スリーブは、前記心線をさらに含み、前記スリーブ形成工程は、前記圧縮層の前記他方の面に前記心線を前記加硫工程における加硫時のピッチ周長に一致するように配置する、心線配置工程を含み、前記凸部形成工程は、前記複数の凸部に対応する複数の溝が形成された溝形成面を有する凸部形成部材の前記溝形成面を、前記圧縮層の前記一方の面に該当する前記スリーブの外周面に押圧することにより行うことを特徴とする、伝動ベルトの製造方法が提供される。 According to an aspect of the present invention, a compression layer having a plurality of convex portions extending in a belt longitudinal direction or a belt width direction on one surface, and the belt on the other surface opposite to the one surface in the compression layer. In a manufacturing method of a transmission belt including a core wire extending in a longitudinal direction, an annular sleeve including the compression layer is formed, and after the sleeve formation step, after the sleeve formation step, the compression layer in the sleeve Forming a plurality of convex portions on one surface; and a vulcanizing step of vulcanizing the sleeve after the convex portion forming step, wherein the sleeve includes the core wire. The sleeve forming step further includes a core wire disposing step of disposing the core wire on the other surface of the compressed layer so as to coincide with a pitch circumference during vulcanization in the vulcanization step , Convex part formation process The groove forming surface of the convex forming member having a groove forming surface in which a plurality of grooves corresponding to the plurality of convex portions are formed is pressed against the outer peripheral surface of the sleeve corresponding to the one surface of the compression layer. Thus, a method for manufacturing a transmission belt is provided.

本発明によれば、研削によらずに凸部形成を行う構成であるため、材料のロスを抑制することができる。また、特許文献1に記載の方法のように第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成ではないため、心線の整列状態を良好に保持することができ、かつ、心線の材料やベルト周長等に制約が生じ難い。   According to this invention, since it is the structure which forms a convex part irrespective of grinding, the loss of material can be suppressed. Moreover, since it is not the structure which extends a core wire when integrating a 2nd sleeve with a 1st sleeve like the method of patent document 1, the alignment state of a core wire can be hold | maintained favorably, and Restrictions are unlikely to occur in the material of the core wire and the belt circumference.

前記伝動ベルトは、前記圧縮層とで前記心線を挟む伸長層をさらに含むものであり、前記スリーブは、前記伸長層をさらに含み、前記スリーブ形成工程は、前記圧縮層とで前記心線を挟むように前記伸長層を配置する、伸長層配置工程をさらに含んでよい。この場合、心線が伸長層と圧縮層との間に埋没された状態で凸部形成を行うことで、心線の整列状態をより確実に良好に保持することができる。   The transmission belt further includes an extension layer sandwiching the core wire with the compression layer, the sleeve further includes the extension layer, and the sleeve forming step includes the extension of the core wire with the compression layer. You may further include the extending | stretching layer arrangement | positioning process of arrange | positioning the said extending | stretching layer so that it may pinch | interpose. In this case, the alignment state of the core wires can be more reliably and satisfactorily maintained by forming the convex portion in a state where the core wires are buried between the stretch layer and the compression layer.

前記スリーブ形成工程において、円筒状のドラムの外周面上に、前記ドラムの前記外周面と前記圧縮層の前記他方の面とが前記心線を挟んで対向するように、前記スリーブを形成し、前記凸部形成工程は、前記スリーブを前記ドラムの前記外周面に装着した状態で行ってよい。この場合、スリーブ形成工程と凸部形成工程とにおいて工具(ドラム)を共通化したことで、凸部形成用の工具を別途用意する必要がなく製造コストを低減することができると共に、作業効率が向上する。   In the sleeve forming step, the sleeve is formed on the outer peripheral surface of a cylindrical drum so that the outer peripheral surface of the drum and the other surface of the compression layer are opposed to each other with the core wire in between. The convex portion forming step may be performed in a state where the sleeve is mounted on the outer peripheral surface of the drum. In this case, since the tool (drum) is used in common in the sleeve forming step and the convex portion forming step, it is not necessary to separately prepare a tool for forming the convex portion, and the manufacturing cost can be reduced and the work efficiency can be reduced. improves.

前記凸部形成工程は、前記スリーブの前記外周面に対する前記溝形成面の押圧位置を変更しながら行ってよい。この場合、比較的小さな凸部形成部材を用いて凸部形成を容易に行うことができる。   The convex portion forming step may be performed while changing the pressing position of the groove forming surface with respect to the outer peripheral surface of the sleeve. In this case, the convex portion can be easily formed using a relatively small convex portion forming member.

前記凸部形成部材は、前記溝形成面に該当する内周面が前記スリーブの前記外周面を包囲する、環状の部材であり、前記凸部形成工程は、前記スリーブの前記外周面を前記内周面で包囲した状態で行ってよい。この場合、凸部形成を容易に行うことができる。   The convex portion forming member is an annular member in which an inner peripheral surface corresponding to the groove forming surface surrounds the outer peripheral surface of the sleeve, and the convex portion forming step includes the inner peripheral surface of the sleeve as the inner peripheral surface. You may carry out in the state surrounded by the surrounding surface. In this case, the convex portion can be easily formed.

前記凸部形成部材は、少なくとも前記溝の部分がゴムで構成されており、前記ゴムは、前記ベルト幅方向に対応する前記凸部形成部材の軸方向に配向された短繊維を含んでよい。この場合、ゴムの軸方向に関する収縮が抑制され、ベルト幅方向に関する凸部のピッチずれを防止することができる。これにより、加硫工程においてスリーブが装着される部材にスリーブを確実に装着することができ、ひいては、製造される伝動ベルトの寸法精度を向上させることができる。また、ゴムの軸方向に関する経時的な収縮も抑制されるため、寸法精度等の観点から判断される凸部形成部材の使用可能回数が増加し、経済的である。   In the convex portion forming member, at least the groove portion is made of rubber, and the rubber may include short fibers oriented in the axial direction of the convex portion forming member corresponding to the belt width direction. In this case, shrinkage in the axial direction of the rubber is suppressed, and pitch deviation of the convex portion in the belt width direction can be prevented. Accordingly, the sleeve can be securely attached to the member to which the sleeve is attached in the vulcanization process, and as a result, the dimensional accuracy of the transmission belt to be manufactured can be improved. Further, since shrinkage with time in the axial direction of the rubber is also suppressed, the number of times the convex portion forming member can be used, which is judged from the viewpoint of dimensional accuracy, is increased, which is economical.

前記心線がアラミド繊維から構成されてよい。アラミド繊維は、高強度、高弾性率(伸び難い)等の特性を有しており、心線をアラミド繊維で構成することで、伝動ベルトの薄型化、曲げ剛性の低減化等を実現することができ、伝動ベルトを高負荷のシステムに適用することができる。また、アラミド繊維は高弾性率で伸び難いが、本発明は、特許文献1に記載の方法のように第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成ではないため、心線の材料としてアラミド繊維を好適に用いることができる。   The core wire may be composed of an aramid fiber. Aramid fiber has properties such as high strength and high elastic modulus (it is difficult to stretch), and the core wire is made of aramid fiber to realize reduction in thickness of transmission belt and reduction in bending rigidity. The transmission belt can be applied to a high load system. Further, although the aramid fiber is difficult to stretch due to its high elastic modulus, the present invention is not configured to stretch the core wire when the second sleeve is integrated with the first sleeve as in the method described in Patent Document 1. Aramid fibers can be suitably used as the wire material.

前記伝動ベルトは、前記一方の面において前記複数の凸部を被覆する編布からなる被覆層を有し、前記凸部形成工程は、前記凸部形成部材と前記圧縮層との間に前記被覆層を介在させた状態で、前記凸部形成部材の前記溝形成面を前記スリーブの前記外周面に押圧することにより行ってよい。この場合、被覆層により、通気性が良くなり空気の残留を抑制できるので、エア抜き効果が向上する(真空引きを不要にすることもできる)。また、凸部形成工程後に凸部形成部材をスリーブから容易に剥離することができる。さらに、凸部の形成状態が安定すると共に、凸部表面の摩擦係数が下がるため、加硫工程においてスリーブが装着される部材へのスリーブの装着性が向上する。また、ベルトの表面特性(摩擦係数等)の安定化を実現することができる。   The transmission belt has a coating layer made of a knitted fabric that covers the plurality of convex portions on the one surface, and the convex portion forming step includes the covering layer between the convex portion forming member and the compression layer. You may carry out by pressing the said groove formation surface of the said convex-part formation member on the said outer peripheral surface of the said sleeve in the state which interposed the layer. In this case, the coating layer improves air permeability and suppresses the remaining air, so that the air venting effect is improved (evacuation can be made unnecessary). In addition, the convex portion forming member can be easily peeled from the sleeve after the convex portion forming step. Furthermore, since the formation state of the convex portion is stabilized and the coefficient of friction on the surface of the convex portion is lowered, the mounting property of the sleeve to the member to which the sleeve is mounted in the vulcanization process is improved. In addition, stabilization of the surface characteristics (friction coefficient, etc.) of the belt can be realized.

本発明によれば、研削によらずに凸部形成を行う構成であるため、材料のロスを抑制することができる。また、特許文献1に記載の方法のように第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成ではないため、心線の整列状態を良好に保持することができ、かつ、心線の材料やベルト周長等に制約が生じ難い。   According to this invention, since it is the structure which forms a convex part irrespective of grinding, the loss of material can be suppressed. Moreover, since it is not the structure which extends a core wire when integrating a 2nd sleeve with a 1st sleeve like the method of patent document 1, the alignment state of a core wire can be hold | maintained favorably, and Restrictions are unlikely to occur in the material of the core wire and the belt circumference.

本発明の第1実施形態に係る伝動ベルトの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the power transmission belt which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝動ベルトの製造方法において凸部形成工程で用いられる凸部形成装置を示す斜視図である。It is a perspective view which shows the convex part formation apparatus used at the convex part formation process in the manufacturing method of the power transmission belt which concerns on 1st Embodiment of this invention. (a)は、図2に示す凸部形成装置によって凸部形成が行われている状況を示す平面図である。(b)は、図3(a)のIIIB−IIIB線に沿った断面図である。(c)は、図3(b)の一点鎖線で囲んだ領域IIICの拡大図である。(A) is a top view which shows the condition where convex part formation is performed by the convex part formation apparatus shown in FIG. (B) is sectional drawing which followed the IIIB-IIIB line | wire of Fig.3 (a). FIG. 3C is an enlarged view of a region IIIC surrounded by a one-dot chain line in FIG. (a)〜(c)は、凸部形成工程を段階的に示す、図3(b)の一点鎖線で囲んだ領域IIICに対応する断面図である。(A)-(c) is sectional drawing corresponding to the area | region IIIC enclosed with the dashed-dotted line of FIG.3 (b) which shows a convex part formation process in steps. (a)〜(c)は、加硫工程を段階的に示す、図3(b)の一点鎖線で囲んだ領域IIICに対応する断面図である。(A)-(c) is sectional drawing corresponding to the area | region IIIC enclosed with the dashed-dotted line of FIG.3 (b) which shows a vulcanization process in steps. (a)は、本発明の第2実施形態に係る伝動ベルトの製造方法において凸部形成装置によって凸部形成が行われている状況を示す平面図である。(b)は、図6(a)のVIB−VIB線に沿った断面図である。(c)は、図6(b)の一点鎖線で囲んだ領域VICの拡大図である。(A) is a top view which shows the condition where the convex part formation is performed by the convex part formation apparatus in the manufacturing method of the power transmission belt which concerns on 2nd Embodiment of this invention. (B) is sectional drawing which followed the VIB-VIB line | wire of Fig.6 (a). FIG. 6C is an enlarged view of a region VIC surrounded by a one-dot chain line in FIG. (a),(b)は、本発明の第3実施形態に係る伝動ベルトの製造方法で用いられる凸部形成部材の作製過程を段階的に示す部分断面図である。(c)は、本発明の第3実施形態に係る伝動ベルトの製造方法で用いられる凸部形成部材を示す斜視図である。(A), (b) is a fragmentary sectional view which shows the preparation process of the convex part formation member used with the manufacturing method of the power transmission belt which concerns on 3rd Embodiment of this invention in steps. (C) is a perspective view which shows the convex part formation member used with the manufacturing method of the power transmission belt which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る伝動ベルトの製造方法において凸部形成装置によって凸部形成が行われている状況を示す図であり、(a)は凸部形成装置の一部切り欠き斜視断面図、(b)は図4(b)に対応する断面図である。It is a figure which shows the condition where the convex part formation is performed by the convex part formation apparatus in the manufacturing method of the power transmission belt which concerns on 3rd Embodiment of this invention, (a) is a partially notched perspective cross section of a convex part formation apparatus. FIG. 4B is a cross-sectional view corresponding to FIG. 本発明の第4実施形態に係る伝動ベルトの製造方法において凸部形成装置によって凸部形成が行われている状況を示す図であり、(a)は凸部形成装置の一部切り欠き斜視断面図、(b)は図4(b)に対応する断面図である。It is a figure which shows the condition where the convex part formation is performed by the convex part formation apparatus in the manufacturing method of the power transmission belt which concerns on 4th Embodiment of this invention, (a) is a partially notched perspective cross section of a convex part formation apparatus. FIG. 4B is a cross-sectional view corresponding to FIG. (a)は、本発明の実施例及び比較例の製造条件及び品質評価を示す表である。(b)は、本発明の実施例及び比較例における伸長層用ゴム、圧縮層用ゴム、及び、被覆層の接着処理用ゴムの組成を示す表である。(A) is a table | surface which shows the manufacturing conditions and quality evaluation of the Example and comparative example of this invention. (B) is a table | surface which shows the composition of the rubber | gum for an extension layer, the rubber | gum for compression layers, and the rubber | gum for the adhesion process of a coating layer in the Example and comparative example of this invention.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明の第1実施形態に係る製造方法は、一方の面にベルト長手方向にそれぞれ延在する複数のリブ(凸部)を有するVリブドベルトを製造する方法であって、図1に示すように、スリーブ形成工程S1と、凸部形成工程S2と、加硫工程S3とを含む。   The manufacturing method according to the first embodiment of the present invention is a method for manufacturing a V-ribbed belt having a plurality of ribs (projections) extending in the longitudinal direction of the belt on one surface, as shown in FIG. The sleeve forming step S1, the convex portion forming step S2, and the vulcanizing step S3 are included.

スリーブ形成工程S1では、凸部形成工程S2でも用いられるドラム10を用いて、環状のスリーブ1を形成する。   In the sleeve forming step S1, the annular sleeve 1 is formed using the drum 10 also used in the convex portion forming step S2.

ドラム10は、図2に示すように、円筒状であり、溝のない平滑な外周面10xを有する。ドラム10は、一般構造用圧延鋼材(SS400等)や炭素鋼(S45C、S55C等)を機械加工して形成されたものであり、外周面10xはハードクロムメッキ等で保護されてよい。   As shown in FIG. 2, the drum 10 is cylindrical and has a smooth outer peripheral surface 10 x without a groove. The drum 10 is formed by machining general structural rolled steel (SS400 or the like) or carbon steel (S45C, S55C or the like), and the outer peripheral surface 10x may be protected by hard chrome plating or the like.

スリーブ1は、図4に示すように、凸部形成工程S2において一方の面に複数の凸部1vが形成される圧縮層1aと、圧縮層1aにおける当該一方の面と反対側の他方の面においてベルト長手方向に延在する心線1bと、圧縮層1aとで心線1bを挟む伸長層1cと、複数の凸部1vを被覆する被覆層1dとを含む。圧縮層1aは、エチレン−プロピレン−ジエンゴム、ミラブルウレタンゴム、クロロプレンゴム、ニトリルゴム、水素化ニトリルゴム、スチレン−ブタジエンゴム、天然ゴム、ブチルゴム等のゴム成分を含むゴム組成物から構成されてよい。心線1bは、アラミド繊維から構成されている。伸長層1cは、圧縮層1aと同様、エチレン−プロピレン−ジエンゴム、ミラブルウレタンゴム、クロロプレンゴム、ニトリルゴム、水素化ニトリルゴム、スチレン−ブタジエンゴム、天然ゴム、ブチルゴム等のゴム成分を含むゴム組成物から構成されてよく、さらに繊維補強が施されてよい。被覆層1dは、編布からなり、例えば、ポリエステル系複合糸とセルロース系天然紡績糸(例えば綿糸)とで編成されたものであってよい。   As shown in FIG. 4, the sleeve 1 includes a compression layer 1 a in which a plurality of protrusions 1 v are formed on one surface in the protrusion formation step S <b> 2, and the other surface opposite to the one surface in the compression layer 1 a. 2 includes a core wire 1b extending in the longitudinal direction of the belt, an extension layer 1c sandwiching the core wire 1b with the compression layer 1a, and a covering layer 1d covering the plurality of convex portions 1v. The compression layer 1a may be composed of a rubber composition containing a rubber component such as ethylene-propylene-diene rubber, millable urethane rubber, chloroprene rubber, nitrile rubber, hydrogenated nitrile rubber, styrene-butadiene rubber, natural rubber, or butyl rubber. The core wire 1b is composed of an aramid fiber. The stretch layer 1c is a rubber composition containing a rubber component such as ethylene-propylene-diene rubber, millable urethane rubber, chloroprene rubber, nitrile rubber, hydrogenated nitrile rubber, styrene-butadiene rubber, natural rubber, butyl rubber, and the like, similar to the compression layer 1a. And may be further fiber reinforced. The covering layer 1d is made of a knitted fabric, and may be knitted with, for example, a polyester composite yarn and a cellulose natural spun yarn (for example, cotton yarn).

スリーブ形成工程S1では、先ず、図4(a)に示すように、ドラム10の外周面10xに離型紙2(例えば、紙等からなる基材の両面にシリコーン離型剤をコーティングしたもの)を配置し、その上に伸長層1cを巻き付け、さらにその上に心線1bをドラム10の周方向(以下、単に「周方向」という場合がある。また、当該「周方向」は、ベルト長手方向に相当する。)に螺旋状にスピニングし、さらにその上に圧縮層1aと被覆層1dとを順次巻き付けて、スリーブ1を形成する。換言すると、スリーブ形成工程S1は、圧縮層1aの他方の面に心線1bを配置する心線配置工程S1aと、圧縮層1aとで心線1bを挟むように伸長層1cを配置する伸長層配置工程S1bとを含む。このとき心線1bは、加硫時のピッチ周長に一致するように配置される。   In the sleeve forming step S1, first, as shown in FIG. 4A, the outer peripheral surface 10x of the drum 10 is provided with a release paper 2 (for example, a silicone release agent coated on both sides of a base material made of paper or the like). The stretched layer 1c is wound thereon, and further the core wire 1b is further referred to as the circumferential direction of the drum 10 (hereinafter, simply referred to as “circumferential direction”. The “circumferential direction” is the belt longitudinal direction. And the compression layer 1a and the covering layer 1d are sequentially wound thereon to form the sleeve 1. In other words, in the sleeve forming step S1, the core wire placement step S1a for placing the core wire 1b on the other surface of the compression layer 1a and the stretch layer for placing the stretch layer 1c so as to sandwich the core wire 1b between the compression layer 1a Placement step S1b. At this time, the core wire 1b is disposed so as to coincide with the pitch circumference during vulcanization.

スリーブ形成工程S1の後に行われる凸部形成工程S2では、ドラム10の外周面10xにスリーブ1を装着した状態で、ドラム10を移動させて図2及び図3に示す凸部形成装置100に組み込み、凸部形成装置100を用いて、スリーブ1の外周面1x(即ち、スリーブ1における圧縮層1aの一方の面)に複数の凸部1vを形成する。   In the convex portion forming step S2 performed after the sleeve forming step S1, the drum 10 is moved and incorporated in the convex portion forming apparatus 100 shown in FIGS. 2 and 3 while the sleeve 1 is mounted on the outer peripheral surface 10x of the drum 10. The plurality of convex portions 1v are formed on the outer peripheral surface 1x of the sleeve 1 (that is, one surface of the compression layer 1a in the sleeve 1) using the convex portion forming apparatus 100.

凸部形成装置100は、スリーブ形成工程S1でも用いられるドラム10と、ドラム10を支持する支持部15と、支持部15がドラム10を支持しつつ旋回するように駆動する駆動部16と、複数の凸部1vに対応する複数の溝20vが形成された溝形成面20xを有する凸部形成部材20と、ドラム10を挟んで凸部形成部材20と対向するように配置された反力部材30と、凸部形成部材20を加熱するヒータ40と、凸部形成部材20及び反力部材30の外側に配置された押圧手段50と、押圧手段50を支持する一対のフレーム60と、上記各構成要素を支持する架台70とを含む。   The convex portion forming apparatus 100 includes a drum 10 that is also used in the sleeve forming step S <b> 1, a support portion 15 that supports the drum 10, a drive portion 16 that drives the support portion 15 to rotate while supporting the drum 10, and a plurality of portions. A convex portion forming member 20 having a groove forming surface 20x formed with a plurality of grooves 20v corresponding to the convex portion 1v, and a reaction force member 30 arranged to face the convex portion forming member 20 with the drum 10 interposed therebetween. A heater 40 that heats the convex portion forming member 20, a pressing means 50 disposed outside the convex portion forming member 20 and the reaction force member 30, a pair of frames 60 that support the pressing means 50, and each of the above configurations And a gantry 70 for supporting the element.

支持部15は、ドラム10の下面を支持する円盤状のベース11と、ベース11の上面中心部から上方に突出した上軸12と、ベース11の下面中心部から下方に突出した下軸13とを含む。上軸12は、ドラム10の下壁中央に形成された孔を貫通し、ドラム10の内部に挿入されている。下軸13は、架台70を貫通し、その下端に駆動部16が設けられている。ベース11及び下軸13は、それぞれ支持ロール11a及び軸受け13aを介して、架台70に回転可能に支持されている。   The support portion 15 includes a disk-shaped base 11 that supports the lower surface of the drum 10, an upper shaft 12 that protrudes upward from the center portion of the upper surface of the base 11, and a lower shaft 13 that protrudes downward from the center portion of the lower surface of the base 11. including. The upper shaft 12 passes through a hole formed in the center of the lower wall of the drum 10 and is inserted into the drum 10. The lower shaft 13 passes through the gantry 70, and a drive unit 16 is provided at the lower end thereof. The base 11 and the lower shaft 13 are rotatably supported by the gantry 70 via a support roll 11a and a bearing 13a, respectively.

凸部形成部材20は、ドラム10の軸方向(以下、単に「軸方向」という場合がある。また、当該「軸方向」は、ベルト幅方向に相当する。)に関してドラム10と略同じ長さを有すると共に、周方向に関してドラム10よりも短い、ドラム10の外周面10xに沿って湾曲した板状の部材である。凸部形成部材20は、炭素鋼(S55C等)等を機械加工して形成されたものであり、その内周面である溝形成面20xはハードクロムメッキ等で保護されてよい。   The convex portion forming member 20 has substantially the same length as that of the drum 10 with respect to the axial direction of the drum 10 (hereinafter, simply referred to as “axial direction”. The “axial direction” corresponds to the belt width direction). And a plate-like member curved along the outer peripheral surface 10x of the drum 10 that is shorter than the drum 10 in the circumferential direction. The convex forming member 20 is formed by machining carbon steel (S55C or the like) or the like, and the groove forming surface 20x that is the inner peripheral surface thereof may be protected by hard chrome plating or the like.

反力部材30は、基部31と、一対の当接部32とを含む。基部31は、軸方向に関してドラム10と略同じ長さを有すると共に、周方向に関してドラム10よりも短い、矩形状の平板部材である。一対の当接部32は、基部31におけるドラム10の外周面10xと対向する面の軸方向両端近傍に固定されており、ドラム10の外周面10xにおける軸方向両端近傍(スリーブ1が配置されていない部分)にそれぞれ当接している。一対の当接部32の内面(ドラム10の外周面10xに当接する面)は、平坦であってもよいし、外周面10xに沿って湾曲していてもよい。反力部材30のうち、一対の当接部32のみがドラム10の外周面10xと接触し、基部31はドラム10の外周面10xと接触していない。また、反力部材30の基部31及び一対の当接部32はいずれも、スリーブ1と接触していない。基部31は炭素鋼(例えばS55C)等から形成され、一対の当接部32は硬質な樹脂材料(例えばナイロン樹脂)等から形成されてよい。   The reaction force member 30 includes a base portion 31 and a pair of contact portions 32. The base 31 is a rectangular flat plate member having substantially the same length as the drum 10 in the axial direction and shorter than the drum 10 in the circumferential direction. The pair of abutting portions 32 are fixed in the vicinity of both axial ends of the surface of the base portion 31 facing the outer peripheral surface 10x of the drum 10, and near the both axial ends of the outer peripheral surface 10x of the drum 10 (the sleeve 1 is disposed). Are not in contact with each other). The inner surfaces of the pair of contact portions 32 (surfaces that contact the outer peripheral surface 10x of the drum 10) may be flat or may be curved along the outer peripheral surface 10x. Of the reaction member 30, only the pair of contact portions 32 are in contact with the outer peripheral surface 10 x of the drum 10, and the base portion 31 is not in contact with the outer peripheral surface 10 x of the drum 10. Further, neither the base portion 31 nor the pair of contact portions 32 of the reaction force member 30 is in contact with the sleeve 1. The base 31 may be formed from carbon steel (for example, S55C) or the like, and the pair of contact portions 32 may be formed from a hard resin material (for example, nylon resin) or the like.

ヒータ40は、発熱体(ニクロム線)を絶縁体(マイカ(雲母))で挟み込んだプレートヒータであり、凸部形成部材20の外周面に配置されている。   The heater 40 is a plate heater in which a heating element (nichrome wire) is sandwiched between insulators (mica (mica)), and is disposed on the outer peripheral surface of the convex portion forming member 20.

押圧手段50は、凸部形成時に溝形成面20xをスリーブ1の外周面1xに押圧するのに用いられるものであり、凸部形成部材20及び反力部材30のそれぞれに対して1組ずつ設けられた上下一対のシリンダ(空圧シリンダ、油圧シリンダ、電動シリンダ等)を含む。   The pressing means 50 is used to press the groove forming surface 20x against the outer peripheral surface 1x of the sleeve 1 when forming the convex portion, and one set is provided for each of the convex portion forming member 20 and the reaction force member 30. A pair of upper and lower cylinders (pneumatic cylinder, hydraulic cylinder, electric cylinder, etc.).

一対のフレーム60は、架台70上に立設されており、凸部形成部材20及び反力部材30それぞれの外側において、押圧手段50のシリンダを支持している。   The pair of frames 60 are erected on the mount 70 and support the cylinder of the pressing means 50 on the outer sides of the convex portion forming member 20 and the reaction force member 30.

凸部形成工程S2では、先ず、図4(a)に示すように、ドラム10の外周面10xと凸部形成部材20の溝形成面20xとをスリーブ1を挟んで対向するように配置する。このとき、ドラム10を挟んで凸部形成部材20と反対側では、図2及び図3(a),(b)に示すように、反力部材30の一対の当接部32がドラム10の外周面10xと当接している。そして、ヒータ40で加熱された状態の凸部形成部材20を押圧手段50で押圧し、図4(b)に示すように、凸部形成部材20と圧縮層1aとの間に被覆層1dを介在させた状態で、溝形成面20xをスリーブ1の外周面1xに押圧する。このとき、ドラム10を挟んで凸部形成部材20と反対側では、図2及び図3(a),(b)に示すように、押圧力によってドラム10が移動しないように反力部材30がドラム10を支持している。これにより、スリーブ1の外周面1xの一部(溝形成面20xで押圧された部分)に凸部1vが形成される。   In the convex portion forming step S2, first, as shown in FIG. 4A, the outer peripheral surface 10x of the drum 10 and the groove forming surface 20x of the convex portion forming member 20 are arranged so as to face each other with the sleeve 1 interposed therebetween. At this time, on the opposite side of the convex portion forming member 20 across the drum 10, as shown in FIGS. 2, 3 </ b> A, and 3 </ b> B, the pair of contact portions 32 of the reaction force member 30 is formed on the drum 10. It is in contact with the outer peripheral surface 10x. And the convex part formation member 20 of the state heated with the heater 40 is pressed with the press means 50, and as shown in FIG.4 (b), the coating layer 1d is provided between the convex part formation member 20 and the compression layer 1a. In a state of being interposed, the groove forming surface 20x is pressed against the outer peripheral surface 1x of the sleeve 1. At this time, on the opposite side of the convex portion forming member 20 across the drum 10, as shown in FIGS. 2 and 3A, 3B, the reaction force member 30 is prevented from moving by the pressing force. The drum 10 is supported. Thereby, the convex part 1v is formed in a part of outer peripheral surface 1x of the sleeve 1 (part pressed by the groove formation surface 20x).

その後、押圧手段50による押圧を解除し、凸部形成部材20及び反力部材30をスリーブ1の外周面1xから離隔させる(図4(c)参照)。そして、駆動部16により支持部15をドラム10と共に周方向に所定角度(溝形成面20xに相当する角度)旋回させ、スリーブ1の外周面1xにおいて凸部1vが未だ形成されていない部分と溝形成面20xとが対向する状態とし、再び溝形成面20xをスリーブ1の外周面1xに押圧する。   Thereafter, the pressing by the pressing means 50 is released, and the convex portion forming member 20 and the reaction force member 30 are separated from the outer peripheral surface 1x of the sleeve 1 (see FIG. 4C). Then, the drive unit 16 turns the support unit 15 together with the drum 10 in the circumferential direction by a predetermined angle (an angle corresponding to the groove forming surface 20x), and a portion of the outer peripheral surface 1x of the sleeve 1 where the convex portion 1v is not yet formed and the groove The groove forming surface 20x is pressed against the outer peripheral surface 1x of the sleeve 1 again with the forming surface 20x facing.

上記のような動作を繰り返し、スリーブ1の外周面1xの全体に凸部1vを形成する。即ち、凸部形成工程S2は、スリーブ1の外周面1xに対する溝形成面20xの押圧位置を変更しながら行う。   The above operation is repeated to form the convex portion 1v on the entire outer peripheral surface 1x of the sleeve 1. That is, the convex portion forming step S2 is performed while changing the pressing position of the groove forming surface 20x against the outer peripheral surface 1x of the sleeve 1.

そして、スリーブ1の外周面1xの全体に凸部1vが形成された後、ドラム10からスリーブ1を取り出す。例えば、図4(c)に示すように、スリーブ1を軸方向に移動させることで、スリーブ1を離型紙2と共にドラム10から引き抜く。或いは、ドラム10の外周面10xにスリーブ1を押し付けながら、又は、ドラム10の外周面10xとスリーブ1との間にエアを吹き込みながら、ドラム10を軸方向に移動させてもよい。このとき、スリーブ1を作業者の手で把持して移動させてもよいし、任意の装置を用いてスリーブ1やドラム10を移動させてもよい。また、この取出し作業を容易にするため、ドラム10の外周面10xに予め離型剤を塗布しておいてもよく、離型紙2と離型剤とを併用してもよいし、どちらか一方のみを用いてもよい。   And after the convex part 1v is formed in the whole outer peripheral surface 1x of the sleeve 1, the sleeve 1 is taken out from the drum 10. FIG. For example, as shown in FIG. 4C, the sleeve 1 is pulled out from the drum 10 together with the release paper 2 by moving the sleeve 1 in the axial direction. Alternatively, the drum 10 may be moved in the axial direction while pressing the sleeve 1 against the outer peripheral surface 10 x of the drum 10 or blowing air between the outer peripheral surface 10 x of the drum 10 and the sleeve 1. At this time, the sleeve 1 may be gripped and moved by the operator's hand, or the sleeve 1 and the drum 10 may be moved using any device. Further, in order to facilitate the take-out operation, a release agent may be applied to the outer peripheral surface 10x of the drum 10 in advance, or the release paper 2 and the release agent may be used in combination. You may use only.

この段階において、スリーブ1は未加硫の状態である。即ち、凸部形成工程S2では、加硫が行われないように、圧力、温度、時間等を制御する。   At this stage, the sleeve 1 is in an unvulcanized state. That is, in the convex portion forming step S2, the pressure, temperature, time, and the like are controlled so that vulcanization is not performed.

凸部形成工程S2の後に行われる加硫工程S3では、図5に示す加硫装置150を用いて、スリーブ1を加硫する。   In the vulcanization step S3 performed after the convex portion formation step S2, the sleeve 1 is vulcanized using a vulcanizer 150 shown in FIG.

加硫装置150は、内型160及び外型170を含む。内型160は、円筒状のドラム161、円筒状の可撓性ジャケット162、上蓋163等を含む。外型170は、複数の凸部1vに対応する複数の溝170vが内周面に形成された円筒状の加熱用ジャケットである。   The vulcanizer 150 includes an inner mold 160 and an outer mold 170. The inner mold 160 includes a cylindrical drum 161, a cylindrical flexible jacket 162, an upper lid 163, and the like. The outer mold 170 is a cylindrical heating jacket in which a plurality of grooves 170v corresponding to the plurality of convex portions 1v are formed on the inner peripheral surface.

加硫工程S3では、先ず、離型紙2をスリーブ1から剥離した上で、複数の凸部1vがそれぞれ複数の溝170vに収容されるように、スリーブ1を外型170に装着する。その後、図5(a)に示すように、外型170に内型160を取り付ける。そして、図5(b)に示すように、内部に蒸気を供給することで外型170を加熱し、かつ、可撓性ジャケット162を膨張させて、スリーブ1を加硫する。加硫後は、可撓性ジャケット162を膨張させた状態で、外型170の内部に水を循環させ、スリーブ1を冷却する。そして、図5(c)に示すように、可撓性ジャケット162を真空引きにより吸引してスリーブ1から離隔させた後、内型160を上方に移動させて外型170と分離し、その後、スリーブ1を外型170から取り出す。   In the vulcanization step S3, first, the release paper 2 is peeled from the sleeve 1, and then the sleeve 1 is mounted on the outer mold 170 so that the plurality of convex portions 1v are accommodated in the plurality of grooves 170v, respectively. Thereafter, as shown in FIG. 5A, the inner mold 160 is attached to the outer mold 170. Then, as shown in FIG. 5B, the outer mold 170 is heated by supplying steam to the inside, and the flexible jacket 162 is expanded to vulcanize the sleeve 1. After vulcanization, with the flexible jacket 162 expanded, water is circulated inside the outer mold 170 to cool the sleeve 1. Then, as shown in FIG. 5 (c), the flexible jacket 162 is sucked by vacuuming and separated from the sleeve 1, and then the inner mold 160 is moved upward to separate from the outer mold 170, and then The sleeve 1 is taken out from the outer mold 170.

さらにその後、ベルト幅に合わせたスリーブ1の輪切りを行うことで、Vリブドベルトが完成する。   Further, the V-ribbed belt is completed by cutting the sleeve 1 in accordance with the belt width.

以上に述べたように、本実施形態によれば、研削によらずに凸部形成を行う構成であるため、材料のロスを抑制することができる。また、特許文献1に記載の方法のように第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成ではないため、心線の整列状態を良好に保持することができ、かつ、心線の材料やベルト周長等に制約が生じ難い。   As described above, according to the present embodiment, since the convex portion is formed without being ground, the material loss can be suppressed. Moreover, since it is not the structure which extends a core wire when integrating a 2nd sleeve with a 1st sleeve like the method of patent document 1, the alignment state of a core wire can be hold | maintained favorably, and Restrictions are unlikely to occur in the material of the core wire and the belt circumference.

スリーブ形成工程S1は、圧縮層1aとで心線1bを挟むように伸長層1cを配置する、伸長層配置工程S1bを含む。この場合、心線1bが伸長層1cと圧縮層1aとの間に埋没された状態で凸部形成を行うことで、心線1bの整列状態をより確実に良好に保持することができる。   The sleeve formation step S1 includes an extension layer arrangement step S1b in which the extension layer 1c is arranged so as to sandwich the core wire 1b with the compression layer 1a. In this case, the alignment state of the cores 1b can be more reliably and satisfactorily maintained by forming the protrusions while the cores 1b are buried between the stretched layer 1c and the compression layer 1a.

スリーブ形成工程S1において、ドラム10の外周面10x上にスリーブ1を形成し、凸部形成工程S2は、スリーブ1をドラム10の外周面10xに装着した状態で行う。この場合、スリーブ形成工程S1と凸部形成工程S2とにおいて工具(ドラム10)を共通化したことで、凸部形成用の工具を別途用意する必要がなく製造コストを低減することができると共に、作業効率が向上する。   In the sleeve forming step S1, the sleeve 1 is formed on the outer peripheral surface 10x of the drum 10, and the convex portion forming step S2 is performed in a state where the sleeve 1 is mounted on the outer peripheral surface 10x of the drum 10. In this case, by making the tool (drum 10) common in the sleeve forming step S1 and the convex portion forming step S2, it is not necessary to prepare a tool for forming the convex portion separately, and the manufacturing cost can be reduced. Work efficiency is improved.

凸部形成工程S2は、スリーブ1の外周面1xに対する溝形成面20xの押圧位置を変更しながら行う。この場合、比較的小さな凸部形成部材20を用いて凸部形成を容易に行うことができる。   The convex portion forming step S2 is performed while changing the pressing position of the groove forming surface 20x against the outer peripheral surface 1x of the sleeve 1. In this case, the convex portion can be easily formed using the relatively small convex portion forming member 20.

心線1bがアラミド繊維から構成されている。アラミド繊維は、高強度、高弾性率(伸び難い)等の特性を有しており、心線1bをアラミド繊維で構成することで、伝動ベルトの薄型化、曲げ剛性の低減化等を実現することができ、伝動ベルトを高負荷のシステムに適用することができる。また、アラミド繊維は高弾性率で伸び難いが、本発明は、特許文献1に記載の方法のように第2スリーブを第1スリーブと一体化させるときに心線を伸ばす構成ではないため、心線1bの材料としてアラミド繊維を好適に用いることができる。   The core wire 1b is composed of an aramid fiber. The aramid fiber has characteristics such as high strength and high elastic modulus (difficult to stretch), and by constituting the core wire 1b with an aramid fiber, the transmission belt can be made thinner and the bending rigidity can be reduced. And transmission belts can be applied to high load systems. Further, although the aramid fiber is difficult to stretch due to its high elastic modulus, the present invention is not configured to stretch the core wire when the second sleeve is integrated with the first sleeve as in the method described in Patent Document 1. Aramid fibers can be suitably used as the material for the wire 1b.

凸部形成工程S2は、凸部形成部材20と圧縮層1aとの間に被覆層1dを介在させた状態で、凸部形成部材20の溝形成面20xをスリーブ1の外周面1xに押圧することにより行う。この場合、被覆層1dにより、通気性が良くなり空気の残留を抑制できるので、エア抜き効果が向上する(真空引きを不要にすることもできる)。また、凸部形成工程S2後に凸部形成部材20をスリーブ1から容易に剥離することができる。さらに、凸部1vの形成状態が安定すると共に、凸部1v表面の摩擦係数が下がるため、加硫工程S3においてスリーブ1が装着される部材(外型170)へのスリーブ1の装着性が向上する。また、ベルトの表面特性(摩擦係数等)の安定化を実現することができる。   In the convex portion forming step S2, the groove forming surface 20x of the convex portion forming member 20 is pressed against the outer peripheral surface 1x of the sleeve 1 with the covering layer 1d interposed between the convex portion forming member 20 and the compression layer 1a. By doing. In this case, the coating layer 1d improves the air permeability and suppresses the remaining air, so that the air venting effect is improved (evacuation can be made unnecessary). Further, the convex portion forming member 20 can be easily peeled from the sleeve 1 after the convex portion forming step S2. Furthermore, since the formation state of the convex portion 1v is stabilized and the friction coefficient of the surface of the convex portion 1v is lowered, the mounting property of the sleeve 1 to the member (outer mold 170) to which the sleeve 1 is mounted in the vulcanization step S3 is improved. To do. In addition, stabilization of the surface characteristics (friction coefficient, etc.) of the belt can be realized.

続いて、図6を参照し、本発明の第2実施形態に係る製造方法について説明する。第2実施形態は、凸部形成工程S2及び当該工程で用いられる凸部形成装置が第1実施形態と異なり、それ以外は第1実施形態と同様である。   Then, with reference to FIG. 6, the manufacturing method which concerns on 2nd Embodiment of this invention is demonstrated. The second embodiment is the same as the first embodiment except that the convex portion forming step S2 and the convex portion forming apparatus used in the step are different from the first embodiment.

第2実施形態では、凸部形成工程S2において、図3に示す凸部形成装置100の代わりに、図6に示す凸部形成装置200を用いる。凸部形成装置200は、図3(a),(b)に示す凸部形成部材20の代わりに図6(a),(b)に示す凸部形成部材220を含む点、図3(a),(b)に示す反力部材30の代わりに図6(a),(b)に示す反力部材230を含む点、及び、ヒータ40の代わりに、凸部形成部材220の内部に熱水(熱媒体)を循環させるように構成されたヒータ(図示略)を含む点において、凸部形成装置100と異なる。   In 2nd Embodiment, in convex part formation process S2, the convex part formation apparatus 200 shown in FIG. 6 is used instead of the convex part formation apparatus 100 shown in FIG. The convex portion forming apparatus 200 includes a convex portion forming member 220 shown in FIGS. 6A and 6B instead of the convex portion forming member 20 shown in FIGS. ) And (b) include the reaction force member 230 shown in FIGS. 6A and 6B instead of the reaction force member 30, and instead of the heater 40, heat is generated inside the convex portion forming member 220. It differs from the convex part forming apparatus 100 in that a heater (not shown) configured to circulate water (heat medium) is included.

凸部形成部材220は、円筒状であり、溝形成面220xに該当する外周面に、複数の凸部1vに対応する複数の溝220vが形成されている。凸部形成部材220は、ドラム10の軸方向に沿った軸を中心に回転可能に、基部221に支持されている。凸部形成部材220は、軸方向に関してドラム10と略同じ長さを有する。凸部形成部材220は、炭素鋼(S55C等)等を機械加工して形成されたものであり、その外周面である溝形成面220xはハードクロムメッキ等で保護されてよい。   The convex portion forming member 220 has a cylindrical shape, and a plurality of grooves 220v corresponding to the plurality of convex portions 1v are formed on the outer peripheral surface corresponding to the groove forming surface 220x. The convex portion forming member 220 is supported by the base portion 221 so as to be rotatable about an axis along the axial direction of the drum 10. The convex forming member 220 has substantially the same length as the drum 10 in the axial direction. The convex portion forming member 220 is formed by machining carbon steel (S55C or the like) or the like, and the groove forming surface 220x that is the outer peripheral surface thereof may be protected by hard chrome plating or the like.

反力部材230は、基部231と、一対の当接部232とを含む。一対の当接部232は、それぞれ円柱状であり、基部231におけるドラム10の外周面10xと対向する面の軸方向両端近傍において、ドラム10の軸方向に沿った軸を中心に回転可能に支持されており、ドラム10の外周面10xにおける軸方向両端近傍(スリーブ1が配置されていない部分)にそれぞれ当接している。反力部材230のうち、一対の当接部232のみがドラム10の外周面10xと接触し、基部231はドラム10の外周面10xと接触していない。また、反力部材230の基部231及び一対の当接部232はいずれも、スリーブ1と接触していない。基部231は炭素鋼(例えばS55C)等から形成され、一対の当接部232は硬質な樹脂材料(例えばナイロン樹脂)等から形成されてよい。   The reaction force member 230 includes a base portion 231 and a pair of contact portions 232. Each of the pair of contact portions 232 has a columnar shape, and is supported so as to be rotatable around an axis along the axial direction of the drum 10 in the vicinity of both axial ends of the surface of the base portion 231 facing the outer peripheral surface 10x of the drum 10. The outer peripheral surface 10x of the drum 10 is in contact with the vicinity of both axial ends (the portion where the sleeve 1 is not disposed). Of the reaction member 230, only the pair of contact portions 232 are in contact with the outer peripheral surface 10 x of the drum 10, and the base portion 231 is not in contact with the outer peripheral surface 10 x of the drum 10. Further, the base 231 and the pair of contact portions 232 of the reaction force member 230 are not in contact with the sleeve 1. The base 231 may be formed from carbon steel (for example, S55C) or the like, and the pair of contact portions 232 may be formed from a hard resin material (for example, nylon resin) or the like.

第2実施形態の凸部形成工程S2では、先ず、ドラム10の外周面10xと凸部形成部材220の溝形成面220xとをスリーブ1を挟んで対向するように配置する。このとき、ドラム10を挟んで凸部形成部材220と反対側では、反力部材230の一対の当接部232がドラム10の外周面10xと当接している。そして、ヒータ(図示略)で加熱された状態の凸部形成部材220を押圧手段50で押圧し、図6(c)に示すように、凸部形成部材220と圧縮層1aとの間に被覆層1dを介在させた状態で、溝形成面220xをスリーブ1の外周面1xに押圧する。このとき、ドラム10を挟んで凸部形成部材220と反対側では、押圧力によってドラム10が移動しないように反力部材230がドラム10を支持している。これにより、スリーブ1の外周面1xの一部(溝形成面220xで押圧された部分)に凸部1vが形成される。   In the convex portion forming step S2 of the second embodiment, first, the outer peripheral surface 10x of the drum 10 and the groove forming surface 220x of the convex portion forming member 220 are disposed so as to face each other with the sleeve 1 interposed therebetween. At this time, the pair of contact portions 232 of the reaction force member 230 are in contact with the outer peripheral surface 10x of the drum 10 on the opposite side of the convex portion forming member 220 across the drum 10. And the convex part formation member 220 of the state heated with the heater (not shown) is pressed with the press means 50, and as shown in FIG.6 (c), it coat | covers between the convex part formation member 220 and the compression layer 1a. The groove forming surface 220x is pressed against the outer peripheral surface 1x of the sleeve 1 with the layer 1d interposed. At this time, the reaction force member 230 supports the drum 10 so that the drum 10 does not move by the pressing force on the opposite side of the convex portion forming member 220 across the drum 10. Thereby, the convex part 1v is formed in a part of outer peripheral surface 1x of the sleeve 1 (part pressed by the groove formation surface 220x).

第2実施形態では、溝形成面220xをスリーブ1の外周面1xに押圧しながら、駆動部16により支持部15をドラム10と共に周方向に旋回させることで、スリーブ1の外周面1xの全体に凸部1vを形成する。即ち、第2実施形態においても、第1実施形態と同様、凸部形成工程S2は、スリーブ1の外周面1xに対する溝形成面220xの押圧位置を変更しながら行う。スリーブ1の外周面1xの全体に凸部1vが形成された後の工程は、第1実施形態と同様である。   In the second embodiment, while the groove forming surface 220x is pressed against the outer peripheral surface 1x of the sleeve 1, the support unit 15 is swung in the circumferential direction together with the drum 10 by the driving unit 16, so that the entire outer peripheral surface 1x of the sleeve 1 is provided. Convex part 1v is formed. That is, also in the second embodiment, similarly to the first embodiment, the convex portion forming step S2 is performed while changing the pressing position of the groove forming surface 220x against the outer peripheral surface 1x of the sleeve 1. The process after the convex portion 1v is formed on the entire outer peripheral surface 1x of the sleeve 1 is the same as that in the first embodiment.

続いて、図7及び図8を参照し、本発明の第3実施形態に係る製造方法について説明する。第3実施形態は、凸部形成工程S2及び当該工程で用いられる凸部形成装置が第1実施形態と異なり、それ以外は第1実施形態と同様である。   Subsequently, a manufacturing method according to a third embodiment of the present invention will be described with reference to FIGS. The third embodiment is the same as the first embodiment except that the convex portion forming step S2 and the convex portion forming apparatus used in the step are different from the first embodiment.

第3実施形態では、凸部形成工程S2において、図3に示す凸部形成装置100の代わりに、図8に示す凸部形成装置300を用いる。凸部形成装置300は、図3(a),(b)に示す凸部形成部材20の代わりに図7(c)に示す凸部形成部材320を含む点、図3(a),(b)に示す反力部材30、ヒータ40及びフレーム60を含まない点、及び、押圧手段としてシリンダではなく円筒状の可撓性ジャケット350を採用した点において、凸部形成装置100と異なる。   In 3rd Embodiment, in convex part formation process S2, the convex part formation apparatus 300 shown in FIG. 8 is used instead of the convex part formation apparatus 100 shown in FIG. The convex portion forming apparatus 300 includes a convex portion forming member 320 shown in FIG. 7C instead of the convex portion forming member 20 shown in FIGS. 3A and 3B, and FIGS. ) Is different from the convex forming apparatus 100 in that it does not include the reaction force member 30, the heater 40, and the frame 60, and adopts a cylindrical flexible jacket 350 instead of a cylinder as a pressing means.

凸部形成部材320は、溝形成面320xに該当する内周面がスリーブ1の外周面1xを包囲する、環状の部材である。溝形成面320xには、複数の凸部1vに対応する複数の溝320vが形成されている。   The convex forming member 320 is an annular member in which the inner peripheral surface corresponding to the groove forming surface 320 x surrounds the outer peripheral surface 1 x of the sleeve 1. A plurality of grooves 320v corresponding to the plurality of convex portions 1v are formed on the groove forming surface 320x.

凸部形成部材320の製造方法は、例えば図7(a),(b)に示すように、平板状の上板391と上面に複数の溝320vに対応する複数の凸部392vが形成された下板392との間に凸部形成部材320となる基材(ゴムマトリックス)320aを挟んでプレス及び加硫を行う工程、当該工程の後、未加硫の端部同士をプレス接合する工程等を含む。なお、凸部形成部材320を上板391から容易に剥離する観点から、上板391と下板392とでプレスを行うとき、上板391と基材320aとの間に離型紙2を介在させることが好ましい。   As shown in FIGS. 7A and 7B, for example, a method of manufacturing the convex portion forming member 320 has a flat upper plate 391 and a plurality of convex portions 392v corresponding to the plurality of grooves 320v formed on the upper surface. A step of pressing and vulcanizing by sandwiching a base material (rubber matrix) 320a to be the convex forming member 320 between the lower plate 392, a step of press-bonding unvulcanized end portions after the step, etc. including. From the viewpoint of easily peeling the convex portion forming member 320 from the upper plate 391, when the upper plate 391 and the lower plate 392 are pressed, the release paper 2 is interposed between the upper plate 391 and the base material 320a. It is preferable.

凸部形成部材320の製造方法は、上記の方法に限定されず、例えばドラムに基材320aを巻き付けて加硫缶で加硫を行う工程を含んでもよい。   The manufacturing method of the convex part formation member 320 is not limited to said method, For example, you may include the process of winding the base material 320a around a drum and vulcanizing | curing with a vulcanization can.

凸部形成部材320及び可撓性ジャケット350は、エチレン−プロピレン−ジエンゴム、ミラブルウレタンゴム、クロロプレンゴム、ニトリルゴム、水素化ニトリルゴム、スチレン−ブタジエンゴム、天然ゴム、ブチルゴム等のゴム成分を含むゴム組成物から構成されてよい。凸部形成部材320は、さらに、軸方向に配向された短繊維(例えば、ナイロン、綿(デニム)をRFL処理したもの)を含む。なお、後述する実施例4で用いた凸部形成部材320の基材320aは、ゴム成分としてクロロプレンゴムを含むゴム組成物から構成されたものであり、カット長さ6mmのナイロン及び綿(デニム)をRFL処理した短繊維をゴム成分100重量部に対して各々10重量部(合計20重量部)の割合で配合し、厚み5mmとなるように作製されたものである。また、後述する実施例4で用いた可撓性ジャケット350は、ゴム成分としてブチルゴムを含むゴム組成物から構成された厚み6mmの基材を、公知の方法で加硫(例えば、当該基材をドラムに巻きつけて加硫缶で加硫)して、製造されたものである。   The convex forming member 320 and the flexible jacket 350 are rubbers containing rubber components such as ethylene-propylene-diene rubber, millable urethane rubber, chloroprene rubber, nitrile rubber, hydrogenated nitrile rubber, styrene-butadiene rubber, natural rubber, butyl rubber and the like. It may consist of a composition. The convex forming member 320 further includes short fibers oriented in the axial direction (for example, nylon, cotton (denim) obtained by RFL treatment). In addition, the base material 320a of the convex forming member 320 used in Example 4 described later is made of a rubber composition containing chloroprene rubber as a rubber component, and nylon and cotton (denim) having a cut length of 6 mm. Each of the short fibers subjected to RFL treatment was blended at a ratio of 10 parts by weight (total 20 parts by weight) with respect to 100 parts by weight of the rubber component, so that the thickness was 5 mm. Further, the flexible jacket 350 used in Example 4 to be described later vulcanizes a 6 mm thick base material composed of a rubber composition containing butyl rubber as a rubber component by a known method (for example, the base material). Wrapped around a drum and vulcanized with a vulcanizing can).

通気性やエア抜き効果向上等の観点から、溝形成面320xに編布からなる被覆層を設けてもよい。また、凸部形成部材320の軸方向に関する収縮抑制等の観点から、凸部形成部材320を覆う円筒状の外覆体をさらに設けてもよい。   From the viewpoints of improving air permeability and air bleeding effect, a coating layer made of a knitted fabric may be provided on the groove forming surface 320x. In addition, from the viewpoint of suppressing shrinkage in the axial direction of the convex portion forming member 320, a cylindrical outer covering body that covers the convex portion forming member 320 may be further provided.

第3実施形態の凸部形成工程S2では、図8(a),(b)に示すように、ドラム10の外周面10xと凸部形成部材320の溝形成面320xとをスリーブ1を挟んで対向するように配置し、さらにこれらを可撓性ジャケット350内に配置する。その後、ドラム10及び可撓性ジャケット350を上蓋360と底板(図示略)とで軸方向に挟んだ状態で、加硫が行われないように圧力、温度、時間等を制御しつつ、可撓性ジャケット350の外側から外圧(蒸気圧)をかける。これにより、スリーブ1の外周面1xの全体に凸部1vが形成される。このように、第3実施形態においては、第1及び第2実施形態と異なり、凸部形成工程S2は、スリーブ1の外周面1xを溝形成面320xで包囲した状態で行う。   In the convex portion forming step S2 of the third embodiment, as shown in FIGS. 8A and 8B, the outer peripheral surface 10x of the drum 10 and the groove forming surface 320x of the convex portion forming member 320 are sandwiched by the sleeve 1. These are arranged so as to face each other, and these are arranged in the flexible jacket 350. After that, the drum 10 and the flexible jacket 350 are sandwiched in the axial direction between the upper lid 360 and the bottom plate (not shown), and the pressure, temperature, time, etc. are controlled so that vulcanization is not performed. External pressure (vapor pressure) is applied from the outside of the protective jacket 350. Thereby, the convex part 1v is formed in the whole outer peripheral surface 1x of the sleeve 1. FIG. Thus, in the third embodiment, unlike the first and second embodiments, the convex portion forming step S2 is performed in a state where the outer peripheral surface 1x of the sleeve 1 is surrounded by the groove forming surface 320x.

スリーブ1の外周面1xの全体に凸部1vが形成された後は、上蓋360を取り外してから可撓性ジャケット350を取り外し、凸部形成部材320と共にスリーブ1をドラム10から取り出した後、スリーブ1を凸部形成部材320から取り外す。   After the convex portion 1v is formed on the entire outer peripheral surface 1x of the sleeve 1, the upper cover 360 is removed, the flexible jacket 350 is removed, and the sleeve 1 is taken out from the drum 10 together with the convex portion forming member 320. 1 is removed from the convex forming member 320.

以上に述べたように、本実施形態によれば、凸部形成工程S2は、スリーブ1の外周面1xを溝形成面320xで包囲した状態で行う。これにより、凸部形成を容易に行うことができる。   As described above, according to the present embodiment, the convex portion forming step S2 is performed in a state where the outer peripheral surface 1x of the sleeve 1 is surrounded by the groove forming surface 320x. Thereby, convex part formation can be performed easily.

凸部形成部材320は、少なくとも溝320vの部分がゴムで構成されており、当該ゴムは、ベルト幅方向に対応する凸部形成部材320の軸方向に配向された短繊維を含む。この場合、ゴムの軸方向に関する収縮が抑制され、ベルト幅方向に関する凸部1vのピッチずれを防止することができる。これにより、加硫工程S3においてスリーブ1が装着される部材(外型170)にスリーブ1を確実に装着することができ、ひいては、製造される伝動ベルトの寸法精度を向上させることができる。また、ゴムの軸方向に関する経時的な収縮も抑制されるため、寸法精度等の観点から判断される凸部形成部材320の使用可能回数が増加し、経済的である。   The convex portion forming member 320 has at least a groove 320v made of rubber, and the rubber includes short fibers oriented in the axial direction of the convex portion forming member 320 corresponding to the belt width direction. In this case, the shrinkage in the axial direction of the rubber is suppressed, and the pitch shift of the convex portion 1v in the belt width direction can be prevented. As a result, the sleeve 1 can be securely attached to the member (outer mold 170) to which the sleeve 1 is attached in the vulcanization step S3, and as a result, the dimensional accuracy of the manufactured transmission belt can be improved. Further, since shrinkage with time in the axial direction of the rubber is also suppressed, the number of times the convex portion forming member 320 can be used, which is judged from the viewpoint of dimensional accuracy, is increased, which is economical.

続いて、図9を参照し、本発明の第4実施形態に係る製造方法について説明する。第4実施形態に係る製造方法は、一方の面にベルト幅方向にそれぞれ延在する複数のコグ(凸部)を有するローエッジコグタイプのVベルト(ローエッジコグベルト)を製造する方法であって、凸部形成工程S2及び当該工程で用いられる凸部形成装置が第3実施形態と異なり、それ以外は第3実施形態と同様である。なお、第4実施形態に係るスリーブ1における伸長層1cは、帆布等で構成される被覆層(図示略)を含む。   Next, a manufacturing method according to the fourth embodiment of the present invention will be described with reference to FIG. The manufacturing method according to the fourth embodiment is a method of manufacturing a low-edge cog type V-belt (low-edge cog belt) having a plurality of cogs (convex portions) extending in the belt width direction on one surface. The portion forming step S2 and the convex portion forming apparatus used in the step are different from those in the third embodiment, and the other portions are the same as those in the third embodiment. The elongated layer 1c in the sleeve 1 according to the fourth embodiment includes a covering layer (not shown) made of canvas or the like.

第4実施形態では、凸部形成工程S2において、図8に示す凸部形成装置300の代わりに、図9に示す凸部形成装置400を用いる。凸部形成装置400は、凸部形成部材320の代わりに凸部形成部材420を含む点において、凸部形成装置300と異なる。   In the fourth embodiment, in the convex portion forming step S2, a convex portion forming apparatus 400 shown in FIG. 9 is used instead of the convex portion forming apparatus 300 shown in FIG. The convex portion forming apparatus 400 is different from the convex portion forming apparatus 300 in that it includes a convex portion forming member 420 instead of the convex portion forming member 320.

凸部形成部材420は、凸部形成部材320と同様、溝形成面420xに該当する内周面がスリーブ1の外周面1xを包囲する環状の部材であり、溝形成面420xに複数の凸部1vに対応する複数の溝420vが形成されている。ただし、本実施形態では、各凸部1vがベルト幅方向に延在することから、各溝420vがベルト幅方向に延在している。   Similar to the convex portion forming member 320, the convex portion forming member 420 is an annular member in which the inner peripheral surface corresponding to the groove forming surface 420x surrounds the outer peripheral surface 1x of the sleeve 1, and a plurality of convex portions are formed on the groove forming surface 420x. A plurality of grooves 420v corresponding to 1v are formed. However, in the present embodiment, since each convex portion 1v extends in the belt width direction, each groove 420v extends in the belt width direction.

凸部形成部材420の製造方法、凸部形成部材420の構成材料等は、凸部形成部材320と同様であってよい。また、第4実施形態の凸部形成工程S2は、第3実施形態と同様であり、押圧手段として可撓性ジャケット350を用いて行う。   The manufacturing method of the convex portion forming member 420, the constituent material of the convex portion forming member 420, and the like may be the same as those of the convex portion forming member 320. Moreover, convex part formation process S2 of 4th Embodiment is the same as that of 3rd Embodiment, and is performed using the flexible jacket 350 as a press means.

本発明者は、図10(a)に示すように、特許文献1の製造方法に係る比較例1〜4と、第1実施形態の製造方法に係る実施例1〜3と、第3実施形態の製造方法に係る実施例4とを行い、加硫後のスリーブにおけるリブの外観、及び、加硫後のスリーブにおける心線の配列状態を確認した。   As shown in FIG. 10A, the inventor performs Comparative Examples 1 to 4 according to the manufacturing method of Patent Document 1, Examples 1 to 3 according to the manufacturing method of the first embodiment, and the third embodiment. Example 4 related to the manufacturing method was performed, and the appearance of the ribs in the sleeve after vulcanization and the arrangement state of the cores in the sleeve after vulcanization were confirmed.

比較例1〜4及び実施例1〜4のスリーブは、それぞれ、図5(b)に示すスリーブ1と同様の構成であり、圧縮層1a(厚み2.0mm)、心線1b(アラミド心線の場合は直径0.7mm、ポリエステル心線の場合は直径1.0mm)、伸長層1c(厚み0.8mm)及び編布からなる被覆層1d(厚み0.8mm)を有し、加硫前の段階で全厚4.3mm・幅400mm、加硫後の段階で全厚4.1mm・幅400mmであり、加硫後のベルト周長POCは図10(a)のとおりである。   The sleeves of Comparative Examples 1 to 4 and Examples 1 to 4 have the same configuration as that of the sleeve 1 shown in FIG. 5B, respectively, and include a compression layer 1a (thickness 2.0 mm) and a core wire 1b (aramid core wire). In the case of polyester, it has a diameter of 0.7 mm, and in the case of a polyester core wire, it has a diameter of 1.0 mm), a stretched layer 1c (thickness of 0.8 mm) and a covering layer 1d (thickness of 0.8 mm) made of knitted fabric, The total thickness is 4.3 mm and the width is 400 mm at the stage, and the total thickness is 4.1 mm and the width is 400 mm after the vulcanization, and the belt peripheral length POC after the vulcanization is as shown in FIG.

伸長層1c用のゴム、圧縮層1a用のゴム、及び、被覆層1dの接着処理用ゴムは、それぞれ比較例1〜4及び実施例1〜4において同じ組成であり、材料及び配合比率は図10(b)のとおりである。伸長層1c及び圧縮層1aについては、図10(b)に示す配合のゴムをバンバリーミキサ等の公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して所定の厚みとした。被覆層1dについては、図10(b)に示す配合の接着処理用ゴムを有機溶媒に溶かしてゴム糊とし、当該ゴム糊に被覆層1dの編布を浸漬処理した。   The rubber for the stretch layer 1c, the rubber for the compression layer 1a, and the rubber for adhesion treatment of the coating layer 1d have the same composition in Comparative Examples 1 to 4 and Examples 1 to 4, respectively, and the materials and blending ratios are 10 (b). For the stretched layer 1c and the compressed layer 1a, rubber blended as shown in FIG. 10 (b) was kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll to a predetermined thickness. . For the coating layer 1d, a rubber for adhesion treatment having the composition shown in FIG. 10B was dissolved in an organic solvent to form a rubber paste, and the knitted fabric of the coating layer 1d was immersed in the rubber paste.

被覆層1dを構成する編布は、比較例1〜4及び実施例1〜4において同じであり、ベルト表面(摩擦伝動面)側にセルロース系天然紡績糸(綿糸)を用い、圧縮層1a側に嵩高加工したポリエステル系複合糸(PTT/PETコンジュゲート糸:ポリトリメチレンテレフタレート(PTT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸)を用いたものである。また、セルロース系複合糸の編成比率を60質量%とし、親水化処理剤(親水性柔軟剤)として非イオン界面活性剤であるポリエチレングリコール型非イオン界面活性剤を含有・付着させて編布組織を多層とし、嵩高性を3.2cm3/gとした。 The knitted fabric constituting the coating layer 1d is the same in Comparative Examples 1 to 4 and Examples 1 to 4, and a cellulose-based natural spun yarn (cotton yarn) is used on the belt surface (friction transmission surface) side, and the compressed layer 1a side is used. And a polyester composite yarn (PTT / PET conjugate yarn: a composite yarn conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET)). In addition, the knitted fabric structure includes a cellulose composite yarn having a knitting ratio of 60% by mass, and a polyethylene glycol type nonionic surfactant which is a nonionic surfactant as a hydrophilic treatment agent (hydrophilic softener). Was multi-layered and the bulkiness was 3.2 cm 3 / g.

心線1bについて、比較例1,2及び実施例1では、1100dtex/1×3構成(総計3300dtex)、諸撚り(上撚り係数3.0、下撚り係数3.0)、引張応力100N時の伸度2.0%、引張応力140N時の伸度3.3%の、ポリエステル心線を用いた。比較例3,4及び実施例2〜4では、1670dtex/1×2構成、ラング撚り(上撚り係数4.5、下撚り係数1.0)、引張応力100N時の伸度0.9%、引張応力140N時の伸度1.2%の、パラ系アラミド心線を用いた。また、比較例1〜4及び実施例1〜4共に、心線1bについて、ゴムとの接着性を高めるため、水溶性エポキシ化合物を添加したレゾルシン−ホルマリン−ラテックス液(RFL液)に浸漬処理した。その後、比較例3,4及び実施例2〜4の心線1bについては、さらに、EPDMを含むゴム組成物を有機溶媒(トルエン)に溶解しポリメリックイソシアネートを添加した処理液でコーティング処理を行った。   About the core wire 1b, in Comparative Examples 1 and 2 and Example 1, 1100 dtex / 1 × 3 configuration (3300 dtex in total), various twists (upper twisting factor 3.0, lower twisting factor 3.0), tensile stress 100N A polyester core wire having an elongation of 2.0% and an elongation of 3.3% at a tensile stress of 140 N was used. In Comparative Examples 3 and 4 and Examples 2 to 4, 1670 dtex / 1 × 2 configuration, Lang twist (upper twist coefficient 4.5, lower twist coefficient 1.0), elongation 0.9% at a tensile stress of 100 N, A para-aramid cord with an elongation of 1.2% at a tensile stress of 140 N was used. Further, in both Comparative Examples 1 to 4 and Examples 1 to 4, the core wire 1b was dipped in a resorcin-formalin-latex liquid (RFL liquid) to which a water-soluble epoxy compound was added in order to improve the adhesion to rubber. . Thereafter, the cores 1b of Comparative Examples 3 and 4 and Examples 2 to 4 were further coated with a treatment liquid in which a rubber composition containing EPDM was dissolved in an organic solvent (toluene) and polymeric isocyanate was added. .

先ず、心線1bとしてポリエステル心線をそれぞれ用いた比較例1,2と実施例1とについて考察する。比較例1,2は、特許文献1の製造方法(圧縮層を含む第1スリーブと心線や伸長層を含む第2スリーブとを一体化させる際に心線を伸ばす構成)によるものであり、第1スリーブと第2スリーブとの間隙を1.0mm確保できた比較例1(ベルト周長500mm)では、加硫後のスリーブにおけるリブ(凸部)の外観及び心線の配列状態共に問題がなかったが、上記間隙が1.0mm未満となった比較例2(ベルト周長450mm)では、加硫後のスリーブにおいて、リブの表面(被覆層)に部分的に皺が生じ、また、心線の配列状態にも部分的な乱れが生じた。したがって、特許文献1の製造方法では、ポリエステル心線を採用した場合、伝動ベルトの品質確保の点から上記間隙を1.0mm以上確保する(即ち、ベルト周長を500mm以上とする)必要があることがわかった。一方、実施例1は、ベルト周長が450mmであるが、加硫後のスリーブにおけるリブの外観及び心線の配列状態共に問題がなかった。   First, Comparative Examples 1 and 2 and Example 1 using a polyester core as the core 1b will be considered. Comparative Examples 1 and 2 are based on the manufacturing method of Patent Document 1 (a configuration in which the core wire is extended when the first sleeve including the compression layer and the second sleeve including the core wire and the extension layer are integrated) In Comparative Example 1 (belt circumferential length 500 mm) in which the gap between the first sleeve and the second sleeve can be secured 1.0 mm, there are problems in both the appearance of ribs (convex parts) and the arrangement of the cores in the sleeve after vulcanization. In Comparative Example 2 (belt peripheral length 450 mm) in which the gap was less than 1.0 mm, wrinkles occurred partially on the rib surface (coating layer) in the vulcanized sleeve, and the core Partial disturbance also occurred in the arrangement state of the lines. Therefore, in the manufacturing method of Patent Document 1, when a polyester core wire is employed, it is necessary to secure the gap of 1.0 mm or more (that is, the belt circumferential length is 500 mm or more) from the viewpoint of ensuring the quality of the transmission belt. I understood it. On the other hand, in Example 1, the belt peripheral length was 450 mm, but there was no problem in both the appearance of the ribs and the arrangement of the cores in the vulcanized sleeve.

次に、心線1bとしてアラミド心線をそれぞれ用いた比較例3,4と実施例2〜4とについて考察する。比較例3,4は、特許文献1の製造方法(圧縮層を含む第1スリーブと心線や伸長層を含む第2スリーブとを一体化させる際に心線を伸ばす構成)によるものであり、アラミド心線の場合、伸び難い特性を有するため、上撚り係数を増加させて伸び易くしても、第1スリーブと第2スリーブとの間隙をある程度確保する必要があり、比較例3(ベルト周長1100mm)では、加硫後のスリーブにおけるリブの外観及び心線の配列状態共に問題がなかったが、比較例4(ベルト周長1000mm)では、加硫後のスリーブにおいて、リブの表面(被覆層)に部分的に皺が生じ、また、心線の配列状態にも部分的な乱れが生じた。したがって、特許文献1の製造方法では、アラミド心線を採用した場合、伝動ベルトの品質確保の点からベルト周長を1100mm以上とする必要があることがわかった。一方、実施例2はベルト周長が1000mmであり、実施例3,4は共にベルト周長が450mmであるが、加硫後のスリーブにおけるリブの外観及び心線の配列状態共に問題がなかった。   Next, Comparative Examples 3 and 4 and Examples 2 to 4 using an aramid core wire as the core wire 1b will be considered. Comparative Examples 3 and 4 are based on the manufacturing method of Patent Document 1 (a configuration in which the core wire is extended when the first sleeve including the compression layer and the second sleeve including the core wire and the extension layer are integrated) In the case of an aramid core wire, since it has a characteristic that it is difficult to stretch, even if the upper twisting factor is increased and it is easy to stretch, it is necessary to secure a certain gap between the first sleeve and the second sleeve. In the case of the length of 1100 mm, there was no problem in the appearance of the ribs and the arrangement of the cores in the sleeve after vulcanization, but in Comparative Example 4 (belt circumference 1000 mm), the surface of the rib (covering) The layer was partially wrinkled, and the cores were partially disturbed. Therefore, in the manufacturing method of patent document 1, when an aramid core wire was employ | adopted, it turned out that a belt peripheral length needs to be 1100 mm or more from the point of ensuring the quality of a transmission belt. On the other hand, in Example 2, the belt circumferential length was 1000 mm, and in both Examples 3 and 4, the belt circumferential length was 450 mm. However, there was no problem in both the appearance of the ribs and the arrangement of the cores in the sleeve after vulcanization. .

つまり、本発明によれば、心線1bとしてポリエステル心線及びアラミド心線のいずれを採用した場合でも、特許文献1の製造方法では品質確保の点から製造し難いベルト周長が比較的短いベルトを好適に製造することができる(換言すると、特許文献1の製造方法に比べ、ベルト周長の制約が生じ難い)ことがわかった。   That is, according to the present invention, a belt having a relatively short belt circumference that is difficult to manufacture from the viewpoint of ensuring quality by the manufacturing method of Patent Document 1 regardless of whether a polyester core wire or an aramid core wire is adopted as the core wire 1b. (In other words, the belt circumferential length is less likely to be restricted as compared with the manufacturing method of Patent Document 1).

以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various design changes can be made as long as they are described in the claims.

・凸部形成部材、ドラム等の構成材料は、特に限定されない。例えば、第1及び第2実施形態において、凸部形成部材は、炭素鋼(S55C等)等を機械加工して形成されたものであるが、硬質な樹脂材料(例えばナイロン樹脂)等から形成されたものであってもよく、また、溝形成面を含む部分が硬質な樹脂材料で形成されかつそれ以外の部分が金属材料で形成されてもよい。
・第1及び第2実施形態では、スリーブ1に対して、ドラム10を挟んで互いに対向する凸部形成部材20;220と反力部材30;230とを1組配置しているが、スリーブ1に対して、ドラム10を挟んで互いに対向する凸部形成部材20;220と反力部材30;230とを2組以上配置してもよい。この場合、2以上の凸部形成部材20;220についてのスリーブ1の外周面1xに対する押圧タイミングを、同じにしてもよいし、ずらしてもよい。
・第1及び第2実施形態では、ドラム10が支持部15によって片持ち支持されているが、ドラム10が支持部15によって両持ち支持されてもよい。
・第1及び第2実施形態では、ドラム10が支持部15によって片持ち支持されているため、凸部形成部材20;220に対して反力部材30;230を設けることが好ましいが、ドラム10が支持部15によって両持ち支持されている等の場合には、反力部材30;230を省略してもよい。
・第1実施形態の凸部形成部材20は、ドラム10の外周面10xに沿って湾曲した板状の部材であるが、平坦な板状の部材であってもよい。この場合、凸部形成工程S2において、溝形成面とスリーブの外周面とが線接触することになり、凸部形成部材20が湾曲した板状の部材である場合に比べ、凸部形成部材とスリーブとの接触面積が小さくなる分、スリーブに対して大きな押圧力が作用し、凸部を容易に形成することができ、ひいては設備負荷を低減することができる。
・第1実施形態において、ヒータ40として、凸部形成部材20の外周面に配置されるものではなく、凸部形成部材20に内蔵されるタイプのヒータ(カートリッジヒータ等)を用いてもよい。
・押圧手段は、上述した実施形態の構成に限定されない。例えば、第1及び第2実施形態では、凸部形成部材20;220及び反力部材30;230のそれぞれに対して上下一対のシリンダを1組ずつ設けているが、凸部形成部材20;220及び反力部材30;230のそれぞれに対して上下一対のシリンダを複数組設けてもよい。また、第1又は第2実施形態において、反力部材30;230側に設けられるシリンダとして、電動シリンダを採用し、一対の当接部32;232がドラム10の外周面10xに当接する位置に反力部材30;230が固定されるように、電動シリンダを制御してもよい。この場合、凸部形成時にスリーブに対して大きな押圧力が作用し、凸部を容易に形成することができ、ひいては設備負荷を低減することができる。
・第1及び第2実施形態の反力部材30;230を、ドラム10の軸方向に沿った軸を中心に回転可能なプーリに置き換えてもよい。第1実施形態に当該構成を採用した場合、凸部形成位置を変更する度に当接部32を外周面10xから離隔させて再び外周面10xに当接させるという動作が不要になる。
・スリーブ形成工程で積層された各構成要素(圧縮層、心線、伸長層、被覆層等)の圧着を、スリーブ形成工程で行ってもよいし、凸部形成工程で凸部形成と同時に行ってもよい。
・伝動ベルトの各構成要素(圧縮層、心線、伸長層、被覆層等)に、他の要素との接着性を高めるための処理(接着層のコーティング)を行ってよい。
・上述の実施形態では、リブ又はコグが凸部に該当する場合を例示したが、伝動ベルトが歯付きベルトの場合は歯部が凸部に該当する。
-Constituent materials, such as a convex formation member and a drum, are not specifically limited. For example, in the first and second embodiments, the convex portion forming member is formed by machining carbon steel (S55C or the like) or the like, but is formed from a hard resin material (for example, nylon resin) or the like. The portion including the groove forming surface may be formed of a hard resin material, and the other portion may be formed of a metal material.
In the first and second embodiments, the sleeve 1 is provided with one set of the convex forming member 20; 220 and the reaction force member 30; 230 facing each other with the drum 10 interposed therebetween. On the other hand, you may arrange | position two or more sets of convex part formation member 20; 220 and reaction force member 30; 230 which mutually oppose on both sides of the drum 10. FIG. In this case, the pressing timing with respect to the outer peripheral surface 1x of the sleeve 1 for the two or more convex portion forming members 20; 220 may be the same or may be shifted.
In the first and second embodiments, the drum 10 is cantilevered by the support unit 15, but the drum 10 may be supported on both sides by the support unit 15.
In the first and second embodiments, since the drum 10 is cantilevered by the support portion 15, it is preferable to provide the reaction force member 30; 230 with respect to the convex portion forming member 20; 220. Is supported by the support portion 15 at both ends, the reaction member 30; 230 may be omitted.
-Although the convex formation member 20 of 1st Embodiment is a plate-shaped member curved along the outer peripheral surface 10x of the drum 10, it may be a flat plate-shaped member. In this case, in the convex portion forming step S2, the groove forming surface and the outer peripheral surface of the sleeve are in line contact, and the convex portion forming member and the convex portion forming member 20 are compared to the case where the convex portion forming member 20 is a curved plate member. Since the contact area with the sleeve is reduced, a large pressing force acts on the sleeve, so that the convex portion can be easily formed, and the equipment load can be reduced.
In the first embodiment, the heater 40 is not disposed on the outer peripheral surface of the convex portion forming member 20 but may be a heater (cartridge heater or the like) built in the convex portion forming member 20.
-A press means is not limited to the structure of embodiment mentioned above. For example, in the first and second embodiments, a pair of upper and lower cylinders is provided for each of the convex portion forming member 20; 220 and the reaction force member 30; 230, but the convex portion forming member 20; 220 is provided. A plurality of pairs of upper and lower cylinders may be provided for each of the reaction force members 30 and 230. Further, in the first or second embodiment, an electric cylinder is adopted as the cylinder provided on the reaction force member 30; 230 side, and the pair of contact portions 32; 232 are in positions where they contact the outer peripheral surface 10x of the drum 10. The electric cylinder may be controlled so that the reaction force member 30; 230 is fixed. In this case, a large pressing force acts on the sleeve when the convex portion is formed, so that the convex portion can be easily formed, and the equipment load can be reduced.
-You may replace the reaction force member 30; 230 of 1st and 2nd embodiment with the pulley which can rotate centering on the axis | shaft along the axial direction of the drum 10. As shown in FIG. When the said structure is employ | adopted for 1st Embodiment, whenever the convex part formation position is changed, the operation | movement of separating the contact part 32 from the outer peripheral surface 10x, and making it contact | abut to the outer peripheral surface 10x again becomes unnecessary.
・ Pressure bonding of each component (compressed layer, core wire, stretched layer, covering layer, etc.) laminated in the sleeve forming process may be performed in the sleeve forming process, or simultaneously with the convex forming in the convex forming process. May be.
-You may perform the process (coating of an adhesive layer) for improving the adhesiveness with another element to each component (a compression layer, a core wire, an elongate layer, a coating layer, etc.) of a transmission belt.
-In above-mentioned embodiment, although the case where a rib or cog corresponds to a convex part was illustrated, when a power transmission belt is a toothed belt, a tooth part corresponds to a convex part.

1 スリーブ
1a 圧縮層
1b 心線
1c 伸長層
1d 被覆層
1v 凸部
1x スリーブの外周面
10 ドラム
10x ドラムの外周面
20;220;320;420 凸部形成部材
20v;220v;320v;420v 溝
20x;220x;320x;420x 溝形成面
100;200;300;400 凸部形成装置
DESCRIPTION OF SYMBOLS 1 Sleeve 1a Compression layer 1b Core wire 1c Elongation layer 1d Coating layer 1v Convex part 1x Outer peripheral surface of sleeve 10 Drum 10x Outer peripheral surface of drum 20; 220; 320; 420 Convex forming member 20v; 220v; 320v; 420v Groove 20x; 220x; 320x; 420x Groove forming surface 100; 200; 300; 400 Convex forming device

Claims (8)

一方の面にベルト長手方向又はベルト幅方向に延在する複数の凸部を有する圧縮層と、前記圧縮層における前記一方の面と反対側の他方の面において前記ベルト長手方向に延在する心線とを含む伝動ベルトの製造方法において、
前記圧縮層を含む環状のスリーブを形成する、スリーブ形成工程と、
前記スリーブ形成工程の後、前記スリーブにおける前記圧縮層の前記一方の面に前記複数の凸部を形成する、凸部形成工程と、
前記凸部形成工程の後、前記スリーブを加硫する、加硫工程と、を備え、
前記スリーブは、前記心線をさらに含み、
前記スリーブ形成工程は、前記圧縮層の前記他方の面に前記心線を前記加硫工程における加硫時のピッチ周長に一致するように配置する、心線配置工程を含み、
前記凸部形成工程は、前記複数の凸部に対応する複数の溝が形成された溝形成面を有する凸部形成部材の前記溝形成面を、前記圧縮層の前記一方の面に該当する前記スリーブの外周面に押圧することにより行うことを特徴とする、伝動ベルトの製造方法。
A compression layer having a plurality of protrusions extending in the belt longitudinal direction or the belt width direction on one surface, and a core extending in the belt longitudinal direction on the other surface of the compression layer opposite to the one surface A method of manufacturing a transmission belt including a
Forming an annular sleeve including the compression layer, a sleeve forming step;
After the sleeve forming step, forming the plurality of convex portions on the one surface of the compression layer in the sleeve, and a convex portion forming step,
A vulcanization step for vulcanizing the sleeve after the convex portion formation step,
The sleeve further includes the core wire,
The sleeve forming step includes a core wire arranging step of arranging the core wire on the other surface of the compressed layer so as to coincide with a pitch circumference at the time of vulcanization in the vulcanization step ,
In the convex portion forming step, the groove forming surface of the convex portion forming member having a groove forming surface formed with a plurality of grooves corresponding to the plurality of convex portions corresponds to the one surface of the compression layer. A method for manufacturing a power transmission belt, comprising pressing the outer peripheral surface of a sleeve.
前記伝動ベルトは、前記圧縮層とで前記心線を挟む伸長層をさらに含むものであり、
前記スリーブは、前記伸長層をさらに含み、
前記スリーブ形成工程は、前記圧縮層とで前記心線を挟むように前記伸長層を配置する、伸長層配置工程をさらに含むことを特徴とする、請求項1に記載の製造方法。
The transmission belt further includes an extension layer that sandwiches the core wire with the compression layer,
The sleeve further includes the stretch layer,
2. The manufacturing method according to claim 1, wherein the sleeve forming step further includes an extension layer arranging step of arranging the extension layer so as to sandwich the core wire with the compression layer.
前記スリーブ形成工程において、円筒状のドラムの外周面上に、前記ドラムの前記外周面と前記圧縮層の前記他方の面とが前記心線を挟んで対向するように、前記スリーブを形成し、
前記凸部形成工程は、前記スリーブを前記ドラムの前記外周面に装着した状態で行うことを特徴とする、請求項1又は2に記載の製造方法。
In the sleeve forming step, the sleeve is formed on the outer peripheral surface of a cylindrical drum so that the outer peripheral surface of the drum and the other surface of the compression layer are opposed to each other with the core wire in between.
The manufacturing method according to claim 1, wherein the projecting portion forming step is performed in a state where the sleeve is mounted on the outer peripheral surface of the drum.
前記凸部形成工程は、前記スリーブの前記外周面に対する前記溝形成面の押圧位置を変更しながら行うことを特徴とする、請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the convex portion forming step is performed while changing a pressing position of the groove forming surface with respect to the outer peripheral surface of the sleeve. 前記凸部形成部材は、前記溝形成面に該当する内周面が前記スリーブの前記外周面を包囲する、環状の部材であり、
前記凸部形成工程は、前記スリーブの前記外周面を前記内周面で包囲した状態で行うことを特徴とする、請求項1〜3のいずれか一項に記載の製造方法。
The convex portion forming member is an annular member in which an inner peripheral surface corresponding to the groove forming surface surrounds the outer peripheral surface of the sleeve,
The said convex-part formation process is performed in the state which surrounded the said outer peripheral surface of the said sleeve by the said inner peripheral surface, The manufacturing method as described in any one of Claims 1-3 characterized by the above-mentioned.
前記凸部形成部材は、少なくとも前記溝の部分がゴムで構成されており、
前記ゴムは、前記ベルト幅方向に対応する前記凸部形成部材の軸方向に配向された短繊維を含むことを特徴とする、請求項5に記載の製造方法。
The convex portion forming member has at least a groove portion made of rubber,
The said rubber | gum contains the short fiber oriented in the axial direction of the said convex-part formation member corresponding to the said belt width direction, The manufacturing method of Claim 5 characterized by the above-mentioned.
前記心線がアラミド繊維から構成されることを特徴とする、請求項1〜6のいずれか一項に記載の製造方法。   The said core wire is comprised from an aramid fiber, The manufacturing method as described in any one of Claims 1-6 characterized by the above-mentioned. 前記伝動ベルトは、前記一方の面において前記複数の凸部を被覆する編布からなる被覆層を有し、
前記凸部形成工程は、前記凸部形成部材と前記圧縮層との間に前記被覆層を介在させた状態で、前記凸部形成部材の前記溝形成面を前記スリーブの前記外周面に押圧することにより行うことを特徴とする、請求項1〜7のいずれか一項に記載の製造方法。
The transmission belt has a coating layer made of a knitted fabric that covers the plurality of convex portions on the one surface,
The convex portion forming step presses the groove forming surface of the convex portion forming member against the outer peripheral surface of the sleeve in a state where the covering layer is interposed between the convex portion forming member and the compression layer. The manufacturing method according to claim 1, wherein the manufacturing method is performed.
JP2014265446A 2014-12-26 2014-12-26 Transmission belt manufacturing method Active JP6430241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265446A JP6430241B2 (en) 2014-12-26 2014-12-26 Transmission belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265446A JP6430241B2 (en) 2014-12-26 2014-12-26 Transmission belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2016124160A JP2016124160A (en) 2016-07-11
JP6430241B2 true JP6430241B2 (en) 2018-11-28

Family

ID=56358623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265446A Active JP6430241B2 (en) 2014-12-26 2014-12-26 Transmission belt manufacturing method

Country Status (1)

Country Link
JP (1) JP6430241B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988153B1 (en) 2015-03-31 2024-04-24 Fisher & Paykel Healthcare Limited A user interface for supplying gases to an airway
JP6230753B1 (en) * 2016-03-23 2017-11-15 バンドー化学株式会社 V-belt manufacturing method
JP6192876B1 (en) * 2016-03-30 2017-09-06 バンドー化学株式会社 Transmission belt manufacturing method
WO2017169412A1 (en) * 2016-03-30 2017-10-05 バンドー化学株式会社 Transmission belt manufacturing method
WO2017169360A1 (en) * 2016-03-30 2017-10-05 バンドー化学株式会社 Method for producing v-ribbed belt
EP3995168A1 (en) 2016-08-11 2022-05-11 Fisher & Paykel Healthcare Limited A collapsible conduit, patient interface and headgear connector
KR102199202B1 (en) * 2018-11-22 2021-01-06 반도 카가쿠 가부시키가이샤 Electric belt manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834697B2 (en) * 1980-11-17 1983-07-28 三ツ星ベルト株式会社 Multi-rib belt and its manufacturing method
JPH01141034A (en) * 1987-11-27 1989-06-02 Mitsuboshi Belting Ltd Manufacture of toothed belt
JPH0813475B2 (en) * 1987-12-14 1996-02-14 三ツ星ベルト株式会社 V-belt manufacturing method with long cogs
JP2552539B2 (en) * 1988-10-25 1996-11-13 三ツ星ベルト株式会社 Manufacturing method of multi-ribbed belt
JP5329613B2 (en) * 2005-05-23 2013-10-30 三ツ星ベルト株式会社 Manufacturing method of power transmission belt
JP2008100365A (en) * 2006-10-17 2008-05-01 Mitsuboshi Belting Ltd Manufacturing method of transmission belt

Also Published As

Publication number Publication date
JP2016124160A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6430241B2 (en) Transmission belt manufacturing method
KR101992870B1 (en) Belt manufacturing method, cylindrical mold and crosslinking apparatus used therefor
KR101933204B1 (en) Belt manufacturing method and two-layer adapter
US10532528B2 (en) Method for producing v-ribbed belt
CN108884909B (en) The manufacturing method of V-ribbed belt
JP6396773B2 (en) Transmission belt manufacturing method
JP6713254B2 (en) Conveyor belt manufacturing method
KR20220136122A (en) V-ribbed belt
WO2017169412A1 (en) Transmission belt manufacturing method
JP4329925B2 (en) Transmission belt manufacturing method
JPH0867318A (en) Sailcloth core body for wide belt and manufacture thereof
JP2004316787A (en) V-ribbed belt and manufacturing method thereof
WO2017163763A1 (en) Manufacturing method for raw edge v-belt
JP6230753B1 (en) V-belt manufacturing method
JP2006272824A (en) Method and apparatus for manufacturing double-side-toothed belt
JP3168164B2 (en) Jacket for producing belt sleeve and method for producing the same
JP2006007450A (en) Manufacturing method of transmission belt and transmission belt
JP2012250349A (en) Method for manufacturing toothed belt
JP2013144416A (en) Method of manufacturing transmission belt
JP2008030460A (en) Manufacturing process of driving belt
JP3682017B2 (en) V-ribbed belt manufacturing method and manufacturing apparatus thereof
JP2008213144A (en) Method for producing transmission belt
JP2001212886A (en) Method of manufacturing belt for power transmission
JP2001038820A (en) Production of belt with double-face tooth and belt with tooth
JPH0535230U (en) Rubber belt vulcanizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250