JP6428906B2 - Lithium battery exterior materials - Google Patents

Lithium battery exterior materials Download PDF

Info

Publication number
JP6428906B2
JP6428906B2 JP2017252562A JP2017252562A JP6428906B2 JP 6428906 B2 JP6428906 B2 JP 6428906B2 JP 2017252562 A JP2017252562 A JP 2017252562A JP 2017252562 A JP2017252562 A JP 2017252562A JP 6428906 B2 JP6428906 B2 JP 6428906B2
Authority
JP
Japan
Prior art keywords
layer
acid
corrosion prevention
prevention treatment
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017252562A
Other languages
Japanese (ja)
Other versions
JP2018049849A (en
Inventor
拓也 村木
拓也 村木
智彦 山▲崎▼
智彦 山▲崎▼
鈴田 昌由
昌由 鈴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61766498&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6428906(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2017252562A priority Critical patent/JP6428906B2/en
Publication of JP2018049849A publication Critical patent/JP2018049849A/en
Application granted granted Critical
Publication of JP6428906B2 publication Critical patent/JP6428906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム電池用外装材に関する。   The present invention relates to a packaging material for a lithium battery.

パソコン、携帯電話などの携帯端末装置、ビデオカメラなどに用いられる民生用途の二次電池として、高エネルギーながらも超薄型化、小型化が可能なリチウムイオン電池が盛んに開発されている。
リチウムイオン電池用の外装材(以下、単に「外装材」ということがある。)としては、従来の金属製の缶に代えて、軽量でかつ電池形状を自由に選択できるという利点から、多層構成のラミネートフィルムが用いられるようになっている。また、このようなラミネートフィルムを使用した外装材は、電池形状の自由度だけでなく、軽量で放熱性が高く、更に低コストであることから、近年発展の著しい、環境負荷の小さいハイブリッド車、電気自動車のバッテリーへの適用も試みられている。
As a secondary battery for consumer use used in portable terminal devices such as personal computers and mobile phones, and video cameras, lithium-ion batteries that are ultra-thin and miniaturized while being high energy have been actively developed.
As an exterior material for a lithium ion battery (hereinafter, sometimes simply referred to as an “exterior material”), it is a multilayer structure because it is lightweight and can freely select a battery shape instead of a conventional metal can. Laminate film is used. Moreover, the exterior material using such a laminate film is not only flexible in the shape of the battery, but also lightweight, high heat dissipation, and low cost. Application to electric vehicle batteries is also being attempted.

上記ラミネートフィルムの構成としては、アルミニウム箔等の金属箔層の一方の面に接着剤層を介してシーラント層(熱融着性フィルム)を積層し、他方の面に接着剤層を介して基材層(プラスチックフィルム)を積層する構成(基材層/接着剤層/金属箔層/接着剤層/シーラント層)が一般的である。   The laminate film has a structure in which a sealant layer (heat-fusible film) is laminated on one surface of a metal foil layer such as an aluminum foil via an adhesive layer, and the other surface is interposed via an adhesive layer. A configuration (base material layer / adhesive layer / metal foil layer / adhesive layer / sealant layer) in which a material layer (plastic film) is laminated is common.

ラミネートフィルムタイプの外装材を用いたリチウムイオン電池は、例えば、上述したラミネートフィルムを冷間成型(深絞り成型)により深絞りした成型品中に、電池本体部分として正極材、負極材、およびセパレータと共に、電解液、もしくは該電解液を含浸させたポリマーゲルからなる電解質層が収容され、ヒートシールにより熱封止されて形成される。
電解液としては、非プロトン性溶媒(炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等)にリチウム塩を溶解した電解液が使用される。
前記電解液は、シーラント層に対して浸透性が高い。そのため、リチウムイオン電池においては、シーラント層に浸透した電解液が金属箔層とシーラント層間のラミネート強度を低下させ、最終的に電解液が漏れ出すことがあった。また、電解質である、LiPF、LiBF等のリチウム塩は、加水分解反応によりフッ酸を発生させることがある。フッ酸は、金属面の腐食や、ラミネートフィルムの各層間のラミネート強度の低下を引き起こす。そのため、外装材には、電解液やフッ酸に対する腐食防止性能が求められる。
A lithium ion battery using a laminate film type exterior material is, for example, a positive electrode material, a negative electrode material, and a separator as a battery body part in a molded product obtained by deep drawing the above-described laminate film by cold molding (deep drawing molding). At the same time, an electrolyte layer made of an electrolytic solution or a polymer gel impregnated with the electrolytic solution is accommodated and heat sealed by heat sealing.
As the electrolytic solution, an electrolytic solution in which a lithium salt is dissolved in an aprotic solvent (propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or the like) is used.
The electrolytic solution is highly permeable to the sealant layer. Therefore, in the lithium ion battery, the electrolyte solution that has penetrated into the sealant layer may reduce the laminate strength between the metal foil layer and the sealant layer, and the electrolyte solution may eventually leak out. In addition, lithium salts such as LiPF 6 and LiBF 4 that are electrolytes may generate hydrofluoric acid by a hydrolysis reaction. Hydrofluoric acid causes corrosion of the metal surface and a decrease in laminate strength between the layers of the laminate film. Therefore, the exterior material is required to have a corrosion prevention performance against an electrolytic solution and hydrofluoric acid.

シーラント層と金属箔層とを接着させる接着剤としては、一般的にジオール成分に多官能イソシアネート化合物を配合したポリウレタン系接着剤が用いられてきた。
しかし、ポリウレタン系接着剤は有機溶媒に対して膨潤しやすかった。加えて、ウレタン結合は電解液やフッ酸に対して耐久性に劣るものであった。
As an adhesive for adhering the sealant layer and the metal foil layer, generally, a polyurethane-based adhesive in which a polyfunctional isocyanate compound is blended with a diol component has been used.
However, the polyurethane-based adhesive was easily swollen with respect to the organic solvent. In addition, the urethane bond was inferior in durability to the electrolytic solution and hydrofluoric acid.

そこで、電解液によるシーラント層と金属箔層との間のラミネート強度の経時的低下を抑制し、十分な耐電解液性を有する外装材として、例えば特許文献1には、カルボキシ基を有するポリオレフィン樹脂と、多官能イソシアネート化合物とを含有する接着剤からなる層(接着剤層)を介して、シーラント層と金属箔層とを接着させた外装材が開示されている。   Therefore, for example, Patent Document 1 discloses a polyolefin resin having a carboxy group as an exterior material that suppresses a temporal decrease in the laminate strength between the sealant layer and the metal foil layer due to the electrolytic solution and has sufficient electrolytic solution resistance. And a packaging material in which a sealant layer and a metal foil layer are bonded via a layer (adhesive layer) made of an adhesive containing a polyfunctional isocyanate compound.

特開2010−92703号公報JP 2010-92703 A

しかしながら、特許文献1に記載の外装材では、長期間にわたり優れた耐電解液性を発現することは必ずしも容易ではなく、さらなる耐電解液性の向上が求められる。   However, in the exterior material described in Patent Document 1, it is not always easy to develop excellent electrolytic solution resistance over a long period of time, and further improvement in electrolytic solution resistance is required.

ところで、耐電解液性を付与させる目的で、金属箔層のシーラント層側の表面には腐食防止処理層が設けられることもある。この場合、接着剤層を介して腐食防止処理層とシーラント層とが接着することになる。
しかし、上述したように電解質であるリチウム塩の加水分解により発生したフッ酸などが腐食防止処理層と接着剤層との間に浸透し、ラミネート強度の低下を招くことがあった。
By the way, for the purpose of imparting resistance to electrolytic solution, a corrosion prevention treatment layer may be provided on the surface of the metal foil layer on the sealant layer side. In this case, the corrosion prevention treatment layer and the sealant layer are bonded via the adhesive layer.
However, as described above, hydrofluoric acid or the like generated by hydrolysis of the lithium salt as an electrolyte may permeate between the corrosion prevention treatment layer and the adhesive layer, leading to a decrease in laminate strength.

本発明は、上記事情に鑑みてなされたものであり、長期間にわたり優れた耐電解液性を発現できるリチウム電池用外装材の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the exterior material for lithium batteries which can express the outstanding electrolyte solution resistance over a long period of time.

本発明は、以下の態様を有する。
[1] 基材層と、第一の接着剤層と、金属箔層と、腐食防止処理層と、第二の接着剤層と、シーラント層とが、この順に積層した積層体から構成され、第二の接着剤層は、酸変性ポリオレフィン樹脂と多官能イソシアネート化合物とを含む接着剤組成物からなり、第二の接着剤層の赤外吸収スペクトルにおいて、CHのC−H変角振動に由来する吸収(X)と、ビューレット結合のN−H変角振動に由来する吸収(Y)との比(Y/X)が0.3以下である、リチウム電池用外装材。
[2] 多官能イソシアネート化合物がイソシアヌレート構造である、[1]に記載のリチウム電池用外装材。
[3] 酸変性ポリオレフィン樹脂が、プロピレンの単独重合体またはプロピレンとエチレンとの共重合体に、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステル、不飽和カルボン酸の酸無水物のエステルよりなる群から選ばれる少なくとも1種をグラフトさせた酸変性ポリオレフィン樹脂である、[1]または[2]に記載のリチウム電池用外装材。
[4] 接着剤組成物は、スズ、チタン、ジルコニウムよりなる群から選ばれる少なくとも1種の金属を含む有機金属触媒をさらに含む、[1]〜[3]のいずれか1つに記載のリチウム電池用外装材。
The present invention has the following aspects.
[1] A base material layer, a first adhesive layer, a metal foil layer, a corrosion prevention treatment layer, a second adhesive layer, and a sealant layer are composed of a laminated body laminated in this order, The second adhesive layer is composed of an adhesive composition containing an acid-modified polyolefin resin and a polyfunctional isocyanate compound. In the infrared absorption spectrum of the second adhesive layer, the CH 3 has a C—H bending vibration. An exterior material for a lithium battery, wherein the ratio (Y / X) of the derived absorption (X) to the absorption (Y) derived from N-H bending vibration of burette bond is 0.3 or less.
[2] The lithium battery exterior material according to [1], wherein the polyfunctional isocyanate compound has an isocyanurate structure.
[3] The acid-modified polyolefin resin is a homopolymer of propylene or a copolymer of propylene and ethylene, unsaturated carboxylic acid, acid anhydride of unsaturated carboxylic acid, ester of unsaturated carboxylic acid, unsaturated carboxylic acid. The outer packaging material for a lithium battery according to [1] or [2], which is an acid-modified polyolefin resin grafted with at least one selected from the group consisting of esters of acid anhydrides.
[4] The lithium composition according to any one of [1] to [3], wherein the adhesive composition further includes an organometallic catalyst including at least one metal selected from the group consisting of tin, titanium, and zirconium. Battery exterior material.

本発明のリチウム電池用外装材は、長期間にわたり優れた耐電解液性を発現できる。   The outer packaging material for a lithium battery of the present invention can exhibit excellent electrolytic solution resistance over a long period of time.

本発明のリチウム電池用外装材の一例を示す断面図である。It is sectional drawing which shows an example of the exterior material for lithium batteries of this invention. 実施例1、4で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルである。It is an infrared absorption spectrum of the 2nd adhesive bond layer which consists of an adhesive composition used in Example 1, 4. 実施例2、5で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルである。It is an infrared absorption spectrum of the 2nd adhesive bond layer which consists of an adhesive composition used in Example 2, 5. 実施例3、6で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルである。It is an infrared absorption spectrum of the 2nd adhesive bond layer which consists of an adhesive composition used in Example 3, 6. FIG. 比較例1、2で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルである。It is an infrared absorption spectrum of the 2nd adhesive bond layer which consists of an adhesive composition used in Comparative Examples 1 and 2.

以下、本発明のリチウム電池用外装材の一例として、図1に示すリチウム電池用外装材(以下、単に「外装材」という。)10について説明する。
本実施形態の外装材10は、図1に示すように、基材層11と、第一の接着剤層12と、1層構成の腐食防止処理層13と、金属箔層14と、2層構成の腐食防止処理層15と、第二の接着剤層16と、シーラント層17とがこの順に積層された積層体から構成されている。
外装材10は、基材層11を最外層、シーラント層17を最内層として使用される。
Hereinafter, a lithium battery exterior material (hereinafter simply referred to as “exterior material”) 10 shown in FIG. 1 will be described as an example of the lithium battery exterior material of the present invention.
As shown in FIG. 1, the exterior material 10 of this embodiment includes a base material layer 11, a first adhesive layer 12, a one-layer corrosion prevention treatment layer 13, a metal foil layer 14, and two layers. The corrosion prevention treatment layer 15, the second adhesive layer 16, and the sealant layer 17 are configured from a laminate in which the layers are laminated in this order.
The packaging material 10 is used with the base material layer 11 as the outermost layer and the sealant layer 17 as the innermost layer.

「基材層」
基材層11は、リチウム電池を製造する際のヒートシール工程における耐熱性の付与、成形加工や流通の際に起こり得るピンホールの発生の抑制等の役割を果たす。特に大型用途のリチウム電池の外装材の場合等は、耐擦傷性、耐薬品性、絶縁性等も付与できる。
"Base material layer"
The base material layer 11 plays a role such as imparting heat resistance in a heat sealing process when manufacturing a lithium battery, and suppressing generation of pinholes that may occur during molding processing and distribution. In particular, in the case of an exterior material for a large-sized lithium battery, scratch resistance, chemical resistance, insulation, and the like can be imparted.

基材層11としては、絶縁性を有する樹脂により形成された樹脂フィルムが好ましい。
該樹脂フィルムとしては、例えばポリエステルフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸又は未延伸フィルムが挙げられる。
基材層11は、1層でも2層以上でもよい。例えば基材層11は、前記の樹脂フィルムのいずれか1種からなる単層構成の樹脂層であってもよく、前記の樹脂フィルムを2種以上積層した複層構成の樹脂層であってもよい。これらの樹脂層としては、例えば延伸または無延伸ポリアミドフィルム、延伸または無延伸ポリエステルフィルム、延伸ポリアミドフィルムと延伸ポリエステルフィルムとの2層フィルムなどが挙げられる。
As the base material layer 11, a resin film formed of an insulating resin is preferable.
Examples of the resin film include stretched or unstretched films such as polyester film, polyamide film, and polypropylene film.
The base material layer 11 may be one layer or two or more layers. For example, the base material layer 11 may be a single layer resin layer composed of any one of the above resin films, or may be a multi-layer resin layer in which two or more of the above resin films are laminated. Good. Examples of these resin layers include stretched or unstretched polyamide films, stretched or unstretched polyester films, and two-layer films of stretched polyamide films and stretched polyester films.

基材層11としては、成形性、耐熱性に優れる点では、延伸ポリアミドフィルムが好ましい。また、基材層11としては、耐酸性に優れる点では、延伸ポリエステルフィルムが好ましい。また、基材層11としては、成形性、耐熱性及び耐酸性を両立しやすい点では、延伸ポリアミドフィルムと延伸ポリエステルフィルムとの積層フィルムが好ましい。   The base material layer 11 is preferably a stretched polyamide film in terms of excellent moldability and heat resistance. Moreover, as the base material layer 11, a stretched polyester film is preferable in terms of excellent acid resistance. Moreover, as the base material layer 11, a laminated film of a stretched polyamide film and a stretched polyester film is preferable from the viewpoint of easily achieving moldability, heat resistance, and acid resistance.

基材層11の厚さは、成形性、耐熱性、耐ピンホール性、絶縁性の点で、6μm以上が好ましく、10μm以上がより好ましい。また、基材層11の厚さは、薄膜化、高放熱性の点では、60μm以下が好ましく、45μm以下がより好ましい。
基材層11が複層構成の樹脂層である場合、前記厚さは、その全体の厚さである。
The thickness of the base material layer 11 is preferably 6 μm or more and more preferably 10 μm or more in terms of moldability, heat resistance, pinhole resistance, and insulation. Moreover, the thickness of the base material layer 11 is preferably 60 μm or less, and more preferably 45 μm or less in terms of thinning and high heat dissipation.
When the base material layer 11 is a resin layer having a multilayer structure, the thickness is the total thickness.

基材層11の最外面(第一の接着剤層12側の反対側の表面)には、耐酸性付与剤、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤が塗布されていてもよい。
耐酸性付与剤としては、例えばポリ塩化ビニリデン、塩化ビニリデン−塩化ビニル共重合体、無水マレイン酸変性ポリプロピレン、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂、セルロースエステル、ウレタン樹脂、アクリル樹脂などが挙げられる。
スリップ剤としては、例えばオレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド等の脂肪酸アミドなどが挙げられる。
アンチブロッキング剤としては、シリカ等の各種フィラー系のアンチブロッキング剤が好ましい。
これらの添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
On the outermost surface of the base material layer 11 (surface opposite to the first adhesive layer 12 side), acid resistance imparting agent, flame retardant, slip agent, anti-blocking agent, antioxidant, light stabilizer, tackifier Various additives such as an agent may be applied.
Examples of the acid resistance imparting agent include polyvinylidene chloride, vinylidene chloride-vinyl chloride copolymer, maleic anhydride-modified polypropylene, polyester resin, epoxy resin, phenol resin, fluororesin, cellulose ester, urethane resin, acrylic resin, and the like. It is done.
Examples of the slip agent include fatty acid amides such as oleic acid amide, erucic acid amide, stearic acid amide, behenic acid amide, ethylene bisoleic acid amide, and ethylene biserucic acid amide.
As the anti-blocking agent, various filler-based anti-blocking agents such as silica are preferable.
These additives may be used alone or in combination of two or more.

「第一の接着剤層」
第一の接着剤層12は、基材層11と腐食防止処理層13が形成された金属箔層14とを接着する層である。
第一の接着剤層12は、樹脂フィルムと金属箔のラミネートに用いられる接着剤として公知のものを用いて形成できる。該接着剤としては、例えばポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオールなどのポリオールからなる主剤と、2官能以上のイソシアネート化合物からなる硬化剤とを含有するポリウレタン系接着剤が挙げられる。前記主剤に対し前記硬化剤を作用させることでポリウレタン系樹脂が形成される。
"First adhesive layer"
The 1st adhesive bond layer 12 is a layer which adhere | attaches the base material layer 11 and the metal foil layer 14 in which the corrosion prevention process layer 13 was formed.
The 1st adhesive bond layer 12 can be formed using a well-known thing as an adhesive agent used for the lamination of a resin film and metal foil. Examples of the adhesive include a polyurethane-based adhesive containing a main agent composed of a polyol such as polyester polyol, polyether polyol, acrylic polyol, and carbonate polyol, and a curing agent composed of a bifunctional or higher functional isocyanate compound. A polyurethane-based resin is formed by allowing the curing agent to act on the main agent.

ポリエステルポリオールとしては、少なくとも1種の多塩基酸と、少なくとも1種のジオールを反応させて得られるものを用いることが可能である。
多塩基酸としては、例えばコハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ブラシル酸などの脂肪族系二塩基酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族系二塩基酸等の二塩基酸などが挙げられる。
ジオールとしては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオール等の脂肪族系ジオール、シクロヘキサンジオール、水添キシリレングリーコル等の脂環式系ジオール、キシリレングリーコル等の芳香族系ジオールなどが挙げられる。
As the polyester polyol, one obtained by reacting at least one polybasic acid with at least one diol can be used.
Examples of the polybasic acid include aliphatic dibasic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, and brassic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, and the like. And dibasic acids such as aromatic dibasic acids.
Examples of the diol include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexanediol, water, and the like. Examples thereof include alicyclic diols such as an attached xylylene glycol, and aromatic diols such as a xylylene glycol.

また、ポリエステルポリオールとして、上記ポリエステルポリオールの両末端の水酸基を、イソシアネート化合物の単体、または少なくとも一種のイソシアネート化合物からなるアダクト体、ビューレット体もしくはイソシアヌレート体を用いて鎖伸長したポリエステルウレタンポリオールなどが挙げられる。
イソシアネート化合物としては、例えば2,4−もしくは2,6−トリレンジイソシアネート(TDI)またはその水素添加物、クルードTDI、キシリレンジイソシアネート(XDI)またはその水素添加物、ヘキサメチレンジイソシアネート(HDI)、4,4’−ジフェニルメタンジイソシアネート(MDI)またはその水素添加物、クルードMDI、メチレンジイソシアネート、イソプロピレンジイソシアネート、リジンジイソシアネート、2,2,4−もしくは2,4,4−トリメチルヘキサメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート(IPDI)、4,4’−ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシル−4,4’−ジイソシアネート等のジイソシアネート類などが挙げられる。
これらイソシアネート化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Further, as the polyester polyol, a hydroxyl group at both ends of the polyester polyol, a polyester urethane polyol in which chain is extended using an isocyanate compound alone or an adduct body, a burette body or an isocyanurate body made of at least one isocyanate compound, etc. Can be mentioned.
Examples of the isocyanate compound include 2,4- or 2,6-tolylene diisocyanate (TDI) or a hydrogenated product thereof, crude TDI, xylylene diisocyanate (XDI) or a hydrogenated product thereof, hexamethylene diisocyanate (HDI), 4 , 4'-diphenylmethane diisocyanate (MDI) or its hydrogenated product, crude MDI, methylene diisocyanate, isopropylene diisocyanate, lysine diisocyanate, 2,2,4- or 2,4,4-trimethylhexamethylene diisocyanate, 1,6- Hexamethylene diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate, isopropylidene diisocyanate Such as diisocyanate such as hexyl-4,4'-diisocyanate, and the like.
These isocyanate compounds may be used individually by 1 type, and may use 2 or more types together.

ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコールなどのエーテル系のポリオールや、鎖長伸長剤として上述したイソシアネート化合物を作用させたポリエーテルウレタンポリオールを用いることが可能である。   As the polyether polyol, it is possible to use an ether-based polyol such as polyethylene glycol or polypropylene glycol, or a polyether urethane polyol in which the above-described isocyanate compound is allowed to act as a chain extender.

アクリルポリオールとしては、ポリ(メタ)アクリル酸を主成分とする共重合体が挙げられる。該共重合体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマーを筆頭に、アルキル基としてメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基であるアルキル(メタ)アクリレート系モノマー、さらには、(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)、N−アルコキシ(メタ)アクリルアミド、N,N−ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等)、N−メチロール(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド等のアミド基含有モノマー、グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー、(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー、(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマーを共重合させたものが挙げられる。   Examples of the acrylic polyol include a copolymer containing poly (meth) acrylic acid as a main component. Examples of the copolymer include hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, and methyl groups, ethyl groups, n-propyl groups, i-propyl groups as alkyl groups. Group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, alkyl (meth) acrylate monomer, and (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (As the alkyl group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group) Cyclohexyl group, etc.), N-alkoxy (meth) acrylamide, N, N-dialkoxy (meth) Kurylamide (as alkoxy groups, methoxy group, ethoxy group, butoxy group, isobutoxy group, etc.), amide group-containing monomers such as N-methylol (meth) acrylamide, N-phenyl (meth) acrylamide, glycidyl (meth) acrylate, Glycidyl group-containing monomers such as allyl glycidyl ether, silane-containing monomers such as (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltriethoxylane, and isocyanate group-containing monomers such as (meth) acryloxypropyl isocyanate What was polymerized is mentioned.

カーボネートポリオールとしては、カーボネート化合物とジオールとを反応させて得られるものを用いることが可能である。
カーボネート化合物としては、例えばジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネートなどを用いることができる。
ジオールとしては、ポリエステルポリオールの説明において先に例示したジオールが挙げられる。
また、上記カーボネートポリオールの末端の水酸基を、上述したイソシアネート化合物により鎖伸長したポリカーボネートウレタンポリオールを用いることが可能である。
As the carbonate polyol, one obtained by reacting a carbonate compound and a diol can be used.
As the carbonate compound, for example, dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like can be used.
Examples of the diol include the diols exemplified above in the description of the polyester polyol.
Further, it is possible to use a polycarbonate urethane polyol in which the terminal hydroxyl group of the carbonate polyol is chain-extended with the above-described isocyanate compound.

これらの各種ポリオールは、求められる機能や性能に応じて、いずれか1種単独で、または2種以上のブレンドの状態で用いても構わない。   These various polyols may be used alone or in the form of a blend of two or more depending on the required function and performance.

硬化剤として用いられる2官能以上のイソシアネート化合物としては、ポリエステルポリオールの説明において先に例示したイソシアネート化合物が挙げられる。
硬化剤の配合量は、主剤100質量部に対して1〜100質量部が好ましく、5〜50質量部がより好ましい。1質量部より少ないと密着性や電解液耐性という点で性能が発現しないおそれがある。100質量部より多いと過剰なイソシアネート基が存在することになり、未反応物の残留による接着剤膜質への影響や、硬さに影響を与えるおそれがある。
Examples of the bifunctional or higher functional isocyanate compound used as the curing agent include the isocyanate compounds exemplified above in the description of the polyester polyol.
1-100 mass parts is preferable with respect to 100 mass parts of main agents, and, as for the compounding quantity of a hardening | curing agent, 5-50 mass parts is more preferable. If the amount is less than 1 part by mass, the performance may not be exhibited in terms of adhesion and electrolyte resistance. If the amount is more than 100 parts by mass, an excess of isocyanate groups will be present, which may affect the adhesive film quality due to the residual unreacted substances and the hardness.

前記ポリウレタン系接着剤に、さらに、接着促進のため、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤などを配合することも可能である。
カルボジイミド化合物としては、例えばN,N’−ジ−o−トルイルカルボジイミド、N,N’−ジフェニルカルボジイミド、N,N’−ジ−2,6−ジメチルフェニルカルボジイミド、N,N’−ビス(2,6−ジイソプロピルフェニル)カルボジイミド、N,N’−ジオクチルデシルカルボジイミド、N−トリイル−N’−シクロヘキシルカルボジイミド、N,N’−ジ−2,2−ジ−t−ブチルフェニルカルボジイミド、N−トリイル−N’−フェニルカルボジイミド、N,N’−ジ−p−ニトロフェニルカルボジイミド、N,N’−ジ−p−アミノフェニルカルボジイミド、N,N’−ジ−p−ヒドロキシフェニルカルボジイミド、N,N’−ジ−シクロヘキシルカルボジイミド、およびN,N’−ジ−p−トルイルカルボジイミドなどが挙げられる。
It is also possible to mix a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, and the like with the polyurethane adhesive for promoting adhesion.
Examples of the carbodiimide compound include N, N′-di-o-toluylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N′-bis (2, 6-diisopropylphenyl) carbodiimide, N, N′-dioctyldecylcarbodiimide, N-triyl-N′-cyclohexylcarbodiimide, N, N′-di-2,2-di-t-butylphenylcarbodiimide, N-triyl-N '-Phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di-p-aminophenylcarbodiimide, N, N'-di-p-hydroxyphenylcarbodiimide, N, N'-di -Cyclohexylcarbodiimide, N, N'-di-p-toluylcarbodiimide and the like.

オキサゾリン化合物としては、例えば2−オキサゾリン、2−メチル−2−オキサゾリン、2−フェニル−2−オキサゾリン、2,5−ジメチル−2−オキサゾリン、2,4−ジフェニル−2−オキサゾリン等のモノオキサゾリン化合物、2,2’−(1,3−フェニレン)−ビス(2−オキサゾリン)、2,2’−(1,2−エチレン)−ビス(2−オキサゾリン)、2,2’−(1,4−ブチレン)−ビス(2−オキサゾリン)、2,2’−(1,4−フェニレン)−ビス(2−オキサゾリン)等のジオキサゾリン化合物などが挙げられる。   Examples of the oxazoline compound include monooxazoline compounds such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline. 2,2 ′-(1,3-phenylene) -bis (2-oxazoline), 2,2 ′-(1,2-ethylene) -bis (2-oxazoline), 2,2 ′-(1,4 And dioxazoline compounds such as -butylene) -bis (2-oxazoline) and 2,2 '-(1,4-phenylene) -bis (2-oxazoline).

エポキシ化合物としては、例えば1,6−ヘキサンジオール、ネオペンチルグリコール、ポリアルキレングリコール等の脂肪族のジオールのジグリシジルエーテル、ソルビトール、ソルビタン、ポリグリセロール、ペンタエリスリトール、ジグリセロール、グリセロール、トリメチロールプロパン等の脂肪族ポリオールのポリグリシジルエーテル、シクロヘキサンジメタノール等の脂環式ポリオールのポリグリシジルエーテル、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸等の脂肪族、芳香族の多価カルボン酸のジグリシジルエステルまたはポリグリシジルエステル、レゾルシノール、ビス−(p−ヒドロキシフェニル)メタン、2,2−ビス−(p−ヒドロキシフェニル)プロパン、トリス−(p−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(p−ヒドロキシフェニル)エタン等の多価フェノールのジグリシジルエーテルもしくはポリグリシジルエーテル、N,N’−ジグリシジルアニリン、N,N,N−ジグリシジルトルイジン、N,N,N’,N’−テトラグリシジル−ビス−(p−アミノフェニル)メタン等のアミンのN−グリシジル誘導体、アミノフェールのトリグリシジル誘導体、トリグリシジルトリス(2−ヒドロキシエチル)イソシアヌレート、トリグリシジルイソシアヌレート、オルソクレゾール型エポキシ、フェノールノボラック型エポキシなどが挙げられる。   Examples of the epoxy compound include diglycidyl ethers of aliphatic diols such as 1,6-hexanediol, neopentyl glycol, polyalkylene glycol, sorbitol, sorbitan, polyglycerol, pentaerythritol, diglycerol, glycerol, trimethylolpropane and the like. Polyglycidyl ethers of aliphatic polyols, polyglycidyl ethers of alicyclic polyols such as cyclohexanedimethanol, aliphatic and aromatic such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, trimellitic acid, adipic acid and sebacic acid Diglycidyl ester or polyglycidyl ester of polycarboxylic acid, resorcinol, bis- (p-hydroxyphenyl) methane, 2,2-bis- (p-hydroxyphenyl) propane, Diglycidyl ether or polyglycidyl ether of polyhydric phenols such as ris- (p-hydroxyphenyl) methane, 1,1,2,2-tetrakis (p-hydroxyphenyl) ethane, N, N′-diglycidylaniline, N N, N-N-diglycidyl toluidine, N, N, N ′, N′-tetraglycidyl-bis- (p-aminophenyl) methane, etc., N-glycidyl derivatives, aminofail triglycidyl derivatives, triglycidyl tris (2-Hydroxyethyl) isocyanurate, triglycidyl isocyanurate, orthocresol type epoxy, phenol novolac type epoxy and the like.

リン系化合物としては、例えばトリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレンホスフォナイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−t−ブチル−フェニル)ブタン、トリス(ミックスドモノおよびジ−ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’−イソプロピリデンビス(フェニル−ジアルキルホスファイト)などが挙げられる。   Examples of phosphorus compounds include tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylenephosphonite, bis (2, 4-di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4 6-di-t-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2- Methyl-4-ditridecyl phosphite-5-tert-butyl-phenyl) butane, tris (mixed mono and di-nonylphenyl) phosphite, tris Nonylphenyl) phosphite, 4,4'-isopropylidene-bis (phenyl - dialkyl phosphite), and the like.

シランカップリング剤としては、例えばビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシランなど各種シランカップリング剤を使用することが可能である。
その他、接着剤に求められる性能に応じ、各種添加剤や安定剤を配合しても構わない。
Examples of the silane coupling agent include vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycid. Xylpropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-chloropropylmethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- Various silane coupling agents such as β (aminoethyl) -γ-aminopropyltrimethoxysilane can be used.
In addition, various additives and stabilizers may be blended according to the performance required for the adhesive.

第一の接着剤層12の厚さは、1〜10μmが好ましく、3〜5μmがより好ましい。1μm以上であると接着剤としてのラミネート強度が向上し、10μm以下であると外装材10を冷間成形により深絞り成形品としたときに、該深絞り成形品の絞り隅部においても、電解液雰囲気下での基材層11−金属箔層14間の浮きを十分に抑制できる。   1-10 micrometers is preferable and, as for the thickness of the 1st adhesive bond layer 12, 3-5 micrometers is more preferable. When it is 1 μm or more, the laminate strength as an adhesive is improved, and when it is 10 μm or less, when the exterior material 10 is made into a deep-drawn molded product by cold forming, electrolysis is also performed at the drawn corners of the deep-drawn molded product. The float between the base material layer 11 and the metal foil layer 14 in a liquid atmosphere can be sufficiently suppressed.

「金属箔層」
金属箔層14は、水分が電池内に浸入を防止する水蒸気バリア性を有する。また、金属箔層14は、深絞り成形をするために延展性を有する。
金属箔層14としては、アルミニウム、ステンレス鋼等の各種金属箔を使用することができ、重量(比重)、防湿性、加工性、コストの面から、アルミニウム箔が好ましい。アルミニウム箔からなる金属箔層を「アルミニウム箔層」ともいう。
"Metal foil layer"
The metal foil layer 14 has a water vapor barrier property that prevents moisture from entering the battery. Moreover, the metal foil layer 14 has spreadability in order to perform deep drawing.
Various metal foils, such as aluminum and stainless steel, can be used as the metal foil layer 14, and aluminum foil is preferable from the viewpoint of weight (specific gravity), moisture resistance, workability, and cost. A metal foil layer made of an aluminum foil is also referred to as an “aluminum foil layer”.

金属箔層14となるアルミニウム箔としては、公知の軟質アルミニウム箔が使用でき、耐ピンホール性、及び成形時の延展性の点から、鉄を含むアルミニウム箔が好ましい。アルミニウム箔(100質量%)中の鉄の含有量は、アルミニウム箔の全質量100質量%に対して、0.1〜9.0質量%が好ましく、0.5〜2.0質量%がより好ましい。鉄の含有量が下限値以上であれば耐ピンホール性、延展性が向上する。鉄の含有量が上限値以下であれば、柔軟性が向上する。
アルミニウム箔層の厚さは、バリア性、耐ピンホール性、加工性の点から、9〜200μmが好ましく、15〜100μmがより好ましい。
As an aluminum foil used as the metal foil layer 14, a known soft aluminum foil can be used, and an aluminum foil containing iron is preferable from the viewpoint of pinhole resistance and extensibility during molding. The content of iron in the aluminum foil (100% by mass) is preferably 0.1 to 9.0% by mass and more preferably 0.5 to 2.0% by mass with respect to 100% by mass of the total mass of the aluminum foil. preferable. If the iron content is at least the lower limit, pinhole resistance and spreadability are improved. If the iron content is less than or equal to the upper limit, flexibility is improved.
The thickness of the aluminum foil layer is preferably 9 to 200 μm, more preferably 15 to 100 μm, from the viewpoint of barrier properties, pinhole resistance, and workability.

金属箔層14には、未処理のアルミニウム箔も用いてもよいが、脱脂処理を施したアルミニウム箔を用いることが好ましい。脱脂処理としては、大きく区分するとウェットタイプとドライタイプが挙げられる。
ウェットタイプの脱脂処理としては、酸脱脂やアルカリ脱脂などが挙げられる。酸脱脂に使用する酸としては、例えば硫酸、硝酸、塩酸、フッ酸などの無機酸が挙げられる。これらの酸は、1種を単独で使用してもよく、2種以上を併用してもよい。また、アルミニウム箔のエッチング効果が向上する点から、必要に応じて鉄(III)イオンやセリウム(III)イオンなどの供給源となる各種金属塩を配合してもよい。アルカリ脱脂に使用するアルカリとしては、例えば、水酸化ナトリウムなどの強エッチングタイプのアルカリが挙げられる。また、弱アルカリ系や界面活性剤を配合したものを用いてもよい。ウェットタイプの脱脂処理は浸漬法やスプレー法で行われる。
ドライタイプの脱脂処理としては、例えばアルミニウムを焼鈍処理する工程において、その処理時間を長くすることで脱脂処理を行う方法が挙げられる。また、該脱脂処理の他にも、フレーム処理やコロナ処理などが挙げられる。さらには特定波長の紫外線を照射して発生する活性酸素により、汚染物質を酸化分解・除去する脱脂処理を採用してもよい。
脱脂処理が施されるのは、アルミニウム箔の片側面でも両側面でもよい。
Although untreated aluminum foil may be used for the metal foil layer 14, it is preferable to use a degreased aluminum foil. The degreasing treatment is roughly classified into a wet type and a dry type.
Examples of the wet type degreasing treatment include acid degreasing and alkali degreasing. Examples of the acid used for acid degreasing include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. These acids may be used individually by 1 type, and may use 2 or more types together. Moreover, you may mix | blend various metal salts used as supply sources, such as an iron (III) ion and a cerium (III) ion, as the etching effect of aluminum foil improves. Examples of the alkali used for alkali degreasing include strong etching type alkali such as sodium hydroxide. Moreover, you may use what mix | blended weak alkali type and surfactant. The wet type degreasing treatment is performed by a dipping method or a spray method.
Examples of the dry type degreasing treatment include a method of performing a degreasing treatment by increasing the treatment time in a step of annealing aluminum. In addition to the degreasing treatment, frame treatment, corona treatment, and the like can be given. Furthermore, a degreasing process in which contaminants are oxidatively decomposed / removed by active oxygen generated by irradiating ultraviolet rays having a specific wavelength may be employed.
The degreasing treatment may be performed on one side or both sides of the aluminum foil.

「腐食防止処理層」
腐食防止処理層13、15は、電解液あるいはフッ酸による金属箔層14の腐食を防止するために設けられる層である。
なお、本発明において第一の接着剤層12と金属箔層14との間の腐食防止処理層13を「外層側腐食防止処理層13」といい、金属箔層14と第二の接着剤層16との間の腐食防止処理層15を「内層側腐食防止処理層15」ともいう。
"Corrosion prevention treatment layer"
The corrosion prevention treatment layers 13 and 15 are layers provided to prevent the metal foil layer 14 from being corroded by the electrolytic solution or hydrofluoric acid.
In the present invention, the corrosion prevention treatment layer 13 between the first adhesive layer 12 and the metal foil layer 14 is referred to as an “outer layer side corrosion prevention treatment layer 13”, and the metal foil layer 14 and the second adhesive layer. Corrosion prevention treatment layer 15 between 16 is also referred to as “inner layer side corrosion prevention treatment layer 15”.

内層側腐食防止処理層15は、希土類元素酸化物と、該希土類元素酸化物100質量部に対して1〜100質量部のリン酸またはリン酸塩とを含む層である。内層側腐食防止処理層15は、カチオン性ポリマーおよびアニオン性ポリマーよりなる群から選ばれる少なくとも1種のポリマーをさらに含むことが好ましく、外装材10の耐電解液性や耐フッ酸性がより向上する観点から、内層側腐食防止処理層15はカチオン性ポリマーを含むことが特に好ましい。
なお、金属箔層14上に腐食防止処理層13、15などのコーティング層を設ける場合は、一般的にシランカップリング剤を用いて界面密着力を向上させる技術が用いられることがある。しかし、用いるシランカップリング剤に含まれる官能基の種類によっては、後述する腐食防止処理層に含まれる成分とシランカップリング剤とが副反応を起こし、本来の目的の反応に弊害が生じるおそれがある。そのため、腐食防止処理層13、15はシランカップリング剤を含まないことが好ましい。
The inner layer side corrosion prevention treatment layer 15 is a layer containing a rare earth element oxide and 1 to 100 parts by mass of phosphoric acid or phosphate with respect to 100 parts by mass of the rare earth element oxide. The inner layer side corrosion prevention treatment layer 15 preferably further includes at least one polymer selected from the group consisting of a cationic polymer and an anionic polymer, and the electrolytic solution resistance and hydrofluoric acid resistance of the exterior material 10 are further improved. From the viewpoint, the inner layer side corrosion prevention treatment layer 15 particularly preferably contains a cationic polymer.
In addition, when providing coating layers, such as the corrosion prevention process layers 13 and 15, on the metal foil layer 14, generally the technique which improves an interface adhesive force using a silane coupling agent may be used. However, depending on the type of functional group contained in the silane coupling agent to be used, a component contained in the later-described corrosion prevention treatment layer and the silane coupling agent may cause a side reaction, which may adversely affect the intended reaction. is there. Therefore, it is preferable that the corrosion prevention treatment layers 13 and 15 do not contain a silane coupling agent.

本実施形態の内層側腐食防止処理層15は、図1に示すように、第一の内層側腐食防止処理層15aと、第二の内層側腐食防止処理層15bの2層構成となっている。
第一の内層側腐食防止処理層15aは金属箔層14と接する層であり、希土類元素酸化物とリン酸またはリン酸塩を含む。第二の内層側腐食防止処理層15bは後述する第二の接着剤層16と接する層であり、カチオン性ポリマーおよびアニオン性ポリマーよりなる群から選ばれる少なくとも1種のポリマーを含む。
第二の内層側腐食防止処理層15bは、カチオン性ポリマーまたはアニオン性ポリマーを含むことが好ましく、外装材10の耐電解液性や耐フッ酸性がより向上する観点から、第二の内層側腐食防止処理層15bはカチオン性ポリマーを含むことが特に好ましい。
As shown in FIG. 1, the inner layer side corrosion prevention treatment layer 15 of the present embodiment has a two-layer configuration of a first inner layer side corrosion prevention treatment layer 15a and a second inner layer side corrosion prevention treatment layer 15b. .
The first inner layer side corrosion prevention treatment layer 15a is a layer in contact with the metal foil layer 14, and contains a rare earth element oxide and phosphoric acid or phosphate. The second inner layer side corrosion prevention treatment layer 15b is a layer in contact with the second adhesive layer 16 described later, and includes at least one polymer selected from the group consisting of a cationic polymer and an anionic polymer.
The second inner layer side corrosion prevention treatment layer 15b preferably contains a cationic polymer or an anionic polymer. From the viewpoint of further improving the electrolytic solution resistance and hydrofluoric acid resistance of the outer packaging material 10, the second inner layer side corrosion prevention layer 15b. It is particularly preferable that the prevention treatment layer 15b includes a cationic polymer.

希土類元素酸化物としては、例えば酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられる。これらの中でも、電解液耐性の点から、酸化セリウムが好ましい。
第一の内層側腐食防止処理層15aを形成させる際には、リン酸またはリン酸塩を分散安定化剤として用い、希土類元素酸化物を分散安定化させてゾルの状態にしたもの(希土類元素酸化物ゾル)を使用してもよい。希土類元素酸化物ゾルは、液体分散媒中に希土類元素酸化物の微粒子(例えば平均粒径100nm以下の粒子)が分散したものである。
希土類元素酸化物ゾルの液体分散媒としては、例えば水系溶媒、アルコール系溶媒、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒等の各種溶媒が挙げられ、水系溶媒が好ましい。
Examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide. Among these, cerium oxide is preferable from the viewpoint of electrolyte resistance.
When forming the first inner layer side corrosion prevention treatment layer 15a, phosphoric acid or phosphate is used as a dispersion stabilizer, and a rare earth element oxide is dispersed and stabilized to form a sol (rare earth element Oxide sol) may be used. The rare earth element oxide sol is obtained by dispersing rare earth element oxide fine particles (for example, particles having an average particle diameter of 100 nm or less) in a liquid dispersion medium.
Examples of the liquid dispersion medium of the rare earth element oxide sol include various solvents such as an aqueous solvent, an alcohol solvent, a hydrocarbon solvent, a ketone solvent, an ester solvent, and an ether solvent, and an aqueous solvent is preferable.

リン酸またはリン酸塩は、希土類元素酸化物を分散安定化させるだけでなく、リン酸のアルミキレートの能力を利用した金属箔層(特にアルミニウム箔層)との密着性の向上、フッ酸の影響で溶出したアルミニウムイオンの捕獲(すなわち、不動態の形成)により耐電解液性の付与、低温でもリン酸の脱水縮合が起こりやすいことによる第一の内層側腐食防止処理層15aの凝集力の向上などが期待できる。凝集力が向上することで、外装材10の強度物性が良好となる傾向にある。   Phosphoric acid or phosphate not only stabilizes the dispersion of rare earth element oxides, but also improves adhesion to metal foil layers (especially aluminum foil layers) using the ability of aluminum chelates of phosphoric acid, Capturing of aluminum ions eluted by the influence (that is, formation of a passive state) gives the electrolyte solution resistance, and the cohesive strength of the first inner layer side corrosion prevention treatment layer 15a due to the dehydration condensation of phosphoric acid easily even at low temperatures. Improvements can be expected. By improving the cohesive force, the strength properties of the exterior material 10 tend to be good.

リン酸またはリン酸塩などのリン酸化合物としては、例えばオルトリン酸、ピロリン酸、メタリン酸、またはこれらのアルカリ金属塩、アンモニウム塩などが挙げられる。また、その他にも、リン酸アルミニウム、リン酸チタン等の各種塩を用いてもよい。機能発現の点では、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸等の縮合リン酸、またはこれらのアルカリ金属塩、アンモニウム塩(縮合リン酸塩)が好ましい。
特に、ゾル状態の希土類元素酸化物(すなわち、希土類元素酸化物ゾル)を用いて第一の内層側腐食防止処理層15aを形成する場合、乾燥造膜性(すなわち、乾燥能力や熱量)を考慮すると、低温での反応性に優れる分散安定化剤が好ましい。このことから、リン酸塩を形成する塩としては、低温での脱水縮合性に優れるナトリウム塩が好ましい。また、リン酸化合物は、水溶性の塩が好ましい。
Examples of the phosphoric acid compound such as phosphoric acid or phosphate include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, or alkali metal salts and ammonium salts thereof. In addition, various salts such as aluminum phosphate and titanium phosphate may be used. In terms of function expression, condensed phosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid and ultrametaphosphoric acid, or alkali metal salts and ammonium salts (condensed phosphates) thereof are preferable.
In particular, when the first inner layer side corrosion prevention treatment layer 15a is formed by using a rare earth element oxide in a sol state (that is, a rare earth element oxide sol), the dry film forming property (that is, the drying ability and the amount of heat) is taken into consideration. Then, the dispersion stabilizer which is excellent in the reactivity at low temperature is preferable. For this reason, as a salt forming a phosphate, a sodium salt that is excellent in dehydration condensation property at low temperature is preferable. The phosphate compound is preferably a water-soluble salt.

リン酸またはその塩の含有量は、希土類元素酸化物100質量部に対して1〜100質量部であり、5〜50質量部が好ましく、5〜20質量部がより好ましい。リン酸またはその塩の含有量が上記下限値以上であれば、希土類元素酸化物ゾルの安定性が向上し、十分な機能を備えた外装材10が得られる。一方、リン酸またはその塩の含有量が上記上限値以下であれば、希土類元素酸化物ゾルの機能が高まり、電解液の浸食を防止する性能に優れた第一の内層側腐食防止処理層15aが形成される。   Content of phosphoric acid or its salt is 1-100 mass parts with respect to 100 mass parts of rare earth element oxides, 5-50 mass parts is preferable, and 5-20 mass parts is more preferable. When the content of phosphoric acid or a salt thereof is not less than the above lower limit, the stability of the rare earth element oxide sol is improved, and the exterior material 10 having a sufficient function can be obtained. On the other hand, if the content of phosphoric acid or a salt thereof is not more than the above upper limit value, the function of the rare earth element oxide sol is enhanced, and the first inner layer side corrosion prevention treatment layer 15a excellent in performance of preventing erosion of the electrolytic solution. Is formed.

第一の内層側腐食防止処理層15aの厚さは特に制限されないが、0.01〜10μmが好ましい。
なお、第一の内層側腐食防止処理層15aの単位面積当たりの質量aは、0.010〜0.200g/mであることが好ましく、0.040〜0.100g/mであることがより好ましい。質量aが上記下限値より小さくなると、アルミニウム箔等の金属箔の腐食防止効果を有する希土類元素酸化物や、リン酸またはリン酸塩の絶対量が少なくなるため、耐電解液性や耐フッ酸性が得られにくくなる。一方、質量aが上記上限値より大きくなると、希土類元素酸化物ゾルの乾燥に伴うゾル・ゲル反応が進行しにくくなり(すなわち、熱量不足になりゾル・ゲル反応が進行しにくくなり)、希土類元素酸化物ゾルの凝集力が低下し、外装材とした際の強度物性を低下させる恐れがある。従って、第一の内層側腐食防止処理層15aの単位面積当たりの質量aが上記範囲内であれば、耐電解液性を保持すると共に、希土類元素酸化物ゾルの凝集力を維持できるので、外装材に求められる強度を十分に付与できる。
The thickness of the first inner layer side corrosion prevention treatment layer 15a is not particularly limited, but is preferably 0.01 to 10 μm.
The mass a per unit area of the first inner side corrosion prevention-treated layer 15a, it is preferably 0.010~0.200g / m 2, a 0.040~0.100g / m 2 Is more preferable. If the mass a is smaller than the lower limit, the absolute amount of rare earth element oxide, phosphoric acid or phosphate, which has an effect of preventing corrosion of a metal foil such as an aluminum foil, is reduced, so that the electrolytic solution resistance and hydrofluoric acid resistance are reduced. Is difficult to obtain. On the other hand, when the mass a is larger than the above upper limit value, the sol-gel reaction accompanying drying of the rare earth element oxide sol becomes difficult to proceed (that is, the amount of heat becomes insufficient and the sol-gel reaction becomes difficult to proceed). The cohesive strength of the oxide sol is reduced, which may reduce the strength properties when used as an exterior material. Accordingly, if the mass a per unit area of the first inner layer side corrosion prevention treatment layer 15a is within the above range, the electrolytic solution resistance can be maintained and the cohesive strength of the rare earth element oxide sol can be maintained. Sufficient strength can be imparted to the material.

カチオン性ポリマーは、耐電解液性や耐フッ酸性に優れる化合物である。その要因としては、フッ素イオンをカオン性基でトラップすること(アニオンキャッチャー)で、アルミニウム箔のダメージを抑制するためと推測される。
カチオン性ポリマーとしてはアミンを含有するポリマーが挙げられ、具体的には、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーとからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらカチオン性ポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、ポリアリルアミンまたはその誘導体が好ましい。
The cationic polymer is a compound that is excellent in resistance to electrolytic solution and hydrofluoric acid. The reason for this is presumed to be to suppress damage to the aluminum foil by trapping fluorine ions with a cation group (anion catcher).
Examples of the cationic polymer include an amine-containing polymer. Specifically, polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, and a primary amine grafted on an acrylic main skeleton 1 Examples include secondary amine graft acrylic resins, polyallylamine or derivatives thereof, and aminophenols. These cationic polymers may be used alone or in combination of two or more. Among these, polyallylamine or a derivative thereof is preferable.

ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーとしては、ポリアクリル酸またはそのイオン塩などのポリカルボン酸(塩)、あるいはこれにコモノマーを導入させた共重合体や、カルボキシメチルセルロースまたはそのイオン塩などのカルボキシル基を有する多糖類が挙げられる。
ポリアリルアミンとしては、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミンなどの単独重合体あるいは共重合体を用いることが可能である。これらのアミンはフリーのアミンであっても、酢酸や塩酸によって安定化したアミンであってもよい。また、共重合体成分として、マレイン酸、二酸化イオウなどを用いることも可能である。さらに、1級アミンを部分メトキシ化させることで熱架橋性を付与させたタイプを用いることも可能である。
なお、アミノフェノールの場合も、1級アミンを部分メトキシ化させることで熱架橋性を付与させたタイプを用いることが可能である。
As a polymer having a carboxylic acid that forms an ionic polymer complex with polyethyleneimine, a polycarboxylic acid (salt) such as polyacrylic acid or an ionic salt thereof, a copolymer having a comonomer introduced therein, carboxymethylcellulose, The polysaccharide which has carboxyl groups, such as the ionic salt, is mentioned.
As the polyallylamine, homopolymers or copolymers such as allylamine, allylamine amide sulfate, diallylamine, and dimethylallylamine can be used. These amines may be free amines or amines stabilized with acetic acid or hydrochloric acid. Moreover, it is also possible to use maleic acid, sulfur dioxide, etc. as a copolymer component. Furthermore, it is also possible to use a type in which a primary amine is partially methoxylated to give thermal crosslinkability.
In addition, in the case of aminophenol, it is possible to use a type in which thermal crosslinkability is imparted by partially methoxylating a primary amine.

カチオン性ポリマーは、第二の内層側腐食防止処理層15b中で架橋構造を形成していることが好ましい。カチオン性ポリマーが架橋構造を形成していれば、外装材10の耐水性が向上する。
カチオン性ポリマーを架橋構造にするためには、第二の内層側腐食防止処理層15bを形成する際に、カチオン性ポリマーと共に架橋剤を用いればよい。カチオン性ポリマーを架橋構造にするための架橋剤としては、例えば多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物、オキサゾリン基を有する化合物よりなる群から選ばれる少なくとも1種の化合物が挙げられる。
The cationic polymer preferably forms a crosslinked structure in the second inner layer side corrosion prevention treatment layer 15b. If the cationic polymer forms a crosslinked structure, the water resistance of the exterior material 10 is improved.
In order to make the cationic polymer into a crosslinked structure, a crosslinking agent may be used together with the cationic polymer when forming the second inner layer side corrosion prevention treatment layer 15b. Examples of the crosslinking agent for making the cationic polymer into a crosslinked structure include at least one compound selected from the group consisting of a polyfunctional isocyanate compound, a glycidyl compound, a compound having a carboxy group, and a compound having an oxazoline group.

多官能イソシアネート化合物としては、例えば第一の接着剤層12の説明において先に例示したジイソシアネート類;これらジイソシアネート類をトリメチロールプロパン等の多価アルコールと反応させたアダクト体、ジイソシアネート類を水と反応させることで得られたビューレット体、三量体であるイソシアヌレート体等のポリイソシアネート類;これらポリイソシアネート類をアルコール類、ラクタム類、オキシム類等でブロック化させたブロックポリイソシアネートなどが挙げられる。
グリシジル化合物としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール等のグリコール類とエピクロルヒドリンを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類とエピクロルヒドリンを作用させたエポキシ化合物;フタル酸テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸とエピクロルヒドリンとを作用させたエポキシ化合物などが挙げられる。
カルボキシ基を有する化合物としては、例えば各種脂肪族あるいは芳香族ジカルボン酸などが挙げられ、さらにはポリ(メタ)アクリル酸やポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いてもよい。
オキサゾリン基を有する化合物としては、オキサゾリンユニットを2つ以上有する低分子化合物を用いることができる。また、イソプロペニルオキサゾリンのように重合性モノマーを用いる場合には、アクリル系モノマー、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルなどと共重合させたものを用いることができる。
Examples of the polyfunctional isocyanate compound include the diisocyanates exemplified above in the description of the first adhesive layer 12; adducts obtained by reacting these diisocyanates with polyhydric alcohols such as trimethylolpropane, and the diisocyanates react with water. Polyisocyanates such as burettes and isocyanurates that are trimers; blocked polyisocyanates obtained by blocking these polyisocyanates with alcohols, lactams, oximes, etc. .
Examples of the glycidyl compound include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and the like. Epoxy compounds reacted with glycols and epichlorohydrin; epoxy compounds reacted with polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol and epichlorohydrin; terephthalic acid phthalate, oxalic acid, adipic acid And an epoxy compound obtained by reacting a dicarboxylic acid such as epichlorohydrin.
Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids, and poly (meth) acrylic acid or an alkali (earth) metal salt of poly (meth) acrylic acid may be used. .
As the compound having an oxazoline group, a low molecular compound having two or more oxazoline units can be used. When a polymerizable monomer such as isopropenyl oxazoline is used, it is copolymerized with an acrylic monomer such as (meth) acrylic acid, (meth) acrylic acid alkyl ester, (meth) acrylic acid hydroxyalkyl, or the like. Things can be used.

これら架橋剤はカチオン性ポリマー100質量部に対して、1〜50質量部配合するのが適切である。架橋剤の配合量が上記下限値より少ないと、架橋構造が不十分となる。一方、配合量が上記上限値より多くなると、塗液ポットライフが低下する恐れがある。
なお、カチオン性ポリマーが、ポリアリルアミンの1級アミンをメトキシカルボニル化させたポリアリルアミンの誘導体である場合は、熱架橋性を有するため、架橋剤を配合しなくても架橋剤を配合したものと実質的に同等と見なす。また、カチオン性ポリマーを架橋させる方法としては、上述した架橋剤を用いる以外にも、チタニウムやジルコニウム化合物を架橋剤として用いてイオン架橋などの架橋構造を形成させる方法を用いても構わない。
架橋剤は、1種単独で用いてもよく、2種以上を併用してもよい。
These crosslinking agents are suitably blended in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the cationic polymer. When the blending amount of the crosslinking agent is less than the lower limit value, the crosslinked structure becomes insufficient. On the other hand, if the blending amount is greater than the above upper limit value, the coating pot life may be reduced.
In addition, when the cationic polymer is a polyallylamine derivative obtained by methoxycarbonylating a primary amine of polyallylamine, since it has thermal crosslinkability, it is blended with a crosslinking agent without blending a crosslinking agent. Considered substantially equivalent. Moreover, as a method of crosslinking the cationic polymer, besides using the above-mentioned crosslinking agent, a method of forming a crosslinked structure such as ionic crosslinking using titanium or a zirconium compound as a crosslinking agent may be used.
A crosslinking agent may be used individually by 1 type, and may use 2 or more types together.

さらに、アミンと官能基を選択的に反応させ、架橋点をシロキサン結合にすることの可能なシランカップリング剤を、架橋剤と併用してもよいが、上述したように、内層側腐食防止処理層15はシランカップリング剤を含まないことが好ましい。
シランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−イソシアナートプロピルトリエトキシシランが挙げられる。特に、カチオン性ポリマーあるいはその共重合物との反応性を考慮するとβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−イソシアナートプロピルトリエトキシシランが好適である。
Further, a silane coupling agent capable of selectively reacting an amine and a functional group to form a siloxane bond at the crosslinking point may be used in combination with the crosslinking agent. It is preferable that the layer 15 does not contain a silane coupling agent.
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-chloropropylmethoxysilane. Vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, and γ-isocyanatopropyltriethoxysilane. In particular, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, and γ-isocyanatopropyltriethoxysilane are preferable in consideration of reactivity with a cationic polymer or a copolymer thereof. It is.

アニオン性ポリマーは、第二の内層側腐食防止処理層15bの安定性を向上させる化合物である。
一般的に、外装材の用途に限らず、例えば腐食性化合物によりアルミニウム箔の腐食を防止する目的で設けられる保護層中に、イオンコンタミ、特にナトリウムイオンなどのアルカリ金属イオンやアルカリ土類金属イオンが含まれると、このイオンコンタミを起点にして保護層が侵されてしまう場合がある。
第二の内層側腐食防止処理層15bがアニオン性ポリマーを含有していれば、上述した希土類元素酸化物ゾル中に含まれるナトリウムイオンなどのイオンコンタミを固定化させることができ、外装材の耐性を向上させることができる。
The anionic polymer is a compound that improves the stability of the second inner layer side corrosion prevention treatment layer 15b.
In general, not limited to the use of exterior materials, for example, in a protective layer provided for the purpose of preventing corrosion of an aluminum foil by a corrosive compound, ion contamination, especially alkali metal ions such as sodium ions and alkaline earth metal ions If this is included, the protective layer may be attacked starting from this ion contamination.
If the second inner layer side corrosion prevention treatment layer 15b contains an anionic polymer, ion contamination such as sodium ions contained in the rare earth element oxide sol can be fixed, and the resistance of the exterior material Can be improved.

アニオン性ポリマーは、上述したカチオン性ポリマーとは正反対の特性をもつ材料である。具体的にはカルボキシ基を有するポリマーが挙げられ、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体が挙げられる。共重合体として用いられる成分としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等のアルキル基を有するアルキル(メタ)アクリレート系モノマー;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミドやN,N−ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基など)、N−アルコキシ(メタ)アクリルアミドやN,N−ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基など)、N−メチロール(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド等のアミド基含有モノマー;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネート等のイソシアネート基含有モノマーを共重合させたものなどが挙げられる。   An anionic polymer is a material that has the exact opposite properties of the cationic polymer described above. Specific examples include polymers having a carboxy group, and examples include poly (meth) acrylic acid or a salt thereof, or a copolymer having (meth) acrylic acid or a salt thereof as a main component. The components used as the copolymer include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc. Alkyl (meth) acrylate monomers having an alkyl group; (meth) acrylamide, N-alkyl (meth) acrylamide and N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl and n-propyl groups) , I-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxy (meth) acrylamide and N, N-dialkoxy (meth) acrylamide, (Examples of alkoxy groups include methoxy, ethoxy, butoxy, and isobutoxy groups), N-methyl Amide group-containing monomers such as diol (meth) acrylamide and N-phenyl (meth) acrylamide; Hydroxyl-containing monomers such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; Glycidyl (meth) acrylate, Glycidyl group-containing monomers such as allyl glycidyl ether; Silane-containing monomers such as (meth) acryloxypropyltrimethoxysilane and (meth) acryloxypropyltriethoxylane; and isocyanate group-containing monomers such as (meth) acryloxypropyl isocyanate Polymerized ones can be mentioned.

アニオン性ポリマーも、第二の内層側腐食防止処理層15b中で架橋構造を形成していることが好ましい。アニオン性ポリマーが架橋構造を形成していれば、外装材10の耐水性が向上する。
アニオン性ポリマーを架橋構造にするためには、第二の内層側腐食防止処理層15bを形成する際に、アニオン性ポリマーと共に架橋剤を用いればよい。アニオン性ポリマーを架橋構造にするための架橋剤としては、カチオン性ポリマーの説明において先に例示した架橋剤が挙げられる。
架橋剤はアニオン性ポリマー100質量部に対して、1〜50質量部配合するのが適切である。架橋剤の配合量が上記下限値より少ないと、架橋構造が不十分となる。一方、配合量が上記上限値より多くなると、塗液ポットライフが低下する恐れがある。
架橋剤は、1種単独で用いてもよく、2種以上を併用してもよい。また、架橋剤とシランカップリング剤を併用してもよいが、上述したように、内層側腐食防止処理層15はシランカップリング剤を含まないことが好ましい。シランカップリング剤としては、カチオン性ポリマーの説明において先に例示したシランカップリング剤が挙げられる。
It is preferable that the anionic polymer also forms a crosslinked structure in the second inner layer side corrosion prevention treatment layer 15b. If the anionic polymer forms a crosslinked structure, the water resistance of the exterior material 10 is improved.
In order to make the anionic polymer into a crosslinked structure, a crosslinking agent may be used together with the anionic polymer when forming the second inner layer side corrosion prevention treatment layer 15b. As a crosslinking agent for making an anionic polymer into a crosslinked structure, the crosslinking agent illustrated previously in description of a cationic polymer is mentioned.
The crosslinking agent is suitably blended in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the anionic polymer. When the blending amount of the crosslinking agent is less than the lower limit value, the crosslinked structure becomes insufficient. On the other hand, if the blending amount is greater than the above upper limit value, the coating pot life may be reduced.
A crosslinking agent may be used individually by 1 type, and may use 2 or more types together. Moreover, although you may use together a crosslinking agent and a silane coupling agent, as above-mentioned, it is preferable that the inner layer side corrosion prevention process layer 15 does not contain a silane coupling agent. Examples of the silane coupling agent include the silane coupling agents exemplified above in the description of the cationic polymer.

図1に示すように、第一の内層側腐食防止処理層15aは、金属箔層14上に直接積層している。第一の内層側腐食防止処理層15aは、実質上、希土類元素酸化物のゾル粒子が密集した構造となっている。一方、第二の内層側腐食防止処理層15bは、ゾル粒子が密集した第一の内層側腐食防止処理層15aの間隙を埋めながら、かつ第一の内層側腐食防止処理層15a上に積層している。すなわち、第二の内層側腐食防止処理層15bを構成するカチオン性ポリマーおよびアニオン性ポリマーよりなる群から選ばれる少なくとも1種のポリマーを含む材料(以下、「コーティング組成物(b)」ともいう。)が、第一の内層側腐食防止処理層15aの間隙に浸透しながら第一の内層側腐食防止処理層15a上に塗工され、第二の内層側腐食防止処理層15bを形成する。この際、第一の内層側腐食防止処理層15aの間隙に浸透したコーティング組成物(b)が熱架橋されることで、第二の内層側腐食防止処理層15bは第一の内層側腐食防止処理層15aの保護層的な効果を発現する。   As shown in FIG. 1, the first inner layer side corrosion prevention treatment layer 15 a is directly laminated on the metal foil layer 14. The first inner layer side corrosion prevention treatment layer 15a has a structure in which sol particles of rare earth element oxides are substantially concentrated. On the other hand, the second inner layer side corrosion prevention treatment layer 15b is laminated on the first inner layer side corrosion prevention treatment layer 15a while filling the gap between the first inner layer side corrosion prevention treatment layers 15a where the sol particles are densely packed. ing. That is, the material containing at least one polymer selected from the group consisting of a cationic polymer and an anionic polymer constituting the second inner layer side corrosion prevention treatment layer 15b (hereinafter also referred to as “coating composition (b)”). ) Is applied on the first inner layer side corrosion prevention treatment layer 15a while penetrating into the gaps between the first inner layer side corrosion prevention treatment layers 15a to form the second inner layer side corrosion prevention treatment layer 15b. At this time, the coating composition (b) that has penetrated into the gaps of the first inner layer side corrosion prevention treatment layer 15a is thermally crosslinked, so that the second inner layer side corrosion prevention treatment layer 15b becomes the first inner layer side corrosion prevention treatment layer 15b. The effect of the protective layer of the treatment layer 15a is expressed.

第二の内層側腐食防止処理層15bが第一の内層側腐食防止処理層15aの保護層的な役割をより効果的に発現するためには、第一の内層側腐食防止処理層15aの単位面積当たりの質量a(g/m)と、第二の内層側腐食防止処理層15bの単位面積当たりの質量b(g/m)との関係が、2≧b/aを満たすことが好ましい。
各層の質量の関係(b/a)が上記範囲を超える場合でも、第二の内層側腐食防止処理層15bが第一の内層側腐食防止処理層15aの保護層的な役割を果たすことは可能であるが、この場合、第一の内層側腐食防止処理層15aの間隙を埋める割合に加えて、第一の内層側腐食防止処理層15a上に積層される第二の内層側腐食防止処理層15bの割合が必要以上に増えることになる。第二の内層側腐食防止処理層15b中のカチオン性ポリマーおよび/またはアニオン性ポリマーは、単独で存在するよりも、第二の内層側腐食防止処理層15b中において第一の内層側腐食防止処理層15a中の希土類元素酸化物や、リン酸またはリン酸塩と複合化する方が耐電解液性や耐フッ酸性の機能をより効果的に発現する傾向にある。従って、各層の質量の関係(b/a)が上記範囲を超えると、結果として第一の内層側腐食防止処理層15a中の希土類元素酸化物や、リン酸またはリン酸塩と複合化せずに単独で存在するカチオン性ポリマーおよび/またはアニオン性ポリマーの割合が増えるので、耐電解液性や耐フッ酸性の機能が十分に発揮されなくなる場合があり、耐電解液性や耐フッ酸性が低下する恐れがある。また、コーティング組成物(b)の塗工量が増えるので、硬化しにくくなる場合もある。コーティング組成物(b)を十分に硬化させるためには、乾燥温度を高く設定したり、硬化時間を長く設定したりすればよいが、その結果、生産性が低下する恐れがある。よって、生産性を維持しつつ、耐電解液性や耐フッ酸性を向上させる観点から、各層の質量の関係(b/a)は2≧b/aであることが好ましく、1.5≧b/a≧0.01であることがより好ましく、1.0≧b/a≧0.1であることが特に好ましい。
なお、上記関係は層の質量を基準としているが、各層の比重を求めることができれば、内層側腐食防止処理層15全体の厚さに換算することもできる。
In order for the second inner layer side corrosion prevention treatment layer 15b to more effectively express the protective layer role of the first inner layer side corrosion prevention treatment layer 15a, a unit of the first inner layer side corrosion prevention treatment layer 15a is used. The relationship between the mass a (g / m 2 ) per area and the mass b (g / m 2 ) per unit area of the second inner layer side corrosion prevention treatment layer 15b satisfies 2 ≧ b / a. preferable.
Even when the mass relationship (b / a) of each layer exceeds the above range, it is possible that the second inner layer side corrosion prevention treatment layer 15b can serve as a protective layer for the first inner layer side corrosion prevention treatment layer 15a. However, in this case, in addition to the ratio of filling the gap of the first inner layer side corrosion prevention treatment layer 15a, the second inner layer side corrosion prevention treatment layer laminated on the first inner layer side corrosion prevention treatment layer 15a. The ratio of 15b will increase more than necessary. The cationic polymer and / or the anionic polymer in the second inner layer side corrosion prevention treatment layer 15b are present in the second inner layer side corrosion prevention treatment layer 15b rather than being present alone. The composite with the rare earth element oxide, phosphoric acid or phosphate in the layer 15a tends to more effectively express the electrolytic solution resistance and hydrofluoric acid resistance functions. Therefore, when the relationship (b / a) of the mass of each layer exceeds the above range, as a result, it is not compounded with the rare earth element oxide, phosphoric acid or phosphate in the first inner layer side corrosion prevention treatment layer 15a. As the proportion of the cationic polymer and / or anionic polymer present alone in the liquid crystal increases, the electrolytic solution resistance and hydrofluoric acid resistance functions may not be fully exerted, and the electrolytic solution resistance and hydrofluoric acid resistance decrease. There is a fear. Moreover, since the coating amount of a coating composition (b) increases, it may become difficult to harden | cure. In order to sufficiently cure the coating composition (b), the drying temperature may be set high or the curing time may be set long. As a result, the productivity may be lowered. Therefore, from the viewpoint of improving the electrolytic solution resistance and hydrofluoric acid resistance while maintaining the productivity, the mass relationship (b / a) of each layer is preferably 2 ≧ b / a, and 1.5 ≧ b /A≧0.01 is more preferable, and 1.0 ≧ b / a ≧ 0.1 is particularly preferable.
In addition, although the said relationship is based on the mass of a layer, if the specific gravity of each layer can be calculated | required, it can also convert into the thickness of the inner layer side corrosion prevention process layer 15 whole.

外層側腐食防止処理層13は、金属箔層14の腐食を防止できるものであれば特に制限されないが、例えば希土類元素酸化物と、該希土類元素酸化物100質量部に対して1〜100質量部のリン酸またはリン酸塩とを含むことが好ましい。さらに、カチオン性ポリマーやアニオン性ポリマーを含んでいてもよく、これらポリマーは架橋剤により架橋構造を形成していてもよい。ただし、上述したように、外層側腐食防止処理層13はシランカップリング剤を含まないことが好ましい。
希土類元素酸化物、リン酸またはリン酸塩、カチオン性ポリマー、アニオン性ポリマー、架橋剤としては、内層側腐食防止処理層15の説明において先に例示した希土類元素酸化物、リン酸またはリン酸塩、カチオン性ポリマー、アニオン性ポリマー、架橋剤などが挙げられる。
The outer layer side corrosion prevention treatment layer 13 is not particularly limited as long as it can prevent corrosion of the metal foil layer 14. For example, the rare earth element oxide and 1 to 100 parts by mass with respect to 100 parts by mass of the rare earth element oxide. It is preferable to contain phosphoric acid or phosphate. Furthermore, a cationic polymer or an anionic polymer may be contained, and these polymers may form a crosslinked structure with a crosslinking agent. However, as described above, it is preferable that the outer layer side corrosion prevention treatment layer 13 does not contain a silane coupling agent.
As the rare earth element oxide, phosphoric acid or phosphate, cationic polymer, anionic polymer, and crosslinking agent, the rare earth element oxide, phosphoric acid or phosphate exemplified above in the description of the inner layer side corrosion prevention treatment layer 15 , Cationic polymer, anionic polymer, cross-linking agent and the like.

「第二の接着剤層」
第二の接着剤層16は、内層側腐食防止処理層15が形成された金属箔層14とシーラント層17とを接着する層である。
本実施形態の第二の接着剤層16は、酸変性ポリオレフィン樹脂と多官能イソシアネート化合物とを含む接着剤組成物からなる層である。
"Second adhesive layer"
The second adhesive layer 16 is a layer that bonds the metal foil layer 14 on which the inner layer side corrosion prevention treatment layer 15 is formed and the sealant layer 17.
The second adhesive layer 16 of this embodiment is a layer made of an adhesive composition containing an acid-modified polyolefin resin and a polyfunctional isocyanate compound.

第二の接着剤層16は、以下の特徴を有する。
すなわち、第二の接着剤層16の赤外吸収スペクトルにおいて、CHのC−H変角振動に由来する吸収(X)と、ビューレット結合のN−H変角振動に由来する吸収(Y)との比(Y/X)が0.3以下である。
CHのC−H変角振動は、1380±10cm−1の領域にピーク(吸収ピーク)が現れる。このC−H変角振動は、接着剤組成物に含まれる酸変性ポリオレフィン樹脂中のCHに由来する。CHのC−H変角振動に由来する吸収(X)は、1380±10cm−1の領域に現れるピークの強度である。
一方、ビューレット結合のN−H変角振動は、1520±10cm−1の領域にピーク(吸収ピーク)が現れる。このN−H変角振動は、接着剤組成物からなる第二の接着剤層16中のビューレット結合に由来する。ビューレット結合のN−H変角振動に由来する吸収(Y)は、1520±10cm−1の領域に現れるピークの強度である。
The second adhesive layer 16 has the following characteristics.
That is, in the infrared absorption spectrum of the second adhesive layer 16, the absorption (X) derived from CH 3 CH bending vibration and the absorption derived from N—H bending vibration of buret bond (Y ) (Y / X) is 0.3 or less.
The CH 3 CH bending vibration has a peak (absorption peak) in the region of 1380 ± 10 cm −1 . This C—H bending vibration is derived from CH 3 in the acid-modified polyolefin resin contained in the adhesive composition. Absorption (X) derived from CH 3 CH bending vibration is the intensity of the peak appearing in the region of 1380 ± 10 cm −1 .
On the other hand, the peak (absorption peak) appears in the 1520 ± 10 cm −1 region of the N—H bending vibration of burette coupling. This N—H bending vibration is derived from a burette bond in the second adhesive layer 16 made of the adhesive composition. Absorption (Y) derived from N-H bending vibration of burette bond is the intensity of the peak appearing in the region of 1520 ± 10 cm −1 .

ビューレット結合は、多官能イソシアネート化合物そのものに含まれていたり、多官能イソシアネート化合物が接着剤組成物中や大気中の水と副反応(ビューレット反応)を起こすことにより生じたりする。
多官能イソシアネート化合物にビューレット結合が含まれるのは、主に多官能イソシアネート化合物としてビューレット体を用いる場合である。また、アダクト体やイソシアヌレート体を製造する際に副生成物としてビューレット体が混入することがあるため、多官能イソシアネート化合物としてアダクト体やイソシアヌレート体を用いる場合でも、多官能イソシアネート化合物にビューレット結合が含まれることがある。
また、ビューレット反応は、多官能イソシアネート化合物の保管中や、外装材10の製造において、必要に応じて実施されるエージング処理の際に起こりやすい。エージング処理は接着促進を目的とし、例えば金属箔層14と基材層11とを貼り合わせた後や、金属箔層14とシーラント層17とを貼り合わせた後に実施される。保管温度やエージング温度が高くなるに連れて、ビューレット反応が進行しやすくなる傾向にある。
The burette bond is contained in the polyfunctional isocyanate compound itself, or occurs when the polyfunctional isocyanate compound causes a side reaction (burette reaction) with water in the adhesive composition or in the atmosphere.
The polyfunctional isocyanate compound contains a burette bond mainly when a burette body is used as the polyfunctional isocyanate compound. In addition, since a burette body may be mixed as a by-product when an adduct body or isocyanurate body is produced, even when an adduct body or isocyanurate body is used as a polyfunctional isocyanate compound, Let coupling may be included.
In addition, the burette reaction is likely to occur during the aging treatment that is performed as necessary during storage of the polyfunctional isocyanate compound or in the production of the exterior material 10. The aging treatment is aimed at promoting adhesion, and is performed, for example, after the metal foil layer 14 and the base material layer 11 are bonded together or after the metal foil layer 14 and the sealant layer 17 are bonded together. As the storage temperature and aging temperature increase, the burette reaction tends to proceed easily.

接着剤組成物中のビューレット結合の割合が増えると、理由は定かではないが、耐電解液性が低下する。
Y/Xは、第二の接着剤層16中のビューレット結合の割合の指標である。Y/Xの値が小さいほど多官能イソシアネート化合物に含まれるビューレット結合の割合が少ないことや、多官能イソシアネート化合物と水との副反応(ビューレット反応)が抑制されることを意味する。Y/Xが0.3以下であれば、第二の接着剤層16中のビューレット結合の割合が十分に軽減されているので、長期間にわたり優れた耐電解液性を発現できる。
When the proportion of the burette bond in the adhesive composition increases, the reason for this is not clear, but the resistance to electrolytic solution decreases.
Y / X is an index of the ratio of the burette bond in the second adhesive layer 16. It means that the smaller the value of Y / X, the smaller the proportion of burette bonds contained in the polyfunctional isocyanate compound, and the side reaction (burette reaction) between the polyfunctional isocyanate compound and water is suppressed. If Y / X is 0.3 or less, the ratio of the burette bond in the second adhesive layer 16 is sufficiently reduced, so that excellent electrolytic solution resistance can be expressed over a long period of time.

Y/Xは、多官能イソシアネート化合物の種類や、多官能イソシアネート化合物と酸変性ポリオレフィン樹脂との副反応(ビューレット反応)を抑制することで制御できる。
例えば多官能イソシアネート化合物として純度の高いイソシアヌレート体(すなわち、副生成物であるビューレット体が十分に除去されたもの)を用いれば、Y/Xの値を小さくできる。また、外装材10の製造においてエージング温度を低くすれば、副反応を抑制できるので、Y/Xの値を小さくできる。さらに、接着剤組成物に後述する有機金属触媒を配合しておくことでも、副反応を抑制できることもある。
Y / X can be controlled by suppressing the side reaction (burette reaction) between the polyfunctional isocyanate compound and the polyfunctional isocyanate compound and the acid-modified polyolefin resin.
For example, if a highly pure isocyanurate body (that is, a by-product burette body is sufficiently removed) is used as the polyfunctional isocyanate compound, the value of Y / X can be reduced. In addition, if the aging temperature is lowered in the production of the packaging material 10, side reactions can be suppressed, so that the value of Y / X can be reduced. Furthermore, a side reaction may be suppressed also by mix | blending the organometallic catalyst mentioned later with an adhesive composition.

Y/Xは、例えば以下のようにして求めることができる。
まず、外装材10をアルカリ性水溶液(例えば水酸化ナトリウム水溶液等)に浸漬させ、金属箔層14を完全に溶解させる。その後、シーラント層17側に残っている第二の接着剤層16について、FT−IR(フーリエ変換型赤外分光光度計)を用い、反射法により第二の接着剤層16の露出した面の赤外吸収スペクトルを測定する。得られた赤外吸収スペクトルより、CHのC−H変角振動に由来する吸収(X)とビューレット結合のN−H変角振動に由来する吸収(Y)を求め、その比率(Y/X)を算出する。
Y / X can be determined, for example, as follows.
First, the packaging material 10 is immersed in an alkaline aqueous solution (for example, an aqueous sodium hydroxide solution) to completely dissolve the metal foil layer 14. Thereafter, for the second adhesive layer 16 remaining on the sealant layer 17 side, the exposed surface of the second adhesive layer 16 is reflected by a reflection method using FT-IR (Fourier transform infrared spectrophotometer). An infrared absorption spectrum is measured. From the obtained infrared absorption spectrum, the absorption (X) derived from the CH 3 CH bending vibration and the absorption (Y) derived from the N-H bending vibration of the burette bond are obtained, and the ratio (Y / X) is calculated.

ここで、吸収(X)および吸収(Y)の具体的な求め方について、図2を参照しながら説明する。
上述した方法で赤外吸収スペクトルを測定すると、例えば図2に示すような赤外吸収スペクトルを得る。
CHのC−H変角振動に由来する吸収(X)は下記式(1)より求められ、ビューレット結合のN−H変角振動に由来する吸収(Y)は下記式(2)より求められる。
吸収(X)=(ベースラインの透過率)−(1380cm−1付近のピークの透過率) ・・・(1)
吸収(Y)=(ベースラインの透過率)−(1520cm−1付近のピークの透過率) ・・・(2)
図2に示す場合、ベースラインの透過率は100%であり、1380cm−1付近のピークの透過率は60%であり、1520cm−1付近のピークの透過率は95.6%である。よって、CHのC−H変角振動に由来する吸収(X)は40であり、ビューレット結合のN−H変角振動に由来する吸収(Y)は4.4であるため、Y/Xは0.11となる。
Here, a specific method for obtaining the absorption (X) and the absorption (Y) will be described with reference to FIG.
When the infrared absorption spectrum is measured by the above-described method, for example, an infrared absorption spectrum as shown in FIG. 2 is obtained.
Absorption (X) derived from CH 3 C-H bending vibration is obtained from the following formula (1), and absorption (Y) derived from N-H bending vibration of burette bond is derived from the following formula (2). Desired.
Absorption (X) = (baseline transmittance) − (peak transmittance around 1380 cm −1 ) (1)
Absorption (Y) = (baseline transmittance) − (peak transmittance around 1520 cm −1 ) (2)
In the case shown in FIG. 2, the transmittance of the baseline is 100%, the transmittance of the peak near 1380 cm −1 is 60%, and the transmittance of the peak near 1520 cm −1 is 95.6%. Therefore, since the absorption (X) derived from CH 3 C-H bending vibration of CH 3 is 40 and the absorption (Y) derived from N-H bending vibration of the burette bond is 4.4, Y / X is 0.11.

粘着剤組成物に含まれる酸変性ポリオレフィン樹脂は、酸性基をポリオレフィン樹脂に導入したものである。酸性基としては、カルボキシ基、スルホン酸基などが挙げられ、カルボキシ基が特に好ましい。
カルボキシ基をポリオレフィン樹脂に導入した酸変性ポリオレフィン樹脂としては、例えばポリオレフィン樹脂に、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステル、不飽和カルボン酸の酸無水物のエステルよりなる群から選ばれる少なくとも1種を、ラジカル開始剤の存在下でグラフトさせた酸変性ポリオレフィン樹脂が挙げられる。以下、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステル、不飽和カルボン酸の酸無水物のエステルを総称して「グラフト化合物」ということがある。
The acid-modified polyolefin resin contained in the pressure-sensitive adhesive composition has an acidic group introduced into the polyolefin resin. Examples of the acidic group include a carboxy group and a sulfonic acid group, and a carboxy group is particularly preferable.
Examples of the acid-modified polyolefin resin in which a carboxy group is introduced into a polyolefin resin include, for example, an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, an unsaturated carboxylic acid ester, and an unsaturated carboxylic acid anhydride. Examples include acid-modified polyolefin resins obtained by grafting at least one selected from the group consisting of esters in the presence of a radical initiator. Hereinafter, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, unsaturated carboxylic acid ester, and unsaturated carboxylic acid anhydride ester may be collectively referred to as “graft compound”.

ポリオレフィン樹脂としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−αオレフィン共重合体、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、プロピレン−αオレフィン共重合体、プロピレン−エチレン−αオレフィン共重合体(多元共重合体)などが挙げられる。これらの中でも、ホモポリプロピレン(プロピレンの単独重合体)、プロピレン−αオレフィン共重合体が好ましい。プロピレン−αオレフィン共重合体としては、プロピレンとエチレンとの共重合体が好ましい。
不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸などが挙げられる。
不飽和カルボン酸の酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸無水物などが挙げられる。
不飽和カルボン酸もしくはその酸無水物のエステルとしては、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸ジメチルなどが挙げられる。
Polyolefin resins include low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-α olefin copolymer, homopolypropylene, block polypropylene, random polypropylene, propylene-α olefin copolymer, propylene-ethylene-α olefin copolymer. Examples thereof include a combination (multi-component copolymer). Among these, homopolypropylene (a homopolymer of propylene) and a propylene-α olefin copolymer are preferable. As the propylene-α olefin copolymer, a copolymer of propylene and ethylene is preferable.
As unsaturated carboxylic acid, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid, etc. Is mentioned.
Examples of unsaturated carboxylic acid anhydrides include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride Etc.
Examples of the unsaturated carboxylic acid or its anhydride ester include methyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, Examples thereof include dimethyl tetrahydrophthalic anhydride and dimethyl bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylate.

酸変性ポリオレフィン樹脂中のグラフト化合物の割合は、ポリオレフィン樹脂100質量部に対して、0.2〜100質量部が好ましい。
グラフト反応の温度条件は、50〜250℃が好ましく、60〜200℃がより好ましい。
反応時間は製造方法にも左右されるが、二軸押出機による溶融グラフト反応の場合、押出機の滞留時間内が好ましい。具体的には、2〜30分が好ましく、5〜10分がより好ましい。
グラフト反応は、常圧、加圧いずれの条件下においても実施できる。
ラジカル開始剤としては、有機過酸化物が挙げられる。有機過酸化物としては、例えばアルキルパーオキサイド、アリールパーオキサイド、アシルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、パーオキシカーボネート、パーオキシエステル、ハイドロパーオキサイドなどが挙げられる。これらの有機過酸化物は、温度条件と反応時間によって適宜選択できる。前記した二軸押出機による溶融グラフト反応の場合、アルキルパーオキサイド、パーオキシケタール、パーオキシエステルが好ましく、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシ−ヘキシン−3、ジクミルペルオキシドがより好ましい。
The ratio of the graft compound in the acid-modified polyolefin resin is preferably 0.2 to 100 parts by mass with respect to 100 parts by mass of the polyolefin resin.
The temperature condition for the graft reaction is preferably 50 to 250 ° C, more preferably 60 to 200 ° C.
Although the reaction time depends on the production method, in the case of a melt graft reaction by a twin screw extruder, the residence time of the extruder is preferable. Specifically, 2 to 30 minutes is preferable, and 5 to 10 minutes is more preferable.
The grafting reaction can be carried out under both normal pressure and pressurized conditions.
Examples of the radical initiator include organic peroxides. Examples of the organic peroxide include alkyl peroxides, aryl peroxides, acyl peroxides, ketone peroxides, peroxyketals, peroxycarbonates, peroxyesters, hydroperoxides, and the like. These organic peroxides can be appropriately selected depending on temperature conditions and reaction time. In the case of the melt graft reaction by the above-described twin-screw extruder, alkyl peroxide, peroxyketal, and peroxyester are preferable, di-t-butyl peroxide, 2,5-dimethyl-2,5-di-t-butyl. Peroxy-hexyne-3 and dicumyl peroxide are more preferred.

酸変性ポリオレフィン樹脂は、有機溶媒に溶解あるいは分散させ、溶液状で用いることが好ましい。
有機溶媒としては、例えばトルエン等の芳香族系有機溶媒;シクロヘキサン等の脂環式系有機溶媒;酢酸エチル等のエステル系有機溶媒;アセトン等のケトン系有機溶媒などが挙げられる。
The acid-modified polyolefin resin is preferably dissolved or dispersed in an organic solvent and used in the form of a solution.
Examples of the organic solvent include aromatic organic solvents such as toluene; alicyclic organic solvents such as cyclohexane; ester organic solvents such as ethyl acetate; ketone organic solvents such as acetone.

酸変性ポリオレフィン樹脂は、結晶性や非晶性などがあり、外装材10に求められる特性に応じて使い分けることができる。電解液の膨潤性、耐熱性、有機溶媒への溶解・分散性を考慮した場合、低結晶性の酸変性ポリオレフィン樹脂が好ましい。   The acid-modified polyolefin resin has crystallinity and non-crystallinity, and can be properly used depending on the characteristics required for the exterior material 10. In consideration of the swellability, heat resistance, and solubility / dispersibility in an organic solvent of the electrolytic solution, a low crystalline acid-modified polyolefin resin is preferable.

粘着剤組成物に含まれる多官能イソシアネート化合物としては、内層側腐食防止処理層15の説明において、カチオン性ポリマーを架橋構造にするための架橋剤として先に例示した多官能イソシアネート化合物などが挙げられ、特にイソシアヌレート体が好ましい。
上述したように、ポリイソシアネート類には、アダクト体、ビューレット体、イソシアヌレート体などがある。アダクト体は、通常、ジイソシアネート類をトリメチロールプロパン等の多価アルコールと反応させて得られるものであり、ウレタン結合を有する。このウレタン結合は、上述したように、電解液やフッ酸に対して耐性が低い傾向にある。ビューレット体は、通常、ジイソシアネート類を水と反応させることで得られるものであり、ビューレット結合を有する。ビューレット体は、1520±10cm−1の領域に吸収帯が存在するため、多官能イソシアネート化合物としてビューレット体を用いると、ビューレット結合のN−H変角振動に由来する吸収(Y)が増加するため、Y/Xも大きくなる傾向にある。
従って、多官能イソシアネート化合物としては、イソシアヌレート体(すなわち、イソシアヌレート構造)であることが好ましい。ただし、Y/Xが0.3以下であれば、アダクト体やビューレット体を併用してもよい。
Examples of the polyfunctional isocyanate compound contained in the pressure-sensitive adhesive composition include the polyfunctional isocyanate compounds exemplified above as the crosslinking agent for making the cationic polymer into a crosslinked structure in the description of the inner layer side corrosion prevention treatment layer 15. In particular, isocyanurate is preferred.
As described above, polyisocyanates include adducts, burettes, isocyanurates, and the like. The adduct is usually obtained by reacting diisocyanates with a polyhydric alcohol such as trimethylolpropane, and has a urethane bond. As described above, this urethane bond tends to have low resistance to the electrolytic solution and hydrofluoric acid. The burette body is usually obtained by reacting diisocyanates with water and has a burette bond. Since the burette body has an absorption band in the region of 1520 ± 10 cm −1 , when the burette body is used as the polyfunctional isocyanate compound, the absorption (Y) derived from the N—H bending vibration of the burette bond is obtained. Since Y increases, Y / X tends to increase.
Accordingly, the polyfunctional isocyanate compound is preferably an isocyanurate body (that is, an isocyanurate structure). However, if Y / X is 0.3 or less, an adduct body or a burette body may be used in combination.

接着剤組成物は、有機金属触媒をさらに含むことが好ましい。接着剤組成物が有機金属触媒を含んでいれば、多官能イソシアネート化合物と水との副反応(ビューレット反応)を抑制できることもある。かかる理由は以下のように考えられる。
有機金属触媒は、ビューレット反応の一段前の反応(ウレア反応)を促進させる傾向がある。接着剤組成物が有機金属触媒を含んでいると、接着剤組成物に含まれる過剰な多官能イソシアネート化合物がウレアと反応する。その結果、ビューレット結合を形成する反応ではなく、多官能イソシアネート化合物と水とが反応して得られるカルバミン酸またはその脱炭酸により得られるアミンと、多官能イソシアネート化合物との反応が促進されると考えられる。加えて、ビューレット結合よりもウレア結合が形成されやすくなり、ビューレット結合のN−H変角振動に由来する吸収(Y)が減少すると考えられる。
The adhesive composition preferably further contains an organometallic catalyst. If the adhesive composition contains an organometallic catalyst, a side reaction (burette reaction) between the polyfunctional isocyanate compound and water may be suppressed. The reason for this is considered as follows.
The organometallic catalyst tends to promote the reaction (urea reaction) one stage before the burette reaction. When the adhesive composition contains an organometallic catalyst, an excess polyfunctional isocyanate compound contained in the adhesive composition reacts with urea. As a result, when the reaction between the polyfunctional isocyanate compound and the carbamic acid obtained by reacting the polyfunctional isocyanate compound with water, or the decarboxylation thereof, is promoted instead of the reaction forming a burette bond. Conceivable. In addition, it is considered that a urea bond is more easily formed than a burette bond, and absorption (Y) derived from N—H bending vibration of the burette bond is reduced.

有機金属触媒としては、スズ、チタン、ジルコニウムなどの金属を1種以上含む化合物が挙げられる。具体的には、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリス(アセチルアセトネート)エチルアセトアセテート、ジブチル錫ジラウレートなどが挙げられる。
有機金属触媒の含有量は、接着剤組成物の固形分(ただし、有機金属触媒を除く)100質量部に対して、0.1〜1質量部が好ましい。
Examples of the organometallic catalyst include compounds containing one or more metals such as tin, titanium, and zirconium. Specific examples include zirconium tetraacetylacetonate, zirconium tris (acetylacetonate) ethyl acetoacetate, dibutyltin dilaurate, and the like.
The content of the organometallic catalyst is preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the solid content of the adhesive composition (excluding the organometallic catalyst).

接着剤組成物は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤を配合してもよい。
なお、金属箔層とシーラント層とを接着させるために用いる一般的な接着剤には、シランカップリング剤が含まれている場合がある。これは、シランカップリング剤を配合することで接着を促進し、接着強度を高め、耐電解液性を向上させるためである。しかし、シランカップリング剤を配合する接着剤を用いると、シランカップリング剤に含まれる官能基の種類によっては、接着剤層に含まれるシランカップリング剤以外の成分とシランカップリング剤とが副反応を起こし、本来の目的の架橋反応に弊害が生じるおそれがある。そのため、第二の接着剤層16を形成する接着剤組成物には、シランカップリング剤が含まれていないことが好ましい。
本発明であれば、第二の接着剤層16は上述した接着剤組成物より形成されるため、耐電解液性に優れる外装材10が得られる。よって、接着剤組成物には接着を促進する目的でシランカップリング剤を配合する必要がなく、接着剤組成物はシランカップリング剤を含まないことが好ましい。
The adhesive composition may contain various additives such as a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, and a tackifier.
In addition, the silane coupling agent may be contained in the common adhesive agent used in order to adhere | attach a metal foil layer and a sealant layer. This is because the adhesion is promoted by adding a silane coupling agent, the adhesive strength is increased, and the resistance to electrolytic solution is improved. However, when an adhesive containing a silane coupling agent is used, depending on the type of functional group contained in the silane coupling agent, components other than the silane coupling agent contained in the adhesive layer and the silane coupling agent may be added. This may cause a reaction and cause a harmful effect on the original intended crosslinking reaction. Therefore, it is preferable that the adhesive composition forming the second adhesive layer 16 does not contain a silane coupling agent.
If it is this invention, since the 2nd adhesive bond layer 16 is formed from the adhesive composition mentioned above, the exterior material 10 excellent in electrolyte solution resistance is obtained. Therefore, it is not necessary to add a silane coupling agent to the adhesive composition for the purpose of promoting adhesion, and the adhesive composition preferably does not contain a silane coupling agent.

第二の接着剤層16の厚さは、3〜50μmが好ましく、10〜40μmがより好ましい。第二の接着剤層16の厚さが下限値以上であれば、優れた接着性が得られやすい。第二の接着剤層16の厚さが上限値以下であれば、外装材10の側端面から透過する水分量が低減される。   3-50 micrometers is preferable and, as for the thickness of the 2nd adhesive bond layer 16, 10-40 micrometers is more preferable. If the thickness of the 2nd adhesive bond layer 16 is more than a lower limit, the outstanding adhesiveness will be easy to be obtained. If the thickness of the 2nd adhesive bond layer 16 is below an upper limit, the water | moisture content permeate | transmitted from the side end surface of the exterior material 10 will be reduced.

「シーラント層」
シーラント層17は、外装材10にヒートシールによる封止性を付与する層である。
シーラント層17を構成する材質としては、例えばポリオレフィン樹脂、または酸変性ポリオレフィン樹脂が挙げられる。これらポリオレフィン樹脂および酸変性ポリオレフィン樹脂としては、第二の接着剤層16の説明において先に例示したものが挙げられる。
"Sealant layer"
The sealant layer 17 is a layer that imparts sealing properties to the exterior material 10 by heat sealing.
Examples of the material constituting the sealant layer 17 include a polyolefin resin or an acid-modified polyolefin resin. Examples of these polyolefin resin and acid-modified polyolefin resin include those exemplified above in the description of the second adhesive layer 16.

シーラント層17は、単層フィルムであっても、複数の層を積層させた多層フィルムであってもよい。必要とされる機能に応じて、例えば、防湿性を付与するという点ではエチレン−環状オレフィン共重合体やポリメチルペンテンなどの樹脂を介在させた多層フィルムを用いてもよい。
さらに、シーラント層17には各種添加剤、例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤などを配合してもよい。
シーラント層17の厚さは、10〜100μmであることが好ましく、20〜50μmであることがより好ましい。
The sealant layer 17 may be a single layer film or a multilayer film in which a plurality of layers are laminated. Depending on the function required, for example, a multilayer film in which a resin such as an ethylene-cycloolefin copolymer or polymethylpentene is interposed may be used in terms of imparting moisture resistance.
Further, various additives such as a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, and a tackifier may be added to the sealant layer 17.
The thickness of the sealant layer 17 is preferably 10 to 100 μm, and more preferably 20 to 50 μm.

「リチウム電池用外装材の製造方法」
図1に示す外装材10は、例えば以下の工程(1)〜(3)を有する製造方法により製造できる。
(1)金属箔層14の一方の面に、外層側腐食防止処理層13を形成した後、第一の接着剤層12を介して基材層11を貼り合わせる工程。
(2)金属箔層14の他方の面(基材層11を貼り合わせる側の反対側の面)に、内層側腐食防止処理層15を形成する工程。
(3)金属箔層14の内層側腐食防止処理層15を形成した側に、第二の接着剤層16を介してシーラント層17を貼り合わせる工程。
"Method of manufacturing exterior materials for lithium batteries"
The exterior material 10 shown in FIG. 1 can be manufactured by the manufacturing method which has the following processes (1)-(3), for example.
(1) A step of bonding the base material layer 11 through the first adhesive layer 12 after forming the outer layer side corrosion prevention treatment layer 13 on one surface of the metal foil layer 14.
(2) The process of forming the inner layer side corrosion prevention process layer 15 in the other surface (surface on the opposite side to the side which bonds the base material layer 11) of the metal foil layer 14. FIG.
(3) A step of bonding the sealant layer 17 to the side of the metal foil layer 14 on which the inner layer side corrosion prevention treatment layer 15 is formed via the second adhesive layer 16.

工程(1):
外層側腐食防止処理層13は、外層側腐食防止処理層13を形成する材料(以下、コーティング組成物(c)」ともいう。)を、金属箔層14の片面(一方の面)へ塗工し、乾燥・硬化・焼き付けを行いうことで形成される。
塗工方法としては、公知の方法が用いられるが、例えばグラビアコーター、グラビアリバースコーター、ロールコーター、リバースロールコーター、ダイコーター、バーコーター、キスコーター、コンマコーターなどが挙げられる。
なお、金属箔層14としてアルミニウム箔を用いる場合、上述したように、未処理のアルミニウム箔を用いてもよく、ウェットタイプまたはドライタイプにて脱脂処理を施したアルミニウム箔を用いてもよい。
Step (1):
The outer layer side corrosion prevention treatment layer 13 is formed by applying the material forming the outer layer side corrosion prevention treatment layer 13 (hereinafter also referred to as a coating composition (c)) to one side (one side) of the metal foil layer 14. And formed by drying, curing, and baking.
As a coating method, a known method is used, and examples include a gravure coater, a gravure reverse coater, a roll coater, a reverse roll coater, a die coater, a bar coater, a kiss coater, and a comma coater.
In addition, when using aluminum foil as the metal foil layer 14, as above-mentioned, untreated aluminum foil may be used and the aluminum foil which performed the degreasing process by the wet type or the dry type may be used.

ついで、外層側腐食防止処理層13上に、第一の接着剤層12を介して基材層11を貼り合わせる。貼り合わせる方法としては、ドライラミネーション、ノンソルベントラミネーション、ウェットラミネーションなどの公知の手法を採用できる。これらの中でもドライラミネートの手法を用いることが好ましい。
第一の接着剤層12を形成する接着剤としては、上述した第一の接着剤層12で説明したポリウレタン系接着剤が好ましい。
接着剤のドライ塗布量は、1〜10g/mが好ましく、3〜7g/mがより好ましい。
金属箔層14の一方の面に基材層11を貼り合わせた後、接着促進のため、室温〜100℃の範囲内でエージング(養生)処理を行ってもかまわない。
Next, the base material layer 11 is bonded onto the outer layer side corrosion prevention treatment layer 13 via the first adhesive layer 12. As a bonding method, known methods such as dry lamination, non-solvent lamination, wet lamination, etc. can be employed. Among these, it is preferable to use a dry lamination method.
As the adhesive forming the first adhesive layer 12, the polyurethane adhesive described in the first adhesive layer 12 is preferable.
The dry coating amount of the adhesive is preferably 1 to 10 g / m 2 and more preferably 3 to 7 g / m 2 .
After the base material layer 11 is bonded to one surface of the metal foil layer 14, an aging (curing) treatment may be performed within a range of room temperature to 100 ° C in order to promote adhesion.

工程(2):
内層側腐食防止処理層15は、金属箔層14の他方の面(基材層11を貼り合わせる側の反対側の面)に、第一の内層側腐食防止処理層15aを形成した後に、第二の内層側腐食防止処理層15bを形成することで得られる。
具体的には、まず、希土類元素酸化物と、希土類元素酸化物100質量部に対して1〜100質量部のリン酸またはリン酸塩とを含む材料(以下、「コーティング組成物(a)」ともいう。)を、金属箔層14の片面へ塗工し、乾燥・硬化・焼き付けを行い、第一の内層側腐食防止処理層15aを形成する。ついで、カチオン性ポリマーおよびアニオン性ポリマーよりなる群から選ばれる少なくとも1種のポリマーと、必要に応じて該ポリマーを架橋構造にするための架橋剤等を含む材料(コーティング組成物(b))を、第一の内層側腐食防止処理層15a上に塗工し、乾燥・硬化・焼き付けを行い、第二の内層側腐食防止処理層15bを形成する。
塗工方法としては、工程(1)の説明において先に例示した各種塗工方法が挙げられる。
Step (2):
The inner layer side corrosion prevention treatment layer 15 is formed after the first inner layer side corrosion prevention treatment layer 15a is formed on the other surface of the metal foil layer 14 (the surface opposite to the side on which the base material layer 11 is bonded). It is obtained by forming the second inner layer side corrosion prevention treatment layer 15b.
Specifically, first, a material containing a rare earth element oxide and 1 to 100 parts by mass of phosphoric acid or phosphate with respect to 100 parts by mass of the rare earth element oxide (hereinafter referred to as “coating composition (a)”). Is also applied to one side of the metal foil layer 14 and dried, cured, and baked to form the first inner layer side corrosion prevention treatment layer 15a. Next, a material (coating composition (b)) containing at least one polymer selected from the group consisting of a cationic polymer and an anionic polymer, and a cross-linking agent for making the polymer into a cross-linking structure as necessary. Then, coating is performed on the first inner layer side corrosion prevention treatment layer 15a, and drying, curing and baking are performed to form the second inner layer side corrosion prevention treatment layer 15b.
As a coating method, the various coating methods illustrated previously in description of a process (1) are mentioned.

工程(3):
金属箔層14の内層側腐食防止処理層15側に、第二の接着剤層16を介してシーラント層17を貼り合わせる方法としては、ドライプロセスとウェットプロセスが挙げられる。
ドライプロセスの場合は、内層側腐食防止処理層15上に、上述した第二の接着剤層16で説明した接着剤組成物をドライラミネートし、さらにインフレーション法またはキャスト法により得られるシーラント層17を積層して、外装材10を製造する。なお、第二の内層側腐食防止処理層15bはこの押出ラミネーションの際にインラインで設けてもよい。その後、コーティング組成物(b)と接着剤組成物との密着性を向上させる目的で、熱処理(エージング処理や熱ラミネーションなど)を施すことも可能であるが、本発明においては、上述したような層構成を形成させることで、押出ラミネート時の少ない熱量でも密着性に優れる外装材10が得られる。エージング処理等の熱処理を行う場合は、上述したビューレット反応が進行する場合があるため、エージング温度や熱ラミネーションの温度は高すぎないことが好ましい。具体的には、エージング温度は25〜45℃が好ましく、熱ラミネーションの温度は30〜40℃が好ましい。
また、インフレーション法またはキャスト法にて、第二の接着剤層16とシーラント層17とで多層フィルムを作成し、該多層フィルムを内層側腐食防止処理層15上に熱ラミネーションにより積層させることも可能である。
Step (3):
Examples of the method of attaching the sealant layer 17 to the inner layer side corrosion prevention treatment layer 15 side of the metal foil layer 14 via the second adhesive layer 16 include a dry process and a wet process.
In the case of the dry process, the adhesive composition described in the second adhesive layer 16 described above is dry laminated on the inner layer side corrosion prevention treatment layer 15, and a sealant layer 17 obtained by an inflation method or a cast method is further provided. The exterior material 10 is manufactured by stacking. The second inner layer side corrosion prevention treatment layer 15b may be provided in-line during this extrusion lamination. Thereafter, for the purpose of improving the adhesion between the coating composition (b) and the adhesive composition, heat treatment (aging treatment, thermal lamination, etc.) can be applied. In the present invention, as described above, By forming the layer structure, it is possible to obtain the exterior material 10 having excellent adhesion even with a small amount of heat during extrusion lamination. When performing a heat treatment such as an aging treatment, the above-described burette reaction may proceed, and thus it is preferable that the aging temperature and the temperature of thermal lamination are not too high. Specifically, the aging temperature is preferably 25 to 45 ° C., and the thermal lamination temperature is preferably 30 to 40 ° C.
It is also possible to create a multilayer film with the second adhesive layer 16 and the sealant layer 17 by the inflation method or the cast method, and to laminate the multilayer film on the inner layer side corrosion prevention treatment layer 15 by thermal lamination. It is.

ウェットプロセスの場合は、第二の接着剤層16を形成する接着剤組成物の分散液を、内層側腐食防止処理層15上に塗工し、所定の温度(接着剤組成物に含まれる酸変性ポリオレフィン樹脂の融点以上の温度)で溶媒を飛ばし、ポリマーを溶融軟化させて、焼き付けを行う。その後、シーラント層17を熱ラミネーションなどの熱処理により積層させて、外装材10を製造する。
塗工方法としては、工程(1)の説明において先に例示した各種塗工方法が挙げられる。
In the case of a wet process, the dispersion liquid of the adhesive composition that forms the second adhesive layer 16 is applied onto the inner layer side corrosion prevention treatment layer 15, and a predetermined temperature (the acid contained in the adhesive composition) is applied. The solvent is blown off at a temperature equal to or higher than the melting point of the modified polyolefin resin, and the polymer is melt-softened and baked. Thereafter, the sealant layer 17 is laminated by heat treatment such as thermal lamination to manufacture the exterior material 10.
As a coating method, the various coating methods illustrated previously in description of a process (1) are mentioned.

「作用効果」
以上説明した本実施形態の外装材は、基材層と、第一の接着剤層と、1層構成の腐食防止処理層(外層側腐食防止処理層)と、金属箔層と、2層構成の腐食防止処理層(内層側腐食防止処理層)と、第二の接着剤層と、シーラント層とが、この順に積層した積層体から構成される。
第二の接着剤層は、酸変性ポリオレフィン樹脂と多官能イソシアネート化合物とを含む接着剤組成物からなり、上述したY/Xが0.3以下である層である。
"Effect"
The exterior material of the present embodiment described above includes a base material layer, a first adhesive layer, a one-layer corrosion prevention treatment layer (outer layer side corrosion prevention treatment layer), a metal foil layer, and a two-layer constitution. The anti-corrosion treatment layer (inner layer side anti-corrosion treatment layer), the second adhesive layer, and the sealant layer are composed of a laminate laminated in this order.
The second adhesive layer is composed of an adhesive composition containing an acid-modified polyolefin resin and a polyfunctional isocyanate compound, and the Y / X described above is a layer of 0.3 or less.

上述したように、電解液はシーラント層に対して浸透性が高いため、電解液や、電解質であるリチウム塩が加水分解により発生したフッ酸などが腐食防止処理層と接着剤層との間に浸透する。
しかし、本実施形態の外装材であれば、特定の接着剤組成物からなる第二の接着剤層を備えるので、長期間にわたり優れた耐電解液性を発現でき、ラミネート強度の低下を抑制できる。
As described above, since the electrolytic solution is highly permeable to the sealant layer, the electrolytic solution and hydrofluoric acid generated by hydrolysis of the lithium salt as the electrolyte are interposed between the corrosion prevention treatment layer and the adhesive layer. To penetrate.
However, in the case of the exterior material according to the present embodiment, since the second adhesive layer made of a specific adhesive composition is provided, excellent electrolytic solution resistance can be expressed over a long period of time, and a decrease in laminate strength can be suppressed. .

また、内層側腐食防止処理層は希土類元素酸化物とリン酸またはリン酸塩を含む。リン酸またはリン酸塩は、希土類元素酸化物の分散安定化だけでなく、金属箔層(特にアルミニウム箔層)の腐食に対するインヒビター効果を付与させることができる。さらに、リン酸またはリン酸塩の金属箔層(特にアルミニウム箔層)への密着性を向上させることも可能となり、耐電解液性という点で相乗的な効果を発現できる。   The inner layer side corrosion prevention treatment layer contains a rare earth element oxide and phosphoric acid or phosphate. Phosphoric acid or phosphate can not only stabilize the dispersion of the rare earth element oxide, but can also provide an inhibitory effect on the corrosion of the metal foil layer (particularly the aluminum foil layer). Furthermore, it becomes possible to improve the adhesiveness of phosphoric acid or phosphate to a metal foil layer (particularly, an aluminum foil layer), and a synergistic effect can be expressed in terms of resistance to electrolytic solution.

さらに、内層側腐食防止処理層が、上述した第一の内層側腐食防止処理層と第二の内層側腐食防止処理層とからなる多層構成であれば、より耐フッ酸性に優れ、高機能なものとなる。係る理由は以下のように考えられる。
カチオン性ポリマーおよびアニオン性ポリマーはフッ酸のトラップという点で非常に効果的な材料である。また、架橋剤を添加することにより、耐水性も向上できる。従って内層側腐食防止処理層が、図1に示すようにカチオン性ポリマーまたはアニオン性ポリマーを含む第二の内層側腐食防止処理層15bを備えることで、耐電解液性、耐フッ酸性、耐水性がより向上する。
しかしながら、カチオン性ポリマーまたはアニオン性ポリマーを含む層は金属箔を腐食から守る機能は持たない。そこで、図1に示すように内層側腐食防止処理層15を、第二の内層側腐食防止処理層15bと共に、希土類元素酸化物とリン酸またはリン酸塩とを含む第一の内層側腐食防止処理層15aを備えた多層構成とすることにより、アルミニウム箔などの金属箔の腐食防止効果が得られるようになる。
Furthermore, if the inner layer side corrosion prevention treatment layer is a multilayer structure comprising the first inner layer side corrosion prevention treatment layer and the second inner layer side corrosion prevention treatment layer described above, the hydrofluoric acid resistance is higher and the function is higher. It will be a thing. The reason for this is considered as follows.
Cationic and anionic polymers are very effective materials in terms of trapping hydrofluoric acid. Moreover, water resistance can also be improved by adding a crosslinking agent. Therefore, the inner layer side corrosion prevention treatment layer includes the second inner layer side corrosion prevention treatment layer 15b containing a cationic polymer or an anionic polymer as shown in FIG. Will be improved.
However, the layer containing a cationic polymer or an anionic polymer does not have a function of protecting the metal foil from corrosion. Therefore, as shown in FIG. 1, the inner layer side corrosion prevention treatment layer 15, together with the second inner layer side corrosion prevention treatment layer 15 b, is a first inner layer side corrosion prevention treatment containing a rare earth element oxide and phosphoric acid or phosphate. By adopting a multilayer structure including the treatment layer 15a, an effect of preventing corrosion of a metal foil such as an aluminum foil can be obtained.

「他の実施形態」
本発明の外装材は、上述したものに限定されない。図1に示す内層側腐食防止処理層15は、第一の内層側腐食防止処理層15aと第二の内層側腐食防止処理層15bとからなる2層構成であるが、内層側腐食防止処理層15は単層構成でもよいし、3層以上の構成でもよい。例えば、3層構成の腐食防止処理層としては、希土類元素酸化物とリン酸またはリン酸塩とを含む層と、アニオン性ポリマーを含む層と、カチオン性ポリマーを含む層とが順に積層した構成のもの;希土類元素酸化物とリン酸またはリン酸塩とを含む層と、カチオン性ポリマーを含む層と、アニオン性ポリマーを含む層とが順に積層した構成のものなどが挙げられる。ただし、希土類元素酸化物とリン酸またはリン酸塩とを含む層が金属箔層側である。
"Other embodiments"
The packaging material of the present invention is not limited to the above-described one. The inner layer side corrosion prevention treatment layer 15 shown in FIG. 1 has a two-layer structure including a first inner layer side corrosion prevention treatment layer 15a and a second inner layer side corrosion prevention treatment layer 15b. 15 may have a single layer structure or a structure of three or more layers. For example, as a three-layer corrosion prevention treatment layer, a layer comprising a rare earth element oxide and phosphoric acid or phosphate, a layer comprising an anionic polymer, and a layer comprising a cationic polymer are sequentially laminated. A layer comprising a rare earth element oxide and phosphoric acid or a phosphate, a layer containing a cationic polymer, and a layer containing an anionic polymer in that order. However, the layer containing the rare earth element oxide and phosphoric acid or phosphate is the metal foil layer side.

さらに、図1に示す外装材10は金属箔層14の両面に腐食防止処理層13、15が設けられているが、少なくとも金属箔層14の第二の接着剤層16側の面に内層側腐食防止処理層15が設けられていれば、金属箔層14に第一の接着剤層12側の面には、外層側腐食防止処理層13は設けられていなくてもよい。   Further, the exterior material 10 shown in FIG. 1 is provided with the corrosion prevention treatment layers 13 and 15 on both surfaces of the metal foil layer 14, but at least the inner layer side of the surface of the metal foil layer 14 on the second adhesive layer 16 side. If the corrosion prevention treatment layer 15 is provided, the outer layer side corrosion prevention treatment layer 13 may not be provided on the surface of the metal foil layer 14 on the first adhesive layer 12 side.

以下、実施例を示して本発明を詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
以下の各例で用いた材料は下記の通りである。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
The materials used in the following examples are as follows.

「使用材料」
<腐食防止処理層>
A−1:酸化セリウム100質量部に対して縮合リン酸ナトリウム塩を10質量部配合し、溶媒として蒸留水を用いて固形分濃度5質量%に調整した酸化セリウムゾル。
B−1:溶媒として蒸留水を用い、固形分濃度5質量%に調整した、ポリアリルアミン90質量部とグリシジル化合物10質量部とからなる混合物。
B−2:溶媒として蒸留水を用い、固形分濃度5質量%に調整した、ポリアクリル酸90質量部とオキサゾリン基を有する化合物10質量部とからなる混合物。
C−1:酸化セリウム100質量部に対して縮合リン酸ナトリウム塩を10質量部配合し、溶媒として蒸留水を用いて固形分濃度5質量%に調整した酸化セリウムゾルに、溶媒として蒸留水を用い、固形分濃度5質量%に調整したポリアクリル酸90質量部とオキサゾリン基を有する化合物10質量部とからなる混合物を70対30の比率で配合した混合物。
"Materials used"
<Corrosion prevention treatment layer>
A-1: A cerium oxide sol prepared by blending 10 parts by mass of condensed sodium phosphate with 100 parts by mass of cerium oxide and adjusting the solid content concentration to 5% by mass using distilled water as a solvent.
B-1: A mixture composed of 90 parts by mass of polyallylamine and 10 parts by mass of a glycidyl compound, adjusted to a solid content concentration of 5% by mass using distilled water as a solvent.
B-2: A mixture comprising 90 parts by mass of polyacrylic acid and 10 parts by mass of a compound having an oxazoline group, adjusted to a solid content concentration of 5% by mass using distilled water as a solvent.
C-1: 10 parts by mass of condensed sodium phosphate is added to 100 parts by mass of cerium oxide, and distilled water is used as a solvent in a cerium oxide sol adjusted to a solid content concentration of 5% by mass using distilled water as a solvent. , A mixture of 90 parts by mass of polyacrylic acid adjusted to a solid content concentration of 5% by mass and 10 parts by mass of a compound having an oxazoline group in a ratio of 70:30.

<第二の接着剤層>
D−1:トルエンに溶解させた無水マレイン酸変性ポリオレフィン樹脂100質量部に対し、イソシアヌレート構造のヘキサメチレンジイソシアネートを10質量部(固形分比)で配合した接着剤組成物。
D−2:トルエンに溶解させた無水マレイン酸変性ポリオレフィン樹脂100質量部に対し、ビューレット構造のヘキサメチレンジイソシアネートを10質量部(固形分比)で配合した接着剤組成物。
D−3:トルエンに溶解させた無水マレイン酸変性ポリオレフィン樹脂100質量部に対し、イソシアヌレート構造のヘキサメチレンジイソシアネートを10質量部(固形分比)で配合した混合物に、ジルコニウム系反応触媒(ジルコニウムテトラアセチルアセトネート)を1質量部(固形分比)添加した接着剤組成物。
<Second adhesive layer>
D-1: An adhesive composition in which hexamethylene diisocyanate having an isocyanurate structure is blended at 10 parts by mass (solid content ratio) with respect to 100 parts by mass of maleic anhydride-modified polyolefin resin dissolved in toluene.
D-2: An adhesive composition in which hexamethylene diisocyanate having a burette structure is blended at 10 parts by mass (solid content ratio) with respect to 100 parts by mass of the maleic anhydride-modified polyolefin resin dissolved in toluene.
D-3: Zirconium-based reaction catalyst (zirconium tetra Adhesive composition to which 1 part by mass (solid content ratio) is added.

「実施例1」
まず、アルミニウム箔からなる金属箔層の一方の面に、C−1を塗工して外層側腐食防止処理層を形成した後、ポリウレタン系接着剤(三井化学ポリウレタン(株)製、A525/A52)をドライラミネート法により、ドライ塗工量4〜5mg/mで塗工し、第一の接着剤層を形成した。該第一の接着剤層を介して、2軸延伸ポリアミドフィルム(膜厚25μm)からなる基材層を貼り合わせた。
ついで、金属箔層の他方の面(基材層を貼り合わせた側の反対側の面)に、A−1を塗工、乾燥して第一の内層側腐食防止処理層を形成した後、第一の内層側腐食防止処理層上にB−1を塗工、乾燥して第二の内層側腐食防止処理層を形成した。
なお、A−1およびB−1の塗工はマイクログラビアコートにより行った。A−1およびB−1を合わせた加熱乾燥後のドライ塗工量が70〜100mg/mとなるようにした。
ついで、第二の内層側腐食防止処理層上にD−1をドライラミネート法により、ドライ塗工量4〜5g/mで塗工し、第二の接着剤層を形成した。該第二の接着剤層を介して、厚さ40μmのポリプロピレンフィルムをシーラント層として積層させ、図1に示すような、基材層11/第一の接着剤層12/外層側腐食防止処理層13/金属箔層14/第一の内層側腐食防止処理層15a/第二の内層側腐食防止処理層15b/第二の接着剤層16/シーラント層17の層構成の積層体を得た。
得られた積層体を40℃で10日間エージングし、外装材を得た。
"Example 1"
First, C-1 was applied to one surface of a metal foil layer made of aluminum foil to form an outer layer side corrosion prevention treatment layer, and then a polyurethane adhesive (A525 / A52 manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.). ) By a dry laminating method with a dry coating amount of 4 to 5 mg / m 2 to form a first adhesive layer. A base material layer made of a biaxially stretched polyamide film (film thickness: 25 μm) was bonded through the first adhesive layer.
Then, on the other side of the metal foil layer (the side opposite to the side on which the base material layer is bonded), A-1 is applied and dried to form a first inner layer side corrosion prevention treatment layer. B-1 was coated on the first inner layer side corrosion prevention treatment layer and dried to form a second inner layer side corrosion prevention treatment layer.
The coating of A-1 and B-1 was performed by microgravure coating. The dry coating amount after heating and drying combining A-1 and B-1 was set to 70 to 100 mg / m 2 .
Next, D-1 was applied on the second inner layer side corrosion prevention treatment layer by a dry lamination method at a dry coating amount of 4 to 5 g / m 2 to form a second adhesive layer. A polypropylene film having a thickness of 40 μm is laminated as a sealant layer through the second adhesive layer, and the base layer 11 / first adhesive layer 12 / outer layer side corrosion prevention treatment layer as shown in FIG. 13 / metal foil layer 14 / first inner layer side corrosion prevention treatment layer 15a / second inner layer side corrosion prevention treatment layer 15b / second adhesive layer 16 / sealant layer 17 was obtained.
The obtained laminate was aged at 40 ° C. for 10 days to obtain an exterior material.

<測定・評価>
得られた外装材を100×15mmサイズの短冊状に切り取り、測定・評価用のサンプルとし、以下に示す赤外吸収スペクトルの測定および耐電解液性の評価を行った。
<Measurement / Evaluation>
The obtained exterior material was cut into a strip of 100 × 15 mm size, used as a measurement / evaluation sample, and the following infrared absorption spectrum measurement and electrolytic solution resistance evaluation were performed.

(赤外吸収スペクトルの測定)
サンプルを水酸化ナトリウム水溶液に浸漬させ、アルミニウム箔からなる金属箔層を完全に溶解させた。その後、シーラント層側に残っている第二の接着剤層について、FT−IR(フーリエ変換型赤外分光光度計)を用い、反射法により第二の接着剤層の露出した面の赤外吸収スペクトルを測定した。これを実施例1および後述の実施例4で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルとして図2に示す。得られた赤外吸収スペクトルより、CHのC−H変角振動に由来する吸収(X)とビューレット結合のN−H変角振動に由来する吸収(Y)を下記式(1)、(2)より求め、その比率(Y/X)を算出した。結果を表1に示す。
吸収(X)=(ベースラインの透過率)−(1380cm−1付近のピークの透過率) ・・・(1)
吸収(Y)=(ベースラインの透過率)−(1520cm−1付近のピークの透過率) ・・・(2)
なお、図2および後述する図3〜5において、ベースラインの透過率は100%である。
(Measurement of infrared absorption spectrum)
The sample was immersed in an aqueous sodium hydroxide solution to completely dissolve the metal foil layer made of aluminum foil. Thereafter, the second adhesive layer remaining on the sealant layer side is subjected to infrared absorption on the exposed surface of the second adhesive layer by a reflection method using FT-IR (Fourier transform infrared spectrophotometer). The spectrum was measured. This is shown in FIG. 2 as an infrared absorption spectrum of the second adhesive layer made of the adhesive composition used in Example 1 and Example 4 described later. From the obtained infrared absorption spectrum, the absorption (X) derived from CH 3 C-H bending vibration and the absorption (Y) derived from N-H bending vibration of burette bond are represented by the following formula (1), The ratio (Y / X) was calculated from (2). The results are shown in Table 1.
Absorption (X) = (baseline transmittance) − (peak transmittance around 1380 cm −1 ) (1)
Absorption (Y) = (baseline transmittance) − (peak transmittance around 1520 cm −1 ) (2)
In FIG. 2 and FIGS. 3 to 5 described later, the transmittance of the baseline is 100%.

(耐電解液性の評価)
エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の溶液にLiPFが1Mになるように調整した電解液を作成し、テフロン(登録商標)容器に充填した。その中に水を1500ppm添加した後、サンプルを入れ、密栓後85℃で4時間、1週間、2週間、4週間保管した。その後、容器からサンプルを取り出し、サンプルの剥離状況を以下の基準にて評価した。結果を表1に示す。なお、表1中、耐電解液性の欄の上段にラミネート強度を、下段に評価を記す。また、デラミネーションが発生し、ラミネート強度が測定できない場合を「デラミ」と記す。
○:ラミネート強度が10N/15mm以上(クロスヘッドスピードが300mm/分)である。
△:ラミネート強度が5N/15mm以上、10N/15mm未満(クロスヘッドスピードが300mm/分)である。
×:ラミネート強度が5N/15mm未満(クロスヘッドスピードが300mm/分)である。
(Evaluation of electrolyte resistance)
An electrolyte solution prepared by adjusting LiPF 6 to 1 M in a solution of ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1 (mass ratio) was prepared and filled in a Teflon (registered trademark) container. After adding 1500 ppm of water, the sample was put, and after sealing, it was stored at 85 ° C. for 4 hours, 1 week, 2 weeks, and 4 weeks. Then, the sample was taken out from the container and the peeling state of the sample was evaluated according to the following criteria. The results are shown in Table 1. In Table 1, the laminate strength is shown in the upper part of the column for electrolytic solution resistance, and the evaluation is shown in the lower part. In addition, a case where delamination occurs and the laminate strength cannot be measured is referred to as “delamination”.
○: Laminate strength is 10 N / 15 mm or more (crosshead speed is 300 mm / min).
Δ: Laminate strength is 5 N / 15 mm or more and less than 10 N / 15 mm (crosshead speed is 300 mm / min).
X: Laminate strength is less than 5 N / 15 mm (crosshead speed is 300 mm / min).

「実施例2〜6、比較例1〜2」
第二の内層側腐食防止処理層、および第二の接着剤層の形成に用いた材料と、積層体をエージングする際のエージング温度を表1に示すように変更した以外は、実施例1と同様にして外装材を作製し、各種測定および評価を行った。結果を表1に示す。また、実施例2、5で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルを図3に、実施例3、6で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルを図4に、比較例1、2で用いた接着剤組成物からなる第二の接着剤層の赤外吸収スペクトルを図5にそれぞれ示す。
"Examples 2-6, Comparative Examples 1-2"
Example 1 except that the materials used for forming the second inner layer side corrosion prevention treatment layer and the second adhesive layer and the aging temperature at the time of aging the laminate were changed as shown in Table 1. Similarly, an exterior material was prepared, and various measurements and evaluations were performed. The results are shown in Table 1. Further, FIG. 3 shows the infrared absorption spectrum of the second adhesive layer made of the adhesive composition used in Examples 2 and 5, and FIG. 3 shows the second adhesion made of the adhesive composition used in Examples 3 and 6. The infrared absorption spectrum of the adhesive layer is shown in FIG. 4, and the infrared absorption spectrum of the second adhesive layer made of the adhesive composition used in Comparative Examples 1 and 2 is shown in FIG.

Figure 0006428906
Figure 0006428906

表1から明らかなように、各実施例で得られた外装材は、長期間にわたり耐電解液性に優れていた。なお、実施例2、5は、実施例1、4と同じ種類の接着剤組成物を用いて第二の接着剤層を形成したが、第二の接着剤層のY/Xが実施例1、4よりも大きかった。
これは、エージング温度が実施例1、4よりも高かったため、ビューレット反応が実施例1、4よりも進行したためと考えられる。
一方、第二の接着剤層のY/Xが0.38である各比較例で得られた外装材は、電解液中での保管期間が1週間でラミネート強度が不十分となり、2週間でデラミネーションが発生し、耐電解液性に劣っていた。
As is clear from Table 1, the packaging material obtained in each example was excellent in resistance to electrolyte over a long period of time. In Examples 2 and 5, the second adhesive layer was formed using the same type of adhesive composition as in Examples 1 and 4, but the second adhesive layer had Y / X of Example 1. It was bigger than 4.
This is probably because the aging temperature was higher than in Examples 1 and 4 and the burette reaction proceeded more than in Examples 1 and 4.
On the other hand, the exterior material obtained in each comparative example in which the Y / X of the second adhesive layer is 0.38 has a storage period of 1 week in the electrolytic solution, and the laminate strength becomes insufficient. Delamination occurred and the electrolyte resistance was poor.

本発明によれば、長期間にわたり優れた耐電解液性を発現できるリチウム電池用外装材が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the exterior material for lithium batteries which can express the outstanding electrolyte solution resistance over a long period of time is obtained.

10 リチウム電池用外装材
11 基材層
12 第一の接着剤層
13 腐食防止処理層(外層側腐食防止処理層)
14 金属箔層
15 腐食防止処理層(内層側腐食防止処理層)
15a 第一の内層側腐食防止処理層
15b 第二の内層側腐食防止処理層
16 第二の接着剤層
17 シーラント層
10 Lithium Battery Exterior Material 11 Base Material Layer 12 First Adhesive Layer 13 Corrosion Prevention Treatment Layer (Outer Layer Side Corrosion Prevention Treatment Layer)
14 Metal foil layer 15 Corrosion prevention treatment layer (inner layer side corrosion prevention treatment layer)
15a First inner layer side corrosion prevention treatment layer 15b Second inner layer side corrosion prevention treatment layer 16 Second adhesive layer 17 Sealant layer

Claims (4)

基材層と、第一の接着剤層と、金属箔層と、腐食防止処理層と、第二の接着剤層と、シーラント層とが、この順に積層した積層体から構成され、
第二の接着剤層は、酸変性ポリオレフィン樹脂と多官能イソシアネート化合物とを含む接着剤組成物からなり、第二の接着剤層の赤外吸収スペクトルにおいて、CHのC−H変角振動に由来する吸収(X)と、ビューレット結合のN−H変角振動に由来する吸収(Y)との比(Y/X)が0.3以下である、リチウム電池用外装材。
The base material layer, the first adhesive layer, the metal foil layer, the corrosion prevention treatment layer, the second adhesive layer, and the sealant layer are composed of a laminated body laminated in this order,
The second adhesive layer is composed of an adhesive composition containing an acid-modified polyolefin resin and a polyfunctional isocyanate compound. In the infrared absorption spectrum of the second adhesive layer, the CH 3 has a C—H bending vibration. An exterior material for a lithium battery, wherein the ratio (Y / X) of the derived absorption (X) to the absorption (Y) derived from N-H bending vibration of burette bond is 0.3 or less.
多官能イソシアネート化合物がイソシアヌレート構造である、請求項1に記載のリチウム電池用外装材。   The packaging material for lithium batteries according to claim 1, wherein the polyfunctional isocyanate compound has an isocyanurate structure. 酸変性ポリオレフィン樹脂が、プロピレンの単独重合体またはプロピレンとエチレンとの共重合体に、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステル、不飽和カルボン酸の酸無水物のエステルよりなる群から選ばれる少なくとも1種をグラフトさせた酸変性ポリオレフィン樹脂である、請求項1または2に記載のリチウム電池用外装材。   Acid-modified polyolefin resin is a homopolymer of propylene or a copolymer of propylene and ethylene, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, unsaturated carboxylic acid ester, unsaturated carboxylic acid anhydride. The outer packaging material for a lithium battery according to claim 1 or 2, which is an acid-modified polyolefin resin grafted with at least one selected from the group consisting of esters of products. 接着剤組成物は、スズ、チタン、ジルコニウムよりなる群から選ばれる少なくとも1種の金属を含む有機金属触媒をさらに含む、請求項1〜3のいずれか一項に記載のリチウム電池用外装材。   The adhesive composition for a lithium battery according to any one of claims 1 to 3, wherein the adhesive composition further includes an organometallic catalyst containing at least one metal selected from the group consisting of tin, titanium, and zirconium.
JP2017252562A 2017-12-27 2017-12-27 Lithium battery exterior materials Active JP6428906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252562A JP6428906B2 (en) 2017-12-27 2017-12-27 Lithium battery exterior materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252562A JP6428906B2 (en) 2017-12-27 2017-12-27 Lithium battery exterior materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014044167A Division JP6264953B2 (en) 2014-03-06 2014-03-06 Lithium battery exterior materials

Publications (2)

Publication Number Publication Date
JP2018049849A JP2018049849A (en) 2018-03-29
JP6428906B2 true JP6428906B2 (en) 2018-11-28

Family

ID=61766498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252562A Active JP6428906B2 (en) 2017-12-27 2017-12-27 Lithium battery exterior materials

Country Status (1)

Country Link
JP (1) JP6428906B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435713A (en) * 2019-01-15 2020-07-21 华为技术有限公司 Battery packaging material and battery
JP2023175151A (en) * 2022-05-30 2023-12-12 Toppanホールディングス株式会社 Exterior material for power storage device, and power storage device using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846897A (en) * 1997-03-19 1998-12-08 King Industries, Inc. Zirconium urethane catalysts
JP2000302745A (en) * 1999-02-15 2000-10-31 Saito Kk Polyisocyanate composition
JP4629480B2 (en) * 2005-03-31 2011-02-09 大日本印刷株式会社 Laminate
JP5278636B2 (en) * 2005-08-31 2013-09-04 凸版印刷株式会社 Lithium battery packaging material
JP5211622B2 (en) * 2007-01-31 2013-06-12 凸版印刷株式会社 Lithium battery packaging material and method for producing the same
JP2009026485A (en) * 2007-07-17 2009-02-05 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery, and lead wire and sealing bag used for the same
JP6020438B2 (en) * 2011-02-25 2016-11-02 東洋インキScホールディングス株式会社 Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition
JP5670803B2 (en) * 2011-03-31 2015-02-18 ユニチカ株式会社 Battery exterior body, manufacturing method thereof, and battery
EP2709186B1 (en) * 2011-05-11 2016-10-19 Toppan Printing Co., Ltd. Cladding for lithium ion cell, lithium ion cell, and method for producing lithium ion cell
JP5998597B2 (en) * 2012-04-12 2016-09-28 凸版印刷株式会社 Exterior materials for lithium-ion batteries

Also Published As

Publication number Publication date
JP2018049849A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6459306B2 (en) Exterior materials for lithium-ion batteries
JP5521660B2 (en) Exterior materials for lithium-ion batteries
JP4379544B2 (en) Lithium battery packaging material and method for producing the same
US10581032B2 (en) Lithium battery packaging material
JP4379543B2 (en) Lithium battery packaging material and method for producing the same
US10468639B2 (en) Lithium battery packaging material
JP5573254B2 (en) Exterior materials for lithium-ion batteries
JP6672587B2 (en) Exterior materials for lithium batteries
JP5577653B2 (en) Battery packaging material, method for producing the same, and secondary battery
JP6672586B2 (en) Exterior materials for lithium batteries
JP6264953B2 (en) Lithium battery exterior materials
KR102290004B1 (en) Exterior material for lithium cell
JP6380384B2 (en) Exterior materials for lithium-ion batteries
JP5998597B2 (en) Exterior materials for lithium-ion batteries
JP6428906B2 (en) Lithium battery exterior materials
JP6728600B2 (en) Power storage device exterior material
WO2015099144A1 (en) Exterior material for lithium cell
JP6264954B2 (en) Lithium battery exterior materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250