JP6420717B2 - Power plant in-house power supply system - Google Patents

Power plant in-house power supply system Download PDF

Info

Publication number
JP6420717B2
JP6420717B2 JP2015096621A JP2015096621A JP6420717B2 JP 6420717 B2 JP6420717 B2 JP 6420717B2 JP 2015096621 A JP2015096621 A JP 2015096621A JP 2015096621 A JP2015096621 A JP 2015096621A JP 6420717 B2 JP6420717 B2 JP 6420717B2
Authority
JP
Japan
Prior art keywords
house
voltage
transformer
site
svc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015096621A
Other languages
Japanese (ja)
Other versions
JP2016213985A (en
Inventor
俊也 守田
俊也 守田
伸夫 田宮
伸夫 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015096621A priority Critical patent/JP6420717B2/en
Publication of JP2016213985A publication Critical patent/JP2016213985A/en
Application granted granted Critical
Publication of JP6420717B2 publication Critical patent/JP6420717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、発電プラントの所内電源システムに係り、特に、直入れ始動する大容量電動機を備えた発電プラントの所内電源システムに関する。   The present invention relates to an in-house power supply system of a power plant, and more particularly, to an in-house power system of a power plant equipped with a large capacity electric motor that starts up directly.

火力発電プラントは、所内の運転負荷として、ボイラ通風機、循環水ポンプ等の大容量電動機を備え、原子力発電プラントは、所内の運転負荷として、原子炉給水ポンプ、循環水ポンプ等の大容量電動機を備えている。このような大容量電動機に定格電圧を直接印加して始動(直入れ始動)させた場合、無効電流を多く含む始動電流が流れ、この無効電流によって所内電源の電圧が大きく降下し、その他の運転負荷の瞬時停止、照明のフリッカ等が発生する可能性が有る。   Thermal power plants are equipped with large-capacity motors such as boiler ventilators and circulating water pumps as operational loads in the plant, and nuclear power plants are large-capacity motors such as reactor water pumps and circulating water pumps as operational loads within the plant. It has. When a rated voltage is directly applied to such a large-capacity motor and started (direct start), a starting current containing a large amount of reactive current flows, and this reactive current greatly reduces the voltage of the in-house power supply, and other operations There is a possibility that an instantaneous load stop, lighting flicker, etc. may occur.

大容量電動機の始動に伴う電圧降下を抑える方法として、各大容量電動機に始動器(インバータ等)を設置し、始動電流を小さくする方法が考えられるが、多数の大容量電動機を備えた発電プラントにおいて、全ての大容量電動機に始動器を設けることは現実的ではない。   As a method of suppressing the voltage drop that accompanies the start-up of large-capacity motors, a method of reducing the starting current by installing starters (inverters, etc.) in each large-capacity motor can be considered. However, it is not realistic to provide a starter for all large capacity motors.

一方、所内電源の電圧降下を抑制する方法として、所内の運転負荷に給電する変圧器(所内変圧器)に負荷時タップ切換器(Load Tap Changer;以下「LTC」という。)を設置するという方法が有る。LTCを備えていない変圧器の場合は、変圧器の通電電力(運転容量)に応じて変圧器の二次側電圧は低下するが、LTC付き変圧器の場合は、LTCによって変圧比を調整することにより、二次側電圧を定格電圧相当に保つことができる。しかしながら、LTCの応答速度は数秒オーダであるため、電動機の始動に伴う瞬時(秒オーダ以下)の電圧降下を補償することはできない。   On the other hand, as a method for suppressing the voltage drop of the in-house power supply, a load tap changer (hereinafter referred to as “LTC”) is installed in a transformer (in-house transformer) that supplies power to the in-house operating load. There is. In the case of a transformer not equipped with LTC, the secondary side voltage of the transformer decreases according to the power supply (operating capacity) of the transformer, but in the case of a transformer with LTC, the transformation ratio is adjusted by LTC. As a result, the secondary voltage can be maintained at the rated voltage. However, since the response speed of LTC is on the order of several seconds, it is not possible to compensate for an instantaneous voltage drop (second order or less) accompanying the start of the motor.

そこで、最近の発電プラントの所内電源システムでは、所内変圧器にLTCを設置すると共に、最大の容量を持つ所内負荷電動機の始動時電圧降下が所内設備の電圧変動許容値範囲内に収まり、かつ所内負荷電動機の最低始動電圧を下回らないように所内変圧器のインピーダンスを低く抑えるという方法を採用している。   Therefore, in the in-house power supply system of recent power plants, an LTC is installed in the in-house transformer, and the voltage drop at the start of the in-house load motor having the maximum capacity is within the voltage fluctuation allowable range of the in-house equipment. A method is adopted in which the impedance of the in-house transformer is kept low so that it does not fall below the minimum starting voltage of the load motor.

しかしながら、変圧器の低インピーダンス化は、変圧器を構成する巻線を太くする等、コストアップの大きな要因となっている。また、原子力発電プラントでは今後プラント出力の更なる増加が見込まれており、プラント出力に比例して所内負荷電動機の容量が増加すると始動時電圧降下が更に大きくなる。そのため、所内変圧器の低インピーダンス化のみによって始動時電圧降下を抑制することは、技術面及びコスト面で困難になることが予想される。   However, lowering the impedance of the transformer is a major factor in increasing the cost, such as increasing the winding thickness of the transformer. Further, in the nuclear power generation plant, the plant output is expected to further increase in the future, and when the capacity of the on-site load motor increases in proportion to the plant output, the voltage drop at start-up further increases. Therefore, it is expected that it becomes difficult in terms of technology and cost to suppress the voltage drop at start-up only by reducing the impedance of the in-house transformer.

特許文献1は、変電所において、比較的緩やかな電圧変動をLTCで抑制し、大容量電動機の始動時電圧降下(瞬時の電圧降下)を静止型無効電力補償装置(SVC)で抑制する電圧変動抑制方法を開示している。SVCは、半導体スイッチ、リアクトル、コンデンサ等を備え、半導体スイッチを高速(数msオーダ)で切り替えることにより、瞬時に無効電力を供給することができる。   Patent Document 1 discloses a voltage fluctuation that suppresses a relatively gradual voltage fluctuation by LTC in a substation and a voltage drop (instantaneous voltage drop) at the start of a large capacity motor by a static reactive power compensator (SVC). A suppression method is disclosed. The SVC includes a semiconductor switch, a reactor, a capacitor, and the like, and reactive power can be instantaneously supplied by switching the semiconductor switch at high speed (several ms order).

特開2006−166683号公報Japanese Patent Laid-Open No. 2006-166683

SVCの作動中は、半導体スイッチの高速切替によって母線にサージが印加され、また、リアクトルもしくはコンデンサの投入によって母線の電流波形にひずみが生じ、高調波ノイズが発生する。そのため、特許文献1の電圧変動抑制方法を発電プラントの所内電源システムに適用した場合、常時SVCが作動することにより、プラント運転中も継続的に高調波ノイズが発生することとなる。   During the operation of the SVC, a surge is applied to the bus bar due to the high-speed switching of the semiconductor switch, and the current waveform of the bus bar is distorted due to the insertion of the reactor or the capacitor, thereby generating harmonic noise. Therefore, when the voltage fluctuation suppression method of Patent Document 1 is applied to an in-house power supply system of a power plant, harmonic noise is continuously generated even during plant operation by always operating the SVC.

従って、当該電圧変動抑制方法を原子力発電プラントの所内電源システムに適用した場合、原子炉内の中性子量を監視する中性子モニタ等の微弱信号を扱う機器が高調波ノイズの影響を受けることにより、プラントの運転に支障を来たす可能性がある。   Therefore, when the voltage fluctuation suppression method is applied to an on-site power supply system of a nuclear power plant, a device that handles weak signals, such as a neutron monitor that monitors the amount of neutrons in a nuclear reactor, is affected by harmonic noise. May interfere with driving.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、所内負荷電動機の始動時電圧降下を抑制すると共に、プラント運転時の所内機器の作動環境を良好に保つことが可能な発電プラントの所内電源システムを提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to suppress a voltage drop during start-up of the on-site load motor and to maintain a favorable operating environment of the on-site equipment during plant operation. It is to provide an on-site power system of a power plant.

上記課題を解決するために、本発明は、発電機と、前記発電機に接続された主変圧器と、前記発電機と前記主変圧器の間から分岐した回路に接続された所内変圧器と、前記所内変圧器に接続され、発電プラントの運転に必要な所内負荷電動機に電力をする所内高圧母線と、前記所内変圧器の二次側電圧を変更可能な負荷時タップ切換器と、コンデンサ及び半導体スイッチを有し、前記半導体スイッチの切替制御によって前記コンデンサから前記所内高圧母線に無効電力を供給するように構成された静止型無効電力補償装置とを備えた発電プラントの所内電源システムにおいて、前記静止型無効電力補償装置は、前記所内負荷電動機が始動中であるか否かを判定する第1の制御部と、前記第1の制御部によって前記所内負荷電動機が始動中であると判定された場合は、前記半導体スイッチの切替制御を実行し、前記第1の制御部によって前記所内負荷電動機が始動中でないと判定された場合は、前記半導体スイッチの切替制御を実行しないように構成された第2の制御部とを備えたものとする。   In order to solve the above problems, the present invention includes a generator, a main transformer connected to the generator, an in-house transformer connected to a circuit branched from the generator and the main transformer, An internal high-voltage bus connected to the in-house transformer and supplying power to the in-house load motor necessary for the operation of the power plant, a load tap changer capable of changing the secondary side voltage of the in-house transformer, a capacitor, and In a power plant in-house power system comprising a semiconductor switch, and comprising a static type reactive power compensator configured to supply reactive power from the capacitor to the in-house high voltage bus by switching control of the semiconductor switch, The static reactive power compensator includes a first control unit that determines whether or not the on-site load motor is being started, and the on-site load motor is being started by the first control unit. If it is determined, the semiconductor switch switching control is executed, and if the on-site load motor is determined not to be started by the first control unit, the semiconductor switch switching control is not executed. It is assumed that the second control unit is configured.

本発明に係る発電プラントの所内電源システムによれば、プラント運転時の所内電子機器の作動環境を良好に保ちつつ、大容量電動機の始動時電圧降下を抑制することが可能となる。   According to the in-house power supply system of the power plant according to the present invention, it is possible to suppress a voltage drop at the start of the large-capacity electric motor while maintaining a good operating environment of the in-house electronic equipment during plant operation.

本発明の一実施形態による原子力発電プラントの所内電源システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of an in-house power supply system of a nuclear power plant according to an embodiment of the present invention. 所内変圧器に設けられた負荷時タップ切換器(LTC)の概略構成を示す図である。It is a figure which shows schematic structure of the on-load tap changer (LTC) provided in the in-house transformer. 静止型無効電力補償装置(SVC)の概略構成を示す図である。It is a figure which shows schematic structure of a static reactive power compensation apparatus (SVC). 静止型無効電力補償装置(SVC)の制御ロジックを示す図である。It is a figure which shows the control logic of a static type reactive power compensation apparatus (SVC). 従来技術による原子力発電プラントの所内電源システムの全体構成を示す図である。It is a figure which shows the whole structure of the in-house power supply system of the nuclear power plant by a prior art.

以下、本発明の一実施形態を図面を用いて説明する。なお、各図中、同一の部材には同一の符号を付し、重複した説明は適宜省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted suitably.

本実施形態は、本発明に係る発電プラントの所内電源システムを原子力発電プラントに適用したものである。原子力発電プラントでは、原子炉内で発生した蒸気の熱エネルギーをタービンで回転エネルギ−に変換し、この回転エネルギ−をタービンに直結した発電機で電気エネルギ−に変換することにより発電を行う。発電機から出力された電力は、主変圧器を介して所定の電圧に昇圧され、送電系統に供給される。   In this embodiment, the on-site power supply system of a power plant according to the present invention is applied to a nuclear power plant. In a nuclear power plant, steam heat energy generated in a nuclear reactor is converted into rotational energy by a turbine, and electric power is generated by converting the rotational energy into electrical energy by a generator directly connected to the turbine. The electric power output from the generator is boosted to a predetermined voltage via the main transformer and supplied to the power transmission system.

本実施形態による原子力発電プラントの所内電源システムの全体構成を図1に示す。所内電源システム100は、発電機1と、主変圧器2と、所内変圧器3と、起動変圧器4(「予備変圧器」又は「補助変圧器」とも称される)と、複数の所内高圧母線5,6,7,8と、複数の静止型無効電力補償装置(Static Var Compensator;以下、「SVC」という。)9,10,11,12とを備えている。   FIG. 1 shows the overall configuration of an in-house power supply system of a nuclear power plant according to this embodiment. The in-house power supply system 100 includes a generator 1, a main transformer 2, an in-house transformer 3, a start-up transformer 4 (also referred to as “backup transformer” or “auxiliary transformer”), and a plurality of in-house high voltage. And buses 5, 6, 7, and 8 and a plurality of static var compensators (hereinafter referred to as “SVC”) 9, 10, 11, and 12.

主変圧器2は、発電機負荷開閉器13によって開閉可能な給電回路14を介して発電機1に接続されている。所内変圧器3の一次側は、給電回路14の発電機負荷開閉器13と主変圧器2との間から分岐した給電回路15に接続されている。所内変圧器3の一方の二次側回路32には、受電遮断器3a,3bを介して所内高圧母線5,6がそれぞれ接続され、所内変圧器3の他方の二次側回路33には、受電遮断器3c,3dを介して所内高圧母線7,8がそれぞれ接続されている。   The main transformer 2 is connected to the generator 1 via a power supply circuit 14 that can be opened and closed by a generator load switch 13. The primary side of the in-house transformer 3 is connected to a feeding circuit 15 branched from between the generator load switch 13 of the feeding circuit 14 and the main transformer 2. In-house high voltage buses 5 and 6 are connected to one secondary side circuit 32 of the in-house transformer 3 via power receiving circuit breakers 3a and 3b, respectively. In the other secondary side circuit 33 of the in-house transformer 3, In-house high-voltage buses 7 and 8 are connected via power receiving circuit breakers 3c and 3d, respectively.

所内高圧母線5には、原子炉給水ポンプ(図示せず)を駆動する電動機(以下、適宜「原子炉給水ポンプ用電動機」という。)51、高圧復水ポンプ(図示せず)を駆動する電動機(以下、適宜「高圧復水ポンプ用電動機」という。)52、低圧復水ポンプ(図示せず)を駆動する電動機(以下、適宜「低圧復水ポンプ用電動機」という。)53及び高圧ドレンポンプ(図示せず)を駆動する電動機(以下、適宜「高圧ドレンポンプ用電動機」という。)54が、複数の負荷遮断器5a,5b,5c,5dを介してそれぞれ接続され、SVC9がSVC遮断器5eを介して接続されている。   The in-house high-pressure bus 5 includes an electric motor (hereinafter referred to as “reactor water pump motor”) 51 for driving a reactor water pump (not shown), and an electric motor for driving a high pressure condensate pump (not shown). (Hereinafter referred to as “motor for high pressure condensate pump” as appropriate) 52, motor for driving low pressure condensate pump (not shown) (hereinafter referred to as “motor for low pressure condensate pump” as appropriate) 53 and high pressure drain pump An electric motor (not shown) (hereinafter referred to as “high-pressure drain pump motor”) 54 is connected to each other via a plurality of load circuit breakers 5a, 5b, 5c, 5d, and SVC 9 is an SVC circuit breaker. 5e is connected.

所内高圧母線6には、循環水ポンプ(図示せず)を駆動する電動機(以下、適宜「循環水ポンプ用電動機」という。)61、高圧復水ポンプ用電動機62及び高圧ドレンポンプ用電動機63が、複数の負荷遮断器6a,6b,6cを介してそれぞれ接続され、SVC10がSVC遮断器6dを介して接続されている。   The in-house high-pressure bus 6 includes an electric motor (hereinafter referred to as “circulating water pump motor”) 61, a high-pressure condensate pump motor 62, and a high-pressure drain pump electric motor 63 that drive a circulating water pump (not shown). Are connected via a plurality of load circuit breakers 6a, 6b, 6c, respectively, and the SVC 10 is connected via an SVC circuit breaker 6d.

所内高圧母線7には、原子炉給水ポンプ用電動機71、循環水ポンプ用電動機72、低圧復水ポンプ用電動機73及び低圧ドレンポンプ(図示せず)を駆動する電動機(以下、適宜「低圧ドレンポンプ用電動機」という。)74が複数の負荷遮断器7a,7b,7c,7dを介して接続され、SVC11がSVC遮断器7eを介して接続されている。   The in-house high-pressure bus 7 includes a reactor water pump motor 71, a circulating water pump motor 72, a low-pressure condensate pump motor 73, and a motor for driving a low-pressure drain pump (not shown) (hereinafter referred to as “low-pressure drain pump” as appropriate). 74 ”is connected via a plurality of load circuit breakers 7a, 7b, 7c, 7d, and SVC 11 is connected via an SVC circuit breaker 7e.

所内高圧母線8には、循環水ポンプ用電動機81、高圧復水ポンプ用電動機82、高圧ドレンポンプ用電動機83、低圧復水ポンプ用電動機84及び低圧ドレンポンプ用電動機85が複数の負荷遮断器8a,8b,8c,8d,8eを介してそれぞれ接続され、SVC12がSVC遮断器8fを介して接続されている。   The in-house high-pressure bus 8 includes a circulating water pump motor 81, a high-pressure condensate pump motor 82, a high-pressure drain pump motor 83, a low-pressure condensate pump motor 84, and a low-pressure drain pump motor 85. , 8b, 8c, 8d, and 8e, and the SVC 12 is connected through the SVC circuit breaker 8f.

原子力発電プラントの運転時は、発電機負荷開閉器13を投入して発電機1を所内変圧器3に接続し、発電機1から出力された電力の一部を、所内変圧器3及び所内高圧母線5,6,7,8を介して所内負荷(電動機51〜54,61〜63,71〜74,81〜85等)に供給する。   During operation of the nuclear power plant, the generator load switch 13 is turned on to connect the generator 1 to the on-site transformer 3, and a part of the power output from the generator 1 is converted to the on-site transformer 3 and the in-house high voltage. It supplies to in-house loads (electric motors 51 to 54, 61 to 63, 71 to 74, 81 to 85, etc.) via buses 5, 6, 7, and 8.

原子力発電プラントの起動時又は停止時は、発電機負荷開閉器13を開放して所内変圧器3から発電機1を切り離し、送電系統から主変圧器2、所内変圧器3又は起動変圧器4、及び所内高圧母線5,6,7,8を介して所内負荷に給電する。   When starting or stopping the nuclear power plant, the generator load switch 13 is opened to disconnect the generator 1 from the on-site transformer 3, and the main transformer 2, the on-site transformer 3 or the starting transformer 4 from the transmission system, In addition, power is supplied to the in-house load via the in-house high-voltage buses 5, 6, 7, and 8.

所内高圧母線5,6は、受電遮断器4a,4bを介して起動変圧器4の一方の二次側回路42にも接続され、所内高圧母線7,8は、受電遮断器4a,4bを介して起動変圧器4の他方の二次側回路43にも接続されている。これにより、主変圧器2、所内変圧器3等の電気故障(短絡)により、発電機1から所内変圧器3を介して所内高圧母線5,6,7,8に給電できなくなった場合に、送電系統から起動変圧器4を介して所内高圧母線5,6,7,8に給電することが可能となる。   The in-house high-voltage buses 5 and 6 are also connected to one secondary circuit 42 of the starting transformer 4 via the power receiving breakers 4a and 4b, and the in-house high-voltage buses 7 and 8 are connected via the power receiving breakers 4a and 4b. The other secondary side circuit 43 of the starting transformer 4 is also connected. Thereby, when it becomes impossible to supply power from the generator 1 to the in-house high voltage buses 5, 6, 7, and 8 through the in-house transformer 3 due to an electrical failure (short circuit) of the main transformer 2, in-house transformer 3, etc. Power can be supplied from the power transmission system to the in-house high-voltage buses 5, 6, 7, and 8 through the starting transformer 4.

送電系統では、定格電圧に対して±5%程度の電圧変動が発生する可能性が有る。所内変圧器3及び起動変圧器4には、この送電系統の電圧変動による所内電源システム100への影響を緩和するため、また、所内負荷の運転量変化による所内変圧器3及び起動変圧器4の電圧降下を補償するため、負荷時タップ切換器(Load Tap Changer;以下、「LTC」という。)31,41がそれぞれ設けられている。   In the power transmission system, there is a possibility that a voltage fluctuation of about ± 5% occurs with respect to the rated voltage. The in-house transformer 3 and the start-up transformer 4 are provided with an in-house transformer 3 and a start-up transformer 4 in order to reduce the influence on the in-house power supply system 100 due to the voltage fluctuation of the power transmission system. In order to compensate for the voltage drop, load tap changers (hereinafter referred to as “LTCs”) 31 and 41 are provided, respectively.

所内変圧器3に設けられたLTC31の概略構成を図2に示す。なお、起動変圧器4に設けられたLTC41は、LTC31と同様の構成を有するため、その説明は省略する。   FIG. 2 shows a schematic configuration of the LTC 31 provided in the in-house transformer 3. In addition, since LTC41 provided in the starting transformer 4 has the structure similar to LTC31, the description is abbreviate | omitted.

図2において、所内変圧器3は、一次巻線34、二次巻線35、図示しない鉄心等により構成されている。LTC31は、所内変圧器3の一次側に設けられ、一次巻線34から引き出された複数のタップ36のいずれかを選択することにより、変圧器運転時(負荷電流通電時)に変圧比を変更することができる。   In FIG. 2, the on-site transformer 3 includes a primary winding 34, a secondary winding 35, an iron core (not shown), and the like. The LTC 31 is provided on the primary side of the on-site transformer 3 and changes the transformation ratio when the transformer is operating (when the load current is energized) by selecting one of the plurality of taps 36 drawn from the primary winding 34. can do.

タップ36の切換制御はLTC制御部37によって行われる。LTC制御部37は、変圧器二次側に設けられた電圧検知回路38を介して変圧器二次側の電圧を監視し、変圧器二次側の電圧が設定値(定格)に保たれるようにタップ36を切り換える。   Switching control of the tap 36 is performed by the LTC control unit 37. The LTC control unit 37 monitors the voltage on the secondary side of the transformer via the voltage detection circuit 38 provided on the secondary side of the transformer, and the voltage on the secondary side of the transformer is maintained at a set value (rated). The tap 36 is switched as follows.

具体的には、所内変圧器3の一次側電圧が低下することにより、又は所内負荷の運転量増加に伴って所内変圧器3内の電圧降下が大きくなり、所内変圧器3の二次側電圧が設定値(定格)より低くなった場合は、所内変圧器3の一次巻線34の巻数が小さくなる側(図示上側)のタップ36に切り換える。これにより、所内変圧器3の変圧比が小さくなり、変圧器二次側の電圧が上昇する。   Specifically, the voltage drop in the in-house transformer 3 increases due to a decrease in the primary voltage of the in-house transformer 3 or an increase in the operation amount of the in-house load, and the secondary voltage of the in-house transformer 3 increases. Is lower than the set value (rated), the tap is switched to the tap 36 on the side (upper side in the drawing) where the number of turns of the primary winding 34 of the in-house transformer 3 is reduced. Thereby, the transformation ratio of the in-house transformer 3 becomes small, and the voltage on the secondary side of the transformer rises.

一方、所内変圧器3の一次側電圧が上昇することにより、又は所内負荷の運転量低下に伴って所内変圧器3内の電圧降下が小さくなり、所内変圧器3の二次側電圧が設定値(定格)より高くなった場合は、所内変圧器3の一次巻線34の巻数が大きくなる側(図示下側)のタップ36に切り換える。これにより、所内変圧器3の変圧比が大きくなり、変圧器二次側の電圧が低下する。   On the other hand, when the primary voltage of the in-house transformer 3 increases or the operation load of the in-house load decreases, the voltage drop in the in-house transformer 3 decreases, and the secondary voltage of the in-house transformer 3 becomes the set value. When it becomes higher than (rated), the tap 36 is switched to the side (lower side in the figure) where the number of turns of the primary winding 34 of the in-house transformer 3 is increased. Thereby, the transformation ratio of the in-house transformer 3 is increased, and the voltage on the secondary side of the transformer is lowered.

上述したタップ36の切換制御により、変圧器一次側の電圧変動や、所内負荷の運転量変化に対して、変圧器二次側の電圧を設定値(定格)に保つことが可能となる。なお、本実施形態ではLTC31を所内変圧器3の一次側に設けることとしたが、本発明はこれに限定されず、所内変圧器3の二次側に設けても良い。   By the switching control of the tap 36 described above, the voltage on the secondary side of the transformer can be maintained at the set value (rated) against the voltage fluctuation on the primary side of the transformer and the change in the operation amount of the on-site load. In the present embodiment, the LTC 31 is provided on the primary side of the in-house transformer 3, but the present invention is not limited to this and may be provided on the secondary side of the in-house transformer 3.

LTC31は、図2に示すように、一次巻線34から引き出された複数のタップ36を機械的に切り換えることで所内変圧器3の二次側電圧を変化させるため、その応答速度は数秒オーダである、従って、LTC31は、送電系統の電圧変動や、所内負荷の運転量の増減等による比較的緩やかな電圧変動を抑制することはできるが、瞬時の電圧変動には対応できない。   As shown in FIG. 2, the LTC 31 changes the secondary side voltage of the in-house transformer 3 by mechanically switching a plurality of taps 36 drawn from the primary winding 34. Therefore, the response speed is on the order of several seconds. Therefore, the LTC 31 can suppress relatively gradual voltage fluctuations due to voltage fluctuations in the power transmission system and increase / decrease in the amount of operation of the on-site load, but cannot cope with instantaneous voltage fluctuations.

このような瞬時の電圧変動を発生させる要因としては、大容量電動機の始動がある。本実施形態による原子力発電プラントの場合、復水器に海水を取り込む循環水ポンプを駆動する循環水ポンプ用電動機61,72,81、原子炉内で発生した蒸気を復水器に送り込まれた海水で冷却して凝縮した水を昇圧して原子炉内に戻す低圧復水ポンプ、高圧復水ポンプ及び原子炉給水ポンプをそれぞれ駆動する低圧復水ポンプ用電動機53,73,84、高圧復水ポンプ用電動機52,62,82、及び原子炉給水ポンプ用電動機51,71等が大容量電動機に該当する。   As a factor causing such instantaneous voltage fluctuation, there is a start of a large capacity motor. In the case of the nuclear power plant according to the present embodiment, the circulating water pump motors 61, 72, 81 for driving the circulating water pump that takes seawater into the condenser, and the seawater in which steam generated in the nuclear reactor is fed into the condenser The low-pressure condensate pump, the high-pressure condensate pump, and the reactor feed water pump for driving the low-pressure condensate pump, the high-pressure condensate pump, and the reactor feed water pump, respectively, The electric motors 52, 62, and 82, the reactor water pump electric motors 51 and 71, and the like correspond to large-capacity electric motors.

始動器等を介さずに電動機に直接電圧を印加して始動する方式(直入れ始動方式)の場合、定格電流の6倍以上の始動電流が電動機に流れる。この始動電流には、無効電流を多く含んでいる。一方、変圧器のインピーダンスは、リアクタンス成分(L)と抵抗成分(R)から構成されるが、所内変圧器3や起動変圧器4等の大型クラスの場合は、その成分のほとんどがリアクタンス成分(L)であり、無効電流の大きさに比例して変圧器内の電圧降下も大きくなることになる。そのため、大容量電動機の始動時は、所内変圧器3内で非常に大きな電圧降下が瞬時に発生する。このとき、応答速度が数秒オーダのLTC31,41では、大容量電動機の始動時電圧降下を補償することは困難である。   In the case of a system that starts by applying a voltage directly to the electric motor without using a starter or the like (a direct-injection starting system), a starting current that is 6 times or more of the rated current flows to the motor. This starting current includes a large amount of reactive current. On the other hand, the impedance of the transformer is composed of a reactance component (L) and a resistance component (R). However, in the case of a large class such as the in-house transformer 3 and the starting transformer 4, most of the components are reactance components ( L), and the voltage drop in the transformer also increases in proportion to the magnitude of the reactive current. Therefore, when the large capacity motor is started, a very large voltage drop instantaneously occurs in the in-house transformer 3. At this time, it is difficult to compensate for the voltage drop at the start of the large-capacity motor with the LTC 31 and 41 having a response speed on the order of several seconds.

本実施形態による所内電源システム100においては、大容量電動機の始動時電圧降下を補償するため、所内高圧母線5,6,7,8のそれぞれにSVC9,10,11,12を設置している。このように無効電力を消費する機器の近傍にSVCを設置することで、無効電力を効率的に補償することが可能となるが、本発明はこれに限定されず、所内変圧器3又は起動変圧器4の二次側回路32,33,42,43にSVCを設置することも可能である。   In the in-house power supply system 100 according to the present embodiment, the SVCs 9, 10, 11, and 12 are installed in the in-house high-voltage buses 5, 6, 7, and 8 in order to compensate for the voltage drop at the start of the large-capacity motor. As described above, the SVC can be efficiently compensated by installing the SVC in the vicinity of the device that consumes the reactive power. However, the present invention is not limited to this, and the in-house transformer 3 or the starting transformer It is also possible to install an SVC in the secondary side circuits 32, 33, 42, 43 of the device 4.

ここで、SVC9,10,11,12は、全ての大容量電動機を補償対象とする必要は無く、例えば始動可能電圧を下回る程の電圧降下を生じ得る電動機、すなわち大容量電動機のみを補償対象とすれば良い。本実施形態では、一例として、原子炉給水ポンプ用電動機51,71及び循環水ポンプ用電動機61,72,81のみを補償対象としている。すなわち、SVC9によって原子炉給水ポンプ用電動機51の始動時電圧降下を補償し、SVC10によって循環水ポンプ用電動機61の始動時電圧降下を補償し、SVC11によって原子炉給水ポンプ用電動機71及び循環水ポンプ用電動機72の始動時電圧降下を補償し、SVC12によって循環水ポンプ用電動機81の始動時電圧降下を補償する。   Here, the SVCs 9, 10, 11, and 12 do not need to target all large capacity motors, for example, only motors that can cause a voltage drop that is lower than the startable voltage, that is, only large capacity motors, are targeted for compensation. Just do it. In the present embodiment, as an example, only the reactor water pump motors 51 and 71 and the circulating water pump motors 61, 72, and 81 are targeted for compensation. That is, the SVC 9 compensates for the start-up voltage drop of the reactor water pump motor 51, the SVC 10 compensates for the start-up voltage drop of the circulating water pump motor 61, and the SVC 11 compensates for the reactor water pump motor 71 and the circulating water pump. The start-up voltage drop of the motor 72 is compensated, and the start-up voltage drop of the circulating water pump motor 81 is compensated by the SVC 12.

SVC9は、負荷遮断器5aの状態(投入状態又は開放状態)と、補償対象である電動機51の給電回路に設けた電流変換器(CT)21及び電流検知器22で検知した電動機51の電流値とに基づいて電動機51が始動中であるか否かを判定し、電動機51が始動中であると判定した場合に、所内高圧母線5に設けられた電圧変換器(PT)23及び電圧検知器24によって検知した電圧降下を補償する無効電力を所内高圧母線5に供給する。なお、電動機が始動中であるか否かは、電動機の始動SW信号、自動起動信号等を利用して判定しても良いが、本実施形態のように負荷遮断器5aからの信号と電流検知器22からの信号を利用することにより、簡便に判定できる。なお、SVC10,11,12の動作はSVC9と同様であるため、それらの説明は省略する。また、図1においても、所内高圧母線6,7,8に設けられた電流変換器(CT)、電流検知器、電圧変換器(PT)及び電圧検知器の図示を省略している。   The SVC 9 includes the state of the load circuit breaker 5a (the on state or the open state) and the current value of the motor 51 detected by the current converter (CT) 21 and the current detector 22 provided in the power supply circuit of the motor 51 to be compensated. Based on the above, it is determined whether or not the motor 51 is starting, and when it is determined that the motor 51 is starting, a voltage converter (PT) 23 and a voltage detector provided in the in-house high voltage bus 5 Reactive power that compensates for the voltage drop detected by 24 is supplied to the in-house high-voltage bus 5. Whether or not the motor is being started may be determined using a start SW signal, an automatic start signal, or the like of the motor, but the signal from the load breaker 5a and current detection as in the present embodiment. By using the signal from the device 22, it can be easily determined. Since the operations of the SVCs 10, 11, and 12 are the same as those of the SVC 9, their descriptions are omitted. Also in FIG. 1, illustration of current converters (CT), current detectors, voltage converters (PT) and voltage detectors provided in the in-house high voltage buses 6, 7 and 8 is omitted.

SVC9の概略構成を図3に示す。図3において、SVC9は、降圧変圧器91と、可変リアクトル92と、複数のコンデンサ93と、複数の静止型スイッチ(半導体スイッチ)94と、SVC遮断器制御部95と、静止型スイッチ制御部96とを備えている。   A schematic configuration of the SVC 9 is shown in FIG. In FIG. 3, the SVC 9 includes a step-down transformer 91, a variable reactor 92, a plurality of capacitors 93, a plurality of static switches (semiconductor switches) 94, a SVC circuit breaker controller 95, and a static switch controller 96. And.

降圧変圧器91の二次側は、SVC遮断器5eを介して所内高圧母線5に接続されている。降圧変圧器91の一次側と接地間には、可変リアクトル92及び複数のコンデンサ93が並列に設置されている。複数のコンデンサ93と降圧変圧器91の一次側との間には、それぞれ静止型スイッチ94が設けられている。   The secondary side of the step-down transformer 91 is connected to the in-house high voltage bus 5 via the SVC circuit breaker 5e. A variable reactor 92 and a plurality of capacitors 93 are disposed in parallel between the primary side of the step-down transformer 91 and the ground. Static switches 94 are provided between the plurality of capacitors 93 and the primary side of the step-down transformer 91, respectively.

SVC遮断器制御部95は、負荷遮断器5a及び電流検知器22からの入力に基づいてSVC遮断器5eの開閉制御を行う。静止型スイッチ制御部96は、電圧検知器24からの入力に基づいて静止型スイッチ94の切替制御(高速スイッチング)を行う。SVC遮断器5eを投入してSVC9を所内高圧母線5に接続し、静止型スイッチ94の切替制御を行うことにより、コンデンサ93から所内高圧母線5に必要な無効電力が供給される。なお、SVCの制御方式には、その他にリアクトルを制御する方式、自励式インバータ方式等が有るが、このように静止型スイッチを用いた方式とすることで、瞬時に無効電力を供給することが可能となる。   The SVC circuit breaker controller 95 performs opening / closing control of the SVC circuit breaker 5e based on inputs from the load circuit breaker 5a and the current detector 22. The static switch control unit 96 performs switching control (high-speed switching) of the static switch 94 based on the input from the voltage detector 24. The SVC circuit breaker 5e is turned on to connect the SVC 9 to the in-house high voltage bus 5, and the switching control of the static switch 94 is performed, so that the reactive power necessary for the in-house high voltage bus 5 is supplied from the capacitor 93. There are other SVC control methods such as a reactor control method, a self-excited inverter method, and the like. By using a static switch as described above, reactive power can be instantaneously supplied. It becomes possible.

一方、SVC9の作動中は、所内高圧母線5に静止型スイッチ94の切替制御による開閉サージが印加され、また、SVC9から供給される無効電流によって所内高圧母線5の電流波形がひずむことにより、所内高圧母線5の電流波形は高調波成分を含むこととなり、高周波ノイズが発生する(所内高圧母線6,7,8についても同様)。特に原子力発電プラントにおいては、原子炉の状態を検知する中性子モニタのような微弱信号を扱う機器が多く設置されており、これらの機器が高調波ノイズの影響を受けて誤検知等を起こす可能性があるため、SVC9を継続的に作動させることは望ましくない。   On the other hand, when the SVC 9 is in operation, an open / close surge due to switching control of the static switch 94 is applied to the in-house high-voltage bus 5, and the current waveform of the in-house high-voltage bus 5 is distorted by the reactive current supplied from the SVC 9. The current waveform of the high-voltage bus 5 includes harmonic components, and high-frequency noise is generated (the same applies to the in-house high-voltage buses 6, 7, and 8). Especially in nuclear power plants, there are many devices that handle weak signals such as neutron monitors that detect the state of the reactor, and these devices may be subject to false detection due to the effects of harmonic noise. Therefore, it is not desirable to continuously operate the SVC 9.

本実施形態によるSVC9は、補償対象である電動機51の始動時のみ作動するように、SVC制御部95及び静止型スイッチ制御部96によって制御される。SVC遮断器制御部95及び静止型スイッチ制御部96によるSVC9の制御ロジックを図4に示す。   The SVC 9 according to the present embodiment is controlled by the SVC control unit 95 and the static switch control unit 96 so as to operate only when the electric motor 51 to be compensated is started. The control logic of the SVC 9 by the SVC circuit breaker control unit 95 and the static switch control unit 96 is shown in FIG.

SVC遮断器制御部95は、遮断器状態判定器95aと、電流判定器95bと、AND演算器95cと、遮断器制御信号生成器95dとを備えている。遮断器状態判定器95aは、負荷遮断器5aから入力された状態信号に基づいて負荷遮断器5aの状態(投入状態又は開放状態)を判定し、その判定結果(1又は0)をAND演算器95cに出力する。電流判定器95bは、電流検知器22から入力された電動機51の電流値が定格電流値より大きいか否かを判定し、その判定結果(1又は0)をAND演算器95cに出力する。   The SVC circuit breaker control unit 95 includes a circuit breaker state determiner 95a, a current determiner 95b, an AND calculator 95c, and a circuit breaker control signal generator 95d. The circuit breaker state determiner 95a determines the state (loading state or open state) of the load circuit breaker 5a based on the state signal input from the load circuit breaker 5a, and uses the determination result (1 or 0) as an AND computing unit. Output to 95c. The current determiner 95b determines whether or not the current value of the electric motor 51 input from the current detector 22 is greater than the rated current value, and outputs the determination result (1 or 0) to the AND calculator 95c.

AND演算器95cは、遮断器状態判定器95aから入力された判定結果(1又は0)と電流判定器95bから入力された判定結果(1又は0)とのAND演算を行い、その演算結果(1又は0)を遮断器制御信号生成器95d及び静止型スイッチ制御部96のAND演算器96b(後述)に出力する。遮断器制御信号生成器95dは、AND演算器95cから入力された演算結果(1又は0)に応じた制御信号(投入信号又は開放信号)を生成し、SVC遮断器5eに出力する。   The AND calculator 95c performs an AND operation on the determination result (1 or 0) input from the circuit breaker state determiner 95a and the determination result (1 or 0) input from the current determiner 95b, and the calculation result ( 1 or 0) is output to the circuit breaker control signal generator 95d and the AND calculator 96b (described later) of the static switch control unit 96. The circuit breaker control signal generator 95d generates a control signal (an input signal or an open signal) corresponding to the calculation result (1 or 0) input from the AND calculator 95c, and outputs the control signal to the SVC circuit breaker 5e.

これにより、負荷遮断器5aが投入されて電動機51が所内高圧母線5に接続され、かつ電動機51に定格を上回る始動電流が流れた場合、すなわち電動機51が始動中である場合は、SVC遮断器5eを投入され、SVC9が所内高圧母線5に接続される。一方、負荷遮断器5aが開放されて電動機51が所内高圧母線から切り離された場合、又は電動機51の電流値が定格以下となった場合、すなわち電動機51が始動中でない場合は、SVC遮断器5eが開放され、SVC9が所内高圧母線5から切り離される。   Thereby, when the load circuit breaker 5a is turned on, the electric motor 51 is connected to the in-house high voltage bus 5 and a starting current exceeding the rating flows through the electric motor 51, that is, when the electric motor 51 is starting, the SVC circuit breaker 5e is turned on, and the SVC 9 is connected to the in-house high voltage bus 5. On the other hand, when the load circuit breaker 5a is opened and the electric motor 51 is disconnected from the in-house high voltage bus, or when the electric current value of the electric motor 51 becomes lower than the rated value, that is, when the electric motor 51 is not started, the SVC circuit breaker 5e. Is opened and the SVC 9 is disconnected from the in-house high voltage bus 5.

静止型スイッチ制御部96は、電圧判定器96aと、AND演算器96bと、静止型スイッチ制御信号生成器96cとを備えている。電圧判定器96aは、電圧検知器24から入力された所内高圧母線5の電圧値が定格電圧値より小さいか否かを判定し、その判定結果(1又は0)をAND演算器96bに出力する。   The static switch control unit 96 includes a voltage determiner 96a, an AND calculator 96b, and a static switch control signal generator 96c. The voltage determiner 96a determines whether or not the voltage value of the in-house high voltage bus 5 input from the voltage detector 24 is smaller than the rated voltage value, and outputs the determination result (1 or 0) to the AND calculator 96b. .

AND演算器96bは、SVC遮断器制御部95のAND演算器95cから入力された判定結果(1又は0)と、電圧判定器96aから入力された判定結果(1又は0)とのAND演算を行い、その演算結果(1又は0)を静止型スイッチ制御信号生成器96cに出力する。静止型スイッチ制御信号生成器96cは、AND演算器96bから入力された演算結果(1又は0)に応じた制御信号(ON/OFF信号)を生成し、静止型スイッチ94に出力する。   The AND calculator 96b performs an AND operation on the determination result (1 or 0) input from the AND calculator 95c of the SVC circuit breaker control unit 95 and the determination result (1 or 0) input from the voltage determiner 96a. The calculation result (1 or 0) is output to the static switch control signal generator 96c. The static switch control signal generator 96 c generates a control signal (ON / OFF signal) corresponding to the calculation result (1 or 0) input from the AND calculator 96 b and outputs the control signal (ON / OFF signal) to the static switch 94.

これにより、電動機51が始動中であり、かつ所内高圧母線5の電圧値が定格電圧値を下回った場合に、静止型スイッチ94の切替制御が行われ、所内高圧母線5の電圧降下を補償する無効電力がコンデンサ93から所内高圧母線5に供給される。一方、電動機51が始動中でない、もしくは所内高圧母線5の電圧値が定格電圧値以上の場合は、静止型スイッチ94の切替制御は行われない。   Thereby, when the electric motor 51 is starting and the voltage value of the in-house high-voltage bus 5 falls below the rated voltage value, the switching control of the static switch 94 is performed to compensate for the voltage drop in the in-house high-voltage bus 5. Reactive power is supplied from the capacitor 93 to the in-house high voltage bus 5. On the other hand, when the electric motor 51 is not being started or the voltage value of the in-house high voltage bus 5 is equal to or higher than the rated voltage value, the switching control of the static switch 94 is not performed.

以上のように構成した所内電源システム100においては、電圧変動が比較的緩やかな通常運転時はSVC9,10,11,12が作動せず、LTC31又はLTC41のみによって電圧変動が抑制され、特定の電動機51,61,71,72,81の始動時に限ってSVC9,10,11,12が作動し、特定の電動機51,61,71,72,81の始動時電圧降下が抑制される。   In the on-site power supply system 100 configured as described above, the SVCs 9, 10, 11, and 12 do not operate during normal operation in which the voltage fluctuation is relatively gentle, and the voltage fluctuation is suppressed only by the LTC31 or the LTC41. Only when starting 51, 61, 71, 72, 81, the SVCs 9, 10, 11, 12 are operated, and the voltage drop during starting of the specific electric motors 51, 61, 71, 72, 81 is suppressed.

また、SVC9,10,11,12の作動が特定の電動機51,61,71,72,81の始動時に限定されるため、通常運転時にSVC9,10,11,12の作動に伴う高周波ノイズが発生せず、原子力発電プラント内に設置された所内機器の作動環境を良好に保つことができる。さらに、特定の電動機51,61,71,72,81の始動時以外は、SVC9,10,11,12が所内高圧母線5,6,7,8から切り離されるため、仮にSVC9,10,11,12が誤作動した場合であっても高周波ノイズの発生を抑えることができる。   Further, since the operation of the SVCs 9, 10, 11, and 12 is limited at the time of starting the specific electric motors 51, 61, 71, 72, and 81, high-frequency noise associated with the operation of the SVCs 9, 10, 11, and 12 is generated during normal operation. Without being able to maintain the working environment of the on-site equipment installed in the nuclear power plant. Further, since the SVCs 9, 10, 11, and 12 are disconnected from the internal high-voltage buses 5, 6, 7, and 8 except when the specific electric motors 51, 61, 71, 72, and 81 are started, the SVCs 9, 10, 11, Even when 12 malfunctions, the generation of high frequency noise can be suppressed.

また、SVC9,10,11,12は、特定の電動機51,61,71,72,81の始動時電圧降下のみを補償できれば良いため、SVC9,10,11,12の容量をこれら特定の電動機51,61,71,72,81の容量に基づいて適切に設定することにより、SVC9,10,11,12の小型化が可能となる。   Further, since the SVCs 9, 10, 11, and 12 need only be able to compensate for the voltage drop during startup of the specific motors 51, 61, 71, 72, and 81, the capacity of the SVCs 9, 10, 11, and 12 is set to the specific motors 51. , 61, 71, 72, 81, the SVCs 9, 10, 11, 12 can be downsized by appropriately setting the capacity.

また、SVC9,10,11,12によって所内高圧母線5,6,7,8における特定の電動機51,61,71,72,81の始動時電圧降下を抑制することにより、所内変圧器3及び起動変圧器4に対する要求仕様(低インピーダンス化等)を緩和することができるため、所内変圧器3及び起動変圧器4のコスト低減が可能となる。さらに、所内高圧母線5,6,7,8に接続された図示しない下流側(低圧側)の母線の電圧変動も抑制されるため、所内高圧母線5,6,7,8及び下流側(低圧側)の母線から給電される負荷設備の許容電圧変動(原子力発電プラントの通常の負荷設備では定格電圧の−20%程度)を緩和することができ、これら負荷設備のコスト低減が可能となる。   In addition, the SVC 9, 10, 11 and 12 suppress the voltage drop at the start of the specific electric motors 51, 61, 71, 72 and 81 in the in-house high-voltage buses 5, 6, 7 and 8 to thereby start the in-house transformer 3 and start-up. Since the required specifications (such as low impedance) for the transformer 4 can be relaxed, the cost of the in-house transformer 3 and the start-up transformer 4 can be reduced. Furthermore, since voltage fluctuations of a downstream (low voltage side) bus (not shown) connected to the internal high voltage buses 5, 6, 7, 8 are also suppressed, the internal high voltage buses 5, 6, 7, 8 and the downstream side (low voltage) The allowable voltage fluctuations of the load equipment fed from the side bus) (about −20% of the rated voltage in normal load equipment of a nuclear power plant) can be mitigated, and the cost of these load equipment can be reduced.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

1…発電機、2…主変圧器、3…所内変圧器、3a,3b,3c,3d…受電遮断器、4…起動変圧器、4a,4b,4c,4d…受電遮断器、5,6,7,8…所内高圧母線、5a,5b,5c,5d…負荷遮断器、5e,6d,7e,8f…SVC遮断器、6a,6b,6c…負荷遮断器、7a,7b,7c,7d…負荷遮断器、8a,8b,8c,8d,8e…負荷遮断器、9,10,11,12…静止型補償装置(SVC)、13…発電機負荷開閉器、14,15…給電回路、21…電流変換器(CT)、22…電流検知器、23…電圧変換器(PT)、24…電圧検知器、31,41…負荷時タップ切換器(LTC)、32,33,42,43…二次側回路、34…一次巻線、35…二次巻線、36…タップ、37…LTC制御部、38…電圧検知回路、51,71…原子炉給水ポンプ用電動機(特定の電動機)、52,62,82…高圧復水ポンプ用電動機、53,73,84…低圧復水ポンプ用電動機、54,63,83…高圧ドレンポンプ用電動機、61,72,81…循環水ポンプ用電動機(特定の電動機)、74,85…低圧ドレンポンプ用電動機、91…降圧変圧器、92…可変リアクトル、93…コンデンサ、94…静止型スイッチ(半導体スイッチ)、95…SVC遮断器制御部(第1の制御部)、95a…遮断器状態判定器、95b…電流判定器、95c…AND演算器、95d…遮断器制御信号生成器、96…静止型スイッチ制御部(第2の制御部)、96a…電圧判定器、96b…AND演算器、96c…静止型スイッチ制御信号生成器、100…所内電源システム DESCRIPTION OF SYMBOLS 1 ... Generator, 2 ... Main transformer, 3 ... In-house transformer, 3a, 3b, 3c, 3d ... Receiving circuit breaker, 4 ... Starting transformer, 4a, 4b, 4c, 4d ... Receiving circuit breaker, 5, 6 , 7, 8 ... In-house high-voltage bus, 5a, 5b, 5c, 5d ... Load breaker, 5e, 6d, 7e, 8f ... SVC breaker, 6a, 6b, 6c ... Load breaker, 7a, 7b, 7c, 7d ... load circuit breaker, 8a, 8b, 8c, 8d, 8e ... load circuit breaker, 9, 10, 11, 12 ... static compensator (SVC), 13 ... generator load switch, 14, 15 ... power supply circuit, DESCRIPTION OF SYMBOLS 21 ... Current converter (CT), 22 ... Current detector, 23 ... Voltage converter (PT), 24 ... Voltage detector, 31, 41 ... On-load tap changer (LTC), 32, 33, 42, 43 ... secondary side circuit, 34 ... primary winding, 35 ... secondary winding, 36 ... tap, 37 ... LTC control unit 38 ... Voltage detection circuit, 51, 71 ... Reactor feed pump motor (specific motor), 52, 62, 82 ... High pressure condensate pump motor, 53, 73, 84 ... Low pressure condensate pump motor, 54, 63, 83 ... high pressure drain pump motor, 61, 72, 81 ... circulating water pump motor (specific motor), 74, 85 ... low pressure drain pump motor, 91 ... step-down transformer, 92 ... variable reactor, 93 ... Capacitor, 94 ... Static switch (semiconductor switch), 95 ... SVC circuit breaker controller (first controller), 95a ... Circuit breaker state determiner, 95b ... Current determiner, 95c ... AND calculator, 95d ... Breaker Generator control signal generator, 96 ... static switch control unit (second control unit), 96a ... voltage determiner, 96b ... AND operator, 96c ... static switch control signal generator, 100 House power supply system

Claims (2)

発電機と、
前記発電機に接続された主変圧器と、
前記発電機と前記主変圧器の間から分岐した回路に接続された所内変圧器と、
前記所内変圧器に接続され、発電プラントの運転に必要な所内負荷電動機に電力を供給する所内高圧母線と、
前記所内変圧器の二次側電圧を変更可能な負荷時タップ切換器と、
コンデンサ及び半導体スイッチを有し、前記半導体スイッチの切替制御によって前記コンデンサから前記所内高圧母線に無効電力を供給するように構成された静止型無効電力補償装置とを備えた発電プラントの所内電源システムにおいて、
前記所内負荷電動機の電流を検知する電流検知器と、
前記所内高圧母線の電圧を検知する電圧検知器とを更に備え、
前記所内負荷電動機は、負荷遮断器を介して前記所内高圧母線に接続され、
前記静止型無効電力補償装置は、
前記負荷遮断器が投入され、かつ前記電流検知器によって検知された電流値が前記所内負荷電動機の定格電流値より大きい場合は、前記所内負荷電動機が始動中であると判定し、前記負荷遮断器が開放され、または前記電流検知器によって検知された電流値が前記所内負荷電動機の定格電流値以下である場合は、前記所内負荷電動機が始動中でないと判定する第1の制御部と、
前記第1の制御部によって前記所内負荷電動機が始動中であると判定され、かつ前記電圧検知器によって検知された電圧値が前記所内高圧母線の定格電圧値より小さい場合は、前記半導体スイッチの切替制御を実行し、前記第1の制御部によって前記所内負荷電動機が始動中でないと判定され、または前記電圧検知器によって検知された電圧値が前記所内高圧母線の定格電圧値以上である場合は、前記半導体スイッチの切替制御を実行しないように構成された第2の制御部と
を備えたことを特徴とする発電プラントの所内電源システム。
A generator,
A main transformer connected to the generator;
An on-site transformer connected to a circuit branched from between the generator and the main transformer;
An in-house high-voltage bus connected to the in-house transformer and supplying power to the on-site load motor required for operation of the power plant,
A load tap changer capable of changing the secondary side voltage of the internal transformer;
In an in-house power supply system of a power plant having a capacitor and a semiconductor switch, and comprising a static reactive power compensator configured to supply reactive power from the capacitor to the in-house high-voltage bus by switching control of the semiconductor switch ,
A current detector for detecting the current of the on-site load motor;
A voltage detector for detecting the voltage of the internal high voltage bus;
The in-house load motor is connected to the in-house high voltage bus via a load circuit breaker,
The static reactive power compensator is
When the load circuit breaker is turned on and the current value detected by the current detector is larger than the rated current value of the on-site load motor, it is determined that the on-site load motor is being started, and the load breaker is Is opened, or when the current value detected by the current detector is equal to or less than the rated current value of the on-site load motor, a first control unit that determines that the on-site load motor is not being started ; and
When it is determined by the first control unit that the on-site load motor is being started and the voltage value detected by the voltage detector is smaller than the rated voltage value of the on-site high voltage bus, the switching of the semiconductor switch When the control is performed and it is determined that the on-site load motor is not being started by the first control unit , or the voltage value detected by the voltage detector is equal to or higher than the rated voltage value of the on-site high voltage bus , An on-site power supply system for a power plant, comprising: a second control unit configured not to execute switching control of the semiconductor switch.
請求項1に記載の発電プラントの所内電源システムにおいて、
前記静止型無効電力補償装置は、SVC遮断器を介して前記所内高圧母線に接続され、
前記第1の制御部は、前記所内負荷電動機が始動中であると判定した場合は、前記SVC遮断器を投入し、前記所内負荷電動機が始動中でないと判定した場合は、前記SVC遮断器を開放することを特徴とする発電プラントの所内電源システム。
In the in-house power supply system of the power plant according to claim 1,
The static reactive power compensator is connected to the internal high-voltage bus via an SVC circuit breaker,
The first control unit turns on the SVC circuit breaker when it is determined that the on-site load motor is being started, and turns on the SVC circuit breaker when it is determined that the on-site load motor is not being started. An in-house power supply system of a power plant characterized by being opened.
JP2015096621A 2015-05-11 2015-05-11 Power plant in-house power supply system Active JP6420717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096621A JP6420717B2 (en) 2015-05-11 2015-05-11 Power plant in-house power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096621A JP6420717B2 (en) 2015-05-11 2015-05-11 Power plant in-house power supply system

Publications (2)

Publication Number Publication Date
JP2016213985A JP2016213985A (en) 2016-12-15
JP6420717B2 true JP6420717B2 (en) 2018-11-07

Family

ID=57552000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096621A Active JP6420717B2 (en) 2015-05-11 2015-05-11 Power plant in-house power supply system

Country Status (1)

Country Link
JP (1) JP6420717B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370158A (en) * 2017-05-24 2017-11-21 国网北京市电力公司 Distribution line method of supplying power to and system
CN108899894B (en) * 2018-06-21 2021-07-30 中广核研究院有限公司 Power supply mode selection method and device based on nuclear power ship operation condition analysis
CN109742809B (en) * 2019-03-15 2023-12-26 中国电力工程顾问集团西北电力设计院有限公司 Multi-source complementary energy storage type power station security power supply system and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993816A (en) * 1995-09-29 1997-04-04 Nichicon Corp Hybrid reactive power compensating equipment
JPH09191576A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Device for compensating for voltage fluctuation of power supply
JPH1042469A (en) * 1996-07-25 1998-02-13 Meidensha Corp Power supply system
JPH10293614A (en) * 1997-04-21 1998-11-04 Toshiba Corp Ltc controller for transformer of power plant
JP2000308263A (en) * 1999-04-21 2000-11-02 Meidensha Corp Power factor controller
JP2004104865A (en) * 2002-09-05 2004-04-02 Toshiba Corp Control method for stationary reactive power compensator
CN102668295B (en) * 2009-10-25 2016-08-03 Abb研究有限公司 For the method and apparatus improving the operation of the auxiliary power system of steam power plant
JP2016208763A (en) * 2015-04-27 2016-12-08 三菱電機株式会社 In-plant bus voltage controller and power transmission voltage controller

Also Published As

Publication number Publication date
JP2016213985A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Ng et al. Unbalanced grid fault ride-through control for a wind turbine inverter
CA2715996C (en) Wind energy plant having a double-energized asynchronous generator and converter control
CA2771730C (en) Method and arrangement for controlling an operation of an electric energy production facility during a disconnection to a utility grid
US8120932B2 (en) Low voltage ride through
US20190157982A1 (en) Device and method for premagnetization of a power transformer in a converter system
US9634490B2 (en) Dynamic voltage restoration system and method
US9118184B2 (en) Alternative power converter system
EP2256893A1 (en) Series voltage compensator and method for series voltage compensation in electrical generators
JP7017116B2 (en) Power system
US20090021963A1 (en) Uninterruptible power supply, connected to a grid
JP2006223060A (en) Parallel operation controller of power converter
CN102668295A (en) Method and apparatus for improving the operation of an auxiliary power system of a thermal power plant
JP6420717B2 (en) Power plant in-house power supply system
US20130272038A1 (en) Excitation control circuit, control method and electrically excited wind power system having the same
JP2007516690A (en) Power network
JP2011067078A (en) Method and device for controlling power supply system
Bukhari et al. An inrush current reduction technique for the line-interactive uninterruptible power supply systems
Li et al. A Converter-Based Hybrid Transformer for Regulating the Voltage of Distribution System
WO2020131005A1 (en) Fault current control sub-system and related method
WO2018020666A1 (en) Power conversion device and control method therefor
US11146064B2 (en) Power supply system and control device
US6806688B2 (en) Difference power adjustment apparatus having a capacitor and reactor connected power-system bus
JP4660524B2 (en) On-site power supply equipment for power plants
KR102276555B1 (en) System and method for controlling automatic generator initial load increase in synchronization
Galang et al. Decarbonization Of Offshore Installations Using Static Frequency Converters And Active Front Ends

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6420717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150