JP6420964B2 - Lubricating oil composition for internal combustion engines - Google Patents

Lubricating oil composition for internal combustion engines Download PDF

Info

Publication number
JP6420964B2
JP6420964B2 JP2014073499A JP2014073499A JP6420964B2 JP 6420964 B2 JP6420964 B2 JP 6420964B2 JP 2014073499 A JP2014073499 A JP 2014073499A JP 2014073499 A JP2014073499 A JP 2014073499A JP 6420964 B2 JP6420964 B2 JP 6420964B2
Authority
JP
Japan
Prior art keywords
alkyl group
lubricating oil
meth
internal combustion
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073499A
Other languages
Japanese (ja)
Other versions
JP2015196696A (en
Inventor
俊匡 宇高
俊匡 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2014073499A priority Critical patent/JP6420964B2/en
Priority to EP15774018.4A priority patent/EP3127993B1/en
Priority to US15/129,528 priority patent/US20170183601A1/en
Priority to CN201580016373.0A priority patent/CN106164231B/en
Priority to KR1020167025779A priority patent/KR20160138020A/en
Priority to PCT/JP2015/060095 priority patent/WO2015152226A1/en
Publication of JP2015196696A publication Critical patent/JP2015196696A/en
Application granted granted Critical
Publication of JP6420964B2 publication Critical patent/JP6420964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/045Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

本発明は、内燃機関用潤滑油組成物に関する。   The present invention relates to a lubricating oil composition for an internal combustion engine.

自動車等に使用される内燃機関には、小型高出力化、省燃費化、排ガス規制対応など、様々な要求がなされ、エンジン油にはこうした要求性能を満たすため、摩耗防止剤、金属系清浄剤、無灰分散剤、酸化防止剤、粘度指数向上剤などの種々の添加剤が配合される。
また、従来、エンジン油は、様々な観点から性能を改善することが求められている。例えば、エンジン油の炭化によって発生するコーキングを抑制したり、エンジン部品からの銅溶出を抑制したりすることが求められることがある。これら要求に対応して、例えば特許文献1には、銅溶出を抑制するために、特定構造のヒドラジド誘導体を添加剤として使用することが開示される。また、特許文献2には、コーキングを抑制するために、特定のモリブデン系添加剤と硫化脂肪酸エステルとを併用することが開示されている。
Various demands have been made for internal combustion engines used in automobiles, such as miniaturization and high output, fuel saving, exhaust gas regulations, and engine oils to satisfy these required performances. Various additives such as an ashless dispersant, an antioxidant, and a viscosity index improver are blended.
Conventionally, engine oils are required to improve performance from various viewpoints. For example, it may be required to suppress coking generated by carbonization of engine oil or to suppress copper elution from engine parts. In response to these requirements, for example, Patent Document 1 discloses that a hydrazide derivative having a specific structure is used as an additive in order to suppress copper elution. Patent Document 2 discloses that a specific molybdenum-based additive and a sulfurized fatty acid ester are used in combination in order to suppress coking.

特許第4477337号Japanese Patent No. 4477337 特開2005−247995号公報Japanese Patent Laid-Open No. 2005-247995

ところで、内燃機関は、高性能化、高出力化が進み、運転条件が年々苛酷になってきている。そのため、エンジン油の酸化安定性をさらに高める必要が生じており、塩基価の低下を長期間にわたって抑制する要求がより高まっている。
また、例えば、ストップアンドゴーを繰り返す市街地運転では、銅溶出が生じやすくなることがわかっている。さらに、近年、高速領域だけでなく、市街地走行時のような低速領域においてもターボ(過給)を活用した高出力化が図られており、今後、ターボ機構を搭載したエンジンが増えることが予想される。しかし、ターボ機構搭載エンジンにおいてはコーキングが生じやすくなることがわかってきている。
そのため、エンジン油において、コーキング及び銅溶出の両方をバランスよく抑制する必要が生じてきている。
By the way, the internal combustion engine has been improved in performance and output, and the operating conditions have become severe year by year. Therefore, it is necessary to further increase the oxidation stability of the engine oil, and there is an increasing demand for suppressing a decrease in base number over a long period of time.
In addition, for example, it is known that copper elution is likely to occur in city driving that repeats stop-and-go. Furthermore, in recent years, not only high speed areas but also low speed areas such as when driving in urban areas, turbo (supercharging) has been used to increase output, and it is expected that engines equipped with turbo mechanisms will increase in the future. Is done. However, it has been found that coking is likely to occur in an engine equipped with a turbo mechanism.
Therefore, it is necessary to suppress both coking and copper elution in a balanced manner in engine oil.

しかしながら、特許文献1,2に開示された処方は、コーキング、銅溶出それぞれを個別に抑制する技術であり、塩基価の低下を抑えつつも、コーキング、銅溶出の両方を効果的に抑制することは難しい。   However, the formulations disclosed in Patent Documents 1 and 2 are techniques for individually suppressing coking and copper elution, and effectively suppressing both coking and copper elution while suppressing a decrease in base number. Is difficult.

本発明は、以上の問題点に鑑みてなされたものであり、本発明の課題は、塩基価の低下、コーキングの発生及び銅溶出の発生をバランスよく抑制する内燃機関用潤滑油組成物を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a lubricating oil composition for an internal combustion engine that suppresses a decrease in base number, occurrence of coking, and occurrence of copper elution in a balanced manner. It is to be.

本発明者らは、鋭意検討の結果、ホウ素含有コハク酸イミドと、重量平均分子量(Mw)と側鎖にあるアルキル基の平均炭素数の割合を一定としたポリ(メタ)アクリレートを併用することで上記課題が解決できることを見出し、本発明を完成させた。本発明は、以下の(1)〜(8)を提供する。
(1)鉱油及び/又は合成油からなる(A)潤滑油基油と、
組成物全量基準でホウ素量換算値0.001〜0.1質量%の(B)ホウ素含有アルケニルコハク酸イミド及び/又はホウ素含有アルキルコハク酸イミドと、
重量平均分子量をMw、13C−NMRで測定したアルキル基の平均炭素数をXとしたときに、Mwが10万〜70万、Mw/Xが3万以上であり、組成物全量基準で0.1〜30質量%の(C)ポリ(メタ)アクリレートとを含有する内燃機関用潤滑油組成物。
(2)Mw/Xが3万〜20万である上記(1)に記載の内燃機関用潤滑油組成物。
(3)(C)ポリ(メタ)アクリレートが非分散型である上記(1)又は(2)に記載の内燃機関用潤滑油組成物。
(4)(A)潤滑油基油の粘度指数が90以上である上記(1)〜(3)のいずれかに記載の内燃機関用潤滑油組成物。
(5)前記鉱油が、環分析によるパラフィン分(%CP)が60%以上である上記(1)〜(4)のいずれかに記載の内燃機関用潤滑油組成物。
(6)(D)ジチオリン酸亜鉛及び(E)アルカリ金属系清浄剤又はアルカリ土類金属系清浄剤から選択される少なくとも一種を含有する上記(1)〜(5)のいずれかに記載の内燃機関用潤滑油組成物。
(7)組成物全量基準で、(D)ジチオリン酸亜鉛をリン量換算で0.01〜0.15質量%含有し、(E)アルカリ金属系清浄剤又はアルカリ土類金属系清浄剤を金属量換算で0.1〜0.3質量%含有する上記(6)に記載の内燃機関用潤滑油組成物。
(8)100℃動粘度が4〜17mm2/sである上記(1)〜(7)のいずれかに記載の内燃機関用潤滑油組成物。
(9)鉱油及び/又は合成油からなる(A)潤滑油基油に、組成物全量基準でホウ素量換算値0.001〜0.1質量%の(B)ホウ素含有アルケニルコハク酸イミド及び/又はホウ素含有アルキルコハク酸イミドと、組成物全量基準で0.1〜30質量%の(C)ポリ(メタ)アクリレートとを配合して内燃機関用潤滑油組成物を製造し、
(C)ポリ(メタ)アクリレートが、重量平均分子量をMw、13C−NMRで測定したアルキル基の平均炭素数をXとしたときに、Mwが10万〜70万、Mw/Xが3万以上である内燃機関用潤滑油組成物の製造方法。
As a result of intensive studies, the inventors of the present invention use a boron-containing succinimide and a poly (meth) acrylate in which the weight average molecular weight (Mw) and the ratio of the average carbon number of the alkyl group in the side chain are constant. The inventors have found that the above problems can be solved, and completed the present invention. The present invention provides the following (1) to (8).
(1) (A) lubricating base oil composed of mineral oil and / or synthetic oil;
(B) boron-containing alkenyl succinimide and / or boron-containing alkyl succinimide having a boron content converted value of 0.001 to 0.1% by mass based on the total amount of the composition;
When the weight average molecular weight is Mw and the average carbon number of the alkyl group measured by 13 C-NMR is X, Mw is 100,000 to 700,000, Mw / X is 30,000 or more, and 0 based on the total amount of the composition. A lubricating oil composition for an internal combustion engine comprising 1 to 30% by mass of (C) poly (meth) acrylate.
(2) The lubricating oil composition for an internal combustion engine according to (1), wherein Mw / X is 30,000 to 200,000.
(3) The lubricating oil composition for internal combustion engines according to the above (1) or (2), wherein (C) poly (meth) acrylate is non-dispersed.
(4) The lubricating oil composition for internal combustion engines according to any one of the above (1) to (3), wherein the viscosity index of the (A) lubricating base oil is 90 or more.
(5) The lubricating oil composition for internal combustion engines according to any one of (1) to (4), wherein the mineral oil has a paraffin content (% C P ) of 60% or more by ring analysis.
(6) The internal combustion according to any one of (1) to (5) above, which contains at least one selected from (D) zinc dithiophosphate and (E) an alkali metal detergent or an alkaline earth metal detergent. Lubricating oil composition for engines.
(7) On the basis of the total amount of the composition, (D) zinc dithiophosphate is contained in an amount of 0.01 to 0.15% by mass in terms of phosphorus, and (E) an alkali metal detergent or alkaline earth metal detergent is metal The lubricating oil composition for internal combustion engines according to (6), which is contained in an amount of 0.1 to 0.3% by mass.
(8) The lubricating oil composition for internal combustion engines according to any one of (1) to (7), wherein the kinematic viscosity at 100 ° C. is 4 to 17 mm 2 / s.
(9) (B) boron-containing alkenyl succinimide and (B) boron-containing alkenyl succinimide having a boron content converted value of 0.001 to 0.1% by mass based on the total amount of the composition in (A) lubricating base oil composed of mineral oil and / or synthetic oil Alternatively, a lubricating oil composition for an internal combustion engine is produced by blending boron-containing alkyl succinimide and 0.1 to 30% by mass of (C) poly (meth) acrylate based on the total amount of the composition,
(C) When poly (meth) acrylate has a weight average molecular weight of Mw and the average carbon number of the alkyl group measured by 13 C-NMR is X, Mw is 100,000 to 700,000 and Mw / X is 30,000. The manufacturing method of the lubricating oil composition for internal combustion engines which is the above.

本発明では、塩基価の低下、コーキングの発生及び銅溶出の発生をバランスよく抑制する内燃機関用潤滑油組成物を提供することが可能である。   In the present invention, it is possible to provide a lubricating oil composition for an internal combustion engine that suppresses a decrease in base number, coking and copper elution in a balanced manner.

以下、本発明の好適な実施形態について詳細に説明する。
[内燃機関用潤滑油組成物]
本発明の内燃機関用潤滑油組成物(以下、単に「潤滑油組成物」と称することもある)は、(A)潤滑油基油と、(B)ホウ素含有アルケニルコハク酸イミド及び/又はホウ素含有アルキルコハク酸イミド(以下、単に、「ホウ素含有コハク酸イミド」ということもある)と、(C)ポリ(メタ)アクリレートを含有するものである。以下、各成分についてより詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Lubricating oil composition for internal combustion engine]
The lubricating oil composition for internal combustion engines of the present invention (hereinafter sometimes simply referred to as “lubricating oil composition”) includes (A) a lubricating base oil, and (B) a boron-containing alkenyl succinimide and / or boron. Containing alkyl succinimide (hereinafter, also simply referred to as “boron-containing succinimide”) and (C) poly (meth) acrylate. Hereinafter, each component will be described in more detail.

[(A)潤滑油基油]
(A)潤滑油基油は、鉱油及び/又は合成油からなり、従来、潤滑油の基油として使用されている鉱油及び合成油の中から任意のものを適宜選択して用いることができる。
鉱油としては、例えば、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油やワックスやGTL WAXを異性化することによって製造される潤滑油基油等が挙げられるが、これらのうち水素化精製により処理した鉱油が好ましい。水素化精製により処理した鉱油は、後述する%CP、粘度指数を良好にしやすくなる。
[(A) Lubricating base oil]
(A) Lubricating oil base oil consists of mineral oil and / or synthetic oil, and can select and use arbitrary things from the mineral oil and synthetic oil conventionally used as a base oil of lubricating oil.
As mineral oil, for example, a lubricating oil fraction obtained by distillation under reduced pressure of atmospheric residual oil obtained by atmospheric distillation of crude oil can be desolvated, solvent extracted, hydrocracked, solvent dewaxed, catalytic dehydrated. Mineral oil refined by performing one or more treatments such as wax, hydrorefining, etc., and lubricating base oil produced by isomerizing GTL WAX, etc., among them hydrotreating Mineral oil treated with is preferred. Mineral oil treated by hydrorefining tends to improve the% C P and viscosity index described below.

合成油としては、例えば、ポリブテン、α−オレフィン単独重合体や共重合体(例えばエチレン−α−オレフィン共重合体)などのポリアルファオレフィン、例えば、ポリオールエステル、二塩基酸エステル、リン酸エステルなどの各種のエステル、例えば、ポリフェニルエーテルなどの各種のエーテル、ポリグリコール、アルキルベンゼン、アルキルナフタレン、GTL WAXを異性化することによって製造される潤滑油基油などが挙げられる。これらの合成油のうち、特にポリアルファオレフィン、エステルが好ましく、これら2種を組み合わせたものも合成油として好適に使用される。   Examples of synthetic oils include polyalphaolefins such as polybutene, α-olefin homopolymers and copolymers (for example, ethylene-α-olefin copolymers), such as polyol esters, dibasic acid esters, and phosphate esters. And various bases such as polyphenyl ether, polyglycol, alkylbenzene, alkylnaphthalene, and lubricating base oil produced by isomerizing GTL WAX. Of these synthetic oils, polyalphaolefins and esters are particularly preferred, and those combining these two are also suitably used as synthetic oils.

本発明においては、潤滑油基油として、鉱油を一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、合成油を一種用いてもよく、二種以上を組み合わせて用いてもよい。更には、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。
また、(A)潤滑油基油は、潤滑油組成物において主成分となるものであり、潤滑油組成物全量に対して、通常、50質量%以上、好ましくは60〜97質量%、より好ましくは65〜95質量%含有される。
In the present invention, as the lubricating base oil, mineral oil may be used alone or in combination of two or more. In addition, one kind of synthetic oil may be used, or two or more kinds may be used in combination. Further, one or more mineral oils and one or more synthetic oils may be used in combination.
Further, (A) the lubricating base oil is a main component in the lubricating oil composition, and is usually 50% by mass or more, preferably 60 to 97% by mass, more preferably based on the total amount of the lubricating oil composition. Is contained in an amount of 65 to 95% by mass.

(A)潤滑油基油の粘度については特に制限はないが、100℃における動粘度が、1.0〜20mm2/sの範囲であることが好ましく、1.5〜15mm2/sの範囲であることがより好ましく、2.0〜13mm2/sの範囲であることがさらに好ましい。本発明では、以上のように、(A)潤滑油基油の動粘度を比較的低粘度とすると、省燃費性能を実現しやすくなる。なお、本明細書において、動粘度は、後述する実施例に記載された方法により測定されるものである。
また、(A)潤滑油基油の粘度指数は、90以上であることが好ましく、95以上であることがより好ましく、100以上であることがさらに好ましい。潤滑油基油の粘度指数の上限値は、特に限定されないが、170以下であることが好ましく、160以下であることがより好ましく、150以下であることがさらに好ましい。
潤滑油基油の粘度指数が前記範囲であることにより、潤滑油組成物の粘度特性を良好にしやすくなる。なお、本明細書において、粘度指数は、後述する実施例に記載された方法により測定されるものである。
(A) No particular limitation is imposed on the viscosity of the lubricating base oil is a kinematic viscosity at 100 ° C. is preferably in the range of 1.0~20mm 2 / s, a range of 1.5 to 15 mm 2 / s It is more preferable that it is in the range of 2.0 to 13 mm 2 / s. In the present invention, as described above, when the kinematic viscosity of the (A) lubricating base oil is set to a relatively low viscosity, fuel saving performance is easily realized. In addition, in this specification, kinematic viscosity is measured by the method described in the Example mentioned later.
The viscosity index of the (A) lubricating base oil is preferably 90 or more, more preferably 95 or more, and even more preferably 100 or more. The upper limit value of the viscosity index of the lubricating base oil is not particularly limited, but is preferably 170 or less, more preferably 160 or less, and even more preferably 150 or less.
When the viscosity index of the lubricating base oil is within the above range, the viscosity characteristics of the lubricating oil composition are easily improved. In the present specification, the viscosity index is measured by the method described in Examples described later.

上記鉱油は、環分析によるパラフィン分(%CP)が60%以上であることが好ましく、65%以上であることがより好ましい。パラフィン分を60%以上とすることで、基油の酸化安定性が良好になり、潤滑油組成物における塩基価の低下及びコーキングの発生を抑制する。なお、パラフィン分(%CP)の測定は後述するとおりである。 The mineral oil preferably has a paraffin content (% C P ) by ring analysis of 60% or more, and more preferably 65% or more. By making the paraffin content 60% or more, the oxidation stability of the base oil is improved, and the reduction of the base number and the occurrence of coking in the lubricating oil composition are suppressed. The measurement of the paraffin content (% C P ) is as described later.

[(B)ホウ素含有コハク酸イミド]
本発明で使用される(B)ホウ素含有コハク酸イミドとしては、アルケニル又はアルキルコハク酸モノイミドのホウ素化物、アルケニル又はアルキルコハク酸ビスイミドのホウ素化物が挙げられる。アルケニル又はアルキルコハク酸モノイミドとしては、例えば、下記一般式(1)で示される化合物が挙げられる。また、アルケニル又はアルキルコハク酸ビスイミドとしては、例えば、下記一般式(2)で示される化合物が挙げられる。本発明では、(B)成分を配合することで組成物の清浄性が良好になる。また、(C)成分とともに使用することで、コーキングの発生及び銅溶出を抑制することが可能になる。
[(B) Boron-containing succinimide]
Examples of the boron-containing succinimide (B) used in the present invention include borides of alkenyl or alkyl succinic monoimide and alkenyl or alkyl succinic acid bisimide. Examples of the alkenyl or alkyl succinic acid monoimide include compounds represented by the following general formula (1). Moreover, as an alkenyl or alkyl succinic acid bisimide, the compound shown by following General formula (2) is mentioned, for example. In this invention, the cleanliness of a composition becomes favorable by mix | blending (B) component. Moreover, it becomes possible to suppress generation | occurrence | production of coking and copper elution by using with (C) component.

上記式(1)及び式(2)において、R1、R3及びR4は、アルケニル基又はアルキル基であり、重量平均分子量が、それぞれ、好ましくは500〜3,000、より好ましくは1,000〜3,000である。
上記したR1、R3及びR4の重量平均分子量が500以上であると、基油への溶解性を良好にできる。また、3,000以下であると、本化合物により得られる効果を適切に発揮することが期待される。R3及びR4は同一でも異なっていてもよい。
2、R5及びR6は、それぞれ炭素数2〜5のアルキレン基であり、R5及びR6は同一でも異なっていてもよい。mは1〜10の整数を示し、nは0又は1〜10の整数を示す。ここで、mは、好ましくは2〜5、より好ましくは3〜4である。mが2以上であると、本化合物により得られる効果を適切に発揮することが期待される。mが5以下であると、基油に対する溶解性がより一層良好となる。
上記式(2)において、nは好ましくは1〜4であり、より好ましくは2〜3である。nが1以上であると、本化合物により得られる効果を適切に発揮することが期待される。nが4以下であると、基油に対する溶解性がより一層良好となる。
In the above formulas (1) and (2), R 1 , R 3 and R 4 are an alkenyl group or an alkyl group, and the weight average molecular weights are preferably 500 to 3,000, more preferably 1, respectively. 000 to 3,000.
When the weight average molecular weight of R 1 , R 3 and R 4 is 500 or more, the solubility in the base oil can be improved. Moreover, when it is 3,000 or less, it is expected that the effect obtained by the present compound is appropriately exhibited. R 3 and R 4 may be the same or different.
R 2 , R 5 and R 6 are each an alkylene group having 2 to 5 carbon atoms, and R 5 and R 6 may be the same or different. m represents an integer of 1 to 10, and n represents 0 or an integer of 1 to 10. Here, m is preferably 2 to 5, more preferably 3 to 4. When m is 2 or more, it is expected that the effect obtained by the present compound is appropriately exhibited. When m is 5 or less, the solubility in the base oil is further improved.
In said formula (2), n becomes like this. Preferably it is 1-4, More preferably, it is 2-3. When n is 1 or more, it is expected that the effect obtained by the present compound is appropriately exhibited. When n is 4 or less, the solubility in the base oil is further improved.

アルケニル基としては、例えば、ポリブテニル基、ポリイソブテニル基、エチレン−プロピレン共重合体を挙げることができ、アルキル基としてはこれらを水添したものが挙げられる。好適なアルケニル基としては、ポリブテニル基又はポリイソブテニル基が挙げられる。ポリブテニル基は、1−ブテンとイソブテンの混合物あるいは高純度のイソブテンを重合させたものが好適に用いられる。また、好適なアルキル基の代表例としては、ポリブテニル基又はポリイソブテニル基を水添したものが挙げられる。   Examples of the alkenyl group include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer, and examples of the alkyl group include those obtained by hydrogenation thereof. Suitable alkenyl groups include polybutenyl or polyisobutenyl groups. As the polybutenyl group, a mixture of 1-butene and isobutene or a polymer obtained by polymerizing high-purity isobutene is preferably used. A representative example of a suitable alkyl group is a hydrogenated polybutenyl group or polyisobutenyl group.

(B)ホウ素含有コハク酸イミドは、従来公知の方法で製造可能である。例えば、ポリオレフィンを無水マレイン酸と反応させてアルケニルコハク酸無水物とした後、更にポリアミンと酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物、ホウ酸エステル、ホウ酸のアンモニウム塩等のホウ素化合物を反応させて得られる中間体と反応させてイミド化させることによって得られる。モノイミド又はビスイミドは、アルケニルコハク酸無水物若しくはアルキルコハク酸無水物とポリアミンとの比率を変えることによって製造することが可能である。
また、(B)ホウ素含有コハク酸イミドは、ホウ素未含有のアルケニル又はアルキルコハク酸モノイミドや、アルケニル又はアルキルコハク酸ビスイミドを、上記ホウ素化合物で処理して得てもよい。
(B) The boron-containing succinimide can be produced by a conventionally known method. For example, after reacting polyolefin with maleic anhydride to make alkenyl succinic anhydride, polyamine and boron oxide, boron halide, boron halide, boric acid, boric anhydride, boric acid ester, boric acid ammonium salt, etc. It is obtained by reacting with an intermediate obtained by reacting a compound and imidizing. Monoimides or bisimides can be made by changing the ratio of alkenyl succinic anhydride or alkyl succinic anhydride to polyamine.
Further, (B) the boron-containing succinimide may be obtained by treating boron-free alkenyl or alkyl succinic monoimide or alkenyl or alkyl succinic acid bisimide with the boron compound.

上記したポリオレフィンを形成するオレフィン単量体としては、炭素数2〜8のα−オレフィンの1種又は2種以上を混合して用いることができるが、イソブテンと1−ブテンの混合物を好適に用いることができる。
一方、ポリアミンとしては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン等の単一ジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、及びペンタペンチレンヘキサミン等のポリアルキレンポリアミン、アミノエチルピペラジン等のピペラジン誘導体を挙げることができる。
As the olefin monomer forming the above-mentioned polyolefin, one or two or more kinds of α-olefins having 2 to 8 carbon atoms can be mixed and used, but a mixture of isobutene and 1-butene is preferably used. be able to.
On the other hand, polyamines include single diamines such as ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, triethylene. And polyalkylene polyamines such as butylenetetramine and pentapentylenehexamine, and piperazine derivatives such as aminoethylpiperazine.

上記(B)成分は、組成物全量基準のホウ素量換算値で0.001〜0.1質量%含まれる。0.001質量%未満であると、コーキング及び銅溶出の発生を抑制しにくくなる。また、0.1質量%を超えると、沈殿を生じるなどその配合量に見合った効果を発揮しにくくなる。これら観点から、(B)成分の含有量は、組成物全量基準のホウ素量換算値で、より好ましくは、0.005〜0.08質量%であり、さらに好ましくは、0.010〜0.06質量%である。   The said (B) component is contained 0.001-0.1 mass% in the boron amount conversion value of composition whole quantity reference | standard. When it is less than 0.001% by mass, it becomes difficult to suppress the occurrence of coking and copper elution. Moreover, when it exceeds 0.1 mass%, it will become difficult to exhibit the effect corresponding to the compounding quantity, such as producing precipitation. From these viewpoints, the content of the component (B) is a converted value of boron based on the total amount of the composition, more preferably 0.005 to 0.08% by mass, and still more preferably 0.010 to 0.0. 06% by mass.

また、(B)成分におけるホウ素と窒素の質量比(B/N比)は、0.8以上であることが好ましく、1.0以上が好ましく、1.1以上であることが好ましい。B/N比の上限値は特に限定されないが、2.0以下であることが好ましく、1.5以下であることがより好ましく、1.3以下であることがさらに好ましい。B/N比を上記範囲とすることで、本化合物により得られる効果を適切に発揮しやすくなる。
なお、(B)成分の含有量は、上記ホウ素量換算値が上記範囲内となるような量であればよいが、組成物全量基準で、通常0.1〜10質量%程度、好ましくは0.5〜5質量%、より好ましくは1〜4質量%である。
Further, the mass ratio (B / N ratio) of boron and nitrogen in the component (B) is preferably 0.8 or more, preferably 1.0 or more, and preferably 1.1 or more. The upper limit of the B / N ratio is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less, and even more preferably 1.3 or less. By making B / N ratio into the said range, it becomes easy to exhibit the effect acquired by this compound appropriately.
In addition, although content of (B) component should just be the quantity which the said boron amount conversion value becomes in the said range, it is about 0.1-10 mass% normally on the basis of the composition whole quantity, Preferably it is 0. 0.5 to 5% by mass, more preferably 1 to 4% by mass.

[(C)ポリ(メタ)アクリレート]
本発明の潤滑油組成物に含有される(C)ポリ(メタ)アクリレートは、重量平均分子量をMwとし、13C−NMRで測定したアルキル基の平均炭素数をXとすると、Mwが10万〜70万であるとともに、Mw/Xが3万以上となるポリ(メタ)アクリレートである。
なお、Mw、Xの測定方法は、後述する実施例のとおりであるが、アルキル基とは、ポリ(メタ)アクリレートに存在する全てのアルキル基を意味し、例えば後述する一般式(3)ではR7及びR8を意味し、また、(メタ)アクリレートのCOO−に別の置換基を介してアルキル基が結合される場合には、そのようなアルキル基も含むものとする。また、平均炭素数とは、算術平均値を意味する。
[(C) Poly (meth) acrylate]
The (C) poly (meth) acrylate contained in the lubricating oil composition of the present invention has a weight average molecular weight of Mw and an average carbon number of alkyl groups measured by 13 C-NMR of X, Mw is 100,000. A poly (meth) acrylate having a Mw / X of 30,000 or more while being ˜700,000.
In addition, although the measuring method of Mw and X is as the Example mentioned later, an alkyl group means all the alkyl groups which exist in poly (meth) acrylate, for example in General formula (3) mentioned later, R 7 and R 8 are meant, and when an alkyl group is bonded to COO— of (meth) acrylate via another substituent, such an alkyl group is also included. The average carbon number means an arithmetic average value.

本発明では、上記(B)成分に加えて、(C)成分が含有されることで、潤滑油組成物への銅の溶出やコーキングの発生がバランスよく抑制される。その原理は定かではないが、以下のように推定される。ポリ(メタ)アクリレート(以下、「PMA」ともいう)は、一部分が分解等により銅と錯体を形成して、エンジンの軸受け部等の部品の合金から銅を溶出させることがあると推定している。PMAが互いに絡みやすい構造となると、PMAのエンジン金属表面への付着量が低減され、結果として銅の溶出が抑えられる。また、PMAは、分解すると反応性が上がり、そのことが要因となって、コーキングや銅の溶出を発生せやすくなる。本発明では、上記(B)成分の作用により、PMAの絡みやすさが促進されるとともに、PMAの分解が抑えられ、それにより、潤滑油組成物への銅の溶出やコーキングの発生がバランスよく抑制される。   In this invention, in addition to the said (B) component, (C) component contains, The elution of copper to a lubricating oil composition and generation | occurrence | production of coking are suppressed with sufficient balance. The principle is not clear, but is estimated as follows. Poly (meth) acrylate (hereinafter also referred to as “PMA”) is estimated to partly form a complex with copper due to decomposition or the like, and may elute copper from alloys of parts such as engine bearings. Yes. When PMA has a structure in which the PMAs are easily entangled with each other, the amount of PMA attached to the engine metal surface is reduced, and as a result, elution of copper is suppressed. Moreover, when PMA is decomposed, the reactivity increases, and this causes a tendency to cause coking and copper elution. In the present invention, the action of the component (B) promotes the ease of entanglement of PMA and suppresses the decomposition of PMA, thereby balancing the elution of copper into the lubricating oil composition and the occurrence of coking. It is suppressed.

本発明では、MwとPMAの側鎖のアルキル基の大きさのバランスが重要であり、小さいアルキル基を側鎖に多数有する場合には、比較的低いMwでもPMAが絡みやすい一方で、大きいアルキル基を側鎖に一定割合以上有する場合、比較的高いMwでもPMAが絡みにくくなると推定される。更には、大きいアルキル基を側鎖に一定割合以上有し、比較的高いMwの場合、PMAは絡みにくくなるものの、PMAの分解が発生しやすいと推定される。したがって、Mw/Xが3万未満となると、エンジン金属表面へのPMAの付着を十分に低減できず、さらにはPMAの分解が生じやすくなり、銅の溶出やコーキングの発生を抑制できにくくなる。
また、Mwが一定範囲にあると、側鎖のアルキル基がある程度の大きさを有するものが多くあってもPMAの反応性が小さくなる一方で、Mwが70万を超えると、側鎖に小さいアルキル基が多数あってもPMAの反応性が大きくなると推定され、コーキングや銅の溶出を発生させやすくなる。また、分子量が10万未満では、側鎖に小さいアルキル基が多くあっても絡みにくくなると推定され、銅の溶出を十分に抑えることができない。
また、Mwと、Mw/Xが一定の範囲にある(C)成分が含有されることで、酸化安定性が高まり塩基価の低下を抑制することができる。
In the present invention, the balance of the size of the alkyl groups in the side chain of Mw and PMA is important. When there are a large number of small alkyl groups in the side chain, PMA tends to be entangled even at a relatively low Mw, When the group has a certain proportion or more in the side chain, it is presumed that PMA is difficult to be entangled even with a relatively high Mw. Furthermore, when a large alkyl group is present in the side chain at a certain ratio or higher and the Mw is relatively high, it is estimated that PMA is likely to be decomposed although PMA is less likely to be entangled. Therefore, when Mw / X is less than 30,000, adhesion of PMA to the engine metal surface cannot be sufficiently reduced, and further, PMA is easily decomposed, and it becomes difficult to suppress copper elution and coking.
In addition, when Mw is within a certain range, the reactivity of PMA becomes small even when there are many side chain alkyl groups having a certain size, while when Mw exceeds 700,000, the side chain is small. Even if there are a large number of alkyl groups, the reactivity of PMA is presumed to increase, and coking and copper elution are likely to occur. In addition, when the molecular weight is less than 100,000, it is estimated that even if there are many small alkyl groups in the side chain, it is difficult to get entangled, and copper elution cannot be sufficiently suppressed.
Moreover, oxidation stability increases and it can suppress the fall of a base number by containing (C) component which has Mw and Mw / X in a fixed range.

銅の溶出やコーキングの発生をバランスよく抑制するには、Mw/Xは3万〜20万であることが好ましく、3万〜13万であることがより好ましく、銅の溶出をより適切に抑える観点からは3万〜10万であることがさらに好ましい。
また重量平均分子量(Mw)は、10万〜70万であることが好ましく、15万〜60万であることがより好ましく、18万〜55万であることがさらに好ましい。
In order to suppress copper elution and coking in a well-balanced manner, Mw / X is preferably 30,000 to 200,000, more preferably 30,000 to 130,000, and suppresses copper elution more appropriately. From a viewpoint, it is more preferable that it is 30,000-100,000.
The weight average molecular weight (Mw) is preferably 100,000 to 700,000, more preferably 150,000 to 600,000, and further preferably 180,000 to 550,000.

(C)ポリ(メタ)アクリレートは、好ましくは、下記一般式(3)で表される(メタ)アクリレートモノマーを含む重合性モノマーの重合体である。
一般式(3)中、R7は水素またはメチル基を示し、R8は炭素数1〜200の直鎖状または分枝状のアルキル基を示す。R8は、好ましくは炭素数1〜40のアルキル基、より好ましくは炭素数1〜28のアルキル基、さらに好ましくは炭素数1〜25のアルキル基である。
一般式(3)において、R8は、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、及びオクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基、ヘントリアコンチル基、ドトリアコンチル基、トリトリアコンチル基、テトラコンチル基、ペンタトリアコンチル基、ヘキサトリコンチル基、オクタトリアコンチル基、テトラコンチル基等が例示でき、これらは直鎖状でも分枝状でもよい。
(C) The poly (meth) acrylate is preferably a polymer of a polymerizable monomer containing a (meth) acrylate monomer represented by the following general formula (3).
In the general formula (3), R 7 represents hydrogen or a methyl group, and R 8 represents a linear or branched alkyl group having 1 to 200 carbon atoms. R 8 is preferably an alkyl group having 1 to 40 carbon atoms, more preferably an alkyl group having 1 to 28 carbon atoms, and still more preferably an alkyl group having 1 to 25 carbon atoms.
In the general formula (3), R 8 is specifically methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. Group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group Nonacosyl group, triacontyl group, hentriacontyl group, dotriacontyl group, tritriacontyl group, tetracontyl group, pentatriacontyl group, hexatricontyl group, octatriacontyl group, tetracontyl group, etc. Whether chain or branched There.

本発明では、(C)成分は、非分散型であることが好ましい。非分散型ポリ(メタ)アクリレートとしては、具体的には、一般式(3)で表されるモノマーの1種の単独重合体または2種以上の共重合により得られるポリ(メタ)アクリレートが挙げられる。
ただし、(C)ポリ(メタ)アクリレートは、分散型ポリ(メタ)アクリレートであってもよい。分散型ポリ(メタ)アクリレートとしては、一般式(3)で表されるモノマーと、下記一般式(4)および(5)から選ばれる1種以上のモノマーを共重合させたものが挙げられる。
In the present invention, the component (C) is preferably non-dispersed. Specific examples of the non-dispersed poly (meth) acrylate include a single homopolymer of the monomer represented by the general formula (3) or a poly (meth) acrylate obtained by copolymerization of two or more types. It is done.
However, (C) poly (meth) acrylate may be dispersed poly (meth) acrylate. Examples of the dispersion type poly (meth) acrylate include those obtained by copolymerizing a monomer represented by the general formula (3) and one or more monomers selected from the following general formulas (4) and (5).

一般式(4)中、R9は水素原子またはメチル基を示し、R10は炭素数1〜28のアルキレン基を示し、E1は窒素原子を1〜2個、酸素原子を0〜2個含有するアミン残基または複素環残基を示し、aは0または1を示す。 In General Formula (4), R 9 represents a hydrogen atom or a methyl group, R 10 represents an alkylene group having 1 to 28 carbon atoms, E 1 represents 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. An amine residue or a heterocyclic residue to be contained is shown, and a represents 0 or 1.

一般式(5)中、R11は水素原子またはメチル基を示し、E2は窒素原子を1〜2個、酸素原子を0〜2個含有するアミン残基または複素環残基を示す。 In the general formula (5), R 11 represents a hydrogen atom or a methyl group, and E 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.

1およびE2で表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、およびピラジノ基等が例示できる。 Specific examples of the group represented by E 1 and E 2 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, and a benzoylamino group. Morpholino group, pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group and the like.

一般式(4)(5)で示されるモノマーの好ましい例としては、具体的には、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2−メチル−5−ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N−ビニルピロリドンおよびこれらの混合物等が例示できる。
一般式(3)で示されるモノマー(M1)と、一般式(4)及び/又は(5)で示されるモノマー(M2)との共重合体の共重合モル比については特に制限はないが、M1:M2=99:1〜80:20程度が好ましく、より好ましくは98:2〜85:15、さらに好ましくは95:5〜90:10である。
Preferable examples of the monomer represented by the general formulas (4) and (5) include dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, Examples thereof include morpholinomethyl methacrylate, morpholinoethyl methacrylate, N-vinylpyrrolidone and a mixture thereof.
There is no particular limitation on the copolymerization molar ratio of the copolymer of the monomer (M1) represented by the general formula (3) and the monomer (M2) represented by the general formula (4) and / or (5), M1: M2 is preferably about 99: 1 to 80:20, more preferably 98: 2 to 85:15, and still more preferably 95: 5 to 90:10.

本発明の(C)成分は、上記一般式(3)で示されるモノマーが、(C)成分を構成する全モノマー成分中の70質量%であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが好ましい。
また、(C)成分は、上記一般式(3)〜(5)以外のモノマー由来の構成単位を本発明の目的に反しない範囲で含んでいてもよい。通常そのようなモノマー成分は、全モノマー成分中の10質量%以下程度である。
In the component (C) of the present invention, the monomer represented by the general formula (3) is preferably 70% by mass in the total monomer components constituting the component (C), and 85% by mass or more. More preferably, it is 90 mass% or more.
Moreover, (C) component may contain the structural unit derived from monomers other than the said General Formula (3)-(5) in the range which is not contrary to the objective of this invention. Usually, such a monomer component is about 10% by mass or less based on the total monomer components.

上記(C)成分は、より具体的には、アルキル基の炭素数が1〜4のアルキル(メタ)アクリレートモノマーと、アルキル基の炭素数が12〜40のアルキル(メタ)アクリレートモノマーとを少なくとも共重合したもの、又はアルキル基の炭素数が1〜4のアルキル(メタ)アクリレートモノマーと、アルキル基の炭素数が5〜11のアルキル(メタ)アクリレートモノマーと、アルキル基の炭素数が12〜40のアルキル(メタ)アクリレートモノマーとを少なくとも共重合したものが挙げられる。これらの中では好ましくは、アルキル基の炭素数が1〜4のアルキル(メタ)アクリレートモノマーと、アルキル基の炭素数が12〜40のアルキル(メタ)アクリレートモノマーを少なくとも共重合したものが挙げられ、より好ましくはメチル(メタ)アクリレートモノマーとアルキル基の炭素数が16〜25のアルキル(メタ)アクリレートモノマーとを少なくとも共重合するものが挙げられる。   More specifically, the component (C) includes at least an alkyl (meth) acrylate monomer having an alkyl group having 1 to 4 carbon atoms and an alkyl (meth) acrylate monomer having an alkyl group having 12 to 40 carbon atoms. Copolymerized or alkyl (meth) acrylate monomer having 1 to 4 carbon atoms in the alkyl group, alkyl (meth) acrylate monomer having 5 to 11 carbon atoms in the alkyl group, and 12 to 12 carbon atoms in the alkyl group Examples include those obtained by copolymerizing at least 40 alkyl (meth) acrylate monomers. Among these, an alkyl (meth) acrylate monomer having an alkyl group having 1 to 4 carbon atoms and an alkyl (meth) acrylate monomer having an alkyl group having 12 to 40 carbon atoms are preferably copolymerized at least. More preferably, a copolymer of at least a methyl (meth) acrylate monomer and an alkyl (meth) acrylate monomer having an alkyl group having 16 to 25 carbon atoms is used.

(C)ポリ(メタ)アクリレートの含有量は、組成物全量基準で0.1〜30質量%である。0.1質量%未満であると、塩基価の低下、コーキングの発生及び銅溶出の発生をバランスよく抑制することが難しくなる。30質量%を超えると、その含有量に見合った効果を発揮しにくくなる。上記(C)成分の含有量は、好ましくは0.3〜25質量%であり、より好ましくは0.5〜10質量%である。なお、(C)成分の含有量は、その樹脂分の含有量を意味する。   (C) Content of poly (meth) acrylate is 0.1-30 mass% on the composition whole quantity basis. If it is less than 0.1% by mass, it will be difficult to balance the reduction in base number, the occurrence of coking and the elution of copper. When it exceeds 30 mass%, it will become difficult to exhibit the effect corresponding to the content. Content of the said (C) component becomes like this. Preferably it is 0.3-25 mass%, More preferably, it is 0.5-10 mass%. In addition, content of (C) component means content of the resin part.

[(D)ジチオリン酸亜鉛]
本発明の潤滑油組成物は、(D)ジチオリン酸亜鉛を含有していてもよい。(D)ジチオリン酸亜鉛を含有することで、耐磨耗防止性を良好にしつつ、酸化安定性も良好にすることができる。ジチオリン酸亜鉛としては、下記の一般式(6)で表される化合物が挙げられる。
[(D) Zinc dithiophosphate]
The lubricating oil composition of the present invention may contain (D) zinc dithiophosphate. (D) By containing zinc dithiophosphate, it is possible to improve oxidation resistance while improving wear resistance. Examples of zinc dithiophosphate include compounds represented by the following general formula (6).

一般式(6)中のR12、R13、R14及びR15は、それぞれ独立に炭素数1〜24の炭化水素基を示す。これら炭化水素基としては、炭素数1〜24の直鎖状又は分枝状のアルキル基、炭素数3〜24の直鎖状又は分枝状のアルケニル基、炭素数5〜13のシクロアルキル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6〜18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基、及び炭素数7〜19のアリールアルキル基のいずれかであるが、これらの中ではアルキル基が好ましい。
ジチオリン酸亜鉛として、具体的にはジアルキルジチオリン酸亜鉛が好ましく、中でも第2級ジアルキルジチオリン酸亜鉛が好ましい。
ジチオリン酸亜鉛の含有量は、組成物全量に対して、リン量換算で0.005〜0.30質量%であることがより好ましく、0.01〜0.15質量%であることがさらに好ましい。上記範囲内とすることで、清浄性、耐コーキング性に影響を与えることなく、潤滑油組成物の耐磨耗防止性及び酸化安定性を良好にできる。
R < 12 >, R < 13 >, R < 14 > and R < 15 > in General formula (6) show a C1-C24 hydrocarbon group each independently. Examples of these hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkenyl groups having 3 to 24 carbon atoms, and cycloalkyl groups having 5 to 13 carbon atoms. Or a linear or branched alkylcycloalkyl group, an aryl group having 6 to 18 carbon atoms, or a linear or branched alkylaryl group, and an arylalkyl group having 7 to 19 carbon atoms. Of these, alkyl groups are preferred.
Specifically, zinc dialkyldithiophosphate is preferable as zinc dithiophosphate, and secondary zinc dialkyldithiophosphate is particularly preferable.
The content of zinc dithiophosphate is more preferably 0.005 to 0.30% by mass, and further preferably 0.01 to 0.15% by mass in terms of phosphorus with respect to the total amount of the composition. . By setting it within the above range, the antiwear property and oxidation stability of the lubricating oil composition can be improved without affecting cleanliness and coking resistance.

[(E)金属系清浄剤]
潤滑油組成物は、さらにアルカリ金属系清浄剤又はアルカリ土類金属系清浄剤からなる(E)金属系清浄剤を含有していてもよい。(E)金属系清浄剤を含有することで、清浄性を良好にしつつ、塩基価低下、及びコーキングや銅溶出の発生を抑えやすくなる。
具体的には、アルカリ金属スルホネート又はアルカリ土類金属スルホネート、アルカリ金属フェネート又はアルカリ土類金属フェネート、アルカリ金属サリシレート又はアルカリ土類金属サリシレート等の中から選ばれる1種以上の金属系清浄剤が挙げられる。また、アルカリ金属としてはナトリウム、カリウム、アルカリ土類金属としてはマグネシウム、カルシウムが挙げられ、アルカリ金属であるナトリウム、アルカリ土類金属であるマグネシウム、カルシウムが好適に用いられ、カルシウムがさらに好ましい。
[(E) Metal-based detergent]
The lubricating oil composition may further contain (E) a metal detergent comprising an alkali metal detergent or an alkaline earth metal detergent. (E) By containing a metal-type detergent, it becomes easy to suppress a base number fall and generation | occurrence | production of coking and copper elution, improving a cleanliness | purity.
Specific examples include one or more metal detergents selected from alkali metal sulfonates or alkaline earth metal sulfonates, alkali metal phenates or alkaline earth metal phenates, alkali metal salicylates, alkaline earth metal salicylates, and the like. It is done. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include magnesium and calcium. The alkali metal sodium, the alkaline earth metal magnesium and calcium are preferably used, and calcium is more preferable.

これらのアルカリ金属系清浄剤又はアルカリ土類金属系清浄剤は、中性、塩基性、過塩基性のいずれであっても良いが、塩基性や過塩基性のものが好ましく、その全塩基価は10〜500mgKOH/gが好ましく、150〜450mgKOH/gのものを使用することがより好ましい。なお、全塩基価は、JIS K−2501の過塩素酸法に従って測定したものである。
(E)金属系清浄剤は、例えば、150〜450mgKOH/gのものを単独使用してもよいが、全塩基価150〜450mgKOH/gのアルカリ金属系清浄剤又はアルカリ土類金属系清浄剤と、5〜100mgKOH/gのアルカリ金属系清浄剤又はアルカリ土類金属系清浄剤を併用してもよい。
(E)金属系清浄剤の含有量は、組成物全量に対して、金属量換算で0.05〜0.5質量%であることが好ましく、0.1〜0.3質量%であることがより好ましい。これら下限値以上含有させることで、塩基価低下や、コーキング及び銅溶出の発生をより抑制しやすくなる。また、上限値以下とすることで含有量に見合った効果を発揮することが可能になる。
潤滑油組成物は、組成物全量基準で(D)ジチオリン酸亜鉛をリン量換算で0.01〜0.15質量%含有し、かつ(E)金属系清浄剤を金属量換算で0.1〜0.3質量%含有することがより好ましい。
These alkali metal detergents or alkaline earth metal detergents may be neutral, basic, or overbased, but are preferably basic or overbased, and their total base number Is preferably 10 to 500 mgKOH / g, more preferably 150 to 450 mgKOH / g. The total base number is measured in accordance with the perchloric acid method of JIS K-2501.
(E) The metal detergent may be, for example, 150 to 450 mgKOH / g alone, but with an alkali metal detergent or alkaline earth metal detergent having a total base number of 150 to 450 mgKOH / g 5-100 mg KOH / g alkali metal detergent or alkaline earth metal detergent may be used in combination.
(E) The content of the metal-based detergent is preferably 0.05 to 0.5% by mass and 0.1 to 0.3% by mass in terms of the metal amount with respect to the total amount of the composition. Is more preferable. By containing more than these lower limits, it becomes easier to suppress the base number decrease, coking and copper elution. Moreover, it becomes possible to exhibit the effect corresponding to content by setting it as below an upper limit.
The lubricating oil composition contains 0.01 to 0.15% by mass of (D) zinc dithiophosphate in terms of phosphorus based on the total amount of the composition, and (E) 0.1 wt. It is more preferable to contain -0.3 mass%.

[その他の成分]
潤滑油組成物は、(B)ホウ素含有コハク酸イミドに加えて、ホウ素非含有コハク酸イミドを含有していていもよい。ホウ素非含有コハク酸イミドは、ホウ素を含有しないアルケニルコハク酸イミド及び/又はアルキルコハク酸イミドである。アルケニルコハク酸イミド及び/又はアルキルコハク酸イミドとしては、上記したアルケニル又はアルキルコハク酸モノイミド、又はアルケニル又はアルキルコハク酸ビスイミドが挙げられる。
ホウ素非含有コハク酸イミドは、特に限定されないが、組成物全量基準で、通常0.1〜10質量%程度、好ましくは0.5〜5質量%程度である。
[Other ingredients]
The lubricating oil composition may contain boron-free succinimide in addition to (B) boron-containing succinimide. The boron-free succinimide is an alkenyl succinimide and / or an alkyl succinimide that does not contain boron. Examples of alkenyl succinimide and / or alkyl succinimide include alkenyl or alkyl succinic acid monoimide or alkenyl or alkyl succinic acid bisimide.
The boron-free succinimide is not particularly limited, but is usually about 0.1 to 10% by mass, preferably about 0.5 to 5% by mass based on the total amount of the composition.

潤滑油組成物は、さらに、酸化防止剤を含有していてもよい。酸化防止剤としては、アミン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、モリブデンアミン錯体系酸化防止剤等が挙げられ、これらのなかではアミン系酸化防止剤、フェノール系酸化防止剤が好ましい。これらは、従来潤滑油の酸化防止剤として使用されている公知の酸化防止剤の中から、任意のものを適宜選択して用いることができる。
アミン系酸化防止剤としては、例えばジフェニルアミン、炭素数3〜20のアルキル基を有するジアルキルジフェニルアミン等のジフェニルアミン系のもの;α−ナフチルアミン、炭素数3〜20のアルキル置換フェニル−α−ナフチルアミンなどのナフチルアミン系のものが挙げられる。
また、フェノール系酸化防止剤としては、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートなどのモノフェノール系のもの;4,4'−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2'−メチレンビス(4−エチル−6−tert−ブチルフェノール)などのジフェノール系のもの等を挙げられる。
また硫黄系酸化防止剤としてジラウリル−3,3'−チオジプロピオネイト等、リン系酸化防止剤としてはホスファイト等が挙げられる。
モリブデンアミン錯体系酸化防止剤としては、6価のモリブデン化合物、具体的には三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるもの、例えば、特開2003−252887号公報に記載の製造方法で得られる化合物を用いることができる。
これらの酸化防止剤は単独で又は複数種を任意に組合せて含有させることができるが、通常2種以上を組み合わせて使用するのが好ましい。
酸化防止剤の含有量は、組成物全量基準で0.01〜10質量%程度が好ましく、0.1〜5質量%程度が好ましい。
The lubricating oil composition may further contain an antioxidant. Antioxidants include amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, molybdenum-amine complex-based antioxidants, and among these, amine-based antioxidants Agents and phenolic antioxidants are preferred. These can be arbitrarily selected from known antioxidants conventionally used as antioxidants for lubricating oils.
Examples of amine-based antioxidants include diphenylamines and diphenylamines such as dialkyldiphenylamines having an alkyl group having 3 to 20 carbon atoms; naphthylamines such as α-naphthylamine and alkyl-substituted phenyl-α-naphthylamines having 3 to 20 carbon atoms. The one of the system is mentioned.
Examples of the phenolic antioxidant include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl-3- (3,5 Monophenols such as -di-tert-butyl-4-hydroxyphenyl) propionate; 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl- 6-tert-butylphenol) and the like.
Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, and examples of the phosphorus-based antioxidant include phosphite.
As the molybdenum amine complex-based antioxidant, a hexavalent molybdenum compound, specifically, a product obtained by reacting molybdenum trioxide and / or molybdic acid with an amine compound, for example, described in JP-A-2003-252887. The compound obtained by the production method can be used.
These antioxidants can be contained alone or in any combination of two or more kinds, but it is usually preferable to use two or more kinds in combination.
The content of the antioxidant is preferably about 0.01 to 10% by mass, and preferably about 0.1 to 5% by mass based on the total amount of the composition.

潤滑油組成物は、さらに、上記以外の摩擦調整剤及び耐摩耗剤の中から選ばれた少なくとも1種の添加剤を含有してもよい。
具体的には、例えば硫化オレフィン、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、ジアリールポリスルフィドなどの硫黄系化合物、リン酸エステル、チオリン酸エステル、亜リン酸エステル、アルキルハイドロゲンホスファイト、リン酸エステルアミン塩、亜リン酸エステルアミン塩などのリン系化合物、ジチオカルバミン酸亜鉛(ZnDTC)、硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)、硫化オキシモリブデンジチオカルバメート(MoDTC)などの有機金属系化合物、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ウレア系化合物、ヒドラジド系化合物などの無灰系摩擦調整剤などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中では省燃費性の観点から、硫化オキシモリブデンジチオカルバメートを使用することが好ましい。これらの摩擦調整剤及び耐摩耗剤の含有量は、組成物全量基準で0.01〜8質量%程度が好ましく、0.1〜5質量%がより好ましい。
また、潤滑油組成物は、さらに、流動点降下剤、金属不活性化剤、流動点降下剤、消泡剤等の成分を含有してもよい。
The lubricating oil composition may further contain at least one additive selected from friction modifiers and antiwear agents other than those described above.
Specifically, sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphoric acid esters, thiophosphoric acid esters, phosphorous acid esters, alkyl hydrogen phosphites, phosphoric acid ester amine salts, phosphorous acid compounds. Phosphorus compounds such as acid ester amine salts, zinc dithiocarbamate (ZnDTC), sulfurized oxymolybdenum organophosphorodithioate (MoDTP), organometallic compounds such as sulfurized oxymolybdenum dithiocarbamate (MoDTC), amine compounds, fatty acid esters, Examples include ashless friction modifiers such as fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, urea compounds, and hydrazide compounds. These may be used individually by 1 type and may be used in combination of 2 or more type.
Among these, it is preferable to use sulfurized oxymolybdenum dithiocarbamate from the viewpoint of fuel economy. The content of these friction modifiers and antiwear agents is preferably about 0.01 to 8% by mass, more preferably 0.1 to 5% by mass based on the total amount of the composition.
The lubricating oil composition may further contain components such as a pour point depressant, a metal deactivator, a pour point depressant, and an antifoaming agent.

本発明の潤滑油組成物の100℃における動粘度は、特に限定されないが、通常2〜25mm2/s程度であり、好ましくは3〜22mm2/s、さらに好ましくは4〜17mm2/sである。このように組成物を低粘度とすることで、省燃費性を向上させやすくなる。また、潤滑油組成物の粘度指数は、150以上であることが好ましく、170〜300程度であることがより好ましく、180〜250程度であることがさらに好ましい。 The kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is not particularly limited, but is usually about 2 to 25 mm 2 / s, preferably 3 to 22 mm 2 / s, more preferably 4 to 17 mm 2 / s. is there. Thus, it becomes easy to improve fuel-saving property by making a composition into low viscosity. The viscosity index of the lubricating oil composition is preferably 150 or more, more preferably about 170 to 300, and further preferably about 180 to 250.

本発明の潤滑油組成物は、四輪自動車、二輪自動車等の各種の内燃機関用に使用される内燃機関用潤滑油組成物である。自動車においてストップアンドゴーを繰り返す市街地運転を、例えば高出力化が可能なターボ機構搭載エンジンで行うと、内燃機関で使用される潤滑油組成物にコーキング及び銅溶出が生じやすくなるが、本発明の潤滑油組成物は、コーキング及び銅溶出をバランスよく抑制することが可能である。   The lubricating oil composition of the present invention is a lubricating oil composition for an internal combustion engine used for various internal combustion engines such as a four-wheeled vehicle and a two-wheeled vehicle. When urban driving that repeats stop-and-go in an automobile is performed with, for example, an engine equipped with a turbo mechanism capable of increasing output, coking and copper elution are likely to occur in the lubricating oil composition used in the internal combustion engine. The lubricating oil composition can suppress coking and copper elution in a balanced manner.

[潤滑油組成物の製造方法]
本発明の潤滑油組成物の製造方法は、(A)潤滑油基油に上記(B)及び(C)成分を配合して潤滑油組成物を製造するものである。また、本発明の潤滑油組成物の製造方法では、(B)、(C)成分以外にも、上記した(D)、(E)成分やその他の成分を潤滑油基油に配合してもよい。
(A)潤滑油基油の量、並びに上記(B)〜(E)成分,及びその他の成分が配合される量(配合量)は、上記した各成分の含有量と同様であればよく、また潤滑油組成物の性状や各成分の詳細についても、上記したとおりであるのでその記載は省略する。
本製造方法において、各成分は、いかなる方法で基油に配合されてもよく、その手法は限定されない。
なお、(B)及び(C)成分、さらには必要に応じて、(D)及び(E)成分、及びこれら以外の成分から選択される1以上の成分をさらに配合してなる潤滑油組成物は、通常、これら配合されたものを含有するものであるが、場合によっては、配合された添加剤の少なくとも一部は反応等して別の化合物となってもよい。
[Method for producing lubricating oil composition]
The method for producing a lubricating oil composition of the present invention is a method for producing a lubricating oil composition by blending the components (B) and (C) with the (A) lubricating base oil. Moreover, in the manufacturing method of the lubricating oil composition of the present invention, in addition to the components (B) and (C), the above components (D) and (E) and other components may be added to the lubricating base oil. Good.
(A) The amount of the lubricating base oil, and the amount (blending amount) in which the components (B) to (E) and other components are blended may be the same as the content of each component described above. Further, since the properties of the lubricating oil composition and details of each component are as described above, description thereof is omitted.
In this manufacturing method, each component may be blended with the base oil by any method, and the method is not limited.
In addition, (B) and (C) component, Furthermore, (D) and (E) component and the lubricating oil composition formed by further mix | blending one or more components selected from these other components as needed Usually contains these blends, but in some cases, at least a part of the blended additives may react to form another compound.

次に、本発明を、実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.

本明細書において、各物性の測定、及び潤滑油組成物の評価は、以下に示す要領に従って求めたものである。
(1)動粘度
JIS K2283に準じ、ガラス製毛管式粘度計を用いて測定した値である。
(2)粘度指数
JIS K 2283に準拠して測定した値である。
(3)NOACK蒸発量
JPI−5S−41に規定の方法に従って測定した値である。
(4)環分析によるパラフィン分(%CP
環分析n−d−M法にて算出したパラフィン分の割合(百分率)を示し、ASTM D−3238に従って測定されたものである。
(5)塩基価
JIS K2501に準拠して、過塩素酸法により測定したものである。
(6)ポリ(メタ)アクリレートの平均炭素数(X)
13C−NMRの化学シフトおよび積分値から算出した。具体的には、まず、アルキル基の積分値の合計と、各アルキル基の積分値から、各アルキル基の割合を求め、以下の式により算出した。
平均炭素数X=(各アルキル基の炭素数×各アルキル基の割合)の合計
なお、13C−NMRの測定条件は以下のとおりである。
装置:ECX-400P(日本電子社製) 溶媒:CDCl3
共鳴周波数:100MHz 測定モード ゲート付きデカップリング法
積算回数:2000〜5000 パルス遅延時間:25s
パルス幅:9.25us x−angle:90°
(7)ポリ(メタ)アクリレートの重量平均分子量(Mw)
重量平均分子量(Mw)は、以下の条件で測定され、ポリスチレンを検量線として得られる値であり、詳細には以下の条件で測定されるものである。
装置:アジレント社製1260型HPLC カラム:ShodexLF404×2本
溶媒:クロロホルム 温度:35℃
サンプル濃度:0.05% 検量線:ポリスチレン
検出器 示差屈折検出器
(8)ISOTによる劣化後の全塩基価及び塩基価減少率
JIS K 2514に準拠するISOT試験(165.5℃)にて、試験油(潤滑油組成物)に触媒として銅片と鉄片を入れて、試験油を強制劣化させ、96時間後の全塩基価(過塩素酸法)を測定した。また、新油の全塩基価に対する劣化による試験油の全塩基価の減少率を算出した。減少率が低いほど塩基価維持性が高く、より長期間使用可能なロングドレイン油であることを示す。
(9)ISOTによる劣化後の銅溶出量
上記ISOT試験による劣化後の試験油の銅溶出量を測定した。
(10)パネルコーキング試験
Federal test method 791B・3462に準拠し、パネル温度300℃、油温100℃の条件下で、スプラッシュ時間15秒、停止時間45秒のサイクルで3時間試験した。試験終了後、パネルに付着したコーキング物を評価した。
In this specification, the measurement of each physical property and the evaluation of the lubricating oil composition are determined according to the following procedure.
(1) Kinematic viscosity It is a value measured using a glass capillary viscometer according to JIS K2283.
(2) Viscosity index It is a value measured according to JIS K 2283.
(3) NOACK evaporation amount This is a value measured according to the method prescribed in JPI-5S-41.
(4) Paraffin content by ring analysis (% C P )
The ratio (percentage) of the paraffin calculated by the ring analysis ndM method is shown and measured according to ASTM D-3238.
(5) Base number Measured by the perchloric acid method in accordance with JIS K2501.
(6) Average carbon number of poly (meth) acrylate (X)
It was calculated from the chemical shift and integrated value of 13 C-NMR. Specifically, first, the ratio of each alkyl group was determined from the total integrated value of the alkyl group and the integrated value of each alkyl group, and calculated according to the following formula.
Average carbon number X = (total carbon number of each alkyl group × ratio of each alkyl group) The measurement conditions of 13 C-NMR are as follows.
Equipment: ECX-400P (manufactured by JEOL Ltd.) Solvent: CDCl3
Resonance frequency: 100 MHz Measurement mode Decoupling method with gate Integration number: 2000-5000 Pulse delay time: 25 s
Pulse width: 9.25us x-angle: 90 °
(7) Weight average molecular weight (Mw) of poly (meth) acrylate
The weight average molecular weight (Mw) is measured under the following conditions, and is a value obtained using polystyrene as a calibration curve. Specifically, it is measured under the following conditions.
Instrument: Agilent 1260 HPLC Column: Shodex LF404 x 2 Solvent: Chloroform Temperature: 35 ° C
Sample concentration: 0.05% Calibration curve: Polystyrene detector Differential refraction detector (8) Total base number and base number reduction rate after degradation by ISOT In ISOT test (165.5 ° C.) according to JIS K 2514, test oil Copper pieces and iron pieces were put into the (lubricating oil composition) as a catalyst to forcibly deteriorate the test oil, and the total base number (perchloric acid method) after 96 hours was measured. In addition, the decrease rate of the total base number of the test oil due to deterioration with respect to the total base number of the new oil was calculated. The lower the decrease rate, the higher the base number maintenance property, indicating a longer drain oil that can be used for a longer period of time.
(9) Copper elution amount after deterioration by ISOT The copper elution amount of the test oil after deterioration by the ISOT test was measured.
(10) Panel coking test
In accordance with Federal test method 791B / 3462, the panel temperature was 300 ° C. and the oil temperature was 100 ° C., and the test was conducted for 3 hours with a cycle of a splash time of 15 seconds and a stop time of 45 seconds. After the test was completed, the caulk adhered to the panel was evaluated.

[実施例1〜9、比較例1〜4]
表1に示すように、(A)潤滑油基油に、(B)〜(E)成分、及びその他成分を配合して、(A)潤滑油基油及びこれら各成分を含有する各実施例、比較例の潤滑油組成物を作製し、その潤滑油組成物を評価し、その結果を表1に示す。
[Examples 1 to 9, Comparative Examples 1 to 4]
As shown in Table 1, (A) lubricating base oil, (B) to (E) components, and other components are blended, and (A) lubricating base oil and each example containing these components. The lubricating oil composition of Comparative Example was prepared, the lubricating oil composition was evaluated, and the results are shown in Table 1.

※表1における各成分は、以下を表す。
(A)潤滑油基油
潤滑油基油(A1):GroupIII 150N水素化精製基油、100℃動粘度 6.4mm2/s、粘度指数131、NOACK蒸発量(250℃、1時間)7.0質量%, n-d-M環分析 %Cp.79.1%
潤滑油基油(A2):GroupIII 100N水素化精製基油、100℃動粘度 4.1mm2/s、粘度指数134、NOACK蒸発量(250℃、1時間)12.9質量%, n-d-M環分析 %Cp.87.7%
潤滑油基油(A3):GroupIV ポリアルファオレフィン、100℃動粘度 3.7mm2/s、粘度指数117、NOACK蒸発量(250℃、1時間)15.6質量%
潤滑油基油(A4):GroupIV エステル基油、100℃動粘度4.3mm2/s、粘度指数139、NOACK蒸発量(250℃、1時間)2.6質量%
(なお、実施例8において、潤滑油基油は、潤滑油基油(A3)と潤滑油基油(A4)を混合したものであり、その混合基油の100℃動粘度は、4.3mm2/s、粘度指数130であった。)
(B)ホウ素含有コハク酸イミド
ホウ素系含有コハク酸イミド(B1):ポリブテニルコハク酸イミドのホウ素化物、ホウ素含有量1.3質量%、窒素含有量1.2質量%、ポリブテニル基の重量平均分子量1,800、B/N比1.1
(C)ポリ(メタ)アクリレート
ポリ(メタ)アクリレート(C1):ポリアルキル(メタ)アクリレート、重量平均分子量200,000、平均炭素数(X):4.6、樹脂分:28質量%
ポリ(メタ)アクリレート(C2):ポリアルキル(メタ)アクリレート、重量平均分子量510,000、平均炭素数(X):5.7、樹脂分:19質量%
ポリ(メタ)アクリレート(C3):ポリアルキル(メタ)アクリレート、重量平均分子量440,000、平均炭素数(X):5.8、樹脂分:16質量%
ポリ(メタ)アクリレート(C4):ポリアルキル(メタ)アクリレート、重量平均分子量370,000、平均炭素数(X):5.6、樹脂分:26質量%
ポリ(メタ)アクリレート(C5):ポリアルキル(メタ)アクリレート、重量平均分子量430,000、平均炭素数(X):6.3、樹脂分:42質量%
ポリ(メタ)アクリレート(C6):ポリアルキル(メタ)アクリレート、重量平均分子量44,000、平均炭素数(X):7.3、樹脂分:53質量%
ポリ(メタ)アクリレート(C7):ポリアルキル(メタ)アクリレート、重量平均分子量90,000、平均炭素数(X):8.1、樹脂分:46質量%
ポリ(メタ)アクリレート(C8):ポリアルキル(メタ)アクリレート、重量平均分子量210,000、平均炭素数(X):9.4、樹脂分:44質量%
(D)ジチオリン酸亜鉛
ZnDTP(D1):ジアルキルジチオリン酸亜鉛、亜鉛含有量9.0質量%、リン含有量8.2質量%、硫黄含有量17.1質量%、アルキル基;第2級ブチル基と第2級ヘキシル基の混合物
(E)金属系清浄剤
金属系清浄剤(E1):塩基性カルシウムフェネート、全塩基価(過塩素酸法)255mgKOH/g、カルシウム含有量9.3質量%、硫黄含有量3.0質量%
金属系清浄剤(E2):塩基性カルシウムサリシレート、全塩基価(過塩素酸法)225mgKOH/g、カルシウム含有量7.8質量%、硫黄含有量0.2質量%
金属系清浄剤(E3):塩基性カルシウムスルホネート、全塩基価(過塩素酸法)300mgKOH/g、カルシウム含有量11.6質量%、硫黄含有量1.49質量%
・その他の成分
ホウ素非含有コハク酸イミド:ポリブテニルコハク酸ビスイミド、ポリブテニル基の数平均分子量2300、窒素含有量1.0質量%、塩素含有量0.01質量%以下
アミン系酸化防止剤:ジアルキルジフェニルアミン、窒素含有量4.62質量%
フェノール系酸化防止剤:オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート
MoDTC:硫化オキシモリブデンジチオカルバメート、モリブデン含有量10.0質量%、硫黄含有量11.5質量%
* Each component in Table 1 represents the following.
(A) Lubricating base oil Lubricating base oil (A1): GroupIII 150N hydrorefined base oil, 100 ° C kinematic viscosity 6.4mm 2 / s, viscosity index 131, NOACK evaporation (250 ° C, 1 hour) 7.0% by mass , ndM ring analysis% Cp.79.1%
Lubricating base oil (A2): GroupIII 100N hydrorefined base oil, 100 ° C kinematic viscosity 4.1mm 2 / s, viscosity index 134, NOACK evaporation (250 ° C, 1 hour) 12.9% by mass, ndM ring analysis% Cp. 87.7%
Lubricating base oil (A3): Group IV polyalphaolefin, 100 ° C kinematic viscosity 3.7mm 2 / s, viscosity index 117, NOACK evaporation (250 ° C, 1 hour) 15.6% by mass
Lubricating base oil (A4): Group IV ester base oil, 100 ° C kinematic viscosity 4.3mm 2 / s, viscosity index 139, NOACK evaporation (250 ° C, 1 hour) 2.6% by mass
(In Example 8, the lubricating base oil is a mixture of the lubricating base oil (A3) and the lubricating base oil (A4), and the 100 ° C. kinematic viscosity of the mixed base oil is 4.3 mm. 2 / s, viscosity index 130.)
(B) Boron-containing succinimide Boron-containing succinimide (B1): Boronated polybutenyl succinimide, boron content 1.3 mass%, nitrogen content 1.2 mass%, weight average molecular weight of polybutenyl group 1, 800, B / N ratio 1.1
(C) poly (meth) acrylate poly (meth) acrylate (C1): polyalkyl (meth) acrylate, weight average molecular weight 200,000, average carbon number (X): 4.6, resin content: 28% by mass
Poly (meth) acrylate (C2): polyalkyl (meth) acrylate, weight average molecular weight 510,000, average carbon number (X): 5.7, resin content: 19% by mass
Poly (meth) acrylate (C3): polyalkyl (meth) acrylate, weight average molecular weight 440,000, average carbon number (X): 5.8, resin content: 16% by mass
Poly (meth) acrylate (C4): polyalkyl (meth) acrylate, weight average molecular weight 370,000, average carbon number (X): 5.6, resin content: 26% by mass
Poly (meth) acrylate (C5): polyalkyl (meth) acrylate, weight average molecular weight 430,000, average carbon number (X): 6.3, resin content: 42% by mass
Poly (meth) acrylate (C6): polyalkyl (meth) acrylate, weight average molecular weight 44,000, average carbon number (X): 7.3, resin content: 53% by mass
Poly (meth) acrylate (C7): polyalkyl (meth) acrylate, weight average molecular weight 90,000, average carbon number (X): 8.1, resin content: 46% by mass
Poly (meth) acrylate (C8): polyalkyl (meth) acrylate, weight average molecular weight 210,000, average carbon number (X): 9.4, resin content: 44% by mass
(D) zinc dithiophosphate ZnDTP (D1): zinc dialkyldithiophosphate, zinc content 9.0% by mass, phosphorus content 8.2% by mass, sulfur content 17.1% by mass, alkyl group; secondary butyl group and secondary hexyl Mixture of base (E) Metal-based detergent Metal-based detergent (E1): Basic calcium phenate, total base number (perchloric acid method) 255 mgKOH / g, calcium content 9.3 mass%, sulfur content 3.0 mass%
Metal detergent (E2): basic calcium salicylate, total base number (perchloric acid method) 225 mgKOH / g, calcium content 7.8 mass%, sulfur content 0.2 mass%
Metal detergent (E3): basic calcium sulfonate, total base number (perchloric acid method) 300mgKOH / g, calcium content 11.6 mass%, sulfur content 1.49 mass%
-Other components Boron-free succinimide: Polybutenyl succinic acid bisimide, polybutenyl group number average molecular weight 2300, nitrogen content 1.0 mass%, chlorine content 0.01 mass% or less Amine-based antioxidant: dialkyldiphenylamine, nitrogen Content 4.62% by mass
Phenol antioxidant: octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate MoDTC: sulfurized oxymolybdenum dithiocarbamate, molybdenum content 10.0% by mass, sulfur content 11.5% by mass

表1の結果から明らかなように、実施例1〜9の潤滑油組成物は、ホウ素含有コハク酸イミドと、特定のMwとMw/Xを有するポリアルキル(メタ)アクリレートを含有することで、劣化試験における塩基価の低下を抑えつつ、コーキング及び銅溶出の発生を抑えることができた。
一方で、比較例1〜3では、ポリアルキル(メタ)アクリレートのMwやMw/Xが、所定の範囲になかったため、コーキング及び銅溶出の発生を十分に抑制することができなかった。また、比較例4の潤滑油組成物は、ホウ素含有コハク酸イミドを含有しないため、ポリアルキル(メタ)アクリレートのMwやMw/Xを所定の範囲としても、コーキング及び銅溶出の発生を十分に抑制することができなかった。
As is clear from the results in Table 1, the lubricating oil compositions of Examples 1 to 9 contain a boron-containing succinimide and a polyalkyl (meth) acrylate having specific Mw and Mw / X. While suppressing a decrease in base number in the deterioration test, it was possible to suppress the occurrence of coking and copper elution.
On the other hand, in Comparative Examples 1 to 3, since the Mw and Mw / X of the polyalkyl (meth) acrylate were not within the predetermined range, the occurrence of coking and copper elution could not be sufficiently suppressed. Further, since the lubricating oil composition of Comparative Example 4 does not contain boron-containing succinimide, coking and copper elution are sufficiently generated even when Mw and Mw / X of polyalkyl (meth) acrylate are within a predetermined range. Could not be suppressed.

本発明の内燃機関用潤滑油組成物は、塩基価の低下、コーキングの発生、及び銅溶出の発生をバランスよく抑制することができ、例えば自動車用の内燃機関に好適に使用できる。   The lubricating oil composition for an internal combustion engine of the present invention can suppress a decrease in base number, the occurrence of coking, and the occurrence of copper elution in a well-balanced manner, and can be suitably used, for example, for an internal combustion engine for automobiles.

Claims (10)

鉱油及び/又は合成油からなる(A)潤滑油基油と、
組成物全量基準でホウ素量換算値0.001〜0.1質量%の(B)ホウ素含有アルケニルコハク酸イミド及び/又はホウ素含有アルキルコハク酸イミドと、
組成物全量基準で0.1〜30質量%の(C)ポリ(メタ)アクリレートとを含有する、内燃機関用潤滑油組成物であって、
(C)ポリ(メタ)アクリレートが、重量平均分子量をMw、13C−NMRで測定し、以下の算出式より算出されるアルキル基の平均炭素数をXとしたときに、Mwが18万〜60万、Mw/Xが3万〜10万であり、下記一般式(3)で表されるモノマーが、(C)成分を構成する全モノマー成分中の90質量%以上である非分散型ポリ(メタ)アクリレートである、内燃機関用潤滑油組成物。
平均炭素数X=(各アルキル基の炭素数×各アルキル基の割合)の合計
(算出式中、前記各アルキル基の炭素数の炭素数は、 13 C−NMRで測定される化学シフトから特定される。前記各アルキル基の割合は、 13 C−NMRで測定されるアルキル基の積分値の合計と、各アルキル基の積分値とから算出される。)

(一般式(3)中、R は水素又はメチル基を示し、R は炭素数1〜200の直鎖状又は分枝状のアルキル基を示す。)
(A) a lubricating base oil composed of mineral oil and / or synthetic oil;
(B) boron-containing alkenyl succinimide and / or boron-containing alkyl succinimide having a boron content converted value of 0.001 to 0.1% by mass based on the total amount of the composition;
A lubricating oil composition for an internal combustion engine comprising 0.1 to 30% by mass of (C) poly (meth) acrylate based on the total amount of the composition,
(C) poly (meth) acrylate, a weight average molecular weight measured by Mw, 13 C-NMR, the average number of carbon atoms of the A alkyl groups calculated from the following calculation formula when the X, Mw 180,000 600,000, Mw / X is from 30,000 to 100,000, monomers, non-distributed, which is a (C) more than 90 wt% in total monomer components constituting the component represented by the following general formula (3) poly (meth) acrylates bets, lubricating oil compositions for internal combustion engines.
Average carbon number X = (carbon number of each alkyl group × ratio of each alkyl group) total
(In the calculation formula, the number of carbon atoms of each alkyl group is specified from a chemical shift measured by 13 C-NMR. The proportion of each alkyl group is an alkyl group measured by 13 C-NMR. Calculated from the sum of the integral values of and the integral value of each alkyl group.)

(In General Formula (3), R 7 represents hydrogen or a methyl group, and R 8 represents a linear or branched alkyl group having 1 to 200 carbon atoms.)
前記一般式(3)中、R が炭素数1〜40の直鎖状又は分枝状のアルキル基である請求項1に記載の内燃機関用潤滑油組成物。 2. The lubricating oil composition for an internal combustion engine according to claim 1, wherein in the general formula (3), R 8 is a linear or branched alkyl group having 1 to 40 carbon atoms . (C)ポリ(メタ)アクリレートが、前記一般式(3)で表されるモノマーの2種以上の共重合体である非分散型ポリ(メタ)アクリレートであって、前記一般式(3)中、R 及びR のアルキル基の炭素数が1〜4のアルキル(メタ)アクリレートモノマーと、R 及びR のアルキル基の炭素数が12〜40のアルキル(メタ)アクリレートモノマーとを少なくとも共重合した共重合体である、請求項1又は2に記載の内燃機関用潤滑油組成物。 (C) The poly (meth) acrylate is a non-dispersed poly (meth) acrylate which is a copolymer of two or more monomers represented by the general formula (3), and is in the general formula (3) , An alkyl (meth) acrylate monomer having 1 to 4 carbon atoms in the alkyl group of R 7 and R 8 and an alkyl (meth) acrylate monomer having 12 to 40 carbon atoms in the alkyl group of R 7 and R 8. The lubricating oil composition for an internal combustion engine according to claim 1 or 2 , which is a copolymer obtained by copolymerization . (A)潤滑油基油の粘度指数が90以上である請求項1〜3のいずれかに記載の内燃機関用潤滑油組成物。   (A) The lubricating oil composition for internal combustion engines according to any one of claims 1 to 3, wherein the lubricating base oil has a viscosity index of 90 or more. 前記鉱油が、環分析によるパラフィン分(%C)が60%以上である請求項1〜4のいずれかに記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 4, wherein the mineral oil has a paraffin content (% C P ) by ring analysis of 60% or more. (D)ジチオリン酸亜鉛及び(E)アルカリ金属系清浄剤又はアルカリ土類金属系清浄剤から選択される少なくとも一種を含有する請求項1〜5のいずれかに記載の内燃機関用潤滑油組成物。   The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 5, comprising at least one selected from (D) zinc dithiophosphate and (E) an alkali metal detergent or an alkaline earth metal detergent. . 組成物全量基準で、(D)ジチオリン酸亜鉛をリン量換算で0.01〜0.15質量%含有し、(E)アルカリ金属系清浄剤又はアルカリ土類金属系清浄剤を金属量換算で0.1〜0.3質量%含有する請求項6に記載の内燃機関用潤滑油組成物。   On the basis of the total amount of the composition, (D) containing 0.01 to 0.15% by mass of zinc dithiophosphate in terms of phosphorus, (E) alkali metal or alkaline earth metal detergent in terms of metal The lubricating oil composition for an internal combustion engine according to claim 6, containing 0.1 to 0.3% by mass. 100℃動粘度が4〜17mm/sである請求項1〜7のいずれかに記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 7, which has a kinematic viscosity at 100 ° C of 4 to 17 mm 2 / s. 更に、(E)全塩基価が150〜450mgKOH/gである金属系清浄剤を含む、請求項1〜8のいずれかに記載の内燃機関用潤滑油組成物。Furthermore, the lubricating oil composition for internal combustion engines in any one of Claims 1-8 containing the metal type detergent whose (E) total base number is 150-450 mgKOH / g. 鉱油及び/又は合成油からなる(A)潤滑油基油に、組成物全量基準でホウ素量換算値0.001〜0.1質量%の(B)ホウ素含有アルケニルコハク酸イミド及び/又はホウ素含有アルキルコハク酸イミドと、組成物全量基準で0.1〜30質量%の(C)ポリ(メタ)アクリレートとを配合して内燃機関用潤滑油組成物を製造し、
(C)ポリ(メタ)アクリレートが、重量平均分子量をMw、13C−NMRで測定し、以下の算出式より算出されるアルキル基の平均炭素数をXとしたときに、Mwが18万〜60万、Mw/Xが3万〜10万であり、下記一般式(3)で表されるモノマーが、(C)成分を構成する全モノマー成分中の90質量%以上である非分散型ポリ(メタ)アクリレートである、内燃機関用潤滑油組成物の製造方法。
平均炭素数X=(各アルキル基の炭素数×各アルキル基の割合)の合計
(算出式中、前記各アルキル基の炭素数の炭素数は、 13 C−NMRで測定される化学シフトから特定される。前記各アルキル基の割合は、 13 C−NMRで測定されるアルキル基の積分値の合計と、各アルキル基の積分値とから算出される。)

(一般式(3)中、R は水素又はメチル基を示し、R は炭素数1〜200の直鎖状又は分枝状のアルキル基を示す。)
(B) Boron-containing alkenyl succinimide and / or boron containing (A) lubricating base oil composed of mineral oil and / or synthetic oil, based on the total amount of the composition based on 0.001 to 0.1% by mass of boron. A lubricating oil composition for an internal combustion engine is produced by blending alkyl succinimide and 0.1 to 30% by mass of (C) poly (meth) acrylate based on the total amount of the composition,
(C) poly (meth) acrylate, a weight average molecular weight measured by Mw, 13 C-NMR, the average number of carbon atoms of the A alkyl groups calculated from the following calculation formula when the X, Mw 180,000 600,000, Mw / X is from 30,000 to 100,000, monomers, non-distributed, which is a (C) more than 90 wt% in total monomer components constituting the component represented by the following general formula (3) The manufacturing method of the lubricating oil composition for internal combustion engines which is poly (meth) acrylate .
Average carbon number X = (carbon number of each alkyl group × ratio of each alkyl group) total
(In the calculation formula, the number of carbon atoms of each alkyl group is specified from a chemical shift measured by 13 C-NMR. The proportion of each alkyl group is an alkyl group measured by 13 C-NMR. Calculated from the sum of the integral values of and the integral value of each alkyl group.)

(In General Formula (3), R 7 represents hydrogen or a methyl group, and R 8 represents a linear or branched alkyl group having 1 to 200 carbon atoms.)
JP2014073499A 2014-03-31 2014-03-31 Lubricating oil composition for internal combustion engines Active JP6420964B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014073499A JP6420964B2 (en) 2014-03-31 2014-03-31 Lubricating oil composition for internal combustion engines
EP15774018.4A EP3127993B1 (en) 2014-03-31 2015-03-31 Lubricating oil composition for an internal combustion engine
US15/129,528 US20170183601A1 (en) 2014-03-31 2015-03-31 Lubricating oil composition for an internal combustion engine
CN201580016373.0A CN106164231B (en) 2014-03-31 2015-03-31 Lubricating oil composition for internal combustion engine
KR1020167025779A KR20160138020A (en) 2014-03-31 2015-03-31 Lubricating oil composition for an internal combustion engine
PCT/JP2015/060095 WO2015152226A1 (en) 2014-03-31 2015-03-31 Lubricating oil composition for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073499A JP6420964B2 (en) 2014-03-31 2014-03-31 Lubricating oil composition for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2015196696A JP2015196696A (en) 2015-11-09
JP6420964B2 true JP6420964B2 (en) 2018-11-07

Family

ID=54240546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073499A Active JP6420964B2 (en) 2014-03-31 2014-03-31 Lubricating oil composition for internal combustion engines

Country Status (6)

Country Link
US (1) US20170183601A1 (en)
EP (1) EP3127993B1 (en)
JP (1) JP6420964B2 (en)
KR (1) KR20160138020A (en)
CN (1) CN106164231B (en)
WO (1) WO2015152226A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075821A4 (en) * 2013-11-25 2017-08-09 Idemitsu Kosan Co., Ltd. Lubricating oil composition for spark-ignition internal combustion engine
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
US10550349B2 (en) 2015-07-16 2020-02-04 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US10214703B2 (en) 2015-07-16 2019-02-26 Afton Chemical Corporation Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
US10336959B2 (en) 2015-07-16 2019-07-02 Afton Chemical Corporation Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
JP2017110147A (en) * 2015-12-18 2017-06-22 出光興産株式会社 Lubricant composition for turbo mechanism mounting engine
EP3613831A1 (en) * 2016-02-25 2020-02-26 Afton Chemical Corporation Lubricants for use in boosted engines
US10377963B2 (en) 2016-02-25 2019-08-13 Afton Chemical Corporation Lubricants for use in boosted engines
US11155764B2 (en) 2016-05-05 2021-10-26 Afton Chemical Corporation Lubricants for use in boosted engines
JP6955332B2 (en) 2016-11-17 2021-10-27 シェルルブリカンツジャパン株式会社 Lubricating oil composition
US10443011B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
US10443558B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
US10370615B2 (en) 2017-01-18 2019-08-06 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
JP6885656B2 (en) * 2017-03-08 2021-06-16 出光興産株式会社 Turbine oil and how to use turbine oil
JP6927488B2 (en) * 2017-03-30 2021-09-01 出光興産株式会社 A lubricating oil composition for a two-wheeled vehicle, a method for improving the fuel efficiency of a two-wheeled vehicle using the lubricating oil composition, and a method for producing the lubricating oil composition.
JP6879809B2 (en) * 2017-04-13 2021-06-02 Eneos株式会社 Lubricating oil composition
JP6855342B2 (en) * 2017-07-11 2021-04-07 Eneos株式会社 Lubricating oil composition
JP7153476B2 (en) 2018-06-08 2022-10-14 出光興産株式会社 Lubricating oil composition and impregnated bearing
CN109536267A (en) * 2018-12-04 2019-03-29 青岛美斯威石油化工有限公司 A kind of lubricating oil preparation method
WO2021200045A1 (en) * 2020-03-31 2021-10-07 出光興産株式会社 Lubricating oil composition and method for using lubricating oil composition
US11987766B2 (en) * 2020-08-31 2024-05-21 Eneos Corporation Lubricating oil composition for internal combustion engine
US11732207B2 (en) 2020-08-31 2023-08-22 Eneos Corporation Lubricating oil composition for internal combustion engine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3889533T2 (en) * 1987-08-19 1994-12-01 Pennzoil Prod Co POINT-LOWING METHACRYLATE ADDITIVES AND COMPOSITIONS.
JP4477337B2 (en) 2003-10-16 2010-06-09 新日本石油株式会社 Lubricating oil additive, lubricating oil additive composition and lubricating oil composition
JP2005247995A (en) 2004-03-03 2005-09-15 Cosmo Sekiyu Lubricants Kk Engine oil composition
EP1795581B1 (en) * 2004-07-16 2018-09-19 Kuraray Co., Ltd. Lubricating oil composition containing acrylic polymer
DE102005015931A1 (en) * 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl (meth) acrylate copolymers with excellent properties
JP5203590B2 (en) * 2006-10-27 2013-06-05 出光興産株式会社 Lubricating oil composition
CN103923726A (en) * 2007-12-05 2014-07-16 吉坤日矿日石能源株式会社 Lubricant Oil Composition
US20100160196A1 (en) * 2008-12-23 2010-06-24 Clarke Dean B Power Transmission Fluids with Improved Viscometric Properties
JP5468297B2 (en) * 2009-05-08 2014-04-09 シェブロンジャパン株式会社 Lubricating oil composition
CN103525515A (en) * 2009-06-04 2014-01-22 吉坤日矿日石能源株式会社 A lubricating oil composition and a method for manufacturing same
EP2508590A4 (en) * 2009-12-03 2013-07-24 Idemitsu Kosan Co Lubricating oil composition
JP2011140572A (en) * 2010-01-07 2011-07-21 Jx Nippon Oil & Energy Corp Lubricant composition
DE102010001040A1 (en) * 2010-01-20 2011-07-21 Evonik RohMax Additives GmbH, 64293 (Meth) acrylate polymers for improving the viscosity index
JP5965139B2 (en) * 2011-12-06 2016-08-03 出光興産株式会社 Lubricating oil composition
JP5822706B2 (en) * 2011-12-13 2015-11-24 株式会社Adeka Friction and wear reducing agent for lubricating oil and lubricating oil composition containing the same
US9677024B2 (en) * 2012-06-06 2017-06-13 Vanderbilt Chemicals, Llc Fuel efficient lubricating oils
JP5965222B2 (en) * 2012-06-29 2016-08-03 出光興産株式会社 Lubricating oil composition
US20150210954A1 (en) * 2012-07-13 2015-07-30 Jx Nippon Oil & Energy Corporation Lubricating oil composition for internal combustion engine
CN104411811A (en) * 2012-07-24 2015-03-11 吉坤日矿日石能源株式会社 Poly(meth)acrylate viscosity index improver, and lubricating oil composition and lubricating oil additive containing said viscosity index improver
CN104487554B (en) * 2012-07-24 2018-03-13 吉坤日矿日石能源株式会社 Lubricant oil composite
KR20150037750A (en) * 2012-07-24 2015-04-08 제이엑스 닛코닛세키에너지주식회사 Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver
EP2966154A4 (en) * 2013-03-04 2016-12-07 Idemitsu Kosan Co Lubricant oil composition
JP6228742B2 (en) * 2013-03-29 2017-11-08 Jxtgエネルギー株式会社 Lubricating oil composition
JP6014540B2 (en) * 2013-04-17 2016-10-25 コスモ石油ルブリカンツ株式会社 Lubricating oil composition for internal combustion engines
CA2912063A1 (en) * 2013-05-14 2014-11-20 The Lubrizol Corporation Lubricating composition and method of lubricating a transmission
WO2015133529A1 (en) * 2014-03-04 2015-09-11 出光興産株式会社 Lubricant oil composition

Also Published As

Publication number Publication date
CN106164231A (en) 2016-11-23
EP3127993A4 (en) 2017-11-29
US20170183601A1 (en) 2017-06-29
EP3127993A1 (en) 2017-02-08
EP3127993B1 (en) 2019-07-03
WO2015152226A1 (en) 2015-10-08
KR20160138020A (en) 2016-12-02
CN106164231B (en) 2020-03-03
JP2015196696A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP6420964B2 (en) Lubricating oil composition for internal combustion engines
CN109913293B (en) Lubricating oil composition for gasoline engine and method for producing same
JP5565999B2 (en) Lubricating oil composition
US10584302B2 (en) Lubricating oil composition and method for manufacturing said lubricating oil composition
JP6197123B2 (en) Lubricating oil composition for gasoline engine and method for producing the same
US8445418B2 (en) Lubricating oil composition for internal combustion engine
US8785359B2 (en) Lubricant oil composition
KR101968322B1 (en) Lubricating oil composition for automibile engine lubrication
EP2826840B1 (en) Lubricating oil composition for transmission
JP2007284635A (en) Lubricating oil composition
WO2010110442A1 (en) Gear oil composition
EP2876152A1 (en) Lubricating oil composition for continuously variable transmission
US20190048284A1 (en) Lubricant composition
JP2007284564A (en) Lubricating oil composition for automatic variable-speed gear
WO2014017553A1 (en) Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver
JP2021515070A (en) Lubricating oil composition with low viscosity and providing anti-wear
JP6702611B2 (en) Lubricating oil composition, lubricating method, and transmission
JP6687347B2 (en) Engine oil composition
WO2014017555A1 (en) Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver
JP6702612B2 (en) Lubricating oil composition, lubricating method, and transmission
JP2007217596A (en) Continuously variable transmission oil composition
JP2020026488A (en) Lubricant composition
JP7164764B1 (en) lubricating oil composition
JP2019147864A (en) Lubricant composition
JP2018188549A (en) Lubricant composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6420964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150