JP6428122B2 - Transparent conductive film and transparent conductor having the transparent conductive film - Google Patents

Transparent conductive film and transparent conductor having the transparent conductive film Download PDF

Info

Publication number
JP6428122B2
JP6428122B2 JP2014205513A JP2014205513A JP6428122B2 JP 6428122 B2 JP6428122 B2 JP 6428122B2 JP 2014205513 A JP2014205513 A JP 2014205513A JP 2014205513 A JP2014205513 A JP 2014205513A JP 6428122 B2 JP6428122 B2 JP 6428122B2
Authority
JP
Japan
Prior art keywords
resin
layer
transparent conductive
conductive film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205513A
Other languages
Japanese (ja)
Other versions
JP2016076362A (en
Inventor
岳洋 米澤
岳洋 米澤
山崎 和彦
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014205513A priority Critical patent/JP6428122B2/en
Publication of JP2016076362A publication Critical patent/JP2016076362A/en
Application granted granted Critical
Publication of JP6428122B2 publication Critical patent/JP6428122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、電気抵抗値が低く、高温下で長時間保持したときの電気抵抗値の上昇を抑制することができる透明導電膜に関する。また本発明は、転写用基材の上面に作製した透明導電膜を支持用透明基材に転写することにより製造される透明導電体に関する。   The present invention relates to a transparent conductive film having a low electric resistance value and capable of suppressing an increase in electric resistance value when held at a high temperature for a long time. Moreover, this invention relates to the transparent conductor manufactured by transcribe | transferring the transparent conductive film produced on the upper surface of the base material for transcription | transfer to the transparent base material for support.

LCD(Liquid Crystal Display)やPDP(Plasma Display Panel)、有機EL(ElectroLuminescence)、タッチパネル等の画像表示装置の透明電極には透明導電膜が用いられている。この透明導電膜は、ITO等からなる透明導電材料によって構成されることが多い。このような透明導電膜は、通常スパッタリング法により形成される(例えば、特許文献1参照)。従来透明導電膜はガラス基材に成膜されていた。しかしスパッタリング装置は高価であり、かつ、成膜の効率が悪く、また、その膜は屈曲に対して、ひび割れし易い等の問題があった。   A transparent conductive film is used as a transparent electrode of an image display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an organic EL (ElectroLuminescence), or a touch panel. This transparent conductive film is often composed of a transparent conductive material made of ITO or the like. Such a transparent conductive film is usually formed by a sputtering method (see, for example, Patent Document 1). Conventionally, a transparent conductive film has been formed on a glass substrate. However, the sputtering apparatus is expensive and the film formation efficiency is low, and the film is liable to crack when bent.

このひび割れの問題を解決するため、ひび割れの起こりにくい屈曲性に優れた透明導電膜を形成する方法として、スパッタリング法に代わって、導電膜形成用塗料を可撓性のある基材に塗布する方法が提案されている。近年では、デバイスの軽量化、フレキシブル化が求められているため、基材としてポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等の可撓性樹脂フィルムが用いられ、透明導電膜はこのフィルム上に形成され、その用途が増加している(例えば、特許文献2及び3参照)。   In order to solve the problem of cracking, as a method of forming a transparent conductive film excellent in flexibility that is unlikely to crack, a method of applying a conductive film-forming coating material on a flexible substrate instead of the sputtering method Has been proposed. In recent years, there has been a demand for lighter and more flexible devices, so a flexible resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is used as the base material. And its use is increasing (see, for example, Patent Documents 2 and 3).

しかし、塗料を塗布して得られる透明導電膜には、導電性が低いという問題と、電子機器に使用した場合、熱的耐久性が十分でないという問題がある。具体的には、80℃の高温下で長時間保持した時に電気抵抗値が高くなる問題がある。この電気抵抗値の上昇は、大気中の酸化性ガスの吸着に起因していることが分かっている。前者の問題に対しては、特許文献2の導電性フィルムの製造方法では、導電性微粒子の分散液を支持体上に塗布、乾燥して形成された導電性微粒子含有層(粒子層)をシートプレス、ロールプレス等により圧縮し、導電性微粒子の圧縮層からなる透明導電層を形成する。圧縮することで導電性微粒子相互間の接触点を増加させ、これにより透明導電膜の電気抵抗値を低減している。一方、後者の問題に対しては、特許文献2の導電性フィルムの製造方法では、上記透明導電層上に高分子樹脂成分を含む接着剤層(樹脂層)を形成する。この接着剤層組成物は、得られた導電性微粒子の圧縮層中の導電性微粒子相互間の空隙に含浸する。その結果、高温高湿環境下であっても導電性微粒子の表面に水和物が形成されることが抑制され、電気抵抗値を低く維持する。即ち、圧縮層である透明導電層を樹脂で封止することで熱的環境中に暴露される透明導電性粒子の面積を小さくしている。   However, the transparent conductive film obtained by applying a paint has a problem that the conductivity is low and a problem that the thermal durability is not sufficient when it is used in an electronic device. Specifically, there is a problem that the electrical resistance value becomes high when held at a high temperature of 80 ° C. for a long time. It has been found that this increase in electrical resistance is due to adsorption of oxidizing gas in the atmosphere. With respect to the former problem, in the method for producing a conductive film of Patent Document 2, a conductive fine particle-containing layer (particle layer) formed by applying a conductive fine particle dispersion on a support and drying is used as a sheet. It compresses with a press, a roll press, etc., and forms the transparent conductive layer which consists of a compression layer of electroconductive fine particles. By compressing, the contact point between the conductive fine particles is increased, thereby reducing the electric resistance value of the transparent conductive film. On the other hand, with respect to the latter problem, in the method for producing a conductive film of Patent Document 2, an adhesive layer (resin layer) containing a polymer resin component is formed on the transparent conductive layer. This adhesive layer composition is impregnated in the space between the conductive fine particles in the compressed layer of the obtained conductive fine particles. As a result, even in a high temperature and high humidity environment, the formation of hydrates on the surface of the conductive fine particles is suppressed, and the electrical resistance value is kept low. That is, the area of the transparent conductive particles exposed to the thermal environment is reduced by sealing the transparent conductive layer, which is a compression layer, with a resin.

特開2004−315951号公報(段落[0002])JP 2004-315951 A (paragraph [0002]) 特開2007−257964号公報(段落[0032]、[0039]〜[0045]、[0054])JP 2007-257964 A (paragraphs [0032], [0039] to [0045], [0054]) 特開2010−277927号公報(段落[0034])JP 2010-277927 (paragraph [0034])

しかしながら、特許文献2の導電性フィルムのように、圧縮層である透明導電層を樹脂で封止した状態でも、この方法で得られた透明導電膜を電子機器に用いた場合、この透明導電膜はまだ十分な熱的耐久性が得られなかった。   However, when the transparent conductive film obtained by this method is used for an electronic device even in a state where the transparent conductive layer that is a compression layer is sealed with a resin, like the conductive film of Patent Document 2, this transparent conductive film However, sufficient thermal durability was not obtained.

本発明の目的は、電気抵抗値が低く、高温下で長時間保持したときの電気抵抗値の上昇を抑制することができる耐熱性のある透明導電膜及びこの明導電膜を有する透明導電体を提供することにある。   An object of the present invention is to provide a transparent conductive film having heat resistance that has a low electric resistance value and can suppress an increase in electric resistance value when held at a high temperature for a long time, and a transparent conductor having the light conductive film. It is to provide.

本発明者らは、透明導電層である圧縮層を樹脂で封止しても、得られた透明導電膜の熱的耐久性が十分に得られない要因を分析した。その結果、封止する樹脂自体が熱や機械的衝撃、光によって生じたアルキルラジカルによって劣化するとともに、このアルキルラジカルが酸素と反応して生じるパーオキシラジカルや過酸化物がITO粒子表面のキャリア電子を捕捉することで、電気抵抗値が上昇することが分かった。そこで、封止する樹脂に樹脂劣化防止剤を添加することで、キャリア電子が捕捉されるのを抑制し、更に高温下で長時間保持したときの抵抗安定性を向上させることを見い出し、本発明に到達した。   The present inventors analyzed a factor that the thermal durability of the obtained transparent conductive film cannot be sufficiently obtained even if the compression layer, which is a transparent conductive layer, is sealed with a resin. As a result, the resin itself to be sealed is deteriorated by an alkyl radical generated by heat, mechanical shock, or light, and a peroxy radical or a peroxide generated by the reaction of the alkyl radical with oxygen generates carrier electrons on the surface of the ITO particle. It has been found that the electrical resistance value increases by capturing. Therefore, by adding a resin deterioration preventing agent to the resin to be sealed, it is found that carrier electrons are suppressed from being trapped, and further that resistance stability is improved when held for a long time at a high temperature. Reached.

本発明の第1の観点は、透明導電性粒子によって形成された粒子層の前記粒子間の空隙に樹脂劣化防止剤が存在し、体積抵抗率が5×10-2Ωcm以下であり、前記樹脂劣化防止剤がアミン系、ヒンダードアミン系、フェノール系、ホスファイト系、又はチオエーテル系樹脂劣化防止剤である透明導電膜である。 The first aspect of the present invention, there is a resin antidegradants in the gap between the particles of the formed by the transparent conductive particles particle layer state, and are a volume resistivity of 5 × 10 -2 Ωcm or less, the It is a transparent conductive film in which the resin deterioration inhibitor is an amine-based, hindered amine-based, phenol-based, phosphite-based, or thioether-based resin deterioration inhibitor .

本発明の第2の観点は、第1の観点に基づく発明であって、前記透明導電性粒子が錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、アルミニウムドープ酸化亜鉛(AZO)又はガリウムドープ酸化亜鉛(GZO)の金属酸化物粒子であることにある。   A second aspect of the present invention is the invention based on the first aspect, wherein the transparent conductive particles are tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), The metal oxide particles are aluminum-doped zinc oxide (AZO) or gallium-doped zinc oxide (GZO).

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記樹脂が熱硬化性樹脂又は紫外線硬化性樹脂であることにある。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the resin is a thermosetting resin or an ultraviolet curable resin.

本発明の第の観点は、第1ないし第いずれかの観点に基づく透明導電膜が支持用透明基材上に形成された透明導電体である。 A fourth aspect of the present invention is a transparent conductor in which a transparent conductive film based on any one of the first to third aspects is formed on a supporting transparent substrate.

本発明の第1の観点の透明導電膜は、体積抵抗率が5×10−2Ωcm以下であるため、電気抵抗値が低く、導電性に優れる。透明導電性粒子によって形成された粒子層の空隙に存在する樹脂が樹脂劣化防止剤を含むため、透明導電膜を熱的環境の高温下で長時間保持しても、発生したパーオキシラジカル又は過酸化物はすぐに樹脂劣化防止剤に捕捉され、これにより透明導電性粒子表面のキャリア電子が捕捉されず、電気抵抗値の上昇が抑制される。更に粒子層中の粒子間の空隙に樹脂が存在するため、粒子とその周囲の屈折率の差を小さくすることができ、ヘイズを低減し、光の透過率を向上させることができる。
また、樹脂劣化防止剤として、アミン系、ヒンダードアミン系、フェノール系、ホスファイト系、又はチオエーテル系樹脂劣化防止剤を採択することによって、より確実に上記樹脂の劣化を防止することができる。
Since the transparent conductive film according to the first aspect of the present invention has a volume resistivity of 5 × 10 −2 Ωcm or less, the electrical resistance value is low and the conductivity is excellent. Since the resin present in the voids of the particle layer formed by the transparent conductive particles contains a resin deterioration preventive agent, even if the transparent conductive film is held for a long time at a high temperature in the thermal environment, the generated peroxy radicals or excess The oxide is immediately captured by the resin deterioration preventing agent, whereby carrier electrons on the surface of the transparent conductive particles are not captured, and an increase in the electrical resistance value is suppressed. Further, since the resin exists in the voids between the particles in the particle layer, the difference in refractive index between the particles and the surroundings can be reduced, haze can be reduced, and light transmittance can be improved.
Further, by adopting an amine-based, hindered amine-based, phenol-based, phosphite-based, or thioether-based resin deterioration preventing agent as the resin deterioration preventing agent, it is possible to more reliably prevent the resin from deteriorating.

本発明の第2の観点では、透明導電性粒子が錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、アルミニウムドープ酸化亜鉛(AZO)又はガリウムドープ酸化亜鉛(GZO)の金属酸化物粒子であるため、この導電膜は透明性と導電性に優れる。   In the second aspect of the present invention, the transparent conductive particles are tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), or gallium-doped zinc oxide. Since it is a metal oxide particle of (GZO), this conductive film is excellent in transparency and conductivity.

本発明の第3の観点では、樹脂として、熱硬化性樹脂又は紫外線硬化性樹脂を採択することにより、加熱処理又は紫外線照射処理によって簡便に樹脂を硬化させることができる。   In the third aspect of the present invention, by adopting a thermosetting resin or an ultraviolet curable resin as the resin, the resin can be easily cured by heat treatment or ultraviolet irradiation treatment.

本発明の第の観点では、上記透明導電膜が支持用透明基材上に形成された透明導電体は、電気抵抗値が低く、高温下で長時間保持したときの電気抵抗値の上昇を抑制することができる。
In the fourth aspect of the present invention, the transparent conductor in which the transparent conductive film is formed on the supporting transparent substrate has a low electrical resistance value, and increases the electrical resistance value when held at a high temperature for a long time. Can be suppressed.

第1実施形態の透明導電体の製造工程を示す模式図である。図1(a)は粒子層の形成を示す図であり、図1(b)は圧縮層の形成を示す図であり、図1(c)は樹脂液の塗布・乾燥と樹脂層の形成を示す図であり、図1(d)は支持用透明基材の貼り合わせを示す図であり、図1(e)は樹脂の硬化と転写用基材の剥離を示す図であり、図1(f)は転写用基材を剥離した後の透明導電体を示す図である。It is a schematic diagram which shows the manufacturing process of the transparent conductor of 1st Embodiment. FIG. 1 (a) is a diagram showing the formation of a particle layer, FIG. 1 (b) is a diagram showing the formation of a compression layer, and FIG. 1 (c) is the application / drying of the resin liquid and the formation of the resin layer. 1 (d) is a diagram showing the bonding of the supporting transparent substrate, and FIG. 1 (e) is a diagram showing the curing of the resin and the peeling of the transfer substrate, and FIG. f) is a view showing the transparent conductor after peeling off the transfer substrate. 第2実施形態の透明導電体の製造工程を示す模式図である。図2(a)は粒子層の形成を示す図であり、図2(b)は粒子層の加熱処理を示す図であり、図2(c)は樹脂液の塗布・乾燥と樹脂層の形成を示す図であり、図2(d)は支持用透明基材の貼り合わせを示す図であり、図2(e)は樹脂の硬化と転写用基材の剥離を示す図であり、図2(f)は転写用基材を剥離した後の透明導電体を示す図である。It is a schematic diagram which shows the manufacturing process of the transparent conductor of 2nd Embodiment. 2A is a diagram showing the formation of the particle layer, FIG. 2B is a diagram showing the heat treatment of the particle layer, and FIG. 2C is the application / drying of the resin liquid and the formation of the resin layer. 2 (d) is a diagram showing the bonding of the supporting transparent base material, and FIG. 2 (e) is a diagram showing the curing of the resin and the peeling of the transfer base material. (F) is a figure which shows the transparent conductor after peeling the base material for transcription | transfer. 第3実施形態の透明導電体の製造工程を示す模式図である。図3(a)は粒子層の形成を示す図であり、図3(b)は圧縮層の形成を示す図であり、図3(c)は圧縮層の加熱処理を示す図であり、図3(d)は樹脂液の塗布・乾燥と樹脂層の形成を示す図であり、図3(e)は支持用透明基材の貼り合わせを示す図であり、図3(f)は樹脂の硬化と転写用基材の剥離を示す図であり、図3(g)は転写用基材を剥離した後の透明導電体を示す図である。It is a schematic diagram which shows the manufacturing process of the transparent conductor of 3rd Embodiment. 3A is a diagram showing the formation of the particle layer, FIG. 3B is a diagram showing the formation of the compressed layer, and FIG. 3C is a diagram showing the heat treatment of the compressed layer. 3 (d) is a diagram showing the application / drying of the resin liquid and the formation of the resin layer, FIG. 3 (e) is a diagram showing the bonding of the supporting transparent substrate, and FIG. 3 (f) is a diagram of the resin. It is a figure which shows hardening and peeling of the base material for transcription | transfer, FIG.3 (g) is a figure which shows the transparent conductor after peeling the base material for transcription | transfer.

<本発明の第1の実施形態>
次に本発明の第1の実施形態を図1(a)〜(f)に基づいて説明する。第1の実施形態では、後述する圧縮処理を行って圧縮層を形成するが、この圧縮層を加熱処理しないことに特徴がある。
<First Embodiment of the Present Invention>
Next, the 1st Embodiment of this invention is described based on Fig.1 (a)-(f). The first embodiment is characterized in that a compression layer described later is formed to form a compression layer, but this compression layer is not heat-treated.

〔粒子層の形成〕
図1(a)に示すように、転写用基材1の上面に透明導電性粒子と分散媒からなる透明導電膜形成用塗料である塗布液を塗布し乾燥して粒子層2を形成する。転写用基材1としては、後述する圧縮工程の圧縮力を大きくしても割れることがない可撓性樹脂フィルムが用いられる。本発明の透明導電体の製造工程中、粒子層を転写基材から別の支持用透明基材に転写するため、転写用基材に無色透明でない樹脂フィルムや金属箔を用いることができる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリエチレンやポリプロピレン等のポリオレフィンフィルム、ポリイミド(PI)フィルム等が例示される。
(Formation of particle layer)
As shown in FIG. 1 (a), a particle layer 2 is formed by applying a coating liquid, which is a transparent conductive film-forming coating material composed of transparent conductive particles and a dispersion medium, to the upper surface of a transfer substrate 1 and drying it. As the transfer substrate 1, a flexible resin film that does not break even if the compression force in the compression step described later is increased is used. During the production process of the transparent conductor of the present invention, since the particle layer is transferred from the transfer substrate to another support transparent substrate, a resin film or metal foil that is not colorless and transparent can be used as the transfer substrate. Examples of the resin film include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, and polyimide (PI) films.

透明導電性粒子としては、透明導電性粒子が錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、アルミニウムドープ酸化亜鉛(AZO)又はガリウムドープ酸化亜鉛(GZO)等の金属酸化物粒子を用いることができる。特に、ITO粒子がより優れた導電性を示すため好ましい。透明導電性粒子のD50平均粒子径は、1μm以下であり、好ましくは20nm〜200nmである。この粒子径はレーザー回折型粒度分布測定装置により測定される。   As the transparent conductive particles, the transparent conductive particles are tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), or gallium-doped zinc oxide (GZO). Metal oxide particles such as) can be used. In particular, ITO particles are preferable because they exhibit better conductivity. The D50 average particle diameter of the transparent conductive particles is 1 μm or less, preferably 20 nm to 200 nm. This particle diameter is measured by a laser diffraction type particle size distribution measuring apparatus.

分散媒としては、水や、メタノール、エタノール、2−ブタノール、1−プロパノール等のアルコール系溶液、エチレンジアミン、2−アミノエタノール、1−ブチルアミン等のアミン系溶液、N,N−ジメチルホルムアミド、ホルムアミド等のアミド系溶液、これらの混合溶液等が用いられる。   Examples of the dispersion medium include water, alcohol-based solutions such as methanol, ethanol, 2-butanol, and 1-propanol, amine-based solutions such as ethylenediamine, 2-aminoethanol, and 1-butylamine, N, N-dimethylformamide, formamide, and the like. An amide solution, a mixed solution thereof or the like is used.

塗布液は、透明導電性粒子と分散媒のみから構成され、それ以外に導電性を妨げる樹脂や分散剤を含まない、180℃〜300℃まで加熱したときの質量減少が5%以下である塗布液であることが好ましい。その理由は、樹脂や分散剤は、乾燥後も膜中に残留し、後述する加熱によってガスが発生し得るからである。これによりこの塗布液を塗布して形成される透明導電膜の抵抗値を更に下げることができる。塗布液は、塗布液100質量%に対して1〜70質量%、好ましくは10〜50質量%の割合で透明導電性粒子を分散媒に混合し、ミキサーで攪拌することにより調製する。透明導電性粒子の含有量が1質量%未満では透明導電膜として必要な厚さにならず、また導電性が得られない。70質量%を越えると塗布液の粘度が高くなり過ぎ、塗布が困難となる。また必要に応じて塗布液をホモジェナイザーやビーズミル粉砕機等に入れて、この塗料中で凝集した透明導電性粒子を解砕処理することができる。   The coating solution is composed only of transparent conductive particles and a dispersion medium, and does not contain any other resin or dispersant that impedes conductivity. The coating solution has a mass reduction of 5% or less when heated to 180 ° C to 300 ° C. A liquid is preferred. The reason is that the resin and the dispersant remain in the film after drying, and gas can be generated by heating described later. Thereby, the resistance value of the transparent conductive film formed by applying this coating solution can be further lowered. The coating liquid is prepared by mixing transparent conductive particles in a dispersion medium at a ratio of 1 to 70% by mass, preferably 10 to 50% by mass with respect to 100% by mass of the coating liquid, and stirring with a mixer. When the content of the transparent conductive particles is less than 1% by mass, the thickness required for the transparent conductive film is not obtained, and the conductivity cannot be obtained. If it exceeds 70% by mass, the viscosity of the coating solution becomes too high and coating becomes difficult. If necessary, the coating liquid can be put into a homogenizer, a bead mill pulverizer or the like, and the transparent conductive particles aggregated in the paint can be crushed.

塗布液の塗布は、スプレーコーティング、ディスペンサコーティング、スピンコーティング、ナイフコーティング、スリットコーティング、インクジェットコーティング、スクリーン印刷、オフセット印刷、ダイコーティング等の各種の湿式塗工法を採用することができる。特に、転写用基材1がフィルム状又はシート状の基材の場合のコーティングには、スロットダイコーター、コンマコータ−、リップコーター、グラビアコーター等が好適に使用される。図1(a)では、塗布液をスロットダイコーター3で塗布している。   For the application of the coating solution, various wet coating methods such as spray coating, dispenser coating, spin coating, knife coating, slit coating, ink jet coating, screen printing, offset printing, and die coating can be employed. In particular, a slot die coater, a comma coater, a lip coater, a gravure coater or the like is preferably used for coating when the transfer substrate 1 is a film or sheet substrate. In FIG. 1A, the coating liquid is applied by the slot die coater 3.

なお、転写用基材1に塗布液を塗布する前に、後述する支持用透明基材上の透明導電膜から転写用基材1を剥離しやすくするために転写用基材1の上面にテフロン(商標)加工(フッ素処理)、シリコーン加工を施すか、又は非粘着性オイルを塗布してもよい。   Before applying the coating liquid to the transfer substrate 1, a Teflon is applied to the upper surface of the transfer substrate 1 so that the transfer substrate 1 can be easily peeled off from a transparent conductive film on the support transparent substrate described later. (Trademark) processing (fluorine treatment), silicone processing, or non-adhesive oil may be applied.

一方、塗布液の転写用基材への濡れ性が良好でなく、転写用基材上で塗布が均一に行われない場合には、分散液の濡れ性や粒子層との密着性を向上させるために、転写用基材1表面にプライマー層を設けたり、コロナ処理、プラズマ処理などの表面処理を行ってもよい。   On the other hand, if the wettability of the coating liquid to the transfer substrate is not good and the coating is not performed uniformly on the transfer substrate, the wettability of the dispersion and the adhesion to the particle layer are improved. Therefore, a primer layer may be provided on the surface of the transfer substrate 1 or surface treatment such as corona treatment or plasma treatment may be performed.

塗布液の乾燥は、風乾、真空乾燥、加熱乾燥のいずれでも良いが、上述した分散媒を除去するため、分散媒の沸点より5〜70℃低い温度範囲で0.5〜10分間、好ましくは、沸点より30〜60℃低い温度で不活性雰囲気下、1分以上行うことが好ましい。沸点との差が70℃以上になると、乾燥が不十分になり易い。乾燥が不十分であると、後述する圧縮層の加熱工程で、ガスが発生し、圧縮層にクラックを生じ易くなり、圧縮層が転写用基材から剥離し易くなる。沸点との差が5℃未満になると、分散媒が急激に揮発し、膜にムラが生じやすくなる。   The coating solution may be dried by air drying, vacuum drying, or heat drying. However, in order to remove the dispersion medium described above, it is preferably 0.5 to 10 minutes in a temperature range lower than the boiling point of the dispersion medium by 5 to 70 ° C., preferably It is preferable to carry out for 1 minute or more in an inert atmosphere at a temperature 30 to 60 ° C. lower than the boiling point. When the difference from the boiling point is 70 ° C. or more, drying tends to be insufficient. If the drying is insufficient, gas is generated in the heating step of the compressed layer, which will be described later, and the compressed layer is easily cracked, and the compressed layer is easily peeled off from the transfer substrate. When the difference from the boiling point is less than 5 ° C., the dispersion medium volatilizes abruptly and unevenness of the film tends to occur.

〔圧縮処理による圧縮層の形成〕
圧縮処理としては、シートプレス処理、カレンダロールを用いたカレンダ処理が挙げられる。図1(b)では、カレンダ処理の例を示す。図1(b)に示すように、粒子層2を上面に形成した転写用基材1をカレンダ処理して粒子層2を圧縮層4にする。粒子層2を圧縮して圧縮層4にすると、透明導電性粒子相互間の接触点が増え接触面が増加し、電気抵抗値が低下し、導電性に優れる。また圧縮により、透明導電性粒子が高充填化され、光学特性が向上する。光学特性においては、特に粒子間空隙による散乱光が減少することにより、光散乱強度を表す値であるヘイズ値が著しく減少し、透明性が高くなる。
[Formation of compressed layer by compression treatment]
Examples of the compression process include a sheet press process and a calendar process using a calendar roll. FIG. 1B shows an example of calendar processing. As shown in FIG. 1 (b), the transfer substrate 1 having the particle layer 2 formed on the upper surface thereof is calendered to make the particle layer 2 a compressed layer 4. When the particle layer 2 is compressed into the compressed layer 4, the contact points between the transparent conductive particles increase, the contact surface increases, the electric resistance value decreases, and the conductivity is excellent. In addition, the transparent conductive particles are highly filled by the compression, and the optical characteristics are improved. In the optical characteristics, particularly, the haze value, which is a value representing the light scattering intensity, is remarkably reduced and transparency is increased by reducing the scattered light due to the interparticle voids.

カレンダ処理は、粒子層の上面に離型処理又はハードコート処理の施されたカバーフィルム(図示せず)を重ね合せ、この状態で一対のカレンダロール5の間を通して、ロール圧力100〜2000kg/cm、送り出し速度0.1〜10m/分の条件で圧力を加える。カレンダロールを通過後、カバーフィルムを剥離する。これにより転写用基材1上に圧縮層4が形成される。   In the calendar process, a cover film (not shown) subjected to a release process or a hard coat process is superimposed on the upper surface of the particle layer, and in this state, a roll pressure of 100 to 2000 kg / cm is passed between the pair of calendar rolls 5. The pressure is applied under the condition of a delivery speed of 0.1 to 10 m / min. After passing through the calendar roll, the cover film is peeled off. Thereby, the compression layer 4 is formed on the transfer substrate 1.

〔樹脂液の塗布・乾燥と樹脂層の形成〕
次に、図1(c)に示すように、転写用基材1上の圧縮層4に樹脂液を塗布して樹脂液を圧縮層中の透明導電性粒子間の空隙に含浸する。この樹脂液を乾燥して圧縮層4上に樹脂層7を形成する。塗布方法としては、スプレーコーティング、ディスペンサコーティング、スピンコーティング、ナイフコーティング、スリットコーティング、インクジェットコーティング、スクリーン印刷、オフセット印刷、ダイコーティング等が例示される。図1(c)は、スプレーコーター8を用いた塗布法の例を示す。
[Application and drying of resin solution and formation of resin layer]
Next, as shown in FIG.1 (c), a resin liquid is apply | coated to the compression layer 4 on the base material 1 for transfer, and the resin liquid is impregnated in the space | gap between the transparent conductive particles in a compression layer. The resin liquid is dried to form the resin layer 7 on the compression layer 4. Examples of the application method include spray coating, dispenser coating, spin coating, knife coating, slit coating, inkjet coating, screen printing, offset printing, and die coating. FIG. 1C shows an example of a coating method using the spray coater 8.

樹脂液は、樹脂と樹脂劣化防止剤と溶剤とを含む。樹脂としては、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂等の熱硬化性樹脂又はアクリル樹脂、エポキシアクリレート樹脂、シリコーン樹脂等の紫外線硬化性樹脂が例示される。樹脂とともに硬化開始剤を用いることが好ましい。こうした樹脂としては、樹脂層になったときに後述する支持用透明基材に対して接着性があるものが選択される。樹脂劣化防止剤は、樹脂が光や熱によって分解・劣化する際に生じるアルキルラジカル(R・:Rはアルキル鎖)やパーオキシラジカル(ROO・)、過酸化物(ROOH)を捕捉または分解することで、樹脂の劣化が加速度的に進行するのを防止すると同時に、アルキルラジカルやパーオキシラジカル、過酸化物から生じるOHラジカルが透明導電性粒子表面に吸着しキャリア電子を吸引することで透明導電膜の抵抗値が増加するのを抑制する。この樹脂劣化防止剤としては、アミン系、ヒンダードアミン系、フェノール系、ホスファイト系、又はチオエーテル系樹脂劣化防止剤が例示され、アミン系、フェノール系、又はチオエーテル系樹脂劣化防止剤が特に好ましい。溶剤としては、上記樹脂及び樹脂劣化防止剤を溶解する溶剤であれば特に限定されないが、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル(PGME)、エタノール等が例示される。樹脂は、樹脂液100質量%に対して、10〜80質量%、好ましくは20〜50質量%の割合で混合する。紫外線により硬化する場合、硬化開始剤は樹脂100質量部に対して0.1〜10質量部混合する。また樹脂劣化防止剤は、樹脂100質量部に対して、0.5〜8質量部混合する。残部は溶剤である。この混合は混合物をミキサーで攪拌することにより行われる。樹脂劣化防止剤は樹脂層になったときにその樹脂層に白濁や着色を生じさせないようにその種類とその混合量を決めることが好ましい。   The resin liquid contains a resin, a resin deterioration preventing agent, and a solvent. Examples of the resin include thermosetting resins such as epoxy resins, polyurethane resins, and silicone resins, or ultraviolet curable resins such as acrylic resins, epoxy acrylate resins, and silicone resins. It is preferable to use a curing initiator together with the resin. As such a resin, a resin having an adhesive property to a supporting transparent substrate described later when the resin layer is formed is selected. Resin degradation inhibitors capture or decompose alkyl radicals (R ·: R is an alkyl chain), peroxy radicals (ROO ·), and peroxides (ROOH) that are generated when the resin is degraded or degraded by light or heat. As a result, the deterioration of the resin is prevented from proceeding at an accelerated rate, and at the same time, the OH radicals generated from alkyl radicals, peroxy radicals, and peroxides are adsorbed on the surface of the transparent conductive particles, and the carrier electrons are attracted. An increase in the resistance value of the film is suppressed. Examples of the resin deterioration inhibitor include amine-based, hindered amine-based, phenol-based, phosphite-based, or thioether-based resin deterioration inhibitors, and amine-based, phenol-based, or thioether-based resin deterioration inhibitors are particularly preferable. The solvent is not particularly limited as long as it is a solvent that dissolves the resin and the resin degradation inhibitor, and examples thereof include methyl isobutyl ketone, propylene glycol monomethyl ether (PGME), and ethanol. The resin is mixed at a rate of 10 to 80% by mass, preferably 20 to 50% by mass, with respect to 100% by mass of the resin liquid. When it hardens | cures with an ultraviolet-ray, 0.1-10 mass parts of hardening initiators are mixed with respect to 100 mass parts of resin. Moreover, 0.5-8 mass parts of resin deterioration inhibitors are mixed with respect to 100 mass parts of resin. The balance is solvent. This mixing is performed by stirring the mixture with a mixer. It is preferable to determine the type and mixing amount of the resin deterioration inhibitor so that the resin layer does not become cloudy or colored when it becomes a resin layer.

樹脂液を乾燥すると、樹脂液中の溶剤が除去される。樹脂液の乾燥は、風乾、真空乾燥、加熱乾燥のいずれでも良いが、上述した溶剤を除去するため、溶剤の沸点より5〜80℃低い温度範囲で0.5〜10分間、好ましくは、沸点より20〜70℃低い温度で不活性雰囲気下、1分以上行うことが好ましい。   When the resin liquid is dried, the solvent in the resin liquid is removed. The drying of the resin liquid may be any of air drying, vacuum drying, and heat drying. However, in order to remove the solvent described above, the temperature is 5 to 80 ° C. lower than the boiling point of the solvent for 0.5 to 10 minutes, preferably the boiling point. It is preferable to carry out for 1 minute or more under an inert atmosphere at a temperature lower by 20 to 70 ° C.

〔支持用透明基材の貼り合わせ〕
次に、図1(d)に示すように、転写用基材1上の樹脂層7の上面に支持用透明基材10を貼り合わせる。支持用透明基材としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリル等の可撓性樹脂フィルムやガラスが用いられる。支持用透明基材10の貼り合わせは、支持用透明基材と樹脂層の間に気泡が入らないように行う。また支持用透明基材10の樹脂層7との接着面には接着を容易にするために、ウレタン樹脂等のプライマー層を設けたり、この接着面にコロナ処理、プラズマ処理などの表面処理を行ってもよい。
[Lamination of supporting transparent substrate]
Next, as shown in FIG. 1D, a supporting transparent base material 10 is bonded to the upper surface of the resin layer 7 on the transfer base material 1. As the supporting transparent substrate, a flexible resin film such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylic, or glass is used. The support transparent substrate 10 is bonded so that air bubbles do not enter between the support transparent substrate and the resin layer. In addition, a primer layer such as a urethane resin is provided on the adhesive surface of the supporting transparent substrate 10 with the resin layer 7, or surface treatment such as corona treatment or plasma treatment is performed on the adhesive surface. May be.

〔樹脂の硬化と転写用基材の剥離と透明導電体の形成〕
次に、図1(e)に示すように、転写用基材1上の樹脂層7に含まれる樹脂を硬化させて樹脂層7付きの圧縮層4を透明導電膜9にする。樹脂がエポキシ樹脂等の熱硬化性樹脂であれば、樹脂が硬化するまで加熱する。硬化条件は、支持用透明基材が熱的損傷を受けない範囲であり、樹脂が硬化すれば限定されないが、不活性雰囲気下で80〜120℃で1〜60分間が好ましい。樹脂が紫外線で硬化するアクリル樹脂やエポキシアクリレート樹脂等の紫外線硬化性樹脂であれば、支持用透明基材側から紫外線を照射する。樹脂が硬化する条件であれば、紫外線の強度や波長には限定はないが、強度は0.5〜10J/cmの出力が好ましい。これにより圧縮層が樹脂により封止され、圧縮層中の粒子間に樹脂を含浸させることで、粒子とその周囲の屈折率の差を小さくすることができ、ヘイズを低減し、光の透過率を上げることができる。
[Curing of resin, peeling of substrate for transfer and formation of transparent conductor]
Next, as shown in FIG. 1E, the resin contained in the resin layer 7 on the transfer substrate 1 is cured to make the compression layer 4 with the resin layer 7 a transparent conductive film 9. If the resin is a thermosetting resin such as an epoxy resin, heating is performed until the resin is cured. Curing conditions are in a range where the supporting transparent substrate is not thermally damaged and is not limited as long as the resin is cured, but is preferably 80 to 120 ° C. for 1 to 60 minutes in an inert atmosphere. If the resin is an ultraviolet curable resin such as an acrylic resin or an epoxy acrylate resin that is cured by ultraviolet rays, the ultraviolet rays are irradiated from the supporting transparent substrate side. As long as the resin is cured, the intensity and wavelength of ultraviolet rays are not limited, but the intensity is preferably an output of 0.5 to 10 J / cm 2 . As a result, the compression layer is sealed with resin, and by impregnating the resin between the particles in the compression layer, the difference in refractive index between the particles and their surroundings can be reduced, haze is reduced, and light transmittance is reduced. Can be raised.

最後に、転写用基材1を透明導電膜9を構成する圧縮層4から剥離する。転写用基材1の剥離は、転写用基材1と圧縮層4の間に分離爪を入れて剥離する方法、転写用基材1の端部を圧縮層4の端部から分離した後、分離した間に圧縮空気を送り込んで剥離する方法、転写用基材1に粘着テープを貼り付け、転写用基材1を剥離する方法、又は上記方法を組み合わせた方法等により転写用基材1を透明導電膜9を構成する圧縮層4から剥離する。これにより、図1(f)に示すように、支持用透明基材10上に透明導電膜9を残存させた透明導電体11を得る。このようにして得られた透明導電膜はその体積抵抗率が5×10−2Ωcm以下の範囲にある。 Finally, the transfer substrate 1 is peeled from the compressed layer 4 constituting the transparent conductive film 9. The transfer substrate 1 is peeled off by putting a separation claw between the transfer substrate 1 and the compression layer 4 and separating the end of the transfer substrate 1 from the end of the compression layer 4. The transfer substrate 1 is peeled off by a method in which compressed air is fed while being separated, a method in which an adhesive tape is attached to the transfer substrate 1 and the transfer substrate 1 is peeled off, or a method in which the above methods are combined. It peels from the compression layer 4 which comprises the transparent conductive film 9. Thereby, as shown in FIG.1 (f), the transparent conductor 11 which left the transparent conductive film 9 on the transparent base material 10 for support is obtained. The thus obtained transparent conductive film has a volume resistivity in the range of 5 × 10 −2 Ωcm or less.

<本発明の第2の実施形態>
次に本発明の第2の実施形態を図2(a)〜(f)に基づいて説明する。第2の実施形態では、前述した圧縮処理(カレンダ処理)を行わず、即ち圧縮層を形成せずに、粒子層を加熱処理をすることに特徴がある。
<Second Embodiment of the Present Invention>
Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is characterized in that the particle layer is heated without performing the above-described compression process (calendar process), that is, without forming a compression layer.

〔粒子層の形成〕
図2(a)に示すように、第1の実施形態と同様にして、粒子層2を形成する。
(Formation of particle layer)
As shown in FIG. 2A, the particle layer 2 is formed in the same manner as in the first embodiment.

〔粒子層の加熱処理〕
続いて、第1の実施形態で行ったカレンダ処理をせずに、図2(b)に示すように、粒子層を加熱処理する。具体的には、転写用基材1上の粒子層2を不活性ガス雰囲気又は還元雰囲気下で200℃以上、基材が損傷しない温度以下で加熱処理する。粒子層を加熱処理することにより、粒子層中の粒子がネッキングする。加熱処理の方法としては、電気炉加熱、赤外線加熱、マイクロ波加熱、フラッシュランプアニール、レーザー焼成等が挙げられる。図2(b)は、転写用基材1の上面に形成された粒子層2の加熱方法として、フラッシュランプ6により加熱する例を示す。
[Heat treatment of particle layer]
Subsequently, without performing the calendar process performed in the first embodiment, the particle layer is heated as shown in FIG. Specifically, the particle layer 2 on the transfer substrate 1 is heat-treated in an inert gas atmosphere or a reducing atmosphere at 200 ° C. or higher and a temperature at which the substrate is not damaged. By heating the particle layer, the particles in the particle layer are necked. Examples of the heat treatment method include electric furnace heating, infrared heating, microwave heating, flash lamp annealing, and laser firing. FIG. 2B shows an example of heating by the flash lamp 6 as a heating method of the particle layer 2 formed on the upper surface of the transfer substrate 1.

フラッシュランプアニール処理において、照射エネルギー密度及び照射時間は、粒子層2の初期抵抗を低下させることができればよく、特に限定されないが、照射エネルギー密度は、0.5〜30J/cmの範囲、照射時間は50μsから5msまでの範囲であることが好ましく、更には、照射エネルギー密度は、1〜20J/cmの範囲、照射時間は100μsから1000μsまでの範囲であることが特に好ましい。本発明において、照射エネルギー密度は、フラッシュランプアニール処理で、粒子層の単位面積に照射されるトータルのエネルギーを単位面積当りにした値をいう。照射エネルギー密度が0.5J/cm未満であるか又は照射時間が50μsより短いと、粒子層2の導電性が向上しない。30J/cmを超えるか又は照射時間が50msを超えると、転写用基材1が熱的損傷を受けるとともに、粒子層2が吹き飛んでしまう。また、照射回数は1回である必要は無く、粒子層2や転写用基材1に熱的損傷を与えない範囲で複数回照射することができる。例えば、ロール トゥ ロール(ロール状に巻いたフィルム基板巻き戻す過程で蒸着、スパッタリング、コーティングなどの方式でフィルム上に連続的に成膜する生産方式。)での処理を行う際に、1パルスに付き、照射面積の1/3ずつオーバーラップさせながら連続照射することによって、単位面積当たり3回照射されることになり、ロール トゥ ロールでのフラッシュランプアニール処理のムラを低減することができる。 In the flash lamp annealing treatment, the irradiation energy density and the irradiation time are not particularly limited as long as the initial resistance of the particle layer 2 can be reduced, but the irradiation energy density is in the range of 0.5 to 30 J / cm 2. The time is preferably in the range of 50 μs to 5 ms, more preferably the irradiation energy density is in the range of 1 to 20 J / cm 2 , and the irradiation time is particularly preferably in the range of 100 μs to 1000 μs. In the present invention, the irradiation energy density refers to a value obtained by calculating the total energy irradiated to the unit area of the particle layer per unit area in the flash lamp annealing treatment. When the irradiation energy density is less than 0.5 J / cm 2 or the irradiation time is shorter than 50 μs, the conductivity of the particle layer 2 is not improved. If it exceeds 30 J / cm 2 or the irradiation time exceeds 50 ms, the transfer substrate 1 is thermally damaged and the particle layer 2 is blown off. The number of times of irradiation need not be one, and the particle layer 2 and the transfer substrate 1 can be irradiated multiple times within a range that does not cause thermal damage. For example, when performing processing in roll-to-roll (a production method in which film is continuously formed on a film by vapor deposition, sputtering, coating, etc. in the process of rewinding a film substrate wound in a roll shape) In addition, by continuously irradiating with 1/3 of the irradiation area being overlapped, irradiation is performed three times per unit area, and unevenness of the flash lamp annealing process in roll-to-roll can be reduced.

〔樹脂液の塗布・乾燥と樹脂層の形成〕
次に、図2(c)に示すように、第1の実施形態の圧縮層の代わりに、転写用基材1上の粒子層2に樹脂液を塗布して樹脂液を粒子層中の透明導電性粒子間の空隙に含浸する。この樹脂液を乾燥して粒子層2上に樹脂層7を形成する。この樹脂液の塗布方法、樹脂液の乾燥方法及び樹脂層の形成方法は、第1の実施形態と同じである。
[Application and drying of resin solution and formation of resin layer]
Next, as shown in FIG. 2 (c), instead of the compression layer of the first embodiment, a resin liquid is applied to the particle layer 2 on the transfer substrate 1, and the resin liquid is transparent in the particle layer. Impregnation in the voids between the conductive particles. The resin liquid is dried to form the resin layer 7 on the particle layer 2. The method for applying the resin liquid, the method for drying the resin liquid, and the method for forming the resin layer are the same as those in the first embodiment.

〔支持用透明基材の貼り合わせ〕
次に、図2(d)に示すように、転写用基材1上の樹脂層7の上面に支持用透明基材10を貼り合わせる。この支持用透明基材の貼り合わせ方法は、第1の実施形態と同じである。
[Lamination of supporting transparent substrate]
Next, as shown in FIG. 2 (d), a supporting transparent substrate 10 is bonded to the upper surface of the resin layer 7 on the transfer substrate 1. The method for laminating the supporting transparent substrate is the same as in the first embodiment.

〔樹脂の硬化と転写用基材の剥離と透明導電体の形成〕
次に、図2(e)に示すように、転写用基材1上の樹脂層7に含まれる樹脂を硬化させて樹脂層7付きの粒子層2を透明導電膜9にする。第1の実施形態の樹脂層付きの圧縮層の代わりに樹脂層付きの粒子層を透明導電膜とする以外は、第1の実施形態と同じである。続いて、図2(f)に示すように、第1の実施形態と同様にして、支持用透明基材10上に透明導電膜9を残存させた透明導電体11を得る。このようにして得られた透明導電膜はその体積抵抗率が5×10−2Ωcm以下の範囲にある。
[Curing of resin, peeling of substrate for transfer and formation of transparent conductor]
Next, as shown in FIG. 2 (e), the resin contained in the resin layer 7 on the transfer substrate 1 is cured to make the particle layer 2 with the resin layer 7 a transparent conductive film 9. It is the same as 1st Embodiment except the particle layer with a resin layer being used as a transparent conductive film instead of the compression layer with a resin layer of 1st Embodiment. Subsequently, as shown in FIG. 2 (f), a transparent conductor 11 in which the transparent conductive film 9 remains on the supporting transparent substrate 10 is obtained in the same manner as in the first embodiment. The thus obtained transparent conductive film has a volume resistivity in the range of 5 × 10 −2 Ωcm or less.

<本発明の第3の実施形態>
次に本発明の第3の実施形態を図3(a)〜(g)に基づいて説明する。第3の実施形態では、第1の実施形態のカレンダ処理を行うとともに、第2の実施形態の加熱処理を行うことに特徴がある。
<Third Embodiment of the Present Invention>
Next, the 3rd Embodiment of this invention is described based on Fig.3 (a)-(g). The third embodiment is characterized in that the calendar process of the first embodiment is performed and the heat treatment of the second embodiment is performed.

〔粒子層の形成〕
図3(a)に示すように、第1の実施形態と同様に、粒子層2を形成する。
(Formation of particle layer)
As shown in FIG. 3A, the particle layer 2 is formed as in the first embodiment.

〔圧縮処理による圧縮層の形成〕
次いで、図3(b)に示すように、第1の実施形態と同様にして、粒子層2を上面に形成した転写用基材1を圧縮処理(カレンダ処理)して粒子層2を圧縮層4にする
[Formation of compressed layer by compression treatment]
Next, as shown in FIG. 3B, in the same manner as in the first embodiment, the transfer base material 1 on which the particle layer 2 is formed is compressed (calendered) to form the particle layer 2 as a compressed layer. 4

〔圧縮層の加熱処理〕
続いて、図3(c)に示すように、第2の実施形態の粒子層の代わりに、圧縮層4を加熱処理する。この加熱処理方法は第2の実施形態と同じである。
[Heat treatment of compressed layer]
Then, as shown in FIG.3 (c), instead of the particle layer of 2nd Embodiment, the compression layer 4 is heat-processed. This heat treatment method is the same as in the second embodiment.

〔樹脂液の塗布・乾燥と樹脂層の形成〕
次に、図3(d)に示すように、第2の実施形態の粒子層の代わりに、転写用基材1上の圧縮層4に樹脂液を塗布して樹脂液を圧縮層中の透明導電性粒子間の空隙に含浸する。この樹脂液を乾燥して圧縮層4上に樹脂層7を形成する。この樹脂液の塗布方法、樹脂液の乾燥方法及び樹脂層の形成方法は、第1の実施形態と同じである。
[Application and drying of resin solution and formation of resin layer]
Next, as shown in FIG. 3 (d), instead of the particle layer of the second embodiment, a resin liquid is applied to the compression layer 4 on the transfer substrate 1, and the resin liquid is transparent in the compression layer. Impregnation in the voids between the conductive particles. The resin liquid is dried to form the resin layer 7 on the compression layer 4. The method for applying the resin liquid, the method for drying the resin liquid, and the method for forming the resin layer are the same as those in the first embodiment.

〔支持用透明基材の貼り合わせ〕
次に、図3(e)に示すように、転写用基材1上の樹脂層7の上面に支持用透明基材10を貼り合わせる。この支持用透明基材の貼り合わせは、第1の実施形態と同じである。
[Lamination of supporting transparent substrate]
Next, as shown in FIG. 3E, the supporting transparent base material 10 is bonded to the upper surface of the resin layer 7 on the transfer base material 1. The bonding of the supporting transparent substrate is the same as in the first embodiment.

〔樹脂の硬化と転写用基材の剥離と透明導電体の形成〕
次に、図3(f)に示すように、第1の実施形態と同様にして、転写用基材1上の樹脂層7に含まれる樹脂を硬化させて樹脂層7付きの圧縮層4を透明導電膜9にする。続いて、図3(g)に示すように、第1の実施形態と同様にして、支持用透明基材10上に透明導電膜9を残存させた透明導電体11を得る。このようにして得られた透明導電膜はその体積抵抗率が5×10−2Ωcm以下の範囲にある。
[Curing of resin, peeling of substrate for transfer and formation of transparent conductor]
Next, as shown in FIG. 3 (f), in the same manner as in the first embodiment, the resin contained in the resin layer 7 on the transfer substrate 1 is cured to form the compression layer 4 with the resin layer 7. A transparent conductive film 9 is formed. Subsequently, as shown in FIG. 3G, a transparent conductor 11 in which the transparent conductive film 9 remains on the supporting transparent substrate 10 is obtained in the same manner as in the first embodiment. The thus obtained transparent conductive film has a volume resistivity in the range of 5 × 10 −2 Ωcm or less.

次いで、透明導電膜の評価方法について説明する。
(a) 透明導電膜の表面抵抗率
透明導電膜の表面抵抗率を以下の手順にて測定した。試料となる透明導電体を50×50mmにカットし、抵抗測定器(三菱油化(株)社製、製品名:Loresta AP MCP−T400)を使用し、透明導電膜の予め定められた測定点で測定し、その測定値を透明導電膜の表面抵抗率とした。転写用基材を剥離した直後の表面抵抗率(初期抵抗率)と、加湿等の湿度制御を行わない大気中、80℃の温度で500時間保持した後の表面抵抗率(高温試験後抵抗率)の2つの抵抗率を測定した。高温試験後抵抗率を初期抵抗率で除することにより加熱による表面抵抗率の変化率を求める。
(b) 透明導電膜の膜厚
透明導電膜の膜厚を蛍光X線膜厚測定装置(セイコーインスツルメント(株)社製、製品名:SFT9400)を用い測定した。膜厚は膜厚既知の透明導電膜から検量線を作成し、試料の特性X線の検出強度から重量換算での膜厚を算出する。
(c) 体積抵抗率
上記(a)で求められた表面抵抗率(初期抵抗率)に上記(b)で算出された膜厚を乗算することにより、体積抵抗率を算出する。
Next, a method for evaluating the transparent conductive film will be described.
(a) Surface resistivity of transparent conductive film The surface resistivity of the transparent conductive film was measured by the following procedure. A transparent conductor to be a sample is cut into 50 × 50 mm, and a resistance measuring instrument (manufactured by Mitsubishi Yuka Co., Ltd., product name: Loresta AP MCP-T400) is used to determine a predetermined measurement point of the transparent conductive film. The measured value was taken as the surface resistivity of the transparent conductive film. Surface resistivity (initial resistivity) immediately after peeling off the transfer substrate, and surface resistivity after holding for 500 hours at a temperature of 80 ° C. in an atmosphere where humidity control such as humidification is not performed (resistivity after high temperature test) ) Was measured. By dividing the resistivity after the high temperature test by the initial resistivity, the rate of change in surface resistivity due to heating is determined.
(b) Film thickness of transparent conductive film The film thickness of the transparent conductive film was measured using a fluorescent X-ray film thickness measuring apparatus (product name: SFT9400, manufactured by Seiko Instruments Inc.). For the film thickness, a calibration curve is prepared from a transparent conductive film with a known film thickness, and the film thickness in terms of weight is calculated from the detected intensity of the characteristic X-ray of the sample.
(c) Volume resistivity The volume resistivity is calculated by multiplying the surface resistivity (initial resistivity) obtained in (a) above by the film thickness calculated in (b) above.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
分散媒のエタノール40.0gに平均粒径120nmのITO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、ITO導電膜形成用塗料である塗布液を調製した。この塗布液をスロットダイコーターを用いて、転写用基材である100mm×300mmの長方形のポリイミドフィルム(東レ・デュポン(株)社製、製品名:カプトン200EN)の上に塗布した。塗布した塗布液を25℃の大気中で5分間乾燥を行って転写用基材上に粒子層を形成した。この粒子層を上面に形成した転写用基材をカレンダ処理した。具体的にはカレンダロール圧力1000kg/cm、送り出し速度1m/分で粒子層に圧力を上記転写用基材に加えることで、粒子層を圧縮層にした。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。
<Example 1>
10 g of ITO particles with an average particle size of 120 nm were added to 40.0 g of ethanol as a dispersion medium, and dispersed for 30 minutes with an ultrasonic homogenizer, to prepare a coating liquid that was a coating for forming an ITO conductive film. This coating solution was applied onto a 100 mm × 300 mm rectangular polyimide film (product name: Kapton 200EN, manufactured by Toray DuPont Co., Ltd.) as a transfer substrate using a slot die coater. The applied coating solution was dried in the air at 25 ° C. for 5 minutes to form a particle layer on the transfer substrate. The transfer substrate on which the particle layer was formed was calendered. Specifically, by applying a pressure to the particle layer at a calender roll pressure of 1000 kg / cm and a feed rate of 1 m / min, the particle layer was made into a compressed layer. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm.

この圧縮層をアルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で300℃の温度で1時間加熱処理した。溶剤のメチルイソブチルケトンに紫外線硬化性樹脂であるエポキシアクリレート樹脂(日立化成(株)社製、製品名:ヒタロイド7663)と硬化開始剤(BASF(株)社製、製品名:イルガキュア184)とアミン系樹脂劣化防止剤(川口化学工業社製、製品名:アンテージDDA)を溶解して樹脂液を調製した。紫外線硬化性樹脂は樹脂液に対して25質量%含ませ、硬化開始剤は1質量%、樹脂劣化防止剤は1質量%、樹脂に対してそれぞれ含ませた。この樹脂液を加熱処理した圧縮層上にスプレーコーティングし、樹脂液を圧縮層中のITO粒子間の空隙に含浸した。この樹脂液を熱風乾燥機を用いて、大気雰囲気下で90℃の温度で1分間乾燥し、圧縮層上に溶剤を十分に除去した樹脂層を形成した。   This compression layer was heat-treated at a temperature of 300 ° C. for 1 hour under a nitrogen atmosphere using ULVAC / RIKO / Infrared Gold Image Furnace P616C. Epoxy acrylate resin (manufactured by Hitachi Chemical Co., Ltd., product name: Hitaroid 7663), a curing initiator (manufactured by BASF Corp., product name: Irgacure 184), and amine A resin solution was prepared by dissolving an organic resin degradation inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., product name: ANTAGE DDA). The ultraviolet curable resin was contained in an amount of 25% by mass with respect to the resin liquid, the curing initiator was contained in an amount of 1% by mass, the resin deterioration inhibitor was contained in an amount of 1% by mass, and the resin was contained. This resin solution was spray coated on the heat-treated compression layer, and the resin solution was impregnated in the gaps between the ITO particles in the compression layer. This resin liquid was dried for 1 minute at a temperature of 90 ° C. in an air atmosphere using a hot air dryer to form a resin layer from which the solvent was sufficiently removed on the compressed layer.

予め表面にウレタン樹脂のプライマー層が設けられた支持用透明基材のPETフィルムを上記樹脂層に貼り合わせた。貼り合わせ後、支持用透明基材側から1.4J/cmの出力で紫外線を照射して、エポキシアクリレート樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は165Ω/□であり、高温試験後抵抗率は245Ω/□であった。変化率は1.5であった。 A PET film of a supporting transparent substrate having a surface provided with a urethane resin primer layer in advance was bonded to the resin layer. After bonding, the epoxy acrylate resin was cured by irradiating with ultraviolet rays at an output of 1.4 J / cm 2 from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Further, the polyimide film transfer substrate was peeled from the compressed layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 165Ω / □, and the resistivity after the high temperature test was 245Ω / □. The rate of change was 1.5.

<実施例2>
実施例1と同様に、ポリイミドフィルム上に圧縮層を形成し、300℃1時間の赤外線加熱を行った。熱硬化樹脂である2液型のエポキシ樹脂(三菱ガス化学製、製品名:マクシーブ)の主剤及び硬化剤をそれぞれ固形分が25質量%になるようにエタノールで希釈した。希釈した硬化剤側にヒンダードアミン系樹脂劣化防止剤(ADEKA社製、製品名:アデカスタブLA−57)を、この樹脂劣化防止剤を硬化剤の固形分に対して10質量%含ませた硬化剤の希釈液を調製した。主剤の希釈液と樹脂劣化防止剤を含ませた硬化剤の希釈液を同量ずつ混合し、混合後60分以内に実施例1と同様に圧縮層上に塗布した。このとき、樹脂劣化防止剤は樹脂固形分に対して、5質量%である。塗布・乾燥後、予め表面にウレタン樹脂のプライマー層が設けられた支持用透明基材のPETフィルムを上記樹脂層に貼り合わせた。貼り合わせ後、大気中120℃10分間加熱することで、エポキシ樹脂を硬化させ、樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を剥離してITO透明導電体を得た。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電体の透明導電膜の初期抵抗率は162Ω/□であり、高温試験後抵抗率は275Ω/□であった。変化率は1.7であった。
<Example 2>
In the same manner as in Example 1, a compression layer was formed on the polyimide film, and infrared heating was performed at 300 ° C. for 1 hour. A main component and a curing agent of a two-pack type epoxy resin (product name: MAXIVE) manufactured by Mitsubishi Gas Chemical Co., Ltd., which is a thermosetting resin, were diluted with ethanol so that the solid content was 25% by mass. A hardener containing 10% by mass of a hindered amine-based resin deterioration inhibitor (ADEKA, product name: ADK STAB LA-57) on the diluted hardener side with respect to the solid content of the hardener. A dilution was prepared. The diluent of the main agent and the diluent of the curing agent containing the resin deterioration inhibitor were mixed in the same amount, and applied on the compressed layer in the same manner as in Example 1 within 60 minutes after mixing. At this time, the resin deterioration inhibitor is 5% by mass with respect to the resin solid content. After the application and drying, a PET film of a supporting transparent substrate having a surface provided with a urethane resin primer layer in advance was bonded to the resin layer. After bonding, the epoxy resin was cured by heating at 120 ° C. for 10 minutes in the atmosphere, and the compression layer with the resin layer was made into a transparent conductive film. Further, the polyimide film transfer substrate was peeled from the compressed layer constituting the transparent conductive film to obtain an ITO transparent conductor. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of the transparent conductive film of this transparent conductor was 162 Ω / □, and the resistivity after the high temperature test was 275 Ω / □. The rate of change was 1.7.

<実施例3>
実施例1のアミン系樹脂劣化防止剤をフェノール系樹脂劣化防止剤(川口化学工業社製、製品名:アンテージW−500)に変更し、この樹脂劣化防止剤を実施例1と同じ紫外線硬化性樹脂に対して8質量%含ませた樹脂液を調製した。この樹脂液を実施例1と同様に圧縮層上に塗布した。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。それ以外は、実施例1と同じ塗布液、同じ転写用基材、同じ支持用透明基材を用いて実施例1と同様の方法で、ITO透明導電体を得た。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電体の透明導電膜の初期抵抗率は168Ω/□であり、高温試験後抵抗率は253Ω/□であった。変化率は1.5であった。
<Example 3>
The amine-based resin deterioration inhibitor of Example 1 was changed to a phenol-based resin deterioration inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., product name: Antage W-500), and this resin deterioration inhibitor was the same UV curable as in Example 1. A resin liquid containing 8% by mass with respect to the resin was prepared. This resin solution was applied onto the compression layer in the same manner as in Example 1. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. Other than that, an ITO transparent conductor was obtained in the same manner as in Example 1 using the same coating solution as in Example 1, the same transfer substrate, and the same supporting transparent substrate. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of the transparent conductive film of this transparent conductor was 168Ω / □, and the resistivity after the high temperature test was 253Ω / □. The rate of change was 1.5.

<実施例4>
実施例1のアミン系樹脂劣化防止剤をホスファイト系樹脂劣化防止剤(ADEKA社製、製品名:アデカスタブHP−10)に変更し、この樹脂劣化防止剤を実施例1と同じ紫外線硬化性樹脂に対して3質量%含ませた樹脂液を調製した。この樹脂液を実施例1と同様に圧縮層上に塗布した。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。それ以外は、実施例1と同じ塗布液、同じ転写用基材、同じ支持用透明基材を用いて実施例1と同様の方法で、ITO透明導電体を得た。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電膜の初期抵抗率は170Ω/□であり、高温試験後抵抗率は306Ω/□であった。変化率は1.8であった。
<Example 4>
The amine-based resin degradation inhibitor of Example 1 was changed to a phosphite-based resin degradation inhibitor (manufactured by ADEKA, product name: ADK STAB HP-10), and this resin degradation inhibitor was the same UV curable resin as in Example 1. A resin solution containing 3% by mass based on the weight of the resin was prepared. This resin solution was applied onto the compression layer in the same manner as in Example 1. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. Other than that, an ITO transparent conductor was obtained in the same manner as in Example 1 using the same coating solution as in Example 1, the same transfer substrate, and the same supporting transparent substrate. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of this transparent conductive film was 170Ω / □, and the resistivity after the high temperature test was 306Ω / □. The rate of change was 1.8.

<実施例5>
実施例1のアミン系樹脂劣化防止剤をチオエーテル系樹脂劣化防止剤(ADEKA社製、製品名:アデカスタブAO−412S)に変更し、この樹脂劣化防止剤を実施例1と同じ紫外線硬化性樹脂に対して0.5質量%含ませた樹脂液を調製した。この樹脂液を実施例1と同様に圧縮層上に塗布した。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。それ以外は、実施例1と同じ塗布液、同じ転写用基材、同じ支持用透明基材を用いて実施例1と同様の方法で、ITO透明導電体を得た。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電体の透明導電膜の初期抵抗率は167Ω/□であり、高温試験後抵抗率は283Ω/□であった。変化率は1.7であった。
<Example 5>
The amine-based resin deterioration preventing agent of Example 1 was changed to a thioether-based resin deterioration preventing agent (manufactured by ADEKA, product name: ADK STAB AO-412S), and this resin deterioration preventing agent was changed to the same UV curable resin as in Example 1. A resin solution containing 0.5% by mass was prepared. This resin solution was applied onto the compression layer in the same manner as in Example 1. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. Other than that, an ITO transparent conductor was obtained in the same manner as in Example 1 using the same coating solution as in Example 1, the same transfer substrate, and the same supporting transparent substrate. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of the transparent conductive film of this transparent conductor was 167 Ω / □, and the resistivity after the high temperature test was 283 Ω / □. The rate of change was 1.7.

<実施例6>
分散媒のエタノール40.0gに平均粒径50nmのATO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製した。この塗布液を実施例1と同様にポリイミドフィルム上に塗布、カレンダ処理し粒子層を圧縮層にした。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.4μmであった。
この圧縮層をアルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で400℃の温度で1時間加熱処理した。その後、実施例1と同様にADEKA株式会社製樹脂劣化防止剤 アデカスタブAO−80を樹脂固形分に対し0.3質量%添加した紫外線硬化性樹脂を加熱処理した圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を、剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は877Ω/□であり、高温試験後抵抗率は1061Ω/□であった。変化率は1.2であった。
<Example 6>
10 g of ATO particles having an average particle diameter of 50 nm were added to 40.0 g of ethanol as a dispersion medium, and the mixture was dispersed with an ultrasonic homogenizer for 30 minutes to prepare a coating solution. This coating solution was applied onto a polyimide film in the same manner as in Example 1 and calendered to make the particle layer a compressed layer. When the layer thickness of the obtained compression layer was measured using fluorescent X-rays, the weight converted film thickness was 0.4 μm.
The compressed layer was heat-treated at a temperature of 400 ° C. for 1 hour under a nitrogen atmosphere by using an ULVAC / RIW / Infrared Gold Image Furnace P616C. Thereafter, in the same manner as in Example 1, a resin deterioration inhibitor Adeka Stub AO-80 manufactured by ADEKA Corporation was added to the heat-treated compression layer with 0.3% by mass added to the resin solid content, and dried. A PET film was bonded. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Furthermore, the polyimide film transfer substrate was peeled from the compression layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 877 Ω / □, and the resistivity after the high temperature test was 1061 Ω / □. The rate of change was 1.2.

<実施例7>
分散媒のエタノール40.0gに平均粒径100nmのAZO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製した。この塗布液を実施例1と同様にポリイミドフィルム上に塗布、カレンダ処理し粒子層を圧縮層にした。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.5μmであった。
この圧縮層をアルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で400℃の温度で1時間加熱処理した。その後、実施例1と同様にADEKA株式会社製樹脂劣化防止剤 アデカスタブPEP−36を樹脂固形分に対し5質量%添加した紫外線硬化性樹脂を加熱処理した圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を、剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は791Ω/□であり、高温試験後抵抗率は1500Ω/□であった。変化率は1.9であった。
<Example 7>
10 g of AZO particles having an average particle diameter of 100 nm were added to 40.0 g of ethanol as a dispersion medium, and dispersed with an ultrasonic homogenizer for 30 minutes to prepare a coating solution. This coating solution was applied onto a polyimide film in the same manner as in Example 1 and calendered to make the particle layer a compressed layer. When the layer thickness of the obtained compression layer was measured using fluorescent X-rays, the weight converted film thickness was 0.5 μm.
The compressed layer was heat-treated at a temperature of 400 ° C. for 1 hour under a nitrogen atmosphere by using an ULVAC / RIW / Infrared Gold Image Furnace P616C. Thereafter, in the same manner as in Example 1, a resin deterioration inhibitor Adeka Stub PEP-36 manufactured by ADEKA Co., Ltd. was applied to a heat-treated compressed layer containing 5% by mass of the resin solid content, and dried, PET film Were pasted together. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Furthermore, the polyimide film transfer substrate was peeled from the compression layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 791 Ω / □, and the resistivity after the high temperature test was 1500 Ω / □. The rate of change was 1.9.

<実施例8>
分散媒のエタノール40.0gに平均粒径30nmのGZO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製した。この塗布液を実施例1と同様にポリイミドフィルム上に塗布、カレンダ処理し粒子層を圧縮層にした。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.5μmであった。
この圧縮層をアルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で400℃の温度で1時間加熱処理した。その後、実施例1と同様に川口化学製樹脂劣化防止剤 アンテージ3Cを樹脂固形分に対し15質量%添加した紫外線硬化性樹脂を加熱処理した圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を、剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は980Ω/□であり、高温試験後抵抗率は1984Ω/□であった。変化率は2.0であった。
<Example 8>
10 g of GZO particles having an average particle diameter of 30 nm were added to 40.0 g of ethanol as a dispersion medium, and the mixture was dispersed with an ultrasonic homogenizer for 30 minutes to prepare a coating solution. This coating solution was applied onto a polyimide film in the same manner as in Example 1 and calendered to make the particle layer a compressed layer. When the layer thickness of the obtained compression layer was measured using fluorescent X-rays, the weight converted film thickness was 0.5 μm.
The compressed layer was heat-treated at a temperature of 400 ° C. for 1 hour under a nitrogen atmosphere by using an ULVAC / RIW / Infrared Gold Image Furnace P616C. Thereafter, in the same manner as in Example 1, an ultraviolet curable resin obtained by adding 15% by mass of the resin degradation inhibitor Antage 3C made by Kawaguchi Chemical to the resin solid content was applied to the heat-treated compressed layer, dried, and a PET film was bonded. It was. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Furthermore, the polyimide film transfer substrate was peeled from the compression layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 980Ω / □, and the resistivity after the high temperature test was 1984Ω / □. The rate of change was 2.0.

<実施例9>
実施例1と同様に分散媒のエタノール40.0gに平均粒径120nmのITO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製し、ポリイミドフィルム上に塗布した。その層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。
得られた粒子層にカレンダ処理は施さず、アルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で500℃の温度で1時間加熱処理した。その後、実施例1と同様にADEKA株式会社製樹脂劣化防止剤 アデカスタブAO-40を樹脂固形分に対し10質量%添加した紫外線硬化性樹脂を加熱処理した圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を、剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は1101Ω/□であり、高温試験後抵抗率は1960Ω/□であった。変化率は1.8であった。
<Example 9>
In the same manner as in Example 1, 10 g of ITO particles having an average particle size of 120 nm were added to 40.0 g of ethanol as a dispersion medium, and dispersed for 30 minutes with an ultrasonic homogenizer to prepare a coating solution, which was coated on a polyimide film. When the layer thickness was measured using fluorescent X-rays, the weight converted film thickness was 0.3 μm.
The obtained particle layer was not calendered and was heat-treated at a temperature of 500 ° C. for 1 hour under a nitrogen atmosphere using ULVAC-RIKO / Infrared Gold Image Furnace P616C. Thereafter, in the same manner as in Example 1, a resin deterioration inhibitor Adeka Stub AO-40 manufactured by ADEKA Corporation was added to the heat-treated compression layer with 10% by mass added to the resin solid content, dried, and PET film Were pasted together. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Furthermore, the polyimide film transfer substrate was peeled from the compression layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 1101Ω / □, and the resistivity after the high temperature test was 1960Ω / □. The rate of change was 1.8.

<実施例10>
実施例1と同様に分散媒のエタノール40.0gに平均粒径120nmのITO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製し、ポリイミドフィルム上に塗布した。その層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。
得られた粒子層に実施例1と同様にカレンダ処理し粒子層を圧縮層にした。その後、実施例1と同様に川口化学工業株式会社製樹脂劣化防止剤 アンテージLDA−Mを樹脂固形分に対し7.5質量%添加した紫外線硬化性樹脂を圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は223Ω/□であり、高温試験後抵抗率は330Ω/□であった。変化率は1.5であった。
<Example 10>
In the same manner as in Example 1, 10 g of ITO particles having an average particle size of 120 nm were added to 40.0 g of ethanol as a dispersion medium, and dispersed for 30 minutes with an ultrasonic homogenizer to prepare a coating solution, which was coated on a polyimide film. When the layer thickness was measured using fluorescent X-rays, the weight converted film thickness was 0.3 μm.
The obtained particle layer was calendered in the same manner as in Example 1 to convert the particle layer into a compressed layer. Thereafter, in the same manner as in Example 1, an ultraviolet curable resin in which 7.5% by mass of the resin degradation inhibitor Antage LDA-M manufactured by Kawaguchi Chemical Industry Co., Ltd. was added to the resin solid content was applied onto the compression layer, dried, and PET. The film was laminated. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Further, the polyimide film transfer substrate was peeled from the compressed layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 223 Ω / □, and the resistivity after the high temperature test was 330 Ω / □. The rate of change was 1.5.

<比較例1>
樹脂層を圧縮層上に形成しない以外、実施例1と同じ塗布液、同じ転写用基材、同じ支持用透明基材を用いてITO透明導電体を得た。この例では樹脂層がないため、圧縮層が透明導電膜であった。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電体の透明導電膜の初期抵抗率は189Ω/□であり、高温試験後抵抗率は3897Ω/□であった。変化率は20.6であった。
<Comparative Example 1>
An ITO transparent conductor was obtained using the same coating solution, the same transfer substrate, and the same supporting transparent substrate as in Example 1 except that the resin layer was not formed on the compression layer. In this example, since there was no resin layer, the compression layer was a transparent conductive film. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of the transparent conductive film of this transparent conductor was 189 Ω / □, and the resistivity after the high temperature test was 3897 Ω / □. The rate of change was 20.6.

<比較例2>
樹脂劣化防止剤を含有しない以外、実施例1と同じ紫外線硬化性樹脂と溶剤を用いて樹脂液を調製した。この樹脂液により実施例1と同様の方法で樹脂層を圧縮層上に形成した。得られた圧縮層の層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。それ以外、実施例1と同じ塗布液、同じ転写用基材、同じ支持用透明基材を用いてITO透明導電体を得た。このITO透明導電体に対して実施例1と同じ加熱処理を行った。この透明導電体の透明導電膜の初期抵抗率は162Ω/□であり、高温試験後抵抗率は412Ω/□であった。変化率は2.5であった。
<Comparative Example 2>
A resin liquid was prepared using the same ultraviolet curable resin and solvent as in Example 1 except that the resin deterioration inhibitor was not contained. A resin layer was formed on the compression layer using this resin solution in the same manner as in Example 1. When the layer thickness of the obtained compressed layer was measured using fluorescent X-rays, the film thickness in terms of weight was 0.3 μm. Other than that, an ITO transparent conductor was obtained using the same coating liquid as in Example 1, the same transfer substrate, and the same transparent support substrate. The same heat treatment as in Example 1 was performed on the ITO transparent conductor. The initial resistivity of the transparent conductive film of this transparent conductor was 162Ω / □, and the resistivity after the high temperature test was 412Ω / □. The rate of change was 2.5.

<比較例3>
実施例9と同様に塗布液を調製し、ポリイミドフィルム上に塗布した。その層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。
得られた粒子層にカレンダ処理は施さず、アルバック理工/赤外線ゴールドイメージ炉P616Cを用いて、窒素雰囲気下で500℃の温度で1時間加熱処理した。その後、比較例2と同様に樹脂劣化防止剤を添加していない紫外線硬化性樹脂を加熱処理した圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの圧縮層を透明導電膜にした。更に、この透明導電膜を構成する粒子層からポリイミドフィルムの転写用基材を、剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は1037Ω/□であり、高温試験後抵抗率は2447Ω/□であった。変化率は2.4であった。
<Comparative Example 3>
A coating solution was prepared in the same manner as in Example 9, and coated on a polyimide film. When the layer thickness was measured using fluorescent X-rays, the weight converted film thickness was 0.3 μm.
The obtained particle layer was not calendered and was heat-treated at a temperature of 500 ° C. for 1 hour under a nitrogen atmosphere using ULVAC-RIKO / Infrared Gold Image Furnace P616C. Thereafter, as in Comparative Example 2, an ultraviolet curable resin to which no resin deterioration inhibitor was added was applied onto a heat-treated compression layer, dried, and a PET film was bonded. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. This made the compression layer with a resin layer into the transparent conductive film. Further, the polyimide film transfer substrate was peeled from the particle layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 1037 Ω / □, and the resistivity after the high temperature test was 2447 Ω / □. The rate of change was 2.4.

<比較例4>
実施例1と同様に分散媒のエタノール40.0gに平均粒径120nmのITO粒子10gを添加し、超音波ホモジェナイザーで30分間分散し、塗布液を調製し、ポリイミドフィルム上に塗布した。その層厚を蛍光X線を用いて測定したところ、重量換算膜厚は0.3μmであった。
得られた粒子層に紫外線硬化性樹脂を圧縮層上に塗布、乾燥し、PETフィルムを貼り合わせた。貼り合わせ後、支持用透明基材側から紫外線を照射して、樹脂を硬化させた。これにより樹脂層付きの粒子層を透明導電膜にした。更に、この透明導電膜を構成する圧縮層からポリイミドフィルムの転写用基材を剥離してITO透明導電体を得た。この透明導電膜の表面抵抗率を上述した方法で測定した。その結果、初期抵抗率は52100Ω/□であり、高温試験後抵抗率は114600Ω/□であった。変化率は2.2であった。
<Comparative example 4>
In the same manner as in Example 1, 10 g of ITO particles having an average particle size of 120 nm were added to 40.0 g of ethanol as a dispersion medium, and dispersed for 30 minutes with an ultrasonic homogenizer to prepare a coating solution, which was coated on a polyimide film. When the layer thickness was measured using fluorescent X-rays, the weight converted film thickness was 0.3 μm.
An ultraviolet curable resin was applied onto the compression layer on the obtained particle layer, dried, and a PET film was bonded thereto. After bonding, the resin was cured by irradiating ultraviolet rays from the supporting transparent substrate side. Thereby, the particle layer with the resin layer was made into a transparent conductive film. Further, the polyimide film transfer substrate was peeled from the compressed layer constituting the transparent conductive film to obtain an ITO transparent conductor. The surface resistivity of this transparent conductive film was measured by the method described above. As a result, the initial resistivity was 52100Ω / □, and the resistivity after the high temperature test was 114600Ω / □. The rate of change was 2.2.

実施例1〜10、比較例1〜4の概要を表1に示し、実施例1〜10、比較例1〜4で得られた透明導電体の透明導電膜の初期抵抗率と高温試験後抵抗率とその変化率と透明導電膜の膜厚とその体積抵抗率を表2に示す。   The outline | summary of Examples 1-10 and Comparative Examples 1-4 is shown in Table 1, the initial resistivity and resistance after a high temperature test of the transparent conductive film of the transparent conductor obtained in Examples 1-10 and Comparative Examples 1-4 Table 2 shows the rate, the rate of change thereof, the film thickness of the transparent conductive film, and the volume resistivity thereof.

Figure 0006428122
Figure 0006428122

Figure 0006428122
Figure 0006428122

<評価>
圧縮層上に樹脂層のない比較例1の透明導電膜では、体積抵抗率が0.57×10−2Ω・cmと低かったが、変化率が20.6倍と極めて高かった。また樹脂劣化防止剤を含まない樹脂層を有する比較例2、3の透明導電膜では、体積抵抗率がそれぞれ0.49×10−2Ω・cm及び0.49×10−2Ω・cmと低かったが、変化率がそれぞれ2.5及び2.4と依然として大きかった。カレンダ処理と、加熱処理の双方を実施しない比較例4では、体積抵抗率が1.56Ωcmと大きく、変化率も2.2と依然として大きかった。
これに対して、圧縮層上に樹脂劣化防止剤を含む樹脂層を有する実施例1〜10の透明導電膜では、体積抵抗率が4.90×10−2Ω・cm以下と低いうえ、かつ変化率は1.2〜2.0倍と比較例の変化率より小さく、実施例1〜10の透明導電膜が高温下で長時間保持したときの電気抵抗値の上昇を抑制することが分かった。
<Evaluation>
In the transparent conductive film of Comparative Example 1 having no resin layer on the compression layer, the volume resistivity was as low as 0.57 × 10 −2 Ω · cm, but the rate of change was as extremely high as 20.6 times. In the transparent conductive films of Comparative Examples 2 and 3 having a resin layer that does not contain a resin deterioration inhibitor, the volume resistivity is 0.49 × 10 −2 Ω · cm and 0.49 × 10 −2 Ω · cm, respectively. Although it was low, the rate of change was still large at 2.5 and 2.4, respectively. In Comparative Example 4 in which neither calendar treatment nor heat treatment was performed, the volume resistivity was as large as 1.56 Ωcm, and the rate of change was still large at 2.2.
On the other hand, in the transparent conductive films of Examples 1 to 10 having the resin layer containing the resin degradation inhibitor on the compression layer, the volume resistivity is as low as 4.90 × 10 −2 Ω · cm or less, and The change rate is 1.2 to 2.0 times smaller than the change rate of the comparative example, and it is found that the transparent conductive films of Examples 1 to 10 suppress an increase in electrical resistance value when held at a high temperature for a long time. It was.

本発明の透明導電膜を備えた透明導電体は、電子ペーパ、LCD、PDP、LED、LD又はEL等の表示装置又はタッチパネル、太陽電池の電極などに利用できる。   The transparent conductor provided with the transparent conductive film of the present invention can be used for display devices such as electronic paper, LCD, PDP, LED, LD or EL, touch panels, solar cell electrodes, and the like.

1 転写用基材
2 粒子層
3 スロットダイコーター
4 圧縮層
5 カレンダロール
6 フラッシュランプ
7 樹脂層
8 スプレーコーター
9 透明導電膜
10 支持用透明基材
11 透明導電体
DESCRIPTION OF SYMBOLS 1 Transfer base material 2 Particle layer 3 Slot die coater 4 Compression layer 5 Calendar roll 6 Flash lamp 7 Resin layer 8 Spray coater 9 Transparent conductive film 10 Transparent transparent base material 11 Transparent conductor

Claims (4)

透明導電性粒子によって形成された粒子層の前記粒子間の空隙に樹脂劣化防止剤を含む樹脂が存在し、体積抵抗率が5×10-2Ωcm以下であり、前記樹脂劣化防止剤がアミン系、ヒンダードアミン系、フェノール系、ホスファイト系、又はチオエーテル系樹脂劣化防止剤である透明導電膜。 And voids present resin containing a resin degradation preventive agent between the particles formed by the transparent conductive particles particle layer state, and are a volume resistivity of 5 × 10 -2 Ωcm or less, the resin deterioration inhibitor amine A transparent conductive film that is an anti-degradation agent for a resin, a hindered amine, a phenol, a phosphite, or a thioether resin . 前記透明導電性粒子が錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、アルミニウムドープ酸化亜鉛(AZO)又はガリウムドープ酸化亜鉛(GZO)の金属酸化物粒子である請求項1記載の透明導電膜。   The transparent conductive particles are metal oxide particles of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO) or gallium-doped zinc oxide (GZO). The transparent conductive film according to claim 1. 前記樹脂が熱硬化性樹脂又は紫外線硬化性樹脂である請求項1又は2記載の透明導電膜。   The transparent conductive film according to claim 1, wherein the resin is a thermosetting resin or an ultraviolet curable resin. 請求項1ないしいずれか1項に記載の透明導電膜が支持用透明基材上に形成された透明導電体。 A transparent conductor in which the transparent conductive film according to any one of claims 1 to 3 is formed on a supporting transparent substrate.
JP2014205513A 2014-10-06 2014-10-06 Transparent conductive film and transparent conductor having the transparent conductive film Active JP6428122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205513A JP6428122B2 (en) 2014-10-06 2014-10-06 Transparent conductive film and transparent conductor having the transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205513A JP6428122B2 (en) 2014-10-06 2014-10-06 Transparent conductive film and transparent conductor having the transparent conductive film

Publications (2)

Publication Number Publication Date
JP2016076362A JP2016076362A (en) 2016-05-12
JP6428122B2 true JP6428122B2 (en) 2018-11-28

Family

ID=55951637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205513A Active JP6428122B2 (en) 2014-10-06 2014-10-06 Transparent conductive film and transparent conductor having the transparent conductive film

Country Status (1)

Country Link
JP (1) JP6428122B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103681B2 (en) * 1992-09-21 2000-10-30 住友金属鉱山株式会社 Method for manufacturing transparent conductive substrate
JPH05325646A (en) * 1992-02-27 1993-12-10 Sumitomo Metal Mining Co Ltd Transparent conducting substrate and its manufacture
JP4479608B2 (en) * 2005-06-30 2010-06-09 Tdk株式会社 Transparent conductor and panel switch
JP4582033B2 (en) * 2006-03-22 2010-11-17 Tdk株式会社 Conductive film for transfer and object provided with transparent conductive layer using the same
JP2010277927A (en) * 2009-05-29 2010-12-09 Hitachi Maxell Ltd Transparent conductive sheet, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2016076362A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP4479608B2 (en) Transparent conductor and panel switch
JP4635925B2 (en) Conductive film for transfer and object provided with transparent conductive layer using the same
JP5573158B2 (en) Flexible transparent conductive film and flexible functional element using the same
JP4582033B2 (en) Conductive film for transfer and object provided with transparent conductive layer using the same
TW575882B (en) Transparent conductive multi-layer structure and process for producing the same
KR102074004B1 (en) Laminated structure manufacturing method, laminated structure, and electronic apparatus
WO2001087590A1 (en) Functional film having functional layer and article provided with the functional film
JP2011082211A (en) Transparent conductive material and method of manufacturing the same
JP2009009859A (en) Conductive film for in-mold molding and method of manufacturing plastic molded body with transparent conductive layer
JP4635421B2 (en) Conductive film for transfer and method for forming transparent conductive film using the same
JP4666961B2 (en) Object provided with transparent conductive layer, and conductive film for transfer
JP2015189164A (en) Laminate, touch panel and method for producing laminate
JP4133787B2 (en) Functional film for transfer, method for forming functional layer, and object provided with functional layer
JP6428122B2 (en) Transparent conductive film and transparent conductor having the transparent conductive film
JP6447010B2 (en) Transparent conductive film and method for producing transparent conductor having the transparent conductive film
JP2007080822A (en) Conductive film having conductive layer, and object provided with conductive layer
TW201805158A (en) Laminated body and protective film
JP2016076365A (en) Method for producing transparent conductor
JP2016076364A (en) Method for producing transparent conductor
JP4037066B2 (en) Functional film having functional layer and object provided with the functional layer
JP6221825B2 (en) Method for producing transparent conductive film and method for producing conductive sheet for transfer
TWI590750B (en) Heat-radiation insulating sheet, heat spreader, and electrical device
JP2003123544A (en) Conductive film having conductive layer and object provided with conductive layer
JP4867418B2 (en) Conductive film for transfer and object provided with transparent conductive layer using the same
JP2011119042A (en) Transparent conductor and conductive film for transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150