JP6423259B2 - Window member and lamp device - Google Patents

Window member and lamp device Download PDF

Info

Publication number
JP6423259B2
JP6423259B2 JP2014252263A JP2014252263A JP6423259B2 JP 6423259 B2 JP6423259 B2 JP 6423259B2 JP 2014252263 A JP2014252263 A JP 2014252263A JP 2014252263 A JP2014252263 A JP 2014252263A JP 6423259 B2 JP6423259 B2 JP 6423259B2
Authority
JP
Japan
Prior art keywords
layer
window member
frame
plating layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014252263A
Other languages
Japanese (ja)
Other versions
JP2016115480A (en
Inventor
直人 西澤
直人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014252263A priority Critical patent/JP6423259B2/en
Publication of JP2016115480A publication Critical patent/JP2016115480A/en
Application granted granted Critical
Publication of JP6423259B2 publication Critical patent/JP6423259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透光性部材を備える窓部材およびランプ装置に関する。   The present invention relates to a window member and a lamp device including a translucent member.

従来、半導体製造装置や電子機器等に使用される真空容器の内部を観察するための真空容器の覗き窓や、キセノンランプを用いた光照射装置などのランプ装置の光取り出し窓に、例えば光透過性が高くかつ熱伝導性に優れたサファイアを主成分とする透光性部材を用いた窓部材が用いられている。   Conventionally, for example, in a light extraction window of a lamp device such as a viewing window of a vacuum vessel for observing the inside of a vacuum vessel used in a semiconductor manufacturing apparatus or an electronic device, or a light irradiation device using a xenon lamp, for example, light transmission A window member using a translucent member mainly composed of sapphire, which has high properties and excellent thermal conductivity, is used.

例えばサファイア製の透光性部材は、その表面にメタライズ層を被着することにより金属からなる枠状体とのロウ付けが可能であり、例えば下記特許文献1に記載されたような、サファイア製の窓部材を金属部材にロウ付けすることにより、高い気密性を確保した覗き窓が提案されている。   For example, a translucent member made of sapphire can be brazed with a metal frame by depositing a metallized layer on its surface. For example, it is made of sapphire as described in Patent Document 1 below. A viewing window that secures high airtightness by brazing the window member to a metal member has been proposed.

特開2008−184691号公報JP 2008-184691 A

近年、例えばランプ装置等の装置の小型化の進展にともない、発光体と窓部材との距離が近接し、使用中の窓部材の温度が従来よりも高くなる場合があった。例えばサファイアは熱伝導性に優れ放熱効果も高い部材ではあるが、メタライズ層やろう材層が過度に温度上昇した場合など、これらメタライズ層やろう材層が大気中の成分と反応(すなわち腐食)し、窓部材と金属部材の接合強度が低下する虞があった。過度の温度上昇によって熱応力も大きくなった場合など、接合強度の低下と熱応力の増大とが相まって、窓部材や窓部材を備えたランプ装置自体の破損に繋がる虞もあった。本発明はこれらの課題を解決することを目的とする。   In recent years, for example, with the progress of miniaturization of devices such as a lamp device, the distance between the light emitter and the window member is close, and the temperature of the window member in use sometimes becomes higher than the conventional one. For example, sapphire is a member with excellent thermal conductivity and high heat dissipation effect, but when the temperature of the metallized layer and brazing material layer rises excessively, these metallized layer and brazing material layer react with components in the atmosphere (ie, corrosion). However, the bonding strength between the window member and the metal member may be reduced. When the thermal stress increases due to an excessive temperature rise, a decrease in bonding strength and an increase in thermal stress may cause a combination of the window member and the lamp device including the window member itself. The present invention aims to solve these problems.

本発明の一態様による窓部材は、板状の透光性部材と、前記透光性部材の側面を囲繞する内側面を有する金属を主成分とする枠状体とが接合されてなる窓部材であって、前記透光性部材の前記側面に形成されたメタライズ層と、前記メタライズ層の表面に形成された、ニッケルを主成分とした第1金属層と、前記枠状体の前記内側面に形成された、ニッケルを主成分としリンまたは硼素を含む第2金属層と、前記第1金属層と前記第2金属層とに被着して前記透光性部材と前記枠状体とを接合する、銀を主成分とするろう材層とを有することを特徴とする。   A window member according to one aspect of the present invention is a window member formed by joining a plate-like light-transmitting member and a frame-shaped body mainly composed of a metal having an inner surface surrounding a side surface of the light-transmitting member. The metallized layer formed on the side surface of the translucent member, the first metal layer mainly composed of nickel formed on the surface of the metallized layer, and the inner side surface of the frame-shaped body The light-transmitting member and the frame-shaped body are formed on the second metal layer containing nickel as a main component and containing phosphorus or boron, the first metal layer, and the second metal layer. And a brazing filler metal layer having silver as a main component.

本発明の一態様による窓部材は、透光性部材と枠状体との接合強度が低下しにくくなる。   In the window member according to one embodiment of the present invention, the bonding strength between the translucent member and the frame-like body is difficult to decrease.

本実施形態の窓部材の一例を示す、(a)は平面図、(b)は(a)のA−A’線における断面図である。An example of the window member of this embodiment is shown, (a) is a plan view, (b) is a cross-sectional view taken along the line A-A 'of (a). 本実施形態の窓部材の他の例を示す、(a)は平面図、(b)は(a)のB−B’線における断面図である。The other example of the window member of this embodiment is shown, (a) is a top view, (b) is sectional drawing in the B-B 'line of (a). 本実施形態の窓部材の他の例を示す、(a)は平面図、(b)は(a)のC−C’線における断面図、(c)は(b)のA部拡大図、(d)は(b)のB部拡大図である。The other example of the window member of this embodiment is shown, (a) is a top view, (b) is a sectional view in the CC 'line of (a), (c) is an A section enlarged view of (b), (D) is the B section enlarged view of (b).

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の窓部材の一例を示す、(a)は平面図、(b)は(a)のA−A’線における断面図である。   1A and 1B show an example of a window member of the present embodiment. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line A-A ′ of FIG.

また、図2は、本実施形態の窓部材の他の例を示す、(a)は平面図、(b)は(a)のB−B’線における断面図である。   2A and 2B show another example of the window member of the present embodiment. FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view taken along line B-B ′ in FIG.

図1,2に示す例の窓部材は、板状の透光性部材3と、透光性部材3の側面3dを囲繞する内側面を有する金属を主成分とする枠状体4とが接合されてなる窓部材であって、透光性部材3の側面3dに形成されたメタライズ層1と、メタライズ層1の表面に形成された、ニッケルを主成分とした第1金属層2と、枠状体4の内側面に形成された、ニッケルを主成分としリンまたは硼素を含む第2金属層6と、第1金属層2と第2金属層6とに被着して透光性部材3と枠状体4とを接合する、銀を主成分とするろう材層5とを有する。   The window member in the example shown in FIGS. 1 and 2 is formed by joining a plate-like translucent member 3 and a frame-like body 4 whose main component is a metal having an inner side surface surrounding a side surface 3d of the translucent member 3. A metallized layer 1 formed on the side surface 3d of the translucent member 3, a first metal layer 2 mainly composed of nickel, formed on the surface of the metallized layer 1, and a frame. The translucent member 3 is deposited on the second metal layer 6 containing nickel as a main component and containing phosphorus or boron, and the first metal layer 2 and the second metal layer 6, which are formed on the inner surface of the body 4. And a brazing filler metal layer 5 containing silver as a main component.

このように枠状体4の内側面にニッケルを主成分としリンまたは硼素を含む第2金属層6をさらに備えることにより、枠状体4の内側面が酸化しにくくなるので、長期間大気雰囲気に曝されても、内側面を起点とする応力腐食割れが生じにくくなり、透光性部材3と枠状体4との接合強度が低下しにくくなる。第1金属層2はいわゆるニッケル(Ni)メッキ材料をメッキすることで形成すればよい。また第2金属層6はニッケルメッキ材料にリンまたは硼素を含有させた材料をメッキすることで形成すればよい。以降、第1金属層2を第1メッキ層2ともいい、第2金属層6を第2メッキ層6ともいう。なお、このような第2金属層6は、枠状体4の内側面のみに形成されていることに限定されず、枠状体4の外側面や枠状体4の表面全体に形成されていてもよい。   Since the inner surface of the frame 4 is further provided with the second metal layer 6 containing nickel as a main component and containing phosphorus or boron as described above, the inner surface of the frame 4 is less likely to be oxidized. Even if exposed to the above, stress corrosion cracks starting from the inner surface are less likely to occur, and the bonding strength between the translucent member 3 and the frame-like body 4 is less likely to be reduced. The first metal layer 2 may be formed by plating a so-called nickel (Ni) plating material. The second metal layer 6 may be formed by plating a nickel plating material containing phosphorus or boron. Hereinafter, the first metal layer 2 is also referred to as the first plating layer 2, and the second metal layer 6 is also referred to as the second plating layer 6. The second metal layer 6 is not limited to being formed only on the inner side surface of the frame-like body 4, and is formed on the outer side surface of the frame-like body 4 or the entire surface of the frame-like body 4. May be.

ここで、メタライズ層1は、例えば、モリブデンを主成分とし、マンガンを含む。   Here, the metallized layer 1 includes, for example, molybdenum as a main component and manganese.

また、透光性部材3は、ガラスやセラミックス、または単結晶等を用いることができる。透光性部材3がセラミックスからなる場合には、セラミックスは、例えば、イットリウム・アルミニウム・ガーネット(YAG),アルミン酸マグネシウム(MgAl),窒化アルミニウム(AlN),二フッ化マグネシウム(MgF),フッ化リチウム(LiF),二フッ化カルシウム(CaF)または二フッ化バリウム(BaF)等を主成分とするセラミックスを用いればよい。また、透光性部材3として単結晶からなる透光性部材を用いる場合は、透光性部材3を例えばサファイアで構成すればよい。ここで、透光性部材3はサファイアを主成分とし、枠状体4はFe‐Ni‐Co系合金,Fe−Ni系合金またはCu−W系合金を主成分とすることが好適である。40〜400℃におけるサファイアの線膨張係数は、7.7×10−6/℃(c軸に平行な方向),7.7×10−6/℃(c軸に垂直な方向)であり、上記温度範囲におけるFe‐Ni‐Co系合金,Fe−Ni系合金およびCu−W系合金のそれぞれの線膨張係数は、4.9×10−6/℃,5.0×10−6/℃,6.4×10−6/℃であることから、サファイアおよび上記合金間の線膨張係数の差が小さく、ろう材で接合した後に生じる残留応力によるひずみが生じにくい。 The translucent member 3 can be made of glass, ceramics, single crystal, or the like. When the translucent member 3 is made of ceramics, the ceramics are, for example, yttrium aluminum garnet (YAG), magnesium aluminate (MgAl 2 O 4 ), aluminum nitride (AlN), magnesium difluoride (MgF 2). ), Lithium fluoride (LiF), calcium difluoride (CaF 2 ), barium difluoride (BaF 2 ), or the like may be used. Moreover, what is necessary is just to comprise the translucent member 3 with a sapphire, for example, when using the translucent member which consists of a single crystal as the translucent member 3. FIG. Here, it is preferable that the translucent member 3 is mainly composed of sapphire, and the frame body 4 is mainly composed of an Fe—Ni—Co alloy, an Fe—Ni alloy, or a Cu—W alloy. The linear expansion coefficient of sapphire at 40 to 400 ° C. is 7.7 × 10 −6 / ° C. (direction parallel to the c-axis) and 7.7 × 10 −6 / ° C. (direction perpendicular to the c-axis), each linear expansion coefficient of the Fe-Ni-Co alloy, Fe-Ni alloy and Cu-W alloy in the above temperature range, 4.9 × 10 -6 /℃,5.0×10 -6 / ℃ , 6.4 × 10 −6 / ° C., the difference in linear expansion coefficient between sapphire and the alloy is small, and distortion due to residual stress generated after joining with a brazing material is difficult to occur.

なお、本実施形態の窓部材10を構成する各部材における主成分とは、部材を構成する成分の合計100質量%に対して、70質量%以上を占める成分である。部材が金属から
なる場合には、ICP発光分光分析装置または蛍光X線分析装置を用いて各金属の含有量を求め、その部材を構成する成分の合計100質量%に対して、70質量%以上を占める成分
が主成分である。また、部材が化合物からなる場合には、X線回折装置(XRD)を用いてその化合物を同定した上で、ICP発光分光分析装置または蛍光X線分析装置を用いて化合物を構成する金属の含有量を求め、同定された化合物に換算すればよい。
In addition, the main component in each member which comprises the window member 10 of this embodiment is a component which occupies 70 mass% or more with respect to a total of 100 mass% of the component which comprises a member. When the member is made of metal, the content of each metal is determined using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer, and 70% by mass or more with respect to the total of 100% by mass of the components constituting the member. Is the main component. In addition, when the member is made of a compound, the compound is identified using an X-ray diffractometer (XRD), and the inclusion of the metal constituting the compound using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer What is necessary is just to obtain | require an amount and to convert into the identified compound.

また、図2に示す窓部材10bは、図1に示す窓部材10aを構成する透光性部材3および枠状体4の各形状がそれぞれ角板状、矩形枠状であるのに対して、透光性部材3の形状が円板状であり、枠状体4の形状が環状である。   Further, in the window member 10b shown in FIG. 2, each shape of the translucent member 3 and the frame body 4 constituting the window member 10a shown in FIG. 1 is a square plate shape and a rectangular frame shape, respectively. The shape of the translucent member 3 is a disc shape, and the shape of the frame-like body 4 is an annular shape.

図2に示す窓部材10bの構成によれば、透光性部材3および枠状体4とも、加熱および冷却が繰り返される環境下においても透光性部材3の側面3dおよび枠状体4の内側面に応力集中が生じやすい角部を有していないので、クラックが生じにくくなる。   According to the configuration of the window member 10b shown in FIG. 2, both the translucent member 3 and the frame-like body 4 have the inside of the side surface 3d and the frame-like body 4 of the translucent member 3 even in an environment where heating and cooling are repeated. Since there are no corners where stress concentration is likely to occur on the side surfaces, cracks are less likely to occur.

ここで、メタライズ層1は、厚みが、例えば、10μm以上30μm以下である。また、透光性部材3が円板状である場合には、直径が20mm以上30mm以下であり、厚みが1mm以上5mm以下である。枠状体4が環状である場合には、内径および外径がそれぞれ20mm以上30mm以下,21mm以上31mm以下であり、厚みが3mm以上8mm以下である。   Here, the metallized layer 1 has a thickness of, for example, 10 μm or more and 30 μm or less. Moreover, when the translucent member 3 is disk shape, a diameter is 20 mm or more and 30 mm or less, and thickness is 1 mm or more and 5 mm or less. When the frame-like body 4 is annular, the inner diameter and the outer diameter are 20 mm or more and 30 mm or less, 21 mm or more and 31 mm or less, respectively, and the thickness is 3 mm or more and 8 mm or less.

また、第1メッキ層2は、厚みが3μm以上9μm以下であることが好適である。第1メッキ層2の厚みが3μm以上であると、第1メッキ層2の表面の高低差が大きい部分があったとしてもメタライズ層1が露出するおそれが低減するので、ろう材層5との密着性が確保され、第1メッキ層2に対するろう材層5の接合強度を高く維持することができる。一方、第1メッキ層2の厚みが9μm以下であると、加熱および冷却を繰り返しても第1メッキ層2内の残留応力が大きくなりにくいので、第1メッキ層2はメタライズ層1から剥離しにくくなる。   The first plating layer 2 preferably has a thickness of 3 μm or more and 9 μm or less. If the thickness of the first plating layer 2 is 3 μm or more, the risk of exposing the metallized layer 1 is reduced even if there is a portion where the height difference of the surface of the first plating layer 2 is large. Adhesiveness is ensured, and the bonding strength of the brazing material layer 5 to the first plating layer 2 can be maintained high. On the other hand, if the thickness of the first plating layer 2 is 9 μm or less, the residual stress in the first plating layer 2 is unlikely to increase even if heating and cooling are repeated, so that the first plating layer 2 is peeled off from the metallized layer 1. It becomes difficult.

また、第2メッキ層6は、厚みが3μm以上9μm以下であることが好適である。第2メッキ層6の厚みが3μm以上であると、枠状体4の内側面の高低差が大きい部分があったとしても、枠状体4が露出するおそれが低減するので、長期間大気雰囲気に曝されても、枠状体4の内側面を起点とする応力腐食割れがさらに生じにくくなる。一方、第2メッキ層6の厚みが9μm以下であると、加熱および冷却を繰り返しても第2メッキ層6内の残留応力が大きくなりにくいので、第2メッキ層6は枠状体4から剥離しにくくなる。   The second plating layer 6 preferably has a thickness of 3 μm or more and 9 μm or less. If the thickness of the second plating layer 6 is 3 μm or more, even if there is a portion where the height difference of the inner surface of the frame 4 is large, the possibility that the frame 4 will be exposed is reduced. Even when exposed to the above, stress corrosion cracking starting from the inner surface of the frame 4 is further less likely to occur. On the other hand, if the thickness of the second plating layer 6 is 9 μm or less, the residual stress in the second plating layer 6 is hardly increased even if heating and cooling are repeated, so that the second plating layer 6 is peeled off from the frame-like body 4. It becomes difficult to do.

図3は、本実施形態の窓部材の他の例を示す、(a)は平面図、(b)は(a)のC−C’線における断面図、(c)は(b)のA部拡大図、(d)は(b)のB部拡大図である。   3A and 3B show another example of the window member of the present embodiment, in which FIG. 3A is a plan view, FIG. 3B is a sectional view taken along the line CC ′ of FIG. 3A, and FIG. Part (d) is an enlarged view of part B of (b).

図3に示す例の窓部材10cによれば、透光性部材3は、少なくともいずれか一方の主面3a,3bの外縁部に傾斜面3c,3gを備えており、メタライズ層1および第1メッキ層2は、側面3dから傾斜面3c,3gの少なくとも一部にかけて連続して形成されている。すなわち、主面3a,3bと側面3dとの間に、いわゆる面取り面である傾斜面3c,3gを有している。   According to the window member 10c of the example shown in FIG. 3, the translucent member 3 includes the inclined surfaces 3c and 3g at the outer edge portions of at least one of the main surfaces 3a and 3b. The plated layer 2 is continuously formed from the side surface 3d to at least a part of the inclined surfaces 3c and 3g. That is, inclined surfaces 3c and 3g, which are so-called chamfered surfaces, are provided between the main surfaces 3a and 3b and the side surface 3d.

このような構成であると、傾斜面3c,3gを備えた主面3a,3b側で、ろう材の量を増やして接合することができることから、加熱および冷却を繰り返してもろう材層5によって熱応力の増加を緩和する作用が高くなるので、透光性部材3の外側面3dを起点とするクラックが生じにくくなる。   With such a configuration, it is possible to increase the amount of brazing material on the main surfaces 3a and 3b side including the inclined surfaces 3c and 3g, so that the brazing material layer 5 can perform the heating and cooling repeatedly. Since the effect | action which relieve | moderates the increase in a thermal stress becomes high, it becomes difficult to produce the crack which makes the outer surface 3d of the translucent member 3 a starting point.

上述した観点から、窓部材10cのろう材層5は、第1メッキ層2の側面に対応する領域から傾斜面3c,3gに対応する領域にかけて連続して被着していることが好適である。   From the viewpoint described above, it is preferable that the brazing filler metal layer 5 of the window member 10c is continuously applied from a region corresponding to the side surface of the first plating layer 2 to a region corresponding to the inclined surfaces 3c and 3g. .

ここで、傾斜面3c,3gにおけるメタライズ層1は、厚みが、例えば、10μm以上30μm以下である。また、傾斜面3c,3gにおける第1メッキ層2は、厚みが、例えば、3μm以上9μm以下である。   Here, the thickness of the metallized layer 1 on the inclined surfaces 3c and 3g is, for example, 10 μm or more and 30 μm or less. Moreover, the thickness of the first plating layer 2 on the inclined surfaces 3c and 3g is, for example, 3 μm or more and 9 μm or less.

さらに、傾斜面3c,3gと外側面3dとの交線3e,3hを起点とする、傾斜面3c,3gの表面積の少なくとも40%の面積を占める領域に、メタライズ層1および第1メッキ層2が傾斜面3c,3gに形成されてなることが好適である。すなわち、傾斜面3c,3gのうち、交線3e,3hを含む外側面3dの側の部分にメタライズ層1および第1メッキ層2が形成されてなることが好ましく、そのメタライズ層1および第1メッキ層2の面積は、傾斜面3c,3gのそれぞれの表面積全体の40%以上であることが好ましい。傾斜面3c,3gの全体にメタライズ層1や第1メッキ層2が被着されている場合、これらの層の形成過程において、窓部材10の主面3a,3bの全体にメタライズ層1や第1メッキ層2が濡れ拡がり易く、主面3aや主面3bに拡がったメタライズ層1や第1メッキ層2を除去する工程が余計に必要となる虞がある。傾斜面3c,3gのうち、交線3e,3hを含む外側面3dの側の部分から、表面積全体の40%以上かつ70%以下の領域にメタライズ層1および第1メッキ層2を形成することが好ましい。   Further, the metallized layer 1 and the first plating layer 2 are formed in a region occupying an area of at least 40% of the surface area of the inclined surfaces 3c and 3g, starting from the intersection lines 3e and 3h between the inclined surfaces 3c and 3g and the outer surface 3d. Is preferably formed on the inclined surfaces 3c and 3g. That is, the metallized layer 1 and the first plating layer 2 are preferably formed on the portion of the inclined surfaces 3c and 3g on the outer surface 3d side including the intersecting lines 3e and 3h. The area of the plating layer 2 is preferably 40% or more of the entire surface area of each of the inclined surfaces 3c and 3g. When the metallized layer 1 and the first plating layer 2 are applied to the entire inclined surfaces 3c and 3g, the metallized layer 1 and the first plated layer 2 are formed on the entire main surfaces 3a and 3b of the window member 10 in the formation process of these layers. 1 plating layer 2 is easy to wet and spread, and there is a possibility that an extra step of removing metallized layer 1 and first plating layer 2 spreading on main surface 3a and main surface 3b may be required. The metallized layer 1 and the first plating layer 2 are formed in a region of 40% or more and 70% or less of the entire surface area from the portion of the inclined surfaces 3c and 3g on the outer surface 3d side including the intersecting lines 3e and 3h. Is preferred.

また、本実施形態の窓部材10によれば、主面3a,3bと傾斜面3c,3gとのなす角度θ,θは、120°以上150°以下であることが好適である。角度θ,θが120°以上であると、加熱および冷却を繰り返しても、透光性部材3の主面3a,3bと傾斜面3c,3gとの交線3e,3hに生じる応力集中が緩和されるので、この交線3e,3hを起点とするクラックが生じにくくなる。一方、角度θ,θが150°以下であると、透光性部材3および枠状体4間におけるろう材の量を増やすことができるので、加熱および冷却を繰り返してもろう材層5によって熱応力の増加を緩和する作用が高くなるので、透光性部材3の側面3dを起点とするクラックが生じにくくなる。 Further, according to the window member 10 of the present embodiment, the angles θ 1 and θ 2 formed by the main surfaces 3a and 3b and the inclined surfaces 3c and 3g are preferably 120 ° or more and 150 ° or less. When the angles θ 1 and θ 2 are 120 ° or more, even if heating and cooling are repeated, stress concentration is generated on the intersecting lines 3e and 3h between the main surfaces 3a and 3b of the translucent member 3 and the inclined surfaces 3c and 3g. Therefore, cracks starting from the intersection lines 3e and 3h are less likely to occur. On the other hand, when the angles θ 1 and θ 2 are 150 ° or less, the amount of the brazing material between the translucent member 3 and the frame-like body 4 can be increased. Therefore, even if heating and cooling are repeated, the brazing material layer 5 As a result, the effect of alleviating the increase in thermal stress is increased, so that cracks starting from the side surface 3d of the translucent member 3 are less likely to occur.

また、本実施形態の窓部材10によれば、主面3a,3bに垂直な平面視において、傾斜面3c,3gの幅L,Lが0.2mm以上0.4mm以下であることが好適である。 Further, according to the window member 10 of the present embodiment, the widths L 1 and L 2 of the inclined surfaces 3c and 3g are 0.2 mm or more and 0.4 mm or less in a plan view perpendicular to the main surfaces 3a and 3b. Is preferred.

幅L,Lが0.2mm以上であると、透光性部材3および枠状体4間におけるろう材の量を増やせることから、加熱および冷却を繰り返してもろう材層5によって熱応力の増加を緩和する作用が高くなるので、透光性部材3の側面3dを起点とするクラックが生じにくくなる。一方、幅L,Lが0.4mm以下であると、透光性部材3の主面3a,3bの一部がろう材によって覆われるおそれが低減するので、透光性を維持することができる。 When the widths L 1 and L 2 are 0.2 mm or more, the amount of the brazing material between the translucent member 3 and the frame-like body 4 can be increased. Therefore, even if heating and cooling are repeated, the thermal stress is caused by the brazing material layer 5. Since the effect | action which relieve | moderates an increase becomes high, it becomes difficult to produce the crack which makes the side 3d of the translucent member 3 a starting point. On the other hand, if the widths L 1 and L 2 are 0.4 mm or less, the possibility that a part of the main surfaces 3a and 3b of the translucent member 3 is covered with the brazing material is reduced, so that translucency is maintained. Can do.

また、本実施形態の窓部材10によれば、傾斜面3c,3gの算術平均粗さRaは、0.15μm以上0.35μm以下であることが好適である。傾斜面3c,3gの算術平均粗さRaが0.15μm以上であると、アンカー効果によって、透光性部材3とメタライズ層1との接合強度を高く維持することができる。一方、傾斜面3c,3gの算術平均粗さRaが0.35μm以下であると、メタライズ層1を薄く形成することができるので、加熱および冷却を繰り返しても、メタライズ層1内に生じる残留応力の増加が抑制され、メタライズ層1および第1メッキ層2の剥離が生じにくくなる。   Further, according to the window member 10 of the present embodiment, the arithmetic average roughness Ra of the inclined surfaces 3c, 3g is preferably 0.15 μm or more and 0.35 μm or less. When the arithmetic average roughness Ra of the inclined surfaces 3c and 3g is 0.15 μm or more, the bonding strength between the translucent member 3 and the metallized layer 1 can be maintained high due to the anchor effect. On the other hand, if the arithmetic average roughness Ra of the inclined surfaces 3c and 3g is 0.35 μm or less, the metallized layer 1 can be formed thin, so that the residual stress generated in the metallized layer 1 even if heating and cooling are repeated. Is suppressed, and the metallized layer 1 and the first plated layer 2 are less likely to be peeled off.

ここで、傾斜面3c,3gの算術平均粗さRaは、傾斜面3c,3gの表面のうちメタ
ライズ層1および第1メッキ層2などの他の層が被着されていない部分を、JIS B 0601−2013に準拠して測定すればよい。測定長さおよびカットオフ値をそれぞれ0.25mm、0.8mmとし、触針式の表面粗さ計を用いて測定する場合であれば、例えば、傾斜面3c,3gに、触針先端半径が2μmの触針を当て、触針の走査速度は0.5mm/秒に設定し、この測定で得られたそれぞれ4箇所の平均値を算術平均粗さRaの値とする。
Here, the arithmetic average roughness Ra of the inclined surfaces 3c and 3g is determined by JIS B in the portion of the surfaces of the inclined surfaces 3c and 3g where other layers such as the metallized layer 1 and the first plating layer 2 are not deposited. Measurement may be performed in accordance with 0601-2013. If the measurement length and cut-off value are 0.25 mm and 0.8 mm, respectively, and the measurement is performed using a stylus type surface roughness meter, for example, the stylus tip radius is on the inclined surfaces 3c and 3g. A 2 μm stylus is applied, the stylus scanning speed is set to 0.5 mm / second, and the average value of each of four locations obtained by this measurement is taken as the value of the arithmetic average roughness Ra.

上述の窓部材は、上述の窓部材と発光体とを備えたランプ装置等に用いることができる。例えばキセノンランプ等の発光体は発光の際に多くの熱を発する。発熱体を保護するとともに光を透過させる透過窓も高温になる場合が多く、長期間使用することによって、腐食による接合部の劣化や割れ等が生じ易くなる。本実施形態の窓部材を用いたランプ装置は、上述したように、長期間大気雰囲気に曝されても、内側面を起点とする応力腐食割れが生じにくい、接合強度の低下が抑制された本実施形態の窓部材と発光体とを備えて構成されていることから、長期間に亘って使用することができ、窓部材の交換頻度を少なくすることができる。窓部材はランプ装置等に限定されず、プラズマ処理装置等の真空装置用の窓部材やその他の装置に使用してもよい。   The window member described above can be used in a lamp device or the like provided with the window member and a light emitter described above. For example, a light emitter such as a xenon lamp emits a lot of heat during light emission. The transmission window that protects the heating element and transmits light is often at a high temperature. When used for a long period of time, the joint is likely to deteriorate or crack due to corrosion. As described above, the lamp device using the window member of the present embodiment is less susceptible to stress corrosion cracking starting from the inner surface even when exposed to the air atmosphere for a long period of time. Since it is configured to include the window member and the light emitter of the embodiment, it can be used for a long period of time, and the replacement frequency of the window member can be reduced. The window member is not limited to a lamp device or the like, and may be used for a window member for a vacuum apparatus such as a plasma processing apparatus or other devices.

なお、本実施形態の窓部材がキセノンランプ装置に用いられる場合には、窓部材は、両方の主面の外縁部に傾斜面を備え、大気に曝される側の主面と傾斜面とのなす角度およびキセノンに曝される側の主面と傾斜面となす角度がいずれも120°以上150°以下であって、大気に曝される側の主面と傾斜面とのなす角度がキセノンに曝される側の主面と傾斜面とのなす角度よりも小さいことが好適である。大気に曝される側の主面と傾斜面とのなす角度を小さくすることにより、大気に曝されて生じるろう材の劣化を抑制することができる。   In addition, when the window member of this embodiment is used for a xenon lamp device, the window member has an inclined surface at the outer edge portion of both main surfaces, and the main surface on the side exposed to the atmosphere and the inclined surface The angle formed between the main surface exposed to xenon and the inclined surface is 120 ° to 150 °, and the angle formed between the main surface exposed to the atmosphere and the inclined surface is It is preferable that the angle is smaller than the angle formed between the exposed main surface and the inclined surface. By reducing the angle formed between the main surface on the side exposed to the atmosphere and the inclined surface, it is possible to suppress the deterioration of the brazing material caused by exposure to the atmosphere.

次に、本実施形態の窓部材の製造方法の一例について説明する。まず、セラミックスまたはガラスからなる板状の透光性部材3の側面3dに、テレフンケン法により、モリブデンを主成分とし、マンガンを含むメタライズ層1を形成する。このメタライズ層1の表面に、無電解めっきにより、ニッケルを主成分とし、リンまたは硼素を含む第1メッキ層2(第1金属層2)を順次形成する。また、Fe‐Ni‐Co系合金,Fe−Ni系合金またはCu−W系合金を主成分とする枠状体4の内側面に、無電解めっきまたは電解めっきにより、ニッケルを主成分とし、リンまたは硼素を含む第2メッキ層6(第2金属層6)を形成する。具体的には、無電解めっきにより、ニッケルを主成分とし、リンを含む第2メッキ層6を形成する場合には、例えば、硫酸ニッケル、次亜りん酸ナトリウムおよびコハク酸を含む、60℃以上90℃以下に加熱された無電解ニッケルめっき液に透光性部材3および枠状体4を浸漬すればよい。電解めっきにより、ニッケルを主成分とし、リンを含む第2メッキ層6を形成する場合には、例えば、硫酸ニッケル,塩化ニッケル,硼酸,クエン酸塩および亜リン酸を含む、pHが2.4〜2.8である、温度が50℃以上65℃以下に加熱された電解ニッケルめっき液に透光性部材3および枠状体4を浸漬して、電流密度を0.1A/dm以上20A/dm以下に設定すればよい。特に、電流密度は1A/dm以上2A/dm以下であることが好適である。 Next, an example of the manufacturing method of the window member of this embodiment is demonstrated. First, the metallized layer 1 containing molybdenum as a main component and containing manganese is formed on the side surface 3d of the plate-like translucent member 3 made of ceramics or glass by the Telefunken method. A first plating layer 2 (first metal layer 2) containing nickel as a main component and containing phosphorus or boron is sequentially formed on the surface of the metallized layer 1 by electroless plating. Further, the inner surface of the frame 4 mainly composed of Fe-Ni-Co alloy, Fe-Ni alloy or Cu-W alloy is mainly composed of nickel by electroless plating or electrolytic plating, and phosphorous. Alternatively, the second plating layer 6 (second metal layer 6) containing boron is formed. Specifically, in the case where the second plating layer 6 containing nickel as a main component and containing phosphorus is formed by electroless plating, for example, nickel sulfate, sodium hypophosphite, and succinic acid are contained at 60 ° C. or higher. What is necessary is just to immerse the translucent member 3 and the frame-shaped body 4 in the electroless nickel plating solution heated at 90 degrees C or less. In the case where the second plating layer 6 containing nickel as a main component and containing phosphorus is formed by electrolytic plating, for example, the pH containing nickel sulfate, nickel chloride, boric acid, citrate and phosphorous acid is 2.4. The translucent member 3 and the frame-like body 4 are immersed in an electrolytic nickel plating solution heated to 50 ° C. or higher and 65 ° C. or lower, and the current density is 0.1 A / dm 2 or more and 20 A. / Dm 2 or less may be set. In particular, the current density is preferably 1 A / dm 2 or more and 2 A / dm 2 or less.

無電解めっきにより、ニッケルを主成分とし、硼素を含む第2メッキ層6を形成する場合には、硫酸ニッケル等のニッケル化合物および水素化硼素ナトリウム,ジメチルアミンボラン等の硼素系還元剤を含む、60℃以上90℃以下に加熱された無電解ニッケルめっき液に透光性部材3および枠状体4を浸漬すればよい。電解めっきにより、ニッケルを主成分とし、硼素を含む第2メッキ層6を形成する場合には、例えば、硫酸ニッケル,塩化ニッケル,硼酸およびトリメチルアミン,トリエチルアミンボラン,ジメチルアミンボラン等のアミン付加水素化合物を含む、pHが1.5〜6である、温度が40℃以上70℃以下に加熱された電解ニッケルめっき液に透光性部材3および枠状体4を浸漬して、電流
密度を1A/dm以上5A/dm以下に設定すればよい。
When forming the second plating layer 6 containing nickel as a main component and containing boron by electroless plating, a nickel compound such as nickel sulfate and a boron-based reducing agent such as sodium borohydride and dimethylamine borane are included. What is necessary is just to immerse the translucent member 3 and the frame-shaped body 4 in the electroless nickel plating solution heated at 60 degreeC or more and 90 degrees C or less. When the second plating layer 6 containing nickel as a main component and containing boron is formed by electrolytic plating, for example, an amine-added hydrogen compound such as nickel sulfate, nickel chloride, boric acid and trimethylamine, triethylamine borane, dimethylamine borane is used. The translucent member 3 and the frame-like body 4 are immersed in an electrolytic nickel plating solution having a pH of 1.5 to 6 and heated to a temperature of 40 ° C. or higher and 70 ° C. or lower, and the current density is 1 A / dm. 2 or 5A / dm 2 may be set below.

ここで、第1メッキ層2および第2メッキ層6の各厚みが3μm以上9μm以下である窓部材10a、10bを得るには、上記無電解ニッケルめっき液に35分以上65分以下浸漬すればよい。   Here, in order to obtain the window members 10a and 10b in which the thicknesses of the first plating layer 2 and the second plating layer 6 are 3 μm or more and 9 μm or less, they are immersed in the electroless nickel plating solution for 35 minutes or more and 65 minutes or less. Good.

また、透光性部材3が少なくともいずれか一方の主面3a,3bの外縁部に傾斜面3c,3gを備えており、メタライズ層1および第1メッキ層2は、側面3dから傾斜面3c,3gの少なくとも一部にかけて連続して形成されている窓部材10cを得るには、傾斜面3c,3gを備えた透光性部材3を準備し、上述した方法と同様の方法を用いればよい。   Further, the translucent member 3 includes inclined surfaces 3c and 3g at the outer edge portions of at least one of the main surfaces 3a and 3b, and the metallized layer 1 and the first plating layer 2 are formed from the side surface 3d to the inclined surfaces 3c, 3c, In order to obtain the window member 10c formed continuously over at least a part of 3g, the translucent member 3 provided with the inclined surfaces 3c and 3g is prepared, and the same method as described above may be used.

ここで、傾斜面3c、3gの算術平均粗さRaは、0.15μm以上0.35μm以下である窓部材10cを得るには、例えば、粒度が325以上400以下のダイヤモンド砥粒が固着された電着砥石を用い、電着砥石の回転数を2300rpm以上2600rpm以下として少なくともいずれか一方の主面3a,3bの外縁部を研磨すればよい。   Here, in order to obtain the window member 10c having the arithmetic average roughness Ra of the inclined surfaces 3c and 3g of 0.15 μm or more and 0.35 μm or less, for example, diamond abrasive grains having a particle size of 325 or more and 400 or less were fixed. What is necessary is just to grind the outer edge part of at least any one of the main surfaces 3a and 3b by using an electrodeposition grindstone and setting the rotation speed of the electrodeposition grindstone to 2300 rpm or more and 2600 rpm or less.

そして、銀および銅の各粉末の比率がそれぞれ72質量%,28質量%となるように秤量して混合した後、樹脂または無機化合物フラックスと有機溶媒とを添加し混練することによってろう材ペーストを作製し、このろう材ペーストを第1メッキ層2および第2メッキ層6の少なくともいずれか一方の表面にスクリーン印刷法、加圧印刷法および刷毛塗り等のいずれかの方法で塗布した後、120℃以上150℃以下で乾燥する。   Then, after weighing and mixing so that the ratios of the silver and copper powders are 72% by mass and 28% by mass, respectively, a resin or inorganic compound flux and an organic solvent are added and kneaded to obtain a brazing material paste. After producing and applying this brazing paste to the surface of at least one of the first plating layer 2 and the second plating layer 6 by any method such as screen printing, pressure printing, and brush coating, 120 Dry at a temperature of from 150 ° C. to 150 ° C.

ここで、銀および銅の各粉末の合計100質量部に、チタン,ハフニウム,ジルコニウム,ニオブまたはその水素化物等を2質量部以上5質量部以下添加混合してもよい。さらに、銀および銅の各粉末の合計100質量部に、インジウムまたはスズを1質量部以上10質量部以下添加混合しても好適で、接合温度を低下させたり、ろう材層の硬度を低下させたりすることができる。   Here, 2 parts by mass or more and 5 parts by mass or less of titanium, hafnium, zirconium, niobium, or a hydride thereof may be added to and mixed with 100 parts by mass of the silver and copper powders in total. Furthermore, it is preferable to add and mix 1 to 10 parts by mass of indium or tin with 100 parts by mass of each of the silver and copper powders, which reduces the bonding temperature and the hardness of the brazing material layer. Can be.

そして、ろう材ペーストを乾燥させた後、例えば、780℃以上900℃以下で、熱処理することにより、透光性部材3と枠状体4とが接合されてなる本実施形態の窓部材10を得ることができる。   Then, after drying the brazing material paste, the window member 10 of the present embodiment in which the translucent member 3 and the frame-like body 4 are joined by heat treatment at, for example, 780 ° C. or more and 900 ° C. or less. Can be obtained.

あるいは、上述した方法で得られたろう材ペーストを第1メッキ層2および第2メッキ層6の一方の端面に載置した後、このろう材にレーザーを照射し、濡れ拡がりを利用することによって、透光性部材3と枠状体4とが接合されてなる本実施形態の窓部材10を得ることができる。   Alternatively, after placing the brazing material paste obtained by the above-described method on one end face of the first plating layer 2 and the second plating layer 6, by irradiating the brazing material with a laser and utilizing wet spreading, The window member 10 of this embodiment in which the translucent member 3 and the frame-like body 4 are joined can be obtained.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

まず、Fe‐Ni‐Co系合金を主成分とする環状の枠状体4を準備して、その内側面に、無電解めっきにより、ニッケルおよびリンの含有量がそれぞれ93質量%,7質量%である第2メッキ層6を形成して試料No.1とした。無電解めっきの具体的な方法としては、硫酸ニッケル、次亜りん酸ナトリウムおよびコハク酸を含む、75℃に加熱された無電解ニッケルめっき液に枠状体4を30分浸漬した。   First, an annular frame 4 having a Fe—Ni—Co alloy as a main component is prepared, and the contents of nickel and phosphorus are 93% by mass and 7% by mass, respectively, on the inner surface by electroless plating. The second plating layer 6 is formed and the sample No. It was set to 1. As a specific method of electroless plating, the frame 4 was immersed in an electroless nickel plating solution heated to 75 ° C. containing nickel sulfate, sodium hypophosphite and succinic acid for 30 minutes.

また、比較例として、第2メッキ層6のない環状の枠状体4を準備して試料No.2とした。   As a comparative example, an annular frame 4 without the second plating layer 6 was prepared, and sample No. 2.

そして、試料No.1の第2メッキ層6の表面および試料No.2の枠状体4の内側面におけるそれぞれの酸素濃度をエネルギー分散型X線分光法(EDX)により測定した後、試料No.1,2を大気雰囲気中、200℃で24時間保持した。そして、この保持を終了した後、再度、試料No.1の第2メッキ層6の表面および試料No.2の枠状体4の内側面におけるそれぞれの酸素濃度を測定し、保持前後の酸素濃度の差を表1に示した。   And sample no. 1 and the surface of the second plating layer 6 and the sample No. 2 was measured by energy dispersive X-ray spectroscopy (EDX), and then sample No. 2 was measured. 1 and 2 were kept at 200 ° C. for 24 hours in an air atmosphere. And after finishing this holding | maintenance, again sample No. 1 and the surface of the second plating layer 6 and the sample No. The respective oxygen concentrations on the inner side surface of the frame body 4 of No. 2 were measured, and the difference in oxygen concentration before and after holding was shown in Table 1.

Figure 0006423259
Figure 0006423259

表1に示すように、試料No.1は枠状体4の内側面に第2メッキ層6が形成されてなることから、高温に晒されても第2メッキ層6のない試料No.2よりも酸化しにくいことが分かり、クラックが長期間に亘って生じにくくなる。この結果から、メタライズ層1および第1メッキ層2を形成した透光性部材3をろう材層5によって接合された試料No.1,2を比べると、試料No.1は、試料No.2よりも長期間大気雰囲気に曝されても、接合強度が低下しにくいと言える。   As shown in Table 1, sample no. 1 is formed by forming the second plating layer 6 on the inner surface of the frame-like body 4, and therefore, sample No. 1 without the second plating layer 6 even when exposed to high temperatures. It turns out that it is harder to oxidize than 2, and it becomes difficult to produce a crack over a long period of time. From this result, the sample No. 1 in which the translucent member 3 on which the metallized layer 1 and the first plating layer 2 were formed was joined by the brazing material layer 5 was obtained. When comparing Nos. 1 and 2, Sample No. 1 is Sample No. It can be said that even when exposed to an air atmosphere for a longer time than 2, the bonding strength is unlikely to decrease.

まず、サファイアからなる円板状の透光性部材3を準備して、側面3dに、テレフンケン法により、モリブデンおよびマンガンの含有量がそれぞれ80質量%,20質量%であるメタライズ層1を、無電解めっきにより、ニッケルおよびリンの含有量がそれぞれ93質量%,7質量%である第1メッキ層2を順次形成した。また、Fe‐Ni‐Co系合金からなる環状の枠状体4を準備して、その内側面に、無電解めっきにより、ニッケルおよびリンの含有量がそれぞれ93質量%,7質量%である第2メッキ層6を形成した。無電解めっきの具体的な方法としては、実施例1で用いた無電解ニッケルめっき液に透光性部材3を表2に示す時間で、また、枠状体4を80分それぞれ浸漬した。   First, a disc-shaped translucent member 3 made of sapphire is prepared, and a metallized layer 1 having molybdenum and manganese contents of 80% by mass and 20% by mass is formed on the side surface 3d by the Telefunken method, respectively. The first plating layer 2 having a nickel and phosphorus content of 93% by mass and 7% by mass, respectively, was sequentially formed by electrolytic plating. In addition, an annular frame 4 made of an Fe—Ni—Co alloy is prepared, and the inner surface thereof has nickel and phosphorus contents of 93 mass% and 7 mass%, respectively, by electroless plating. Two plating layers 6 were formed. As a specific method of electroless plating, the translucent member 3 was immersed in the electroless nickel plating solution used in Example 1 for the time shown in Table 2, and the frame 4 was immersed for 80 minutes.

そして、銀および銅の各粉末の比率がそれぞれ72質量%,28質量%となるように秤量して混合した後、樹脂または無機化合物フラックスと有機溶媒とを添加し混練してペースト状のろう材を作製した。このろう材を第1メッキ層2および第2メッキ層6の一方の端面に載置した後、このろう材にレーザーを照射することにより、図2に示す窓部材10bである試料No.3〜7を得た。   Then, after weighing and mixing so that the ratios of the silver and copper powders are 72% by mass and 28% by mass, respectively, a resin or inorganic compound flux and an organic solvent are added and kneaded to obtain a paste-like brazing material Was made. After this brazing material is placed on one end face of the first plating layer 2 and the second plating layer 6, the brazing material is irradiated with a laser so that the sample No. 1 which is the window member 10 b shown in FIG. 3-7 were obtained.

そして、各試料の厚み方向に沿って、第1メッキ層2に対するろう材層5のせん断強度を測定し、このせん断強度を表2に示した。実施例2,3では、このせん断強度が接合強度である。   Then, the shear strength of the brazing filler metal layer 5 with respect to the first plating layer 2 was measured along the thickness direction of each sample, and the shear strength is shown in Table 2. In Examples 2 and 3, this shear strength is the bonding strength.

そして、せん断強度を測定した試料とは別の試料を90℃で30分保持した後に、−40℃で30分保持するというサイクルを1サイクルとして、800サイクルおよび1000サイクルの温度サイクル試験をそれぞれ行なった。この温度サイクル試験を実施した後、窓部材の厚み方向に垂直な断面を鏡面に研磨し、この鏡面における第1メッキ層2の厚みを測定し、その値を表3に示した。また、第1メッキ層2の剥離の有無を観察し、剥離
が観察された試料には有、剥離が観察されなかった試料には無として表2に示した。なお、第1メッキ層2の厚みの測定および観察は、光学顕微鏡を用いて、倍率を100倍とした。上記鏡面における第2メッキ層6の厚みは12μmであった。
A cycle different from the sample whose shear strength was measured was held at 90 ° C. for 30 minutes, and then held at −40 ° C. for 30 minutes. It was. After carrying out this temperature cycle test, the cross section perpendicular to the thickness direction of the window member was polished to a mirror surface, the thickness of the first plating layer 2 on this mirror surface was measured, and the values are shown in Table 3. In addition, the presence or absence of peeling of the first plating layer 2 was observed, and it was shown in Table 2 as being present in samples in which peeling was observed and absent in samples in which peeling was not observed. In addition, the measurement and observation of the thickness of the 1st plating layer 2 made the magnification 100 times using the optical microscope. The thickness of the second plating layer 6 on the mirror surface was 12 μm.

Figure 0006423259
Figure 0006423259

表2に示すように、試料No4〜6は、第1メッキ層2の厚みが3μm以上9μm以下であることから、第1メッキ層2に対するろう材層5の接合強度が高く、加熱および冷却を繰り返しても第1メッキ層2が剥離しにくいことがわかる。   As shown in Table 2, in Sample Nos. 4 to 6, since the thickness of the first plating layer 2 is 3 μm or more and 9 μm or less, the bonding strength of the brazing material layer 5 to the first plating layer 2 is high, and heating and cooling are performed. It turns out that the 1st plating layer 2 is hard to peel even if it repeats.

実施例2で示した方法によりメタライズ層1を介して第1メッキ層2が外側面3dに形成されたサファイアからなる円板状の透光性部材3と、第2メッキ層6が内側面に形成されたFe‐Ni‐Co系合金からなる環状の枠状体4を得た。但し、実施例2で用いた無電解ニッケルめっき液に透光性部材3は80分、また、枠状体4は表3に示す時間で浸漬した。   The disc-shaped translucent member 3 made of sapphire, in which the first plating layer 2 is formed on the outer side surface 3d through the metallized layer 1 by the method shown in Example 2, and the second plating layer 6 on the inner side surface An annular frame 4 made of the formed Fe—Ni—Co alloy was obtained. However, the translucent member 3 was immersed in the electroless nickel plating solution used in Example 2 for 80 minutes, and the frame 4 was immersed in the time shown in Table 3.

そして、実施例2で示した方法により、ろう材を用いて透光性部材3および枠状体4を接合することにより、図2に示す窓部材10bである試料No.8〜12を得た。   And by the method shown in Example 2, the translucent member 3 and the frame-like body 4 were joined using the brazing material, so that the sample No. 1 as the window member 10b shown in FIG. 8-12 were obtained.

そして、各試料の厚み方向に沿って、第2メッキ層6に対するろう材層5のせん断強度を測定した。また、実施例2で示した方法と同じ方法で、温度サイクル試験を行なった。この温度サイクル試験を実施した後、窓部材の厚み方向に垂直な断面を鏡面に研磨し、この鏡面における第2メッキ層6の厚みを測定し、その値を表3に示した。また、第2メッキ層6の剥離の有無を観察し、剥離が観察された試料には有、剥離が観察されなかった試料には無として表3に示した。なお、第2メッキ層6の厚みの測定および観察は、光学顕微鏡を用いて、倍率を100倍とした。上記鏡面における第1メッキ層2の厚みは12μmであった。   And the shear strength of the brazing filler metal layer 5 with respect to the 2nd plating layer 6 was measured along the thickness direction of each sample. In addition, a temperature cycle test was performed by the same method as shown in Example 2. After carrying out this temperature cycle test, the cross section perpendicular to the thickness direction of the window member was polished to a mirror surface, the thickness of the second plating layer 6 on this mirror surface was measured, and the values are shown in Table 3. In addition, the presence or absence of peeling of the second plating layer 6 was observed, and it was shown in Table 3 as being present in samples in which peeling was observed and absent in samples in which peeling was not observed. In addition, the measurement and observation of the thickness of the 2nd plating layer 6 made the magnification 100 times using the optical microscope. The thickness of the first plating layer 2 on the mirror surface was 12 μm.

Figure 0006423259
Figure 0006423259

表3に示すように、試料No.9〜11は、第2メッキ層6の厚みが3μm以上9μm以下であることから、第2メッキ層6に対するろう材層5の接合強度が高く、加熱および冷却を繰り返しても第2メッキ層6が剥離しにくいことがわかる。   As shown in Table 3, Sample No. In Nos. 9 to 11, since the thickness of the second plating layer 6 is not less than 3 μm and not more than 9 μm, the bonding strength of the brazing material layer 5 to the second plating layer 6 is high, and the second plating layer 6 can be repeatedly heated and cooled. It turns out that it is hard to peel.

まず、サファイアからなる円板状の透光性部材3を準備して、表4に示す粒度のダイヤモンド砥粒が固着された電着砥石を用い、表4に示す回転数で両方の主面3a,3bの外縁部を研磨して、傾斜面3c,3gを得た。   First, a disc-shaped translucent member 3 made of sapphire is prepared, and an electrodeposited grindstone to which diamond abrasive grains having a particle size shown in Table 4 are fixed is used. , 3b were polished to obtain inclined surfaces 3c, 3g.

外側面3dに、テレフンケン法により、モリブデンおよびマンガンの含有量がそれぞれ80質量%,20質量%であるメタライズ層1を、無電解めっきにより、ニッケルおよびリンの含有量がそれぞれ93質量%,7質量%である第1メッキ層2を順次形成した。同時に、傾斜面3c,3gに、第2中間層7および第3金属層8を順次形成した。   The metallized layer 1 having a molybdenum and manganese content of 80% by mass and 20% by mass, respectively, is formed on the outer surface 3d by the Telefunken method, and the nickel and phosphorus contents are 93% by mass and 7% by electroless plating, respectively. % Of the first plating layer 2 was sequentially formed. At the same time, the second intermediate layer 7 and the third metal layer 8 were sequentially formed on the inclined surfaces 3c and 3g.

また、Fe‐Ni‐Co系合金からなる環状の枠状体4を準備して、その内側面に、無電解めっきにより、ニッケルおよびリンの含有量がそれぞれ93質量%,7質量%である第2メッキ層6を形成した。無電解めっきの具体的な方法としては、無電解めっきの具体的な方法としては、実施例1で用いた無電解ニッケルめっき液に透光性部材および枠状体4をいずれも50分浸漬した。   In addition, an annular frame 4 made of an Fe—Ni—Co alloy is prepared, and the inner surface thereof has nickel and phosphorus contents of 93 mass% and 7 mass%, respectively, by electroless plating. Two plating layers 6 were formed. As a specific method of electroless plating, as a specific method of electroless plating, the translucent member and the frame 4 were both immersed in the electroless nickel plating solution used in Example 1 for 50 minutes. .

そして、銀および銅の各粉末の比率がそれぞれ72質量%,28質量%となるように秤量して混合した後、樹脂または無機化合物フラックスと有機溶媒とを添加し混練してペースト状のろう材を作製した。このろう材を第1メッキ層2および第2メッキ層6の一方の端面に載置した後、このろう材にレーザーを照射することにより、図3示す窓部材10cある試料No.13〜27を得た。   Then, after weighing and mixing so that the ratios of the silver and copper powders are 72% by mass and 28% by mass, respectively, a resin or inorganic compound flux and an organic solvent are added and kneaded to obtain a paste-like brazing material Was made. After this brazing material is placed on one end face of the first plating layer 2 and the second plating layer 6, the brazing material is irradiated with a laser so that the sample No. 1 in the window member 10 c shown in FIG. 13-27 were obtained.

ここで、試料No.13〜27のろう材層5は、第1メッキ層2の側面に対応する領域から傾斜面3c、3gに対応する領域にかけて連続して被着していることを光学顕微鏡を用いて倍率を100倍として確認した。試料No.13〜27では、傾斜面3c,3gと外側面3dとの交線3e,3hを起点とする、傾斜面3c,3gの表面積の約60%の面積を占める領域に、メタライズ層1および第1メッキ層2およびろう材層5が形成されている。すなわち試料No.13〜27では、傾斜面3c,3gのうち、交線3e,3hを含む外側面3dの側の部分の約60%の領域にのみ、メタライズ層1や第1メッキ層2が形成されている。   Here, Sample No. The brazing filler metal layer 5 of 13 to 27 is continuously applied from the region corresponding to the side surface of the first plating layer 2 to the region corresponding to the inclined surfaces 3c and 3g using an optical microscope. Confirmed as double. Sample No. In Nos. 13 to 27, the metallized layer 1 and the first layer 1 are formed in a region occupying an area of about 60% of the surface area of the inclined surfaces 3c and 3g starting from the intersection lines 3e and 3h between the inclined surfaces 3c and 3g and the outer surface 3d. A plating layer 2 and a brazing material layer 5 are formed. That is, sample no. In Nos. 13 to 27, the metallized layer 1 and the first plating layer 2 are formed only in an area of about 60% of the inclined surfaces 3c and 3g on the outer surface 3d side including the intersecting lines 3e and 3h. .

また、比較例として、傾斜面3c,3gのない図2に示す窓部材10bである試料No.28を上述した方法で作製した。   As a comparative example, the sample No. 1 which is the window member 10b shown in FIG. 28 was produced by the method described above.

そして、各試料を90℃で30分保持した後に、−40℃で30分保持するというサイクルを1サイクルとして、1200,1400,1600,1800サイクルの温度サイクル試験を実施した。これらの温度サイクル試験を実施した後、窓部材10cの厚み方向に垂直な断面を鏡面に研磨し、この鏡面における透光性部材3の外側面3dを起点とするクラックの有無を光学顕微鏡を用いて倍率を100倍として観察し、クラックが観察された試料には有、クラックが観察されなかった試料には無として表5に示した。   Then, after each sample was held at 90 ° C. for 30 minutes and then held at −40 ° C. for 30 minutes, a cycle of 1200, 1400, 1600, and 1800 cycles was performed. After carrying out these temperature cycle tests, the cross section perpendicular to the thickness direction of the window member 10c is polished to a mirror surface, and the presence or absence of cracks starting from the outer surface 3d of the translucent member 3 on this mirror surface is determined using an optical microscope. Table 5 shows that the sample was observed with a magnification of 100 times, and was present for samples in which cracks were observed, but not for samples in which cracks were not observed.

また、窓部材の径方向の断面を鏡面に研磨し、この鏡面における角度θ(θ)および幅L(L)を光学顕微鏡を用いて倍率を100倍で測定し、その値を表4に示した。 In addition, the radial cross section of the window member is polished to a mirror surface, and the angle θ 12 ) and width L 1 (L 2 ) on the mirror surface are measured with an optical microscope at a magnification of 100 times, and the values are It is shown in Table 4.

また、傾斜面3c(3g)の算術平均粗さRaをJIS B 0601−2013に準拠して測
定した。具体的には、測定長さおよびカットオフ値をそれぞれ0.25mm、0.8mmとし、触針式の表面粗さ計を用いて測定し、傾斜面3c(3g)に、触針先端半径が2μmの触針を当て、触針の走査速度は0.5mm/秒に設定し、この測定で得られたそれぞれ4箇所の平均値を算術平均粗さRaの値として表4に示した。
Further, the arithmetic average roughness Ra of the inclined surface 3c (3g) was measured according to JIS B 0601-2013. Specifically, the measurement length and cut-off value were set to 0.25 mm and 0.8 mm, respectively, and measurement was performed using a stylus type surface roughness meter. The stylus tip radius was measured on the inclined surface 3c (3g). A 2 μm stylus was applied, and the scanning speed of the stylus was set to 0.5 mm / second. The average value of each of four locations obtained by this measurement is shown in Table 4 as the value of arithmetic average roughness Ra.

Figure 0006423259
Figure 0006423259

Figure 0006423259
Figure 0006423259

表4、5に示すように、試料No.13〜27の透光性部材3は、少なくともいずれか一方の主面3a,3bの外縁部に傾斜面3c、3gを備えており、メタライズ層1および第1メッキ層2は、側面3dから傾斜面3c、3gの少なくとも一部にかけて連続して形成されるとともに、ろう材層5は、第1メッキ層の側面に対応する領域から傾斜面3c、3gに対応する領域にかけて連続して被着していることから、傾斜面3c,3gのない試料No.28よりも外側面3dを起点とするクラックが生じにくいことがわかる。   As shown in Tables 4 and 5, Sample No. The translucent members 3 of 13 to 27 are provided with inclined surfaces 3c and 3g at outer edges of at least one of the main surfaces 3a and 3b, and the metallized layer 1 and the first plating layer 2 are inclined from the side surface 3d. The brazing material layer 5 is continuously formed from the region corresponding to the side surface of the first plating layer to the region corresponding to the inclined surfaces 3c and 3g. Therefore, sample no. It can be seen that cracks starting from the outer surface 3d are less likely to occur than 28.

また、幅L(L)および傾斜面3c(3g)の算術平均粗さRaが同じであって、角度θ(θ)が異なる試料No.16,17,18,21,24,25を比べると、
試料No.17,18,21,24は、角度θ(θ)が120°以上150°以下であることから、角度θ(θ)がこの範囲外である試料No.16,25よりも交差部3e(3h)および外側面3dを起点とするクラックが生じにくいことがわかる。
Sample Nos. 16, 17, 18, 21, 24 having the same width L 1 (L 2 ) and the same arithmetic average roughness Ra of the inclined surface 3c (3g) but different angles θ 12 ). When comparing 25,
Sample No. 17,18,21,24, since the angle θ 12) is less than 0.99 ° 120 ° or more, the angle θ 12) is outside this range Sample No. It can be seen that cracks starting from the intersecting portion 3e (3h) and the outer side surface 3d are less likely to occur than 16 and 25.

また、角度θ(θ)および傾斜面3c(3g)の算術平均粗さRaが同じであって、幅L(L)が異なる試料No.19〜23を比べると、幅L(L)が0.2m
m以上0.4mm以下である試料No.20〜23は、この範囲外である試料No.19よりも外側面3dを起点とするクラックが生じにくいことがわかる。
In addition, the sample No. 1 in which the angle θ 12 ) and the arithmetic mean roughness Ra of the inclined surface 3c (3g) are the same and the width L 1 (L 2 ) is different. When comparing 19 to 23, the width L 1 (L 2 ) is 0.2 m.
m and 0.4 mm or less. Samples Nos. 20 to 23 are out of this range. It can be seen that cracks starting from the outer surface 3d are less likely to occur than 19.

また、角度θ(θ)および幅L(L)が同じであって、傾斜面3c(3g)の算術平均粗さRaが異なる試料No.13,14,15,26,27を比べると、傾斜面3c(3g)の算術平均粗さRaが0.15μm以上0.35μm以下である試料No.13,14,15,26は、この範囲外である試料No.27よりもメタライズ層1,第1メッキ層2とも剥離が生じにくいことがわかる。 In addition, the sample No. 1 in which the angle θ 12 ) and the width L 1 (L 2 ) are the same and the arithmetic mean roughness Ra of the inclined surface 3c (3g) is different. 13, 14, 15, 26, and 27, Sample No. in which the arithmetic average roughness Ra of the inclined surface 3 c (3 g) is 0.15 μm or more and 0.35 μm or less. Samples Nos. 13, 14, 15, and 26 are sample Nos. Outside this range. It can be seen that the metallized layer 1 and the first plated layer 2 are less likely to peel than 27.

なお、本実施例では、第1メッキ層2がニッケルを主成分とし、リンを含む場合について示したが、第1メッキ層2がニッケルを主成分とし、硼素を含む場合についても同様の結果が得られることは言うまでもない。   In the present embodiment, the case where the first plating layer 2 is mainly composed of nickel and contains phosphorus is shown. However, the same result is obtained when the first plating layer 2 is mainly composed of nickel and contains boron. It goes without saying that it is obtained.

1 メタライズ層
2 第1メッキ層
3 透光性部材
4 枠状体
5 ろう材層
6 第2メッキ層
10 窓部材
DESCRIPTION OF SYMBOLS 1 Metallization layer 2 1st plating layer 3 Translucent member 4 Frame-like body 5 Brazing material layer 6 2nd plating layer 10 Window member

Claims (8)

板状の透光性部材と、前記透光性部材の側面を囲繞する内側面を有する金属を主成分とする枠状体とが接合されてなる窓部材であって、
前記透光性部材の前記側面に形成されたメタライズ層と、
前記メタライズ層の表面に形成された、ニッケルを主成分とした第1金属層と、
前記枠状体の前記内側面に形成された、ニッケルを主成分としリンまたは硼素を含む第2金属層と、
前記第1金属層と前記第2金属層とに被着して前記透光性部材と前記枠状体とを接合する、銀を主成分とするろう材層とを有することを特徴とする窓部材。
A window member formed by joining a plate-like light-transmitting member and a frame-shaped body mainly composed of a metal having an inner surface surrounding a side surface of the light-transmitting member,
A metallized layer formed on the side surface of the translucent member;
A first metal layer mainly composed of nickel formed on the surface of the metallized layer;
A second metal layer formed on the inner surface of the frame-like body and containing nickel or phosphorus or boron as a main component;
A window comprising: a brazing material layer mainly composed of silver, which is attached to the first metal layer and the second metal layer and joins the translucent member and the frame-like body. Element.
前記透光性部材はサファイアを主成分とし、前記枠状体はFe‐Ni‐Co系合金,Fe−Ni系合金またはCu−W系合金を主成分とすることを特徴とする請求項1に記載の窓部材。   2. The translucent member is mainly composed of sapphire, and the frame body is composed mainly of an Fe—Ni—Co alloy, an Fe—Ni alloy, or a Cu—W alloy. The window member described. 前記透光性部材は、少なくともいずれか一方の主面の外縁部に傾斜面を備えており、
前記メタライズ層および前記第1金属層は、前記側面から前記傾斜面の少なくとも一部にかけて連続して形成されていることを特徴とする請求項1または請求項2に記載の窓部材。
The translucent member includes an inclined surface at an outer edge portion of at least one of the main surfaces,
The window member according to claim 1, wherein the metallized layer and the first metal layer are continuously formed from the side surface to at least a part of the inclined surface.
前記ろう材層は、前記第1金属層の前記側面に対応する領域から前記傾斜面に対応する領域にかけて連続して被着していることを特徴とする請求項3に記載の窓部材。 The window member according to claim 3, wherein the brazing material layer is continuously applied from a region corresponding to the side surface of the first metal layer to a region corresponding to the inclined surface. 前記主面と前記傾斜面とのなす角度は、120°以上150°以下であることを特徴とする請求項3または請求項4に記載の窓部材。   The window member according to claim 3 or 4, wherein an angle formed between the main surface and the inclined surface is 120 ° or more and 150 ° or less. 前記主面に垂直な平面視において、
前記傾斜面の幅は0.2mm以上0.4mm以下であることを特徴とする請求項3乃至請求項5のいずれかに記載の窓部材。
In a plan view perpendicular to the main surface,
The window member according to any one of claims 3 to 5, wherein a width of the inclined surface is 0.2 mm or more and 0.4 mm or less.
前記傾斜面の算術平均粗さRaは、0.15μm以上0.35μm以下であることを特徴とする請求項3乃至請求項6のいずれかに記載の窓部材。   The window member according to claim 3, wherein an arithmetic average roughness Ra of the inclined surface is 0.15 μm or more and 0.35 μm or less. 請求項1乃至請求項7のいずれかに記載の窓部材と発光体とを備えて構成されたことを特徴とするランプ装置。   A lamp device comprising the window member according to any one of claims 1 to 7 and a light emitter.
JP2014252263A 2014-12-12 2014-12-12 Window member and lamp device Active JP6423259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252263A JP6423259B2 (en) 2014-12-12 2014-12-12 Window member and lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252263A JP6423259B2 (en) 2014-12-12 2014-12-12 Window member and lamp device

Publications (2)

Publication Number Publication Date
JP2016115480A JP2016115480A (en) 2016-06-23
JP6423259B2 true JP6423259B2 (en) 2018-11-14

Family

ID=56142193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252263A Active JP6423259B2 (en) 2014-12-12 2014-12-12 Window member and lamp device

Country Status (1)

Country Link
JP (1) JP6423259B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846239B2 (en) 2017-03-07 2021-03-24 株式会社ブリヂストン Tire position change proposal program and tire position change proposal method
JP7023809B2 (en) * 2017-07-27 2022-02-22 京セラ株式会社 Optical device lid and optical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659315B2 (en) * 1999-12-21 2005-06-15 京セラ株式会社 Manufacturing method of semiconductor device storage package
JP3673440B2 (en) * 2000-02-24 2005-07-20 京セラ株式会社 Package for housing semiconductor element, method for manufacturing the same, and semiconductor device
JP4388209B2 (en) * 2000-07-14 2009-12-24 京セラ株式会社 Optical semiconductor element storage package
JP2004319973A (en) * 2003-03-28 2004-11-11 Nippon Denki Shinku Glass Kk Welding member, cap with window and light transmissive window member

Also Published As

Publication number Publication date
JP2016115480A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
US7943241B2 (en) Composite ceramic body
WO2017179521A1 (en) Wavelength conversion member
US20130337169A1 (en) Heat-Dissipation Unit Coated with Oxidation-Resistant Nano Thin Film and Method of Depositing the Oxidation-Resistant Nano Thin Film Thereof
JP5784153B2 (en) Alumina ceramics and ceramic wiring board and ceramic package using the same
JP6423259B2 (en) Window member and lamp device
JP2022177207A (en) Ceramic metal circuit board and semiconductor device using same
JP2012136378A (en) Circuit board and electronic device using the same
TW202006902A (en) Double-Sided Circuit Non-Oxide-Based Ceramic Substrate and Method for Manufacturing Same
JPWO2017073679A1 (en) Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
EP3093882B1 (en) Electronic circuit device
JPWO2019221174A1 (en) Ceramic copper circuit board and its manufacturing method
JP6858786B2 (en) Copper-ceramic composite material
KR102102625B1 (en) Ceramic assembly
JP7197677B2 (en) bonded substrate
JP2019511993A (en) Copper-ceramic composite material
JP2019511991A (en) Copper / ceramic composite
JP5877276B2 (en) Bonding structure and electronic member bonding structure
TW202242910A (en) Joint structure
JP6777752B2 (en) Copper-ceramic composite material
JP2001284796A (en) Ceramic circuit board and method of manufacturing it and method for controlling quality of ceramic circuit board
JP2021072386A (en) Electrostatic chuck device
JP7239789B1 (en) Wiring board manufacturing method
JP6970576B2 (en) Manufacturing method of metal-ceramic bonded substrate
JP2023023729A (en) Method of manufacturing joined body and joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181018

R150 Certificate of patent or registration of utility model

Ref document number: 6423259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150