JP6418854B2 - Method for producing water-reactive Al alloy sprayed film - Google Patents

Method for producing water-reactive Al alloy sprayed film Download PDF

Info

Publication number
JP6418854B2
JP6418854B2 JP2014181684A JP2014181684A JP6418854B2 JP 6418854 B2 JP6418854 B2 JP 6418854B2 JP 2014181684 A JP2014181684 A JP 2014181684A JP 2014181684 A JP2014181684 A JP 2014181684A JP 6418854 B2 JP6418854 B2 JP 6418854B2
Authority
JP
Japan
Prior art keywords
film
sprayed film
water
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014181684A
Other languages
Japanese (ja)
Other versions
JP2016056396A (en
Inventor
中村 亮太
亮太 中村
正 森田
正 森田
克彦 虫明
克彦 虫明
中村 久三
久三 中村
孝久 佐々木
孝久 佐々木
幸司 大石
幸司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014181684A priority Critical patent/JP6418854B2/en
Publication of JP2016056396A publication Critical patent/JP2016056396A/en
Application granted granted Critical
Publication of JP6418854B2 publication Critical patent/JP6418854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、水反応性Al合金溶射膜の製造方法に関し、特にAl合金を形成する材料を粉末とし、この粉末を用いて粉末フレーム溶射して水反応性Al合金溶射膜を製造する方法に関する。 The present invention relates to the production how the water-reactive Al alloy sprayed coating, who in particular a powder material for forming the Al alloy, powder flame spraying to the production of water-reactive Al alloy sprayed coating using this powder about the law.

スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法等により薄膜を形成するための成膜装置において、その装置内に設けられる成膜室用構成部材には、成膜プロセス中に成膜材料からなる金属又は金属化合物の膜が不可避的に付着する。この成膜室用構成部材としては、例えば、基板以外の真空容器内部に膜が付着するのを防止するための防着板や、シャッターや、基板の所定の場所だけに成膜するために用いるマスクや、基板搬送用トレイ等を挙げることができる。成膜プロセス中に、これらの部材にも目的とする薄膜(基板上に形成すべき薄膜)と同組成の膜が付着する。これらの部材は、付着膜の剥離後、繰返し使用されるのが通常である。   In a film forming apparatus for forming a thin film by sputtering, vacuum deposition, ion plating, CVD, etc., a film forming material is provided during the film forming process in the film forming chamber constituent member provided in the apparatus. A metal or metal compound film consisting of inevitably adheres. As the film forming chamber component, for example, a deposition plate for preventing the film from adhering to the inside of the vacuum vessel other than the substrate, a shutter, or a film used only for a predetermined place on the substrate. A mask, a tray for transporting a substrate, and the like can be given. During the film forming process, a film having the same composition as the target thin film (thin film to be formed on the substrate) adheres to these members. These members are usually used repeatedly after the adhesion film is peeled off.

これら成膜室用構成部材に不可避的に付着する膜は、成膜プロセスの作業時間に応じて厚くなる。このような付着膜は、その内部応力や繰返しの熱履歴による応力によって成膜室用構成部材からパーティクルとなって剥離され、基板に付着し、膜欠陥の生じる原因となる。そのために、成膜室用構成部材は、付着膜の剥離が生じない段階で、成膜装置から取り外され、洗浄して付着膜を剥離し、その後に表面仕上げして、再使用するというサイクルが定期的に行われている。   The films that inevitably adhere to these film forming chamber components become thicker according to the working time of the film forming process. Such an adhesion film is peeled off as particles from the film forming chamber component due to the internal stress or stress due to repeated thermal history, and adheres to the substrate, causing film defects. Therefore, the film forming chamber component is removed from the film forming apparatus at a stage where the attached film does not peel off, washed to remove the attached film, and then surface-finished and reused. It is done regularly.

成膜材料として、例えば、Al、Mo、Ti、Cu、Ag、Au、Pt、Rh、Ru、Ir、Ta、W、Nb、Zr、Re、Ni、Cr、V、Li、Co、Pd、Nd、In及びSe等の有価金属、それら金属の2種以上からなる合金、並びにITO、ZnO、PZT及びTiO等の酸化物を用いる場合、基板上への膜形成に与らずに、基板以外の構成部材に付着した金属等を回収すると共に、構成部材をリサイクルするための安価な処理技術の確立が求められている。 Examples of film forming materials include Al, Mo, Ti, Cu, Ag, Au, Pt, Rh, Ru, Ir, Ta, W, Nb, Zr, Re, Ni, Cr, V, Li, Co, Pd, and Nd. , valuable metals such as in and Se, an alloy of two or more of these metals, as well as ITO, ZnO, when using an oxide of 2, such as PZT and TiO, without Azukara the film formation on the substrate, other than the substrate In addition to recovering metal and the like adhering to the constituent members, establishment of an inexpensive processing technique for recycling the constituent members is required.

例えば、成膜装置において基板以外の装置内壁や各成膜室用構成部材表面等への成膜材料の付着を防止するために用いる防着板の場合、成膜時に付着した付着物を剥離して再利用しているのが現状である。この付着物の剥離法としては、サンドブラスト法や、酸やアルカリによるウェットエッチング法や、過酸化水素等による水素脆性を利用した剥離法や、さらには電気分解を利用した剥離法が一般的に行われている。この場合、付着物の剥離処理を実施する際に、防着板等も少なからず損傷を受けるので、再利用回数には限りがある。そのため、防着板等の損傷を出来るだけ少なくするような膜剥離法の開発が望まれている。   For example, in the case of a deposition plate used to prevent the deposition material from adhering to the inner wall of the apparatus other than the substrate, the surface of each film forming chamber component, etc. It is currently being reused. As the peeling method of this deposit, a sandblasting method, a wet etching method using acid or alkali, a peeling method using hydrogen embrittlement such as hydrogen peroxide, and a peeling method using electrolysis are generally performed. It has been broken. In this case, when the deposit is peeled off, the deposition prevention plate and the like are damaged to some extent, and the number of reuse is limited. Therefore, it is desired to develop a film peeling method that minimizes damage to the deposition preventive plate and the like.

上記したような付着膜の剥離法以外に、水分の存在する雰囲気中で反応して溶解し得る性質を有する水反応性Al複合材料からなるAl合金溶射膜で被覆した構成部材を備えた装置内で成膜プロセスを実施し、成膜中に付着した膜をAl合金溶射膜の反応・溶解により剥離・分離せしめ、この剥離された付着膜から成膜材料の有価金属を回収する技術が知られている。このような水反応性Al複合材料としては、例えば、Alに特定量のIn、Si及びTiを添加したもの(例えば、特許文献1参照)や、Alに特定量のBi及びSiを添加したもの(例えば、特許文献2参照)が知られている。しかし、高温での成膜プロセスを経たAl合金溶射膜の剥離時間が長かったり、Al合金溶射膜の強度が低かったりという点から、必ずしも満足するものが得られていない。   In addition to the adhesion film peeling method as described above, in an apparatus provided with a component coated with an Al alloy sprayed film made of a water-reactive Al composite material that has the property of reacting and dissolving in an atmosphere containing moisture A technology is known in which a film forming process is carried out, and the film adhering during film formation is peeled and separated by reaction and dissolution of an Al alloy sprayed film, and the valuable metal of the film forming material is recovered from the peeled adhered film. ing. Examples of such water-reactive Al composite materials include those in which specific amounts of In, Si and Ti are added to Al (see, for example, Patent Document 1), and materials in which specific amounts of Bi and Si are added to Al. (See, for example, Patent Document 2). However, satisfactory results are not always obtained from the point that the peeling time of the Al alloy sprayed film after the film forming process at a high temperature is long or the strength of the Al alloy sprayed film is low.

特許第5517371号公報Japanese Patent No. 5517371 特許第5327759号公報Japanese Patent No. 5327759

本発明の課題は、上述の従来技術の問題点を解決することにあり、Al合金を形成する材料として特定の平均粒径を有する粉末を用いて粉末フレーム溶射し、水分の存在する雰囲気中で反応して溶解し得る水反応性Al合金溶射膜を製造する方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and powder flame spraying is performed using a powder having a specific average particle diameter as a material for forming an Al alloy in an atmosphere where moisture exists. and to provide a way to produce a reaction to be dissolved water-reactive Al alloy sprayed coating.

本発明の水反応性Al合金溶射膜の製造方法は、水と反応して基材から剥離する水反応性Al合金溶射膜の製造方法であって、Al合金を形成する材料を平均粒径50μm以上150μm以下の粉末とし、この粉末を前記基材の表面に対して粉末フレーム溶射して急冷凝固させることにより成膜することを特徴とする。   The method for producing a water-reactive Al alloy sprayed film of the present invention is a method for producing a water-reactive Al alloy sprayed film that reacts with water and peels from a substrate, and the material for forming the Al alloy has an average particle size of 50 μm The powder is formed to have a powder of 150 μm or less, and this powder is spray flame-sprayed on the surface of the substrate and rapidly solidified.

上記のようにして製造された水反応性Al合金溶射膜は、水分の存在する雰囲気中で容易に反応し水素を発生して溶解する。   The water-reactive Al alloy sprayed film manufactured as described above easily reacts in an atmosphere containing moisture to generate and dissolve hydrogen.

前記粉末の平均粒径が、レーザ回折、散乱法粒度分布測定装置(Beckmancoulter社製 LS13 320)を使用して測定した50μm以上150μm以下であると、粉末フレーム溶射する際に、内部まで十分に溶解し、基材表面に付着しやすいため、Al合金溶射膜の満足すべき剥離性及び強度が得られる。しかし、平均粒径が50μm未満であると、溶射時の粉末送りが困難となり、粉末供給ホッパーからガンノズルまでのフィーダー部で詰まりやすくなる。また、成膜速度が十分に得られない。150μmを超えると、粉末フレーム溶射する際に、粉末の内部まで十分に溶解せず、剥離性が良く、かつ強度(成膜時点の膜及び熱プロセスを経た後の膜)が高いAl合金溶射膜を製造することが困難になる傾向がある。   When the powder has a mean particle size of 50 μm or more and 150 μm or less measured using a laser diffraction / scattering particle size distribution analyzer (LS13 320, manufactured by Beckmancoulter), the powder is sufficiently melted to the inside when sprayed. In addition, since it easily adheres to the substrate surface, satisfactory peelability and strength of the Al alloy sprayed film can be obtained. However, if the average particle size is less than 50 μm, powder feeding during spraying becomes difficult, and clogging tends to occur at the feeder part from the powder supply hopper to the gun nozzle. In addition, a sufficient film forming speed cannot be obtained. If it exceeds 150 μm, when spraying the powder flame, the inner part of the powder does not dissolve sufficiently, the peelability is good, and the strength (film at the time of film formation and film after the thermal process) is high. Tends to be difficult to manufacture.

前記基材は、成膜装置の成膜室用構成部材であることが好ましい The base material is preferably a constituent member for a film forming chamber of a film forming apparatus.

前記基材が、防着板、シャッター又はマスクであることが好ましい。
It is preferable that the base material is a deposition preventing plate, a shutter, or a mask.

本発明の水反応性Al合金溶射膜の製造方法によれば、水反応性Al合金溶射膜を簡単なプロセスで、かつ安いコストで容易に製造できる。また、製造された水反応性Al合金溶射膜は、高温(例えば、350℃程度)での成膜プロセスからの熱履歴を経た後でも、水分の存在する雰囲気中で反応して溶解し得る性質を持つと共に、熱履歴を受ける前(膜の形成時以降)の活性度をコントロールできるという効果を奏する。   According to the method for producing a water-reactive Al alloy sprayed film of the present invention, a water-reactive Al alloy sprayed film can be easily produced by a simple process and at a low cost. In addition, the produced water-reactive Al alloy sprayed film has the property of reacting and dissolving in an atmosphere containing moisture even after undergoing a thermal history from a film forming process at a high temperature (for example, about 350 ° C.). And has the effect of being able to control the activity before receiving a thermal history (after film formation).

本発明に従って製造される水反応性Al合金溶射膜は、水分の存在下で反応して水素を発生しながら効率的に溶解するので、この水反応性Al合金溶射膜で覆われた成膜室用構成部材(例えば、防着板、シャッター及びマスク等)を備えた成膜装置を用いて成膜すれば、成膜プロセス中に防着板等の表面に付着する成膜材料からなる不可避的な付着膜を、このAl合金溶射膜の反応・溶解により剥離・分離せしめ、この剥離された付着膜から成膜材料の有価金属を容易に回収することができるという効果を奏する。   Since the water-reactive Al alloy sprayed film produced according to the present invention reacts in the presence of moisture and efficiently dissolves while generating hydrogen, the film forming chamber covered with this water-reactive Al alloy sprayed film If a film is formed using a film forming apparatus provided with a structural member (for example, a deposition plate, a shutter, a mask, etc.), it is unavoidable that the deposition material adheres to the surface of the deposition plate during the deposition process. Thus, it is possible to peel and separate the attached film by the reaction / dissolution of the Al alloy sprayed film and easily recover the valuable metal of the film forming material from the peeled attached film.

また、本発明に従って製造される水反応性Al合金溶射膜で成膜室用構成部材を覆えば、この構成部材の損傷を少なくすることができるので、防着板等の構成部材の再使用回数が増えるという効果を奏する。   Further, if the film forming chamber constituent member is covered with a water-reactive Al alloy sprayed film manufactured according to the present invention, damage to the constituent member can be reduced, so that the number of reuses of the constituent member such as a deposition preventing plate can be reduced. There is an effect that increases.

実施例1記載の組成を有するAl合金溶射膜(熱処理:250℃×150hr(時間))に対する擬似デポ膜剥離時間(hr)(剥離性)を示すグラフ。The graph which shows the pseudo deposit film peeling time (hr) (peelability) with respect to the Al alloy sprayed film (heat treatment: 250 degreeC x 150 hr (hour)) which has a composition of Example 1. FIG. 実施例2記載の組成を有するAl合金溶射膜に対する強度(最大点応力(N/mm))の測定方法を説明するための模式的斜視図(a)、その最大点応力を示すグラフ(b)。Typical perspective view (a) for demonstrating the measuring method of the intensity | strength (maximum point stress (N / mm < 2 >)) with respect to the Al alloy sprayed film which has a composition of Example 2, The graph (b) which shows the maximum point stress ). 参考例1記載の組成を有するAl合金溶射膜(熱処理:250℃×100hr(時間))に対する擬似デポ膜剥離時間(hr)を示すグラフ。The graph which shows the pseudo | simulation deposition film peeling time (hr) with respect to the Al alloy sprayed film (heat processing: 250 degreeC x 100 hr (time)) which has a composition of the reference example 1. FIG. 参考例2記載の組成を有するAl合金溶射膜(熱処理:270℃×150hr)に対する擬似デポ膜剥離時間(hr)を示すグラフ。The graph which shows the pseudo | simulation deposit film peeling time (hr) with respect to the Al alloy sprayed film (heat treatment: 270 degreeC x 150 hr) which has a composition of the reference example 2. FIG. 実施例3記載の組成を有するAl合金溶射膜(熱処理:250℃×150hr)に対する擬似デポ膜剥離時間(hr)を示すグラフ。The graph which shows the pseudo | simulation deposition film peeling time (hr) with respect to the Al alloy sprayed film (heat processing: 250 degreeC x 150 hr) which has a composition of Example 3. FIG. 実施例4記載の組成を有するAl合金溶射膜(熱処理:300℃×150hr)に対する擬似デポ膜剥離時間(hr)を示すグラフ。The graph which shows the pseudo | simulation deposit film peeling time (hr) with respect to the Al alloy sprayed film (heat processing: 300 degreeC x 150 hr) which has a composition of Example 4. FIG. 実施例5記載の組成を有するAl合金溶射膜(熱処理:未処理、200℃×150hr、250℃×150hr、300℃×150hr)に対する強度(最大点応力(N/mm))を示すグラフ。Al alloy sprayed coating having the composition of Example 5 wherein: graph (heat treatment untreated, 200 ℃ × 150hr, 250 ℃ × 150hr, 300 ℃ × 150hr) to the intensity (maximum point stress (N / mm 2)).

成膜装置を用いてスパッタリング法等の各種成膜方法により薄膜を製造する場合、成膜室内は繰り返しの熱履歴を受ける。そのため、本発明の水反応性Al合金溶射膜でコーティングされた防着板等の成膜室内に設けられた構成部材の表面も繰り返しの熱履歴を受ける。従って、熱履歴を受ける前の溶射成膜時のAl合金溶射膜が、安定で取り扱いやすいと共に、成膜プロセスにおける熱履歴を経た後の不可避的な付着膜の付着したAl合金溶射膜も、容易に基材から剥離できるような溶解性(活性)を有し、かつ安定であることが必要である。本発明に従って得られた水反応性Al合金溶射膜の場合、そのような溶解性、安定性を十分に満足するものである。   In the case where a thin film is manufactured using a film forming apparatus by various film forming methods such as a sputtering method, the film forming chamber receives a repeated thermal history. Therefore, the surface of the constituent member provided in the film forming chamber such as the deposition preventing plate coated with the water-reactive Al alloy sprayed film of the present invention also receives a repeated thermal history. Therefore, the Al alloy sprayed film at the time of thermal spray deposition before receiving the thermal history is stable and easy to handle, and the Al alloy sprayed film with the unavoidable adhered film after the thermal history in the deposition process is also easy. It is necessary to have solubility (activity) that can be peeled off from the substrate and to be stable. The water-reactive Al alloy sprayed film obtained according to the present invention sufficiently satisfies such solubility and stability.

上記成膜室内での熱履歴の上限温度は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法等による成膜の場合、300〜350℃程度であるので、一般に300℃までの熱履歴を経たAl合金溶射膜が水反応性を有するものであれば実用上十分であるが、本発明によれば、350℃程度までの高い温度での熱履歴を経たAl合金溶射膜でも高い水反応性を有する。   The upper limit temperature of the thermal history in the film forming chamber is, for example, about 300 to 350 ° C. in the case of film formation by sputtering, vacuum deposition, ion plating, CVD, etc. It is practically sufficient if the Al alloy sprayed film that has undergone the thermal history is water-reactive, but according to the present invention, the Al alloy sprayed film that has undergone the thermal history at a high temperature up to about 350 ° C. is also high. Has water reactivity.

以下、本発明に係る水反応性Al合金溶射膜の製造方法の実施の形態について説明する。
本発明に係わる水反応性Al合金溶射膜の製造方法の実施の形態によれば、この製造方法は、水と反応して基材から剥離する水反応性Al合金溶射膜の製造方法であって、Al合金を形成する材料を、前記レーザ回折、散乱法粒度分布測定装置を使用し測定した平均粒径50μm以上150μm以下の粉末とし、この粉末を前記基材の表面に対して粉末フレーム溶射して急冷凝固させることにより成膜することからなる水反応性Al合金溶射膜の製造方法において、例えば、前記Al合金を形成する材料が、Alに、Al重量基準で、2.0wt%以上3.5wt%以下、好ましくは2.5wt%以上3.0wt%以下のIn、0.2wt以上0.5wt%以下のSi、及び0.13wt%以上0.25wt%以下、好ましくは0.15wt%以上0.25wt%以下、さらに好ましくは0.17wt%以上0.23wt%以下のTiを添加してなる水反応性Al複合材料である。
Hereinafter, an embodiment of a method for producing a water-reactive Al alloy sprayed coating according to the present invention will be described.
According to the embodiment of the method for producing a water-reactive Al alloy sprayed film according to the present invention, this method is a method for producing a water-reactive Al alloy sprayed film that reacts with water and peels from a substrate. The material forming the Al alloy is a powder having an average particle size of 50 μm or more and 150 μm or less measured using the laser diffraction / scattering particle size distribution measuring device, and this powder is sprayed onto the surface of the substrate by powder flame spraying. In the method for producing a water-reactive Al alloy sprayed film formed by rapid solidification by rapid solidification, for example, the material for forming the Al alloy is Al in an amount of 2.0 wt% or more based on the Al weight. 5 wt% or less, preferably 2.5 wt% or more and 3.0 wt% or less In, 0.2 wt% or more and 0.5 wt% or less Si, and 0.13 wt% or more and 0.25 wt% or less, preferably 0.15 wt% A water-reactive Al composite material obtained by adding Ti of 0.25 wt% or less, more preferably 0.17 wt% or more and 0.23 wt% or less.

Inが2wt%未満であるとAl合金溶射膜と水との反応性が低下する傾向があり、3.5wt%を超えるとAl合金溶射膜と水との反応性が非常に高くなる傾向があり、大気中の水分と反応してしまい、Al合金溶射膜の取り扱いが難しくなる場合があると共に、In量が増すとコストが大となる。また、Siが0.2wt%未満であるとAl合金溶射膜と水との反応性の制御効果が低下する傾向があり、0.5wt%を超えるとAl合金溶射膜と水との反応性が低下しはじめる傾向があり、さらにSiが0.6wt%を超えるとAl合金溶射膜と水との反応性そのものが低下する傾向がある。Tiが0.13wt%未満であると、Al中の不純物の影響を受け、成膜プロセスからの熱履歴を経た後のAl合金溶射膜の溶解性が低下する傾向があり、0.25wt%を超えると、Al複合材料中でのTiの偏析が大きくなる傾向があり、この材料を用いて溶射する場合に、溶射状態や得られたAl合金溶射膜の見た目の状態が悪化する要因となる。Ti添加量に関しては、Si添加量やCu等の不純物濃度を考慮すると、0.15wt%以上が好ましく、0.17wt%以上がさらに好ましく、また、Tiの偏析を考慮すると0.23wt%以下が好ましい。   If In is less than 2 wt%, the reactivity between the Al alloy sprayed film and water tends to decrease, and if it exceeds 3.5 wt%, the reactivity between the Al alloy sprayed film and water tends to be very high. In some cases, it reacts with moisture in the atmosphere, making it difficult to handle the Al alloy sprayed film, and the cost increases as the amount of In increases. If Si is less than 0.2 wt%, the control effect of the reactivity between the Al alloy sprayed film and water tends to decrease, and if it exceeds 0.5 wt%, the reactivity between the Al alloy sprayed film and water tends to be low. There is a tendency to begin to decrease. Further, when Si exceeds 0.6 wt%, the reactivity itself between the Al alloy sprayed film and water tends to decrease. When Ti is less than 0.13 wt%, the solubility of the Al alloy sprayed film after undergoing a thermal history from the film forming process tends to decrease due to the influence of impurities in Al, and 0.25 wt% is reduced. If it exceeds, the segregation of Ti in the Al composite material tends to increase, and when spraying using this material, the thermal spraying state and the apparent state of the resulting Al alloy sprayed film become a factor. The Ti addition amount is preferably 0.15 wt% or more, more preferably 0.17 wt% or more in consideration of the Si addition amount or impurity concentration such as Cu, and 0.23 wt% or less in consideration of Ti segregation. preferable.

また、前記製造方法において、前記Al合金を形成する別の材料が、例えば、Alに、Al重量基準で、0.2wt%以上2wt%以下、好ましくは0.5wt%以上1.5wt%以下のBi、1.5wt以上8wt%以下、好ましくは3wt%以上5wt%以下のSi、0.2wt%以上4wt%以下、好ましくは1wt%以上2wt%以下のTi、0.2wt%以上2wt%以下、好ましくは0.2wt%以上0.5wt%以下のCe、及び0.2wt%以上2wt%以下、好ましくは0.5wt%以上2wt%以下のMgを添加してなる水反応性Al複合材料である。   Further, in the manufacturing method, another material for forming the Al alloy is, for example, Al in an amount of 0.2 wt% or more and 2 wt% or less, preferably 0.5 wt% or more and 1.5 wt% or less based on the weight of Al. Bi, 1.5 wt% to 8 wt%, preferably 3 wt% to 5 wt% Si, 0.2 wt% to 4 wt%, preferably 1 wt% to 2 wt% Ti, 0.2 wt% to 2 wt%, Preferably, the water-reactive Al composite material is formed by adding 0.2 wt% to 0.5 wt% Ce and 0.2 wt% to 2 wt% Mg, preferably 0.5 wt% to 2 wt% Mg. .

Biが0.2wt%未満であると水との反応性が低下する傾向があり、0.2wt%以上0.5wt%未満であれば若干水との反応性が低い傾向はあるが、0.5wt%以上であれば水との反応性は満足される傾向があり、2wt%を超えると水との反応性が非常に高く、大気中の水分と反応してしまう傾向がある。Siが0.7wt%未満であると水との反応性の制御効果が低下する傾向がある。Tiが0.2wt%未満であると、成膜プロセスからの熱履歴を経た後のAl合金溶射膜の溶解性が低下する傾向があり、Ti添加量が高いほど熱履歴を経た後のAl合金溶射膜の溶解性は向上する傾向がある。Ceが未添加であると、熱履歴を経た後のAl合金溶射膜の溶解性は劣る傾向があり、Ceが0.2wt%未満であると、熱履歴を経た後のAl合金溶射膜の溶解性は劣る傾向があり、添加量が高くなるにつれてこの溶解性は向上するが、0.5wt%を超えると格別の溶解性の向上は得られなくなり、1wt%ではAl合金溶射膜(擬似デポ膜)の剥離時間は長くなる。Mgが未添加であると、熱処理を経た後のAl合金溶射膜は安定性が低く、大気中の水分と反応し、粉化現象が発生する。Mgの添加量が0.2wt%未満であると熱処理後の表面には若干の粉化現象が観察され、0.5wt%以上では粉化現象は発生しない。   If Bi is less than 0.2 wt%, the reactivity with water tends to decrease, and if it is 0.2 wt% or more and less than 0.5 wt%, the reactivity with water tends to be slightly low. If it is 5 wt% or more, the reactivity with water tends to be satisfied, and if it exceeds 2 wt%, the reactivity with water is very high and tends to react with moisture in the atmosphere. If Si is less than 0.7 wt%, the control effect on the reactivity with water tends to be reduced. If the Ti content is less than 0.2 wt%, the solubility of the Al alloy sprayed film after the thermal history from the film forming process tends to decrease. The higher the amount of Ti added, the higher the Al alloy after the thermal history. The solubility of the sprayed film tends to improve. When Ce is not added, the solubility of the Al alloy sprayed film after passing through the thermal history tends to be inferior, and when Ce is less than 0.2 wt%, the dissolution of the Al alloy sprayed film after passing through the thermal history The solubility tends to be inferior, and the solubility increases as the amount added increases. However, when the amount exceeds 0.5 wt%, no particular improvement in solubility can be obtained, and at 1 wt%, an Al alloy sprayed film (pseudodeposition film) ) Peeling time becomes longer. When Mg is not added, the Al alloy sprayed film after heat treatment has low stability, reacts with moisture in the atmosphere, and a pulverization phenomenon occurs. If the added amount of Mg is less than 0.2 wt%, a slight pulverization phenomenon is observed on the surface after the heat treatment, and if it is 0.5 wt% or more, the pulverization phenomenon does not occur.

前記製造方法においては、Al合金を形成する材料を、前記レーザ回折、散乱法粒度分布測定装置を使用し測定した平均粒径50μm以上150μm以下の粉末とし、この粉末を前記基材の表面に対して粉末フレーム溶射して急冷凝固させることにより成膜しているが、この粉末化する方法は特に制限されない。例えば、前記水反応性Al複合材料を組成が均一になるように溶融し、この溶融材料に対し、空気、水又は不活性ガスのジェット流を吹き付けて溶融材料を粉砕して液滴を形成し、かくして得られた液滴を急冷凝固させて、前記レーザ回折、散乱法粒度分布測定装置を使用し測定した平均粒径が50μm以上150μm以下である粉末とし、この粉末を用い、燃料ガスとして酸素又は酸素−アセチレンガスを用いて、成膜装置の防着板等の成膜室用構成部材のような基材表面に対して粉末フレーム溶射して急冷凝固させることにより成膜しても良い。   In the manufacturing method, the material forming the Al alloy is a powder having an average particle size of 50 μm or more and 150 μm or less measured using the laser diffraction / scattering particle size distribution measuring device, and the powder is applied to the surface of the substrate. The film is formed by spraying the powder frame and rapidly solidifying it, but the method for making the powder is not particularly limited. For example, the water-reactive Al composite material is melted so that the composition is uniform, and a jet of air, water, or an inert gas is blown against the molten material to pulverize the molten material to form droplets. Then, the droplets thus obtained are rapidly solidified to obtain a powder having an average particle diameter of 50 μm or more and 150 μm or less measured using the laser diffraction / scattering particle size distribution measuring device, and this powder is used as oxygen gas as a fuel gas. Alternatively, oxygen-acetylene gas may be used for film formation by powder frame spraying on a substrate surface such as a deposition chamber constituent member such as a deposition plate of a film forming apparatus and rapid solidification.

上記溶融材料から得られた粉末は、前記レーザ回折、散乱法粒度分布測定装置を使用し測定した平均粒径が50μm以上150μm以下であると、粉末フレーム溶射する際に、内部まで十分に溶解し、基材表面に付着しやすいため、Al合金溶射膜の満足すべき剥離性及び強度が得られる。しかし、平均粒径が50μm未満であると、溶射時の粉末送りが困難となり、粉末供給ホッパーからガンノズルまでのフィーダー部で詰まりやすくなる。また、成膜速度が十分に得られない。150μmを超えると、粉末フレーム溶射する際に、粉末の内部まで十分に溶解せず、剥離性が良く、かつ強度(成膜時点の膜及び熱プロセスを経た後の膜)が高いAl合金溶射膜を製造することが困難になる傾向がある。   When the powder obtained from the molten material has an average particle size of 50 μm or more and 150 μm or less measured using the laser diffraction / scattering particle size distribution measuring device, it is sufficiently dissolved up to the inside when powder flame spraying is performed. Since it easily adheres to the surface of the substrate, satisfactory peelability and strength of the Al alloy sprayed film can be obtained. However, if the average particle size is less than 50 μm, powder feeding during spraying becomes difficult, and clogging tends to occur at the feeder part from the powder supply hopper to the gun nozzle. In addition, a sufficient film forming speed cannot be obtained. If it exceeds 150 μm, when spraying the powder flame, the inner part of the powder does not dissolve sufficiently, the peelability is good, and the strength (film at the time of film formation and film after the thermal process) is high. Tends to be difficult to manufacture.

上記粉末は、例えば、成分金属(Al、In、Si及びTi)からなる溶融材料を空気、水又は不活性ガスのジェット流を吹き付けて粉砕して液滴を形成し、得られた液滴を急冷凝固させて得られているので、粉末中に成分金属は均一に分散しており、また、各金属粒子の粒界が小さい。そのため、この粉末を用いて粉末フレーム溶射すると、均一に分散した状態で成膜し、得られたAl合金溶射膜中でInが偏析しても、良く混ざった状態で膜となっているので、得られたAl合金溶射膜の剥離性は良く、かつ強度も高い。また、Al合金溶射膜中の各成分金属の酸化の程度は、以下述べる溶線式フレーム溶射(ワイヤー式フレーム溶射)の場合と比べて高いので、粉末フレーム溶射により成膜する場合、得られたAl合金溶射膜の剥離性は良く、かつ強度も高い。また、粉末フレーム溶射の場合、基材表面への堆積速度は、ワイヤー式フレーム溶射よりも高く、そして粉末の溶解速度は、ワイヤー式フレーム溶射の場合と比べて早い。   The powder is formed by, for example, pulverizing a molten material composed of component metals (Al, In, Si, and Ti) by blowing a jet stream of air, water, or an inert gas to form droplets. Since it is obtained by rapid solidification, the component metals are uniformly dispersed in the powder, and the grain boundaries of each metal particle are small. Therefore, when powder flame spraying using this powder, it forms a film in a uniformly dispersed state, and even if In segregates in the obtained Al alloy sprayed film, it is a film in a well-mixed state, The obtained Al alloy sprayed film has good peelability and high strength. In addition, the degree of oxidation of each component metal in the Al alloy sprayed film is higher than that in the case of the hot wire flame spraying (wire type flame spraying) described below. The sprayed alloy film has good peelability and high strength. In the case of powder flame spraying, the deposition rate on the substrate surface is higher than that of wire flame spraying, and the dissolution rate of powder is faster than that in the case of wire flame spraying.

一方、ワイヤー式フレーム溶射により成膜する場合、ワイヤーから溶解して基材表面に吹き付けられる成分金属は、各粒子の粒界が上記粉末フレーム溶射の場合よりも大きい状態で、また、粉末フレーム溶射の場合ほど均一に分散していない状態で、基材表面に付着される。インゴットからワイヤーに加工する際に、各成分金属の分散性が均一にならず、場合によっては、析出する可能性もある。また、フレーム中で溶解する際に、粉末フレーム溶射の場合と比べて溶解し難く、完全に溶解した状態で溶射されない場合が生じる可能性がある。このワイヤー式フレーム溶射の場合、各粒子の粒界が大きいいため、粉末フレーム溶射の場合と比べて、Inが偏析しやすく、目的とするAl合金溶射膜を製造しにくい。その結果、粉末フレーム溶射の場合と比べて、Al合金溶射膜の剥離性は劣り、また強度も低くなる。なお、ワイヤー式フレーム溶射の場合、伸線の際に用いるジグ等に不純物(例えば、Cu等)が付着していると、ワイヤーにその不純物が付着し、Al合金溶射膜中に混入されると、この膜の溶解性が劣化する恐れがある。しかし、粉末フレーム溶射の場合には、そのような問題はない。   On the other hand, when forming a film by wire-type flame spraying, the component metal melted from the wire and sprayed onto the substrate surface is in a state where the grain boundary of each particle is larger than in the case of powder flame spraying, and powder flame spraying. It adheres to the substrate surface in a state where it is not uniformly dispersed as in the case of. When processing from an ingot to a wire, the dispersibility of each component metal is not uniform, and in some cases, it may be precipitated. Further, when melting in the flame, it may be difficult to melt compared to the case of powder flame spraying, and there is a possibility that the thermal spraying may not be performed in a completely melted state. In this wire-type flame spraying, since the grain boundaries of each particle are large, In is more likely to segregate than in the case of powder flame spraying, and it is difficult to produce the target Al alloy sprayed film. As a result, the peelability of the Al alloy sprayed film is inferior and the strength is lower than in the case of powder flame spraying. In the case of wire type flame spraying, if impurities (for example, Cu, etc.) are attached to a jig or the like used for wire drawing, the impurities adhere to the wire and are mixed into the Al alloy sprayed film. There is a risk that the solubility of this film will deteriorate. However, there is no such problem in the case of powder flame spraying.

上記粉末フレーム溶射は、溶射コーティング装置(溶射ガン)を用いて行う。この溶射ガンとしては、例えば、溶射粉末で基材表面をコーティングするための溶射ガン(例えば、日本ユテク株式会社製のRoto Tec 800、溶射能力(量):3.0〜6.0kg/h)を用いることができる。例えば、溶射ガンの粉末供給ホッパーに溶射材料である粉末を入れ、このホッパーから一定の圧力(通常は、粉末の自重)で溶射ガン内部に粉末を供給し、溶射材料粉末用供給ガス(例えば、圧搾空気、不燃性ガス等)を用いてガンノズルへ送給し(フィーダー部)、そこで、燃料ガスである所定圧力の酸素又は酸素−アセチレン混合ガス中で溶射材料粉末を溶融・加速させ、ガンノズルから150〜200mm離れた位置にある基材表面上に粉末フレーム溶射して急冷凝固させることにより成膜する。この際の酸素ガス圧力を3bar(3×10kPa)程度、アセチレンガス圧力を0.7bar(0.7×10kPa)程度に設定して行う。 The powder flame spraying is performed using a spray coating apparatus (spray gun). As this thermal spray gun, for example, a thermal spray gun for coating the surface of a substrate with thermal spray powder (for example, Roto Tec 800 manufactured by Nihon Yutec Co., Ltd., thermal spraying capacity (quantity): 3.0 to 6.0 kg / h) Can be used. For example, a powder that is a thermal spray material is placed in a powder supply hopper of a thermal spray gun, and the powder is supplied from the hopper to the inside of the thermal spray gun at a constant pressure (usually, the weight of the powder). (Compressed air, non-combustible gas, etc.) is fed to the gun nozzle (feeder part), where the spray material powder is melted and accelerated in oxygen gas or oxygen-acetylene mixed gas at a predetermined pressure as fuel gas, A film is formed by spraying a powder frame on the surface of the substrate at a position 150 to 200 mm away and rapidly solidifying it. At this time, the oxygen gas pressure is set to about 3 bar (3 × 10 2 kPa) and the acetylene gas pressure is set to about 0.7 bar (0.7 × 10 2 kPa).

上記Al−In系のAl合金溶射膜は、Al中に所定量のInが均一に高度に分散しているので、水、水蒸気、水溶液等のような水分の存在する雰囲気中で容易に反応して溶解する。   Since the Al-In-based Al alloy sprayed film has a predetermined amount of In uniformly and highly dispersed in Al, it easily reacts in an atmosphere containing water such as water, water vapor, and aqueous solution. Dissolve.

一般に、Al−Inにおいては、AlとInとの間の電気化学的電位差が非常に大きいが、Alの自然酸化膜が存在すると、Alのイオン化が進まない。しかし、一度自然酸化膜が破れ、AlがInと直接結合すると、その電位差がAlのイオン化を急激に促進させる。その際、Inは、化学的に変化することなく、そのままの状態でAl結晶粒中に高度に分散して存在している。Inは、低融点(157℃)で、かつAlとは固溶体化しないので、AlとInとの密度差に注意を払いつつ、AlとInとを組成が均一になるように溶融せしめた材料を上記した粉末フレーム溶射法に従って基材に対して溶射すると、急冷凝固とその圧縮効果により所望の膜が得られる。かくして得られた溶射膜は、上記したように、Al結晶粒中にIn等が均一に高度に分散した状態で存在している膜である。   In general, in Al-In, the electrochemical potential difference between Al and In is very large, but if an Al natural oxide film is present, ionization of Al does not proceed. However, once the natural oxide film is broken and Al is directly bonded to In, the potential difference rapidly promotes the ionization of Al. At that time, In is present in a highly dispersed state in the Al crystal grains as it is without being chemically changed. Since In has a low melting point (157 ° C.) and does not form a solid solution with Al, a material obtained by melting Al and In so as to have a uniform composition while paying attention to the difference in density between Al and In is used. When thermal spraying is performed on the substrate in accordance with the above-described powder flame spraying method, a desired film is obtained by rapid solidification and its compression effect. As described above, the sprayed film thus obtained is a film in which In or the like is uniformly and highly dispersed in Al crystal grains.

添加されたInは溶射プロセスによってAl結晶粒中に高度に分散し、Alと直接接触した状態を保っている。InはAlと安定層を作らないので、Al/In界面は高いエネルギーを保持しており、水分の存在する雰囲気中では水分との接触面で激しく反応する。また、添加元素であるInが高度な分散状態にあることに加えて、発生するH気泡の膨張による機械的作用により、AlOOHを主体とする反応生成物は表面で皮膜化することなく微粉化して液中へ散り、溶解反応は次々に更新される反応界面で持続的、爆発的に進む。 The added In is highly dispersed in the Al crystal grains by the thermal spraying process, and is kept in direct contact with Al. Since In does not form a stable layer with Al, the Al / In interface retains high energy and reacts violently at the contact surface with moisture in an atmosphere where moisture exists. In addition to the fact that the additive element In is in a highly dispersed state, the reaction product mainly composed of AlOOH is pulverized without filming on the surface due to the mechanical action caused by the expansion of the generated H 2 bubbles. Dispersed into the liquid, the dissolution reaction proceeds continuously and explosively at the reaction interface that is renewed one after another.

上記Al−InのAl複合材料からなるAl合金溶射膜は、粉末フレーム溶射プロセスを経て形成された状態で活性が高く、水分が存在する雰囲気中での溶解性が高くて取り扱い難い。しかし、このAl複合材料に所定量のSi及びTiを添加すると、得られるAl合金溶射膜は初期反応性(活性)が低下し、取り扱いが容易になると共に、Tiの添加により、熱履歴を経た後の溶射膜は活性になり、水分が存在する雰囲気中で高い溶解性(活性)を発現し、このAl合金溶射膜の剥離が可能となる。また、Siの添加により、その添加量を増大させるにつれてAl合金溶射膜の強度が向上し、Al−3wt%InからなるAl合金溶射膜と比べて1.7倍程度となる。   The Al alloy sprayed film made of the Al—In Al composite material has high activity in the state formed through the powder flame spraying process, and has high solubility in an atmosphere containing moisture, and is difficult to handle. However, when a predetermined amount of Si and Ti is added to the Al composite material, the resulting Al alloy sprayed film is reduced in initial reactivity (activity), becomes easy to handle, and undergoes a thermal history due to the addition of Ti. The later sprayed film becomes active and exhibits high solubility (activity) in an atmosphere where moisture exists, and the Al alloy sprayed film can be peeled off. Further, the addition of Si increases the strength of the Al alloy sprayed film as the amount added increases, and is about 1.7 times that of the Al alloy sprayed film made of Al-3 wt% In.

得られたAl−In−Si−Ti溶射膜は、Al結晶粒の中にIn結晶粒(粒径10nm以下)等が均一に高度に分散した状態で含まれている。   The obtained Al-In-Si-Ti sprayed film contains In crystal grains (grain size of 10 nm or less) and the like uniformly and highly dispersed in Al crystal grains.

上記のようにしてAl−Inに所定量のSi及びTiを添加して、上記した粉末フレーム溶射法により得られたAl合金溶射膜の場合、溶射により形成したままでの膜の溶解性をコントロールすることが出来るので、雰囲気中の水分との反応による溶射膜の溶解を防止することが可能となり、取り扱いやすくなる。また、成膜室内の熱履歴による温度の上限が350℃程度である場合であっても、所定量のIn、Si及びTiを添加したAl複合材料を用いて粉末フレーム溶射によりAl合金溶射膜を形成すれば、実用的な溶解性が得られる。   In the case of the Al alloy sprayed film obtained by the above-described powder flame spraying method by adding a predetermined amount of Si and Ti to Al-In as described above, the solubility of the film as formed by spraying is controlled. Therefore, it becomes possible to prevent dissolution of the sprayed film due to reaction with moisture in the atmosphere, and it becomes easy to handle. Further, even when the upper limit of the temperature due to the thermal history in the film forming chamber is about 350 ° C., an Al alloy sprayed film is formed by powder flame spraying using an Al composite material to which a predetermined amount of In, Si and Ti is added. Once formed, practical solubility is obtained.

上記したようにAl合金溶射膜で被覆された基材を温水(脱イオン水)中に浸漬し、又は水蒸気を吹きつけると、例えば所定の温度の温水中に浸漬した場合、浸漬直後から反応が始まって、水素ガスが発生し、さらに反応が進むと析出したIn等により水が黒色化し、最終的に、溶射膜は全て溶解し、温水中にはAl、In、Si及びTi等からなる沈殿物が残る。この反応は、水温が高いほど激しく進行する。   As described above, when the substrate coated with the Al alloy sprayed film is immersed in warm water (deionized water) or sprayed with water vapor, for example, when immersed in warm water at a predetermined temperature, the reaction starts immediately after the immersion. At the beginning, hydrogen gas is generated, and when the reaction proceeds further, the water becomes black due to the deposited In etc., and finally the sprayed film is completely dissolved, and the precipitate made of Al, In, Si, Ti, etc. in the warm water. Things remain. This reaction proceeds more vigorously as the water temperature is higher.

上記したように、成膜装置の成膜室内に設けられる防着板やシャッター等の成膜室用構成部材として、その表面を上記水反応性Al合金溶射膜で覆ったものを使用すれば、所定の回数の成膜プロセス後に、成膜材料が不可避的に付着した成膜室用構成部材からこの付着膜を簡単に剥離し、有価金属を容易に回収することができる。   As described above, if a member whose surface is covered with the above-described water-reactive Al alloy sprayed film is used as a deposition chamber constituent member such as a deposition plate or a shutter provided in the deposition chamber of the deposition apparatus, After the predetermined number of film forming processes, the deposited film can be easily peeled off from the film forming chamber constituent member to which the film forming material inevitably adheres, and valuable metals can be easily recovered.

なお、上記Al−In系のAl複合材料において、Si+Tiの含有量を1wt%以上にすると、インゴットからワイヤーにし難いと言う問題があるが、その場合でも、粉末フレーム溶射によれば成膜可能である。   In addition, in the Al-In-based Al composite material, if the content of Si + Ti is 1 wt% or more, there is a problem that it is difficult to change from an ingot to a wire, but even in that case, film formation is possible by powder flame spraying. is there.

以下Al−Bi系Al複合材料について説明する。
Biが添加されているAl複合材料(例えば、Al−1wt%Bi)を用い、上記した粉末フレーム溶射法により得られたAl合金溶射膜は、上記したInの場合と同様に、Al中にBiが均一に高度に分散しているので、水、水蒸気、水溶液等のような水分の存在する雰囲気中(例えば、80℃)で容易に反応して溶解する。Biは反応サイト数に影響がある。しかし、溶射後10時間、大気中に放置すると、大気中の水分と容易に反応し、粉化現象が発生するというデメリットがあるため、以下述べるように、溶射膜形成後に安定性を得るためにSiを添加することが必要になる。
Hereinafter, the Al—Bi-based Al composite material will be described.
An Al alloy sprayed film obtained by the above-described powder flame spraying method using an Al composite material (for example, Al-1 wt% Bi) to which Bi is added is similar to the case of In described above. Is uniformly and highly dispersed, it easily reacts and dissolves in an atmosphere (for example, 80 ° C.) containing water such as water, water vapor, and an aqueous solution. Bi affects the number of reaction sites. However, if left in the atmosphere for 10 hours after spraying, there is a demerit that it easily reacts with moisture in the atmosphere and a pulverization phenomenon occurs. Therefore, as described below, in order to obtain stability after forming the sprayed film It is necessary to add Si.

一般に、Al−Biにおいては、上記したAl−Inの場合と同様に、AlとBiとの間の電気化学的電位差が非常に大きいが、Alの自然酸化膜が存在すると、Alのイオン化が進まない。しかし、一度自然酸化膜が破れ、Biと直接結合すると、その電位差がAlのイオン化を急激に促進させる。その際、Biは、化学的に変化することなく、そのままの状態でAl結晶粒中に高度に分散して存在している。Biは、低融点(271℃)で、かつAlとは固溶体化しないので、AlとBiとの密度差に注意を払いつつ、AlとBiとを組成が均一になるように溶融せしめた材料から得られた粉末を用いて上記した粉末フレーム溶射法に従って基材に対して溶射すると、急冷凝固とその圧縮効果により所望の膜が得られる。   In general, Al—Bi has a very large electrochemical potential difference between Al and Bi as in the case of Al—In described above, but if an Al natural oxide film is present, Al ionization proceeds. Absent. However, once the natural oxide film is broken and directly bonded to Bi, the potential difference rapidly promotes the ionization of Al. At that time, Bi is highly dispersed in the Al crystal grains as it is without being chemically changed. Since Bi has a low melting point (271 ° C.) and does not form a solid solution with Al, it is made of a material in which Al and Bi are melted so that the composition is uniform while paying attention to the difference in density between Al and Bi. When the obtained powder is sprayed onto a substrate according to the above-described powder flame spraying method, a desired film is obtained by rapid solidification and its compression effect.

添加されたBiは溶射プロセスによってAl結晶粒中に高度に分散し、Alと直接接触した状態を保っている。BiはAlと安定層を作らないので、Al/Bi界面は高いエネルギーを保持しており、水分の存在する雰囲気中では水分との接触面で激しく反応する。また、添加元素であるBiが高度な分散状態にあることに加えて、発生するH気泡の膨張による機械的作用により、AlOOHを主体とする反応生成物は表面で皮膜化することなく微粉化して液中へ散り、溶解反応は次々に更新される反応界面で持続的、爆発的に進む。 The added Bi is highly dispersed in the Al crystal grains by the thermal spraying process, and is kept in direct contact with Al. Since Bi does not form a stable layer with Al, the Al / Bi interface retains high energy and reacts violently at the contact surface with moisture in an atmosphere where moisture exists. In addition to the fact that the additive element Bi is in a highly dispersed state, the reaction product mainly composed of AlOOH is pulverized without forming a film on the surface due to the mechanical action caused by the expansion of the generated H 2 bubbles. Dispersed into the liquid, the dissolution reaction proceeds continuously and explosively at the reaction interface that is renewed one after another.

Al−Bi複合材料からなるAl合金溶射膜は、上記したように、粉末フレーム溶射プロセスを経て形成された状態で非常に活性が高く、水分が存在する雰囲気中での溶解性は良いが、取り扱い難い。しかも、熱履歴を経た後の溶射膜の反応性(溶解性)の低下も少ない。   As described above, the Al alloy sprayed film made of the Al-Bi composite material is very active in the state formed through the powder flame spraying process and has good solubility in an atmosphere containing moisture. hard. Moreover, there is little decrease in the reactivity (solubility) of the sprayed film after passing through the thermal history.

上記Al−Bi複合材料に所定量のSiを添加すると、このAl複合材料から粉末フレーム溶射法により得られるAl合金溶射膜は活性が低下し、取り扱いが容易になると共に、熱履歴を経た後のAl合金溶射膜は非常に活性になり、水分が存在する雰囲気中で高い溶解性(活性)を発現する。しかし、Bi及びSiの組成割合によっては、熱履歴を経た後に大気中に2〜3時間放置するだけで粉化することがあるため、その場合には、熱履歴を経た剥離処理する前の膜は、大気中の水分との反応を防止するために乾燥雰囲気中(真空雰囲気中でも良い)に保管することが好ましい。   When a predetermined amount of Si is added to the Al-Bi composite material, the Al alloy sprayed film obtained from this Al composite material by the powder flame spraying method is less active, easy to handle, and after undergoing a thermal history. The Al alloy sprayed film is very active and exhibits high solubility (activity) in an atmosphere where moisture exists. However, depending on the composition ratio of Bi and Si, since it may be pulverized just by leaving it in the atmosphere for 2 to 3 hours after passing through the thermal history, in that case, the film before the peeling treatment after passing through the thermal history Is preferably stored in a dry atmosphere (even in a vacuum atmosphere) in order to prevent reaction with moisture in the air.

Siの添加に関しては、Al−1wt%Bi−1.5wt%Si、Al−1wt%Bi−2wt%Si、及びAl−1wt%Bi−2.5wt%Siからなる組成物を用いて、Siの添加による溶射膜安定性を確認した。基材としてA5052及びSUS304を用い、それぞれの基材に対して、上記組成物を溶射(溶射方法:Al−In系の場合と同様の粉末フレーム溶射)した。その結果、溶射後でも、大気中300時間放置後でも、溶射膜の安定性が向上し、粉化現象は発生しなかったことが確認された。しかし、この溶射膜を熱処理(150℃×1時間)後、大気中に放置したところ、粉化現象が発生し、この溶射膜は熱処理により活性になることが確認された。   Regarding the addition of Si, a composition comprising Al-1 wt% Bi-1.5 wt% Si, Al-1 wt% Bi-2 wt% Si, and Al-1 wt% Bi-2.5 wt% Si was used. The stability of the sprayed coating by addition was confirmed. A5052 and SUS304 were used as the base material, and the above composition was sprayed onto each base material (thermal spraying method: powder flame spraying similar to the case of Al-In system). As a result, it was confirmed that the stability of the sprayed film was improved and the pulverization phenomenon did not occur either after spraying or after being left in the atmosphere for 300 hours. However, when this sprayed film was heat-treated (150 ° C. × 1 hour) and left in the atmosphere, a pulverization phenomenon occurred, and it was confirmed that the sprayed film became active by the heat treatment.

以下の参考例1に記載したように、Al−Bi−Si−TiにCeを添加した場合には、溶射膜(擬似デポ膜)の剥離時間がさらに短くなっている。ここで、擬似デポ膜とは、純度4NのAlを、フレーム溶射法にて、Al−Bi−Si−Ti、若しくはAl−Bi−Si−Ti−Ce等からなるAl合金溶射膜上に成膜することにより、実際の成膜プロセス中に成膜装置構成部品上に堆積する不可避的な金属、金属化合物のデポシット膜を模擬したものである。かくして、標準電極電位がAlより卑な金属であるCeを添加することによって、溶射膜全体の電位が低下し、この電位低下による活性化によって、プロセス温度による高温熱処理(250℃)後におけるAl合金溶射膜の剥離性が向上することが分かる。また、Al−Bi−Si−Ti−CeからなるAl合金溶射膜について、所定の温度・湿度の恒温高湿炉中に所定の時間放置し、通常の方法で表面パーティクル数を測定したところ、パーティクルの個数は極めて少なく、パーティクルの発生が抑制され、安定性が得られたことが確認できた。   As described in Reference Example 1 below, when Ce is added to Al—Bi—Si—Ti, the time required for peeling off the sprayed film (pseudo deposit film) is further shortened. Here, the pseudodeposited film is formed by depositing Al having a purity of 4N on an Al alloy sprayed film made of Al-Bi-Si-Ti or Al-Bi-Si-Ti-Ce by flame spraying. By doing so, an inevitable metal or metal compound deposit film deposited on the film forming apparatus components during the actual film forming process is simulated. Thus, by adding Ce, which is a metal whose standard electrode potential is lower than that of Al, the potential of the entire sprayed coating is lowered, and activation due to this potential reduction causes Al alloy after high-temperature heat treatment (250 ° C.) at the process temperature. It can be seen that the peelability of the sprayed film is improved. Further, when an Al alloy sprayed film made of Al-Bi-Si-Ti-Ce was left in a constant temperature and high humidity furnace at a predetermined temperature and humidity for a predetermined time, and the number of surface particles was measured by a normal method, The number of particles was extremely small, and it was confirmed that the generation of particles was suppressed and the stability was obtained.

また、以下の参考例2に記載したように、Al−Bi−Si−Ti−Ce系の場合、得られた溶射膜に対して、所定の温度で、所定の時間、熱処理を施したところ、溶射膜(擬似デポ膜)の剥離時間は極めて短く、容易に剥離できることが確認できた。   Further, as described in Reference Example 2 below, in the case of the Al—Bi—Si—Ti—Ce system, the obtained sprayed film was subjected to heat treatment at a predetermined temperature for a predetermined time. It was confirmed that the sprayed film (pseudo deposit film) had a very short peeling time and could be easily peeled off.

以下、本発明の好ましい実施の形態について、Al−Bi−Si−Ti−Ce−Mgからなる水反応性Al合金溶射膜について説明する。   Hereinafter, a water-reactive Al alloy sprayed film made of Al—Bi—Si—Ti—Ce—Mg will be described as a preferred embodiment of the present invention.

水反応性Al合金溶射膜は、上記Bi、Si、Ti、Ce及びMgがAl中に一様に分散した水反応性Al複合材料から得られた粉末を用いて、上記した粉末フレーム溶射法に従って所定の雰囲気中で被処理基材の表面に成膜することにより製造される。得られた水反応性Al合金溶射膜は、Al結晶粒の中に各金属結晶粒が均一に高度に分散した状態で含まれている。   The water-reactive Al alloy sprayed film uses the powder obtained from the water-reactive Al composite material in which Bi, Si, Ti, Ce, and Mg are uniformly dispersed in Al, according to the above-described powder flame spraying method. It is manufactured by forming a film on the surface of the substrate to be treated in a predetermined atmosphere. The obtained water-reactive Al alloy sprayed film contains Al crystal grains in a state in which each metal crystal grain is uniformly and highly dispersed.

上記Al−Bi系の水反応性Al合金溶射膜は、例えば次のようにして製造される。
Al、Bi、Si、Ti、Ce及びMgを用意し、Alに対して、Al重量基準で、0.2wt%以上2wt%以下、好ましくは0.5wt%以上2wt%以下のBi、1.5wt以上8wt%以下のSi、0.2wt%以上4wt%以下のTi、0.2wt%以上2wt%以下のCe、及び0.2wt%以上2wt%以下のMgを配合し、Al中に各金属を均一に溶解させ、この溶融材料に対し、空気、水、又は不活性ガスのジェット流を吹き付けて該溶融材料を粉砕して液滴を形成し、かくして得られた液滴を急冷凝固させて、上記レーザ回折、散乱法粒度分布測定装置を使用して測定した平均粒径が50μm以上150μm以下である粉末とし、この粉末を用い、成膜装置の防着板等の成膜室用構成部材のような基材表面に対して、Al−In系の場合と同様の上記した粉末フレーム溶射(燃料ガスとして酸素や酸素−アセチレン等を用い)を行い、次いで急冷凝固させることにより成膜することができる。かくして得られたAl合金溶射膜は、上記したように、Al結晶粒中にBiが均一に高度に分散した状態で存在している膜である。この平均粒径については、上記したAl−In系の場合に説明した通りである。また、粉末フレーム溶射により製造されたAl合金溶射膜とワイヤー式フレーム溶射により製造されたAl合金溶射膜とにおける差異は、上記したAl−In系の場合に説明した通りである。さらに、粉末フレーム溶射のプロセスの詳細についても、上記したAl−In系の場合に説明した通りである。
The Al-Bi water-reactive Al alloy sprayed film is manufactured, for example, as follows.
Al, Bi, Si, Ti, Ce, and Mg are prepared, and Bi is 1.5 wt% or more and preferably 2 wt% or less, preferably 0.5 wt% or more and 2 wt% or less of Al based on the weight of Al. 8 wt% or less Si, 0.2 wt% or more and 4 wt% or less Ti, 0.2 wt% or more and 2 wt% or less Ce, and 0.2 wt% or more and 2 wt% or less Mg are blended, and each metal is mixed in Al. The molten material is uniformly dissolved, and a jet stream of air, water, or an inert gas is blown against the molten material to pulverize the molten material to form droplets, and the droplets thus obtained are rapidly solidified, A powder having an average particle diameter of 50 μm or more and 150 μm or less measured using the laser diffraction / scattering particle size distribution measuring apparatus is used, and this powder is used to form constituent members for film forming chambers such as a deposition plate of the film forming apparatus. Al to the base material surface A film can be formed by performing the above-described powder flame spraying (using oxygen, oxygen-acetylene, or the like as a fuel gas) similar to the case of the -In system, and then rapidly solidifying. As described above, the Al alloy sprayed film thus obtained is a film in which Bi is uniformly and highly dispersed in Al crystal grains. The average particle size is as described in the case of the Al—In system described above. Further, the difference between the Al alloy sprayed film manufactured by powder flame spraying and the Al alloy sprayed film manufactured by wire type flame spraying is as described in the case of the Al-In system. Furthermore, the details of the powder flame spraying process are also as described in the case of the Al—In system described above.

上記のようにしてAl−Biに所定量の上記金属を添加して、上記した粉末フレーム溶射により得られた水反応性Al合金溶射膜の場合、溶射により形成したままで溶解性をコントロールすることができるので、大気雰囲気中の水分との反応による溶射膜の溶解を防止することが可能となり、取り扱いやすくなる。   In the case of the water-reactive Al alloy sprayed film obtained by the above-mentioned powder flame spraying by adding a predetermined amount of the above metal to Al-Bi as described above, the solubility is controlled while being formed by spraying. Therefore, it becomes possible to prevent the sprayed film from dissolving due to the reaction with moisture in the air atmosphere, and it becomes easy to handle.

上記した粉末フレーム溶射によりAl合金溶射膜でコーティングされた基材、また、熱処理した後の基材を水、水蒸気、水溶液等のような水分の存在する雰囲気中、例えば、所定の温度の温水中に浸漬した場合、浸漬直後から反応が始まって、水素ガスが発生し、さらに反応が進むと水が黒色化し、最終的に、溶射膜は全て溶解し、温水中には、Al、Bi、Si、Ti、Ce、及びMgが沈殿として残る。この反応は、水温が高いほど激しく反応が進む。水分の存在する雰囲気の温度は、例えば、40〜130℃、好ましくは80〜100℃であれば良い。   The base material coated with the Al alloy spray film by the above-described powder flame spraying, and the base material after the heat treatment is performed in an atmosphere containing water such as water, water vapor, aqueous solution, etc., for example, warm water at a predetermined temperature. In the case of soaking, the reaction starts immediately after soaking, hydrogen gas is generated, and when the reaction further proceeds, the water turns black. Finally, the sprayed film is completely dissolved, and in hot water, Al, Bi, Si , Ti, Ce, and Mg remain as precipitates. This reaction proceeds more vigorously as the water temperature is higher. The temperature of the atmosphere in which moisture is present may be, for example, 40 to 130 ° C, preferably 80 to 100 ° C.

上記したように、成膜装置の成膜室内に設けられる防着板やシャッター等の成膜室用構成部材として、その表面を上記水反応性Al合金溶射膜で覆ったものを使用すれば、所定の回数の成膜プロセス後に、成膜材料が不可避的に付着した成膜室用構成部材からこの付着膜を簡単に剥離し、有価金属を容易に回収することができる。   As described above, if a member whose surface is covered with the above-described water-reactive Al alloy sprayed film is used as a deposition chamber constituent member such as a deposition plate or a shutter provided in the deposition chamber of the deposition apparatus, After the predetermined number of film forming processes, the deposited film can be easily peeled off from the film forming chamber constituent member to which the film forming material inevitably adheres, and valuable metals can be easily recovered.

この場合、剥離液として、化学薬品を用いることなく、単に純水等の水や水蒸気や水溶液を用いるため、防着板等の成膜室用構成部材の溶解による損傷を回避することができ、これらの構成部材の再利用回数が薬品を使用する場合と比べて飛躍的に増加する。また、薬品を使用しないため、処理コストの大幅削減や環境保全にもつながる。さらに、防着板等の成膜室用構成部材に付着する多くの成膜材料は水に溶解しないので、成膜材料と同じ組成のものが同じ形態のままの固体として回収できるというメリットもある。さらにまた、回収コストが劇的に下がるのみならず、回収工程も簡素化されるので、回収可能材料の範囲が広がるというメリットもある。例えば、成膜材料が貴金属やレアメタルのように高価な金属である場合、本発明の水反応性Al合金溶射膜を防着板等の成膜室用構成部材に適用しておけば、成膜中に不可避的に付着した膜を有する成膜室用構成部材を水中に浸漬し或いは水蒸気を吹き付けることによって、成膜材料からなる付着膜を剥離できるので、汚染を伴わずに、貴金属やレアメタル等の回収が可能である。回収コストが安価であると共に、成膜材料を高品質のまま回収できる。   In this case, as the stripping solution, simply using water such as pure water, water vapor, or an aqueous solution without using chemicals, it is possible to avoid damage due to dissolution of the constituent members for the film forming chamber such as a deposition plate, The number of times these components are reused increases dramatically compared to when chemicals are used. In addition, since no chemicals are used, processing costs are greatly reduced and environmental conservation is achieved. Furthermore, since many film-forming materials adhering to the film-forming chamber components such as a deposition plate do not dissolve in water, there is an advantage that the same composition as the film-forming material can be recovered as a solid in the same form. . Furthermore, not only does the recovery cost drop dramatically, but the recovery process is simplified, which has the advantage of expanding the range of recoverable materials. For example, when the film forming material is an expensive metal such as a noble metal or a rare metal, the film can be formed by applying the water-reactive Al alloy sprayed film of the present invention to a component for a film forming chamber such as a deposition preventing plate. Because the deposited film made of the film deposition material can be peeled off by immersing the film forming chamber component having the film inevitably adhered in the water or spraying water vapor, precious metals, rare metals, etc. without contamination Can be recovered. The recovery cost is low, and the film forming material can be recovered with high quality.

以下、実施例及び参考例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples and Reference Examples.

AlとInとSiとTiとを所定の割合で配合して、Al中にIn、Si及びTiを均一に溶解せしめて得られたAl−3.0wt%In−0.4wt%Si−0.2wt%Ti(In、Si及びTiの添加量は、Al重量基準)からなる溶融材料に対し、空気のジェット流を吹き付けて溶融材料を粉砕して液滴を形成し、かくして得られた液滴を急冷凝固させて平均粒径が50μm以上150μm以下の範囲内にある粉末とし、この粉末を用いて、大気雰囲気中で、アルミニウムからなる基材(A5052)及びSUS304基材のそれぞれの基材の表面に対して粉末フレーム溶射(酸素−アセチレン混合ガス中、溶射ガン:日本ユテク(株)製の「Roto Tec 800」)して急冷凝固させることにより水反応性Al合金溶射膜付きの基材を製造し、次いでこのAl合金溶射膜の上に擬似デポ膜(純度4NのAl溶射膜)を形成した。   Al-In, Si-Ti, and Al-3.0 wt% In-0.4 wt% Si-0. Obtained by mixing In, Si, and Ti uniformly in Al by blending Al, In, Si, and Ti at a predetermined ratio. A molten material composed of 2 wt% Ti (addition amounts of In, Si and Ti are based on Al weight) are sprayed with an air jet to pulverize the molten material to form droplets. Is rapidly solidified to obtain a powder having an average particle diameter in the range of 50 μm or more and 150 μm or less, and using this powder, the base material made of aluminum (A5052) and the SUS304 base material are used in an air atmosphere. With water-reactive Al alloy sprayed film by powder flame spraying on the surface (in oxygen-acetylene mixed gas, spray gun: “Roto Tec 800” manufactured by Nippon Yutec Co., Ltd.) To produce a substrate, followed by forming a pseudo-deposition layer (Al sprayed film purity 4N) on the Al alloy sprayed film.

また、AlとInとSiとTiとを所定の割合で配合して、Al中にIn、Si及びTiを均一に溶解せしめ、ワイヤー形状に加工したAl−3wt%In−0.4wt%Si−0.2wt%Ti(In ,Si及びTiの添加量は、Al重量基準)からなる溶射材料を用い、溶線式フレーム溶射(以下、ワイヤー式フレーム溶射とも称す。)(熱源:C−Oガス、約3000℃、溶射ガン:スルザーメテコ社製12E型)によって、大気雰囲気中で、アルミニウムからなる基材(A5052)の表面に吹き付けて溶射膜を形成し、次いでこの溶射膜の上に擬似デポ膜(純度4NのAl溶射膜;膜厚:500〜600μm)を形成した。 Al-3In% Si-Ti and Al-3wt% In-0.4wt% Si- in which Al, In, Si, and Ti are blended at a predetermined ratio, and In, Si, and Ti are uniformly dissolved in Al and processed into a wire shape. Using a thermal spray material composed of 0.2 wt% Ti (addition amounts of In, Si and Ti are based on the weight of Al), hot wire flame spraying (hereinafter also referred to as wire flame spraying) (heat source: C 2 H 2 − O 2 gas, about 3000 ° C., spray gun: Sulzer Metco 12E type) is sprayed on the surface of the base material made of aluminum (A5052) in the air atmosphere to form a sprayed film, and then on the sprayed film A pseudo deposition film (4N purity Al sprayed film; film thickness: 500 to 600 μm) was formed.

かくして得られた上記2種のAl合金溶射膜(擬似デポ膜)付き基材に対して、熱処理雰囲気:大気中、熱処理温度:250℃、熱処理時間:150時間(hr)で熱処理した後、80±1℃の脱イオン水300mL中へ浸漬し、剥離性(剥離時間(時間))を検討した。ここでの擬似デポ膜とは、上記したように、純度4NのAlを、フレーム溶射法にて、水崩壊性を有するAl合金溶射膜上に成膜することにより、実際の成膜プロセス中に成膜装置構成部品上に堆積する不可避的な金属、金属化合物のデポシット膜を模擬したものである。   The base material with the two types of Al alloy sprayed films (pseudo deposit films) thus obtained was heat-treated at a heat treatment atmosphere: air, a heat treatment temperature: 250 ° C., and a heat treatment time: 150 hours (hr). It was immersed in 300 mL of deionized water at ± 1 ° C., and peelability (peeling time (hour)) was examined. As described above, the pseudodeposition film is formed by depositing Al having a purity of 4N on an Al alloy sprayed film having water disintegration property by a flame spraying method, during an actual film forming process. This is a simulation of an inevitable metal or metal compound deposit deposited on the film forming apparatus components.

かくして得られた結果を図1に示す。図1の縦軸は擬似デポ膜剥離時間(hr)である。図1から明らかなように、ワイヤー式フレーム溶射で製造されたAl合金溶射膜では、3時間以上の剥離時間が掛かったが、粉末をフレーム溶射して製造されたAl合金溶射膜では、基材:A5052の場合、1.5時間前後、基材:SUS304の場合、1時間前後で剥離されたことが分かる。すなわち、粉末をフレーム溶射して成膜したAl合金溶射膜の方が、ワイヤー式フレーム溶射で成膜したAl合金溶射膜よりも水反応性が高いことが確認できた。これは、各成分金属が粉末中で均一に分散し、かつ粒子の粒界が小さくなっており、この粉末を用いて溶射するので、得られる溶射膜中の成分金属も均一に分散しており、膜中のIn(Al−Bi系の場合は膜中のBi)が良好に働き、より水分散性が良好になるものと考えられる。   The results thus obtained are shown in FIG. The vertical axis in FIG. 1 is the pseudo deposition film peeling time (hr). As apparent from FIG. 1, the Al alloy sprayed film manufactured by wire-type flame spraying took a peeling time of 3 hours or more. However, in the Al alloy sprayed film manufactured by flame spraying of the powder, : In the case of A5052, it can be seen that it was peeled off in about 1.5 hours, and in the case of the substrate: SUS304, it was peeled off in about 1 hour. That is, it was confirmed that the Al alloy sprayed film formed by flame spraying the powder had higher water reactivity than the Al alloy sprayed film formed by wire-type flame spraying. This is because each component metal is uniformly dispersed in the powder, and the grain boundaries of the particles are small, and since this powder is sprayed, the component metal in the resulting sprayed film is also uniformly dispersed. It is considered that In (in the case of Al-Bi system, Bi in the film) works well and the water dispersibility becomes better.

AlとInとSiとTiとを所定の割合で配合して、Al中にIn、Si及びTiを均一に溶解せしめて得られたAl−3.0wt%In−0.4wt%Si−0.2wt%Ti(In、Si及びTiの添加量は、Al重量基準)からなる溶融材料に対し、空気のジェット流を吹き付けて溶融材料を粉砕して液滴を形成し、かくして得られた液滴を急冷凝固させて平均粒径が50μm以上150μm以下の範囲内にある粉末とし、この粉末を用いて、大気雰囲気中で、アルミニウムからなる基材(A5052)であるコインサンプルの表面に対して粉末フレーム溶射(酸素−アセチレン混合ガス中、溶射ガン:日本ユテク(株)製の「Roto Tec 800」)して急冷凝固させることにより水反応性Al合金溶射膜付きの基材を製造した。   Al-In, Si-Ti, and Al-3.0 wt% In-0.4 wt% Si-0. Obtained by mixing In, Si, and Ti uniformly in Al by blending Al, In, Si, and Ti at a predetermined ratio. A molten material composed of 2 wt% Ti (addition amounts of In, Si and Ti are based on Al weight) are sprayed with an air jet to pulverize the molten material to form droplets. Is rapidly solidified to obtain a powder having an average particle size in the range of 50 μm or more and 150 μm or less, and this powder is used to form a powder on the surface of a coin sample as a base material (A5052) made of aluminum in an air atmosphere. A substrate with a water-reactive Al alloy sprayed film was manufactured by flame spraying (in a mixed gas of oxygen-acetylene, spray gun: “Roto Tec 800” manufactured by Nippon Yutec Co., Ltd.) and rapid solidification.

また、AlとInとSiとTiとを所定の割合で配合して、Al中にIn、Si及びTiを均一に溶解せしめ、ワイヤー形状に加工したAl−3wt%In−0.4wt%Si−0.2wt%Ti(In、Si及びTiの添加量は、Al重量基準)からなる溶射材料を用い、溶線式フレーム溶射(ワイヤー式フレーム溶射)(熱源:C−Oガス、約3000℃、溶射ガン:スルザーメテコ社製12E型)によって、大気雰囲気中で、アルミニウムからなる基材(A5052)であるコインサンプルの表面に吹き付けて溶射膜を形成した。 Al-3In% Si-Ti and Al-3wt% In-0.4wt% Si- in which Al, In, Si, and Ti are blended at a predetermined ratio, and In, Si, and Ti are uniformly dissolved in Al and processed into a wire shape. Using a thermal spray material composed of 0.2 wt% Ti (addition amounts of In, Si, and Ti are based on Al weight), flame-type flame spray (wire-type flame spray) (heat source: C 2 H 2 —O 2 gas, about A sprayed film was formed by spraying on the surface of a coin sample, which is a base material (A5052) made of aluminum, in an air atmosphere with a spray gun of 3000 ° C., type 12E manufactured by Sulzer Metco).

かくして得られた上記2種のAl合金溶射膜のそれぞれが成膜された各コインサンプルを、図2(a)に示すように、SUS304製の引張試験冶具に接着剤で固定し、このコインサンプルが接着された引張試験冶具についてSHIMADZU製AUTOGRAPHにて引張速度1mm/minにて引張試験を行い、溶射膜を破断させ、最大点応力を求めた。破断は、溶射膜と接着剤との界面で主として生じ、一部は溶射膜内で生じた。熱処理を経た後の溶射膜付コインサンプルに対して最大点応力:N/mmを測定し、溶射膜強度を検討した。得られた結果を、図2(b)に示す。図2(b)において、縦軸は最大点応力:N/mmである。 As shown in FIG. 2 (a), each coin sample on which each of the two types of Al alloy sprayed films thus obtained is formed is fixed to a tensile test jig made of SUS304 with an adhesive. Tensile test jig to which is attached was subjected to a tensile test at a tensile speed of 1 mm / min with an AUTOGRAPH made by SHIMADZU, the sprayed film was broken, and the maximum point stress was determined. The fracture occurred mainly at the interface between the sprayed film and the adhesive, and a part occurred in the sprayed film. The maximum point stress: N / mm 2 was measured on the coin sample with the thermal spray coating after the heat treatment, and the thermal spray coating strength was examined. The obtained result is shown in FIG. In FIG.2 (b), a vertical axis | shaft is maximum point stress: N / mm < 2 >.

図2(b)から明らかなように、ワイヤー式フレーム溶射で製造されたAl合金溶射膜の場合は、最大応力点:30N/mm程度であったが、粉末フレーム溶射法で製造されたAl合金溶射膜の場合は、最大応力点:50N/mm程度であり、粉末フレーム溶射により高い強度を有する溶射膜が得られたことを確認できた。これは、各成分金属が粉末中で均一に分散し、かつ粒子の粒界が小さくなっているため、或いは溶射膜中に含まれる酸化物の割合が多いためであると考えられる。 As apparent from FIG. 2 (b), in the case of an Al alloy sprayed film manufactured by wire-type flame spraying, the maximum stress point was about 30 N / mm 2 , but Al manufactured by powder frame spraying was used. In the case of an alloy sprayed film, the maximum stress point was about 50 N / mm 2 , and it was confirmed that a sprayed film having high strength was obtained by powder flame spraying. This is presumably because each component metal is uniformly dispersed in the powder and the grain boundaries of the particles are small, or the proportion of oxide contained in the sprayed film is large.

(参考例1)
Al、Bi、Si、及びTiを用い、また、さらにCeを添加し、以下の組成におけるCe添加による溶射膜の剥離時間(時)に対する影響を検討した。添加量は、Al重量基準である。対照として、ワイヤー式フレーム溶射により得られたAl−In系のAl−3wt%In−0.4wt%Si−0.2wt%Ti(N数:3)を用いた。
・Al−1wt%Bi−3wt%Si−1wt%Ti(N数:3)
・Al−1wt%Bi−3wt%Si−2wt%Ti(N数:3)
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce(N数:3)
・Al−1wt%Bi−4wt%Si−1wt%Ti(N数:3)
・Al−1wt%Bi−4wt%Si−2wt%Ti(N数:3)
(Reference Example 1)
Using Al, Bi, Si, and Ti, and further adding Ce, the influence of the addition of Ce in the following composition on the peeling time (time) of the sprayed film was examined. The amount added is based on Al weight. As a control, Al—In-based Al-3 wt% In—0.4 wt% Si—0.2 wt% Ti (N number: 3) obtained by wire flame spraying was used.
-Al-1 wt% Bi-3 wt% Si-1 wt% Ti (N number: 3)
-Al-1 wt% Bi-3 wt% Si-2 wt% Ti (N number: 3)
-Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce (N number: 3)
-Al-1 wt% Bi-4 wt% Si-1 wt% Ti (N number: 3)
-Al-1 wt% Bi-4 wt% Si-2 wt% Ti (N number: 3)

Al、Bi、Si、Ti、及びCeを、上記の割合で配合し、Al中に各金属を均一に溶解させてワイヤー形状に加工した溶射材料を用い、溶線式フレーム溶射(ワイヤー式フレーム溶射)(熱源:C−Oガス、約3000℃、溶射ガン:スルザーメテコ社製12E型)によって、大気雰囲気中で、アルミニウムからなる基材(A5052)の表面に吹き付けてAl合金溶射膜を形成し、次いでこの溶射膜上に擬似デポ膜を形成した。 Al, Bi, Si, Ti, and Ce are blended in the above proportions, and using a thermal spray material in which each metal is uniformly dissolved in Al and processed into a wire shape, hot wire flame spraying (wire flame spraying) (Heat source: C 2 H 2 —O 2 gas, about 3000 ° C., spray gun: Model 12E manufactured by Sulzer Metco) sprayed onto the surface of the base material (A5052) made of aluminum in an air atmosphere to form an Al alloy sprayed film Then, a pseudo deposit film was formed on the sprayed film.

かくして得られた各擬似デポ膜付きAl合金溶射膜に対して、成膜プロセスから受ける熱履歴の代わりに250℃の熱処理(大気中、100時間、炉冷)を施した。熱処理を経た後の溶射膜付基材を80±1℃の純水300ml中に浸漬し、各溶射膜(擬似デポ膜)の剥離時間(hr)を測定し、溶解性を検討した。得られた結果を、図3に示す。図3において、縦軸は擬似デポ膜剥離時間(hr(時))である。   Each of the Al alloy sprayed films with pseudodeposition films thus obtained was subjected to a heat treatment at 250 ° C. (in the atmosphere, 100 hours, furnace cooling) instead of the thermal history received from the film forming process. The substrate with the sprayed film after the heat treatment was immersed in 300 ml of pure water at 80 ± 1 ° C., and the peeling time (hr) of each sprayed film (pseudodeposited film) was measured to examine the solubility. The obtained results are shown in FIG. In FIG. 3, the vertical axis represents the pseudo deposition film peeling time (hr (hour)).

図3から明らかなように、Al−Bi系の溶射膜は、Al−In系(対照)に比べて短時間で剥離しており、剥離性が高いことが分かる。そして、Al−Bi系の場合には、Tiを増量するとAl合金溶射膜(擬似デポ膜)の剥離時間は短くなり、剥離性が高いことが分かる。そしてこのAl−Bi系にCeをさらに添加した場合には、Al合金溶射膜(擬似デポ膜)の剥離時間がさらに短くなることが分かる。かくして、標準電極電位がAlより卑な金属であるCeを添加することによって、溶射膜全体の電位が低下し、この電位低下による活性化によって、プロセス温度による高温熱処理(250℃)後におけるAl合金溶射膜の剥離性が向上することが分かる。   As is apparent from FIG. 3, the Al—Bi-based sprayed film peels off in a shorter time than the Al—In-based (control), indicating that the peelability is high. In the case of the Al—Bi system, it can be seen that when the amount of Ti is increased, the peeling time of the Al alloy sprayed film (pseudo deposit film) is shortened and the peelability is high. And when Ce is further added to this Al-Bi system, it turns out that the peeling time of Al alloy sprayed film (pseudo-deposition film | membrane) becomes still shorter. Thus, by adding Ce, which is a metal whose standard electrode potential is lower than that of Al, the potential of the entire sprayed coating is lowered, and activation due to this potential reduction causes Al alloy after high-temperature heat treatment (250 ° C.) at the process temperature. It can be seen that the peelability of the sprayed film is improved.

また、上記ワイヤー式フレーム溶射に従って得られたAl合金溶射膜の代わりに、実施例1に記載した粉末フレーム溶射に準じてAl−Bi−Si−Ti−CeからなるAl合金溶射膜を形成し、このAl合金溶射膜の上に擬似デポ膜を形成して、この擬似デポ膜付きAl合金溶射膜の剥離性を検討した結果、粉末をフレーム溶射して成膜したAl合金溶射膜の方が、ワイヤー式フレーム溶射して成膜したAl合金溶射膜よりも水反応性が高いことが確認できた。   Moreover, instead of the Al alloy sprayed film obtained according to the above-mentioned wire-type flame spraying, an Al alloy sprayed film made of Al-Bi-Si-Ti-Ce is formed according to the powder frame spraying described in Example 1, As a result of forming a pseudodeposited film on this Al alloy sprayed film and examining the peelability of the Al alloy sprayed film with the pseudodeposited film, the Al alloy sprayed film formed by flame spraying the powder was more It was confirmed that the water reactivity was higher than the Al alloy sprayed film formed by wire-type flame spraying.

さらに、上記したワイヤー式フレーム溶射により得られた対照組成物からなるAl合金溶射膜と、上記と同様にしてワイヤー式フレーム溶射により得られたAl−1wt%Bi−3〜4wt%Si−1〜2wt%Ti−0.2wt%CeからなるAl合金溶射膜とについて、40℃、90%R.H.の恒温高湿炉中に108時間放置し、表面パーティクル数を測定し(測定環境:クリーンルーム、クラス:1000、測定装置:ペンタゴンテクノロジーズ社製QIII MAX)、安定性を検討した。その結果、対照組成物からなる溶射膜では、パーティクルサイズ0.3μmで3800個/cm程度のパーティクル、パーティクルサイズ0.5μmで2400個/cm程度のパーティクルが観察され、また、Al−1wt%Bi−3〜4wt%Si−1〜2wt%Ti−0.2wt%Ceからなる溶射膜では、パーティクルサイズ0.3μmで400個/cm程度以下のパーティクル、パーティクルサイズ0.5μmで200個/cm程度以下のパーティクルが観察され、パーティクルの発生が抑制され、より高い安定性が得られたことが確認できた。 Further, an Al alloy sprayed film made of the reference composition obtained by the above-described wire type flame spraying, and Al-1 wt% Bi-3 to 4 wt% Si-1 obtained by the wire type flame spraying in the same manner as described above. An Al alloy sprayed film made of 2 wt% Ti-0.2 wt% Ce was left in a constant temperature and high humidity furnace at 40 ° C. and 90% RH for 108 hours, and the number of surface particles was measured (measuring environment: clean room). , Class: 1000, measuring device: QIII MAX manufactured by Pentagon Technologies, Inc.), stability was examined. As a result, the sprayed film made of the control composition, 3800 pieces / cm 2 approximately of particles with a particle size 0.3 [mu] m, 2400 pieces / cm 2 approximately of particles in the particle size 0.5μm was observed, also, Al-1 wt In the case of a sprayed film composed of% Bi-3 to 4 wt% Si-1 to 2 wt% Ti-0.2 wt% Ce, particles having a particle size of 0.3 μm and about 400 particles / cm 2 or less, particles having a particle size of 0.5 μm and 200 particles It was confirmed that particles of about / cm 2 or less were observed, generation of particles was suppressed, and higher stability was obtained.

また、上記ワイヤー式フレーム溶射に従って得られたAl合金溶射膜の代わりに、実施例1に記載した粉末フレーム溶射に準じて得られたAl−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%CeからなるAl合金溶射膜を用いた場合も、表面パーティクル数に関しては、同様な結果が得られた。   Moreover, instead of the Al alloy sprayed film obtained in accordance with the wire flame spraying, Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0. Similar results were obtained with respect to the number of surface particles even when an Al alloy sprayed film composed of 2 wt% Ce was used.

(参考例2)
参考例1の記載に従って得られた各組成からなる各Al合金溶射膜(擬似デポ膜)に対する熱処理(250℃×100時間)の代わりに、本参考例では270℃の熱処理(大気中、150時間、炉冷)を施して、参考例1のプロセスを実施した。熱処理を経た後の溶射膜付基材を80±1℃の純水300ml中に浸漬し、各溶射膜(擬似デポ膜)の剥離時間(時)を測定し、溶解性を検討した。得られた結果を、図4に示す。図4において、縦軸は擬似デポ膜剥離時間(hr)である。
(Reference Example 2)
Instead of heat treatment (250 ° C. × 100 hours) for each Al alloy sprayed film (pseudodeposition film) having each composition obtained according to the description in Reference Example 1, in this reference example, heat treatment at 270 ° C. (in air, 150 hours) The process of Reference Example 1 was carried out. The substrate with the sprayed film after the heat treatment was immersed in 300 ml of pure water at 80 ± 1 ° C., and the peeling time (hours) of each sprayed film (pseudodeposited film) was measured to examine the solubility. The obtained results are shown in FIG. In FIG. 4, the vertical axis represents the pseudo deposition film peeling time (hr).

図4から明らかなように、対照(Al−In−Si−Ti)及びAl−Bi−Si−Tiの場合には、3時間でも擬似デポ膜を剥離することはできなかったが、このAl−Bi−Si−TiにCeを添加した場合には、0.5時間以下で擬似デポ膜を剥離することができた。かくして、Ceを添加することによって、プロセス温度による高温熱処理(270℃)後におけるAl合金溶射膜の剥離性が向上することが分かる。   As is clear from FIG. 4, in the case of the control (Al—In—Si—Ti) and Al—Bi—Si—Ti, the pseudodepot film could not be peeled off even in 3 hours. When Ce was added to Bi—Si—Ti, the pseudodeposited film could be peeled off in 0.5 hours or less. Thus, it can be seen that the addition of Ce improves the peelability of the Al alloy sprayed film after high-temperature heat treatment (270 ° C.) at the process temperature.

また、上記ワイヤー式フレーム溶射に従って得られたAl合金溶射膜の代わりに、実施例1に記載した粉末フレーム溶射に準じて得られたAl−Bi−Si−Ti−CeからなるAl合金溶射膜(擬似デポ膜)に対して剥離性を検討した結果、剥離性に関しては、同様な結果が得られた。   Moreover, instead of the Al alloy sprayed film obtained according to the above-mentioned wire type flame spraying, an Al alloy sprayed film made of Al-Bi-Si-Ti-Ce obtained according to the powder frame spraying described in Example 1 ( As a result of examining the peelability with respect to the pseudodeposited film, the same result was obtained with respect to the peelability.

Al、Bi、Si、Ti、Ce及びMgを用い、以下の組成におけるCe、Mgの添加によるAl合金溶射膜の剥離時間(時)に対する影響を検討した。添加量は、Al重量基準である。対照として、ワイヤー式フレーム溶射に従って得られたAl−In系のAl−3wt%In−0.4wt%Si−0.2wt%Tiを用いた。
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mg(N数:3)
Using Al, Bi, Si, Ti, Ce and Mg, the influence of the addition of Ce and Mg in the following composition on the peeling time (time) of the Al alloy sprayed film was examined. The amount added is based on Al weight. As a control, Al—In-based Al-3 wt% In—0.4 wt% Si—0.2 wt% Ti obtained according to wire flame spraying was used.
-Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg (N number: 3)

Al、Bi、Si、Ti、Ce及びMgを、上記の割合で配合し、Al中に各金属を均一に溶解させてワイヤー形状に加工した溶射材料(対照の場合も同様にして溶射材料とする)を用い、溶線式フレーム溶射(熱源:C−Oガス、約3000℃、溶射ガン:12E型)によって、大気雰囲気中で、アルミニウムからなる基材(A5052)の表面に吹き付けて溶射膜を形成し、次いで、上記と同様に擬似デポ膜を形成した。かくして得られた各溶射膜(擬似デポ膜)に対して、成膜プロセスから受ける熱履歴の代わりに250℃の熱処理(大気中、150時間、炉冷)を施した。熱処理を経た後の溶射膜付基材を80±1℃の純水300ml中に浸漬し、各溶射膜(擬似デポ膜)の剥離時間(時)を測定し、溶解性を検討した。得られた結果を、図5に示す。図5において、縦軸は擬似デポ膜剥離時間(hr)である。 A sprayed material in which Al, Bi, Si, Ti, Ce, and Mg are blended in the above proportions and each metal is uniformly dissolved in Al and processed into a wire shape (in the same way as the control, a sprayed material is used as well). ), And sprayed onto the surface of the base material (A5052) made of aluminum in an air atmosphere by hot wire flame spraying (heat source: C 2 H 2 —O 2 gas, about 3000 ° C., spray gun: 12E type). A sprayed film was formed, and then a pseudo deposit film was formed in the same manner as described above. Each thermal sprayed film (pseudo deposit film) thus obtained was subjected to heat treatment at 250 ° C. (in the atmosphere, 150 hours, furnace cooling) instead of the thermal history received from the film formation process. The substrate with the sprayed film after the heat treatment was immersed in 300 ml of pure water at 80 ± 1 ° C., and the peeling time (hours) of each sprayed film (pseudodeposited film) was measured to examine the solubility. The obtained results are shown in FIG. In FIG. 5, the vertical axis represents the pseudo deposition film peeling time (hr).

図5から明らかなように、対照としたワイヤー式フレーム溶射によるAl−In系の場合には、3時間でも擬似デポ膜を剥離することはできなかったが、ワイヤー式フレーム溶射によるAl−Bi−Si−Ti−Ce−Mgの場合には、1時間以下で擬似デポ膜を問題なく剥離することができた。かくして、Ceを添加することによって、プロセス温度による高温熱処理(250℃)後におけるAl合金溶射膜の剥離性が向上することが分かる。   As is apparent from FIG. 5, in the case of the Al—In system by wire flame spraying as a control, the pseudodeposition film could not be peeled off even in 3 hours, but Al—Bi— by wire flame spraying was not possible. In the case of Si—Ti—Ce—Mg, the pseudodeposited film could be peeled off without any problem in 1 hour or less. Thus, it can be seen that by adding Ce, the peelability of the Al alloy sprayed film after high-temperature heat treatment (250 ° C.) at the process temperature is improved.

また、上記ワイヤー式フレーム溶射に従って得られたAl合金溶射膜の代わりに、実施例1に記載した粉末フレーム溶射に準じて得られたAl−Bi−Si−Ti−Ce−MgからなるAl合金溶射膜の場合に、上記剥離性を検討した結果、粉末をフレーム溶射して成膜したAl合金溶射膜の方が、ワイヤー式フレーム溶射で溶射して成膜したAl合金溶射膜よりも水反応性が高いことが確認できた。この場合、Al−Bi−Si−Ti−Ce−Mgからなる水反応性Al複合材料を組成が均一になるように溶融し、この溶融材料に対し、空気、水又は不活性ガスのジェット流を吹き付けて溶融材料を粉砕して液滴を形成し、得られた液滴を急冷凝固させて平均粒径50μm以上150μm以下の範囲内の粉末とし、この粉末を用い、燃料ガスとして酸素又は酸素−アセチレンガスを用いて、基材表面に対して粉末フレーム溶射して急冷凝固させることにより成膜した。   Further, instead of the Al alloy sprayed film obtained in accordance with the above-described wire-type flame spraying, an Al alloy sprayed film composed of Al-Bi-Si-Ti-Ce-Mg obtained according to the powder frame spraying described in Example 1 was used. In the case of a film, as a result of examining the above-mentioned peelability, the Al alloy sprayed film formed by flame spraying of the powder is more water-reactive than the Al alloy sprayed film deposited by wire-type flame spraying. Was confirmed to be high. In this case, a water-reactive Al composite material composed of Al-Bi-Si-Ti-Ce-Mg is melted so that the composition is uniform, and a jet stream of air, water, or an inert gas is applied to the molten material. The molten material is pulverized by spraying to form droplets, and the obtained droplets are rapidly cooled and solidified to form a powder having an average particle size of 50 μm or more and 150 μm or less. Using this powder, oxygen or oxygen − Using acetylene gas, a film was sprayed on the surface of the base material and rapidly solidified by film deposition.

実施例3においてワイヤー式フレーム溶射により得られた各Al合金溶射膜に対して、成膜プロセスから受ける熱履歴の代わりに250℃の熱処理(大気中、150時間、炉冷)を施したが、本実施例では、この熱処理の代わりに、300℃の熱処理(大気中、150時間、炉冷)を施して実施例3を繰り返した。得られた結果を、図6に示す。図6において、縦軸は擬似デポ膜剥離時間(hr)である。   Each Al alloy sprayed film obtained by wire-type flame spraying in Example 3 was subjected to heat treatment at 250 ° C. (in the atmosphere, 150 hours, furnace cooling) instead of the thermal history received from the film formation process. In this example, instead of this heat treatment, heat treatment at 300 ° C. (in the atmosphere, 150 hours, furnace cooling) was performed, and Example 3 was repeated. The obtained result is shown in FIG. In FIG. 6, the vertical axis represents the pseudo deposition film peeling time (hr).

図6から明らかなように、対照としたワイヤー式フレーム溶射により得られたAl−In系の場合には、3時間でも擬似デポ膜を剥離することはできなかったが、ワイヤー式フレーム溶射によるAl−Bi−Si−Ti−Ce−Mgの場合には、1.5時間程度で擬似デポ膜を問題なく剥離することができた。かくして、Ceを添加することによって、プロセス温度による高温熱処理(300℃)後におけるAl合金溶射膜の剥離性が向上することが分かる。   As is clear from FIG. 6, in the case of the Al—In system obtained by wire-type flame spraying as a control, the pseudodeposition film could not be peeled off even in 3 hours. In the case of -Bi-Si-Ti-Ce-Mg, the pseudodeposited film could be peeled off without problems in about 1.5 hours. Thus, it can be seen that by adding Ce, the peelability of the Al alloy sprayed film after high-temperature heat treatment (300 ° C.) at the process temperature is improved.

また、上記ワイヤー式フレーム溶射に従って得られたAl合金溶射膜(Al−Bi−Si−Ti−Ce−Mg)の代わりに、実施例1に記載した粉末フレーム溶射に準じて、実施例3に記載した粉末フレーム溶射により得られたAl−Bi−Si−Ti−Ce−MgからなるAl合金溶射膜の場合に、上記剥離性を検討した結果、粉末をフレーム溶射して成膜したAl合金溶射膜の方が、ワイヤー式フレーム溶射で溶射して成膜したAl合金溶射膜よりも水反応性が高いことが確認できた。   Moreover, it describes in Example 3 according to the powder flame spraying described in Example 1 instead of the Al alloy sprayed film (Al-Bi-Si-Ti-Ce-Mg) obtained according to the above-mentioned wire type flame spraying. In the case of an Al alloy sprayed film composed of Al-Bi-Si-Ti-Ce-Mg obtained by sprayed powder flame spraying, as a result of examining the above-mentioned peelability, an Al alloy sprayed film formed by flame spraying of powder It was confirmed that the water reactivity was higher than that of the Al alloy sprayed film formed by spraying with wire type flame spraying.

Al、Bi、Si、Ti、Ce及びMgを用い、熱処理の有無、各種熱処理温度に基づいて、以下の組成におけるCe、Mgの添加による溶射膜の強度(最大応力点:N/mm)に対する影響を検討した。添加量は、Al重量基準である。対照として、ワイヤー式フレーム溶射により得られたAl−In系のAl−3wt%In−0.4wt%Si−0.2wt%Tiを用いた。
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mg(未熱処理、N数:3)
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mg(熱処理:200℃×150hr、N数:3)
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mg(熱処理:250℃×150hr、N数:3)
・Al−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mg(熱処理:300℃×150hr、N数:3)
Using Al, Bi, Si, Ti, Ce, and Mg, based on the presence or absence of heat treatment and various heat treatment temperatures, the strength of the sprayed film (maximum stress point: N / mm 2 ) by addition of Ce and Mg in the following composition The impact was examined. The amount added is based on Al weight. As a control, Al—In-based Al-3 wt% In—0.4 wt% Si—0.2 wt% Ti obtained by wire flame spraying was used.
-Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg (unheat-treated, N number: 3)
Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg (heat treatment: 200 ° C. × 150 hr, N number: 3)
・ Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg (heat treatment: 250 ° C. × 150 hr, N number: 3)
Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg (heat treatment: 300 ° C. × 150 hr, N number: 3)

Al、Bi、Si、Ti、Ce及びMgを、上記の割合で配合し、Al中に各金属を均一に溶解させてワイヤー形状に加工した溶射材料を用い、溶線式フレーム溶射(ワイヤー式フレーム溶射)(熱源:C−Oガス、約3000℃、溶射ガン:12E型)によって、大気雰囲気中で、基材(A5052)の表面に吹き付けて溶射膜を形成し、次いで上記したように、擬似デポ膜を形成した。かくして得られた各溶射膜(擬似デポ膜)に対して、成膜プロセスから受ける熱履歴の代わりに200℃×150hr、250℃×150hr及び300℃×150hrの熱処理(大気中、炉冷)を施した。熱処理を経た後の溶射膜付基材に対して、実施例2の記載に準じて、最大応力点:N/mmを測定し、溶射膜強度を検討した。得られた結果を、図7に示す。図7において、縦軸は最大点応力:N/mmである。 Al, Bi, Si, Ti, Ce and Mg are blended in the above proportions, and using a thermal spray material in which each metal is uniformly dissolved in Al and processed into a wire shape, hot wire flame spraying (wire flame spraying) ) (Heat source: C 2 H 2 —O 2 gas, about 3000 ° C., spray gun: 12E type), sprayed on the surface of the substrate (A5052) in the air atmosphere to form a sprayed film, and then as described above In addition, a pseudo deposit film was formed. For each sprayed film (pseudo deposit film) thus obtained, heat treatment (in the atmosphere, furnace cooling) of 200 ° C. × 150 hr, 250 ° C. × 150 hr, and 300 ° C. × 150 hr is performed instead of the thermal history received from the film forming process. gave. In accordance with the description of Example 2, the maximum stress point: N / mm 2 was measured on the substrate with the sprayed film after the heat treatment, and the sprayed film strength was examined. The obtained result is shown in FIG. In FIG. 7, the vertical axis represents the maximum point stress: N / mm 2 .

図7から明らかなように、対照としたワイヤー式フレーム溶射によるAl−In系の場合に比べて、ワイヤー式フレーム溶射によるAl−Bi−Si−Ti−Ce−MgからなるAl合金溶射膜では、熱処理をしなかった場合は、ほぼ同程度の強度を有していたが、熱処理後では、Al合金溶射膜の強度は増加した。かくして、Ce、Mgを添加することによって、プロセス温度による高温熱処理後におけるAl合金溶射膜の強度は向上し、また、Si、Tiを添加することによってもAl合金溶射膜の強度は向上する。   As apparent from FIG. 7, compared to the case of Al-In system by wire type flame spraying as a control, in the Al alloy sprayed film made of Al-Bi-Si-Ti-Ce-Mg by wire type flame spraying, When the heat treatment was not performed, the strength was almost the same, but the strength of the Al alloy sprayed film increased after the heat treatment. Thus, by adding Ce and Mg, the strength of the Al alloy sprayed film after the high-temperature heat treatment at the process temperature is improved, and by adding Si and Ti, the strength of the Al alloy sprayed film is also improved.

実施例3におけるAl、Bi、Si、Ti、Ce及びMg組成を、Al−0.2wt%Bi−1.5wt%Si−0.2wt%Ti−0.2wt%Ce−0.2wt%Mg(N数:3)及びAl−1wt%Bi−4wt%Si−2wt%Ti−1wt%Ce−0.5wt%Mg(N数:3)とし、両者に対して実施例3記載のワイヤー式フレーム溶射及び粉末フレーム溶射を繰り返した。全ての得られたAl合金溶射膜の剥離性に関して、粉末をフレーム溶射して成膜したAl合金溶射膜の方が、ワイヤー式フレーム溶射で溶射して成膜したAl合金溶射膜よりも水反応性が高いことが確認できた。   The composition of Al, Bi, Si, Ti, Ce and Mg in Example 3 was changed to Al-0.2 wt% Bi-1.5 wt% Si-0.2 wt% Ti-0.2 wt% Ce-0.2 wt% Mg ( N number: 3) and Al-1 wt% Bi-4 wt% Si-2 wt% Ti-1 wt% Ce-0.5 wt% Mg (N number: 3), and wire-type flame spraying described in Example 3 for both And powder flame spraying was repeated. Regarding the peelability of all obtained Al alloy sprayed films, the Al alloy sprayed film formed by flame spraying of powder is more reactive than the Al alloy sprayed film deposited by wire-type flame spraying. It was confirmed that the property is high.

実施例1における粉末フレーム溶射により得られたAl−3.0wt%In−0.4wt%Si−0.2wt%TiからなるAl合金溶射膜で表面が被覆された防着板を設けたスパッタリング装置を用いてMoスパッタ成膜を実施した。この際のスパッタは、スパッタ時間:150時間、スパッタ温度:200℃で行い、Mo(膜厚:約1mm)を得た。このMo膜の付着した防着板を取り外し、その表面を観察したところ、スパッタ後においても粉化現象は発生しておらず、溶射膜安定性に変化はなかった。次いで、この防着板を80℃の温水により処理したところ、溶射膜が溶解し、Moの付着膜が防着板から剥離した。このため、成膜材料であるMoを容易に回収できた。この際、温水中にはAlOOHが沈殿していた。   Sputtering apparatus provided with an adhesion-preventing plate whose surface is coated with an Al alloy sprayed film made of Al-3.0 wt% In-0.4 wt% Si-0.2 wt% Ti obtained by powder flame spraying in Example 1 Using this, Mo sputtering film formation was carried out. Sputtering at this time was performed at a sputtering time of 150 hours and a sputtering temperature of 200 ° C. to obtain Mo (film thickness: about 1 mm). When the adhesion-preventing plate having the Mo film adhered thereto was removed and the surface thereof was observed, no pulverization phenomenon occurred even after sputtering, and the stability of the sprayed film was not changed. Subsequently, when this adhesion-preventing plate was treated with hot water at 80 ° C., the sprayed film was dissolved, and the Mo adhesion film was peeled off from the adhesion-preventing plate. For this reason, Mo which is a film forming material was easily recovered. At this time, AlOOH was precipitated in the warm water.

また、上記Moの代わりにTiを用いてスパッタ成膜を実施した。この際のスパッタは、Moの場合と同様のスパッタ条件で行い、膜厚:約1mmのTi膜を得た。このTi膜の付着した防着板を取り外し、その表面を観察したところ、スパッタ後においても粉化現象は発生しておらず、溶射膜安定性に変化はなかった。次いで、この防着板を80℃の温水により処理したところ、溶射膜が溶解し、Tiの付着膜が防着板から剥離した。このため、成膜材料であるTiを容易に回収できた。この際、温水中にはAlOOHが沈殿していた。   Sputter deposition was performed using Ti instead of Mo. The sputtering at this time was performed under the same sputtering conditions as in the case of Mo, and a Ti film having a film thickness of about 1 mm was obtained. When the adhesion-preventing plate having the Ti film adhered thereto was removed and the surface thereof was observed, no powdering phenomenon occurred even after sputtering, and the stability of the sprayed film was not changed. Next, when this deposition preventing plate was treated with hot water at 80 ° C., the sprayed film was dissolved, and the Ti adhesion film was peeled off from the deposition preventing plate. For this reason, Ti as a film forming material was easily recovered. At this time, AlOOH was precipitated in the warm water.

上記したように、実施例3における粉末フレーム溶射に準じて得られたAl−1wt%Bi−3wt%Si−1wt%Ti−0.2wt%Ce−0.5wt%Mgからなる溶射膜で表面が被覆された防着板を設けたスパッタリング装置を用いてMoスパッタ成膜を実施した。この際のスパッタは、スパッタ時間:150時間、スパッタ温度:200℃で行い、Mo膜(膜厚:約1mm)を得た。このMo膜の付着した防着板を取り外し、その表面を観察したところ、スパッタ後においても粉化現象は発生しておらず、溶射膜安定性に変化はなかった。次いで、この防着板を80℃の温水により処理したところ、溶射膜が溶解し、Moの付着膜が防着板から剥離した。このため、成膜材料であるMoを容易に回収できた。この際、温水中にはAlOOHが沈殿していた。   As described above, the surface is a sprayed film made of Al-1 wt% Bi-3 wt% Si-1 wt% Ti-0.2 wt% Ce-0.5 wt% Mg obtained in accordance with the powder flame spraying in Example 3. Mo sputtering film formation was carried out using a sputtering apparatus provided with a coated adhesion-preventing plate. Sputtering at this time was performed at a sputtering time of 150 hours and a sputtering temperature of 200 ° C. to obtain a Mo film (film thickness: about 1 mm). When the adhesion-preventing plate having the Mo film adhered thereto was removed and the surface thereof was observed, no pulverization phenomenon occurred even after sputtering, and the stability of the sprayed film was not changed. Subsequently, when this adhesion-preventing plate was treated with hot water at 80 ° C., the sprayed film was dissolved, and the Mo adhesion film was peeled off from the adhesion-preventing plate. For this reason, Mo which is a film forming material was easily recovered. At this time, AlOOH was precipitated in the warm water.

また、上記Moの代わりにTiを用いてスパッタ成膜を実施した。この際のスパッタは、Moの場合と同様のスパッタ条件で行い、膜厚:約1mmのTi膜を得た。このTiの付着した防着板を取り外し、その表面を観察したところ、スパッタ後においても粉化現象は発生しておらず、溶射膜安定性に変化はなかった。次いで、この防着板を80℃の温水により処理したところ、溶射膜が溶解し、Tiの付着膜が防着板から剥離した。このため、成膜材料であるTiを容易に回収できた。この際、温水中にはAlOOHが沈殿していた。   Sputter deposition was performed using Ti instead of Mo. The sputtering at this time was performed under the same sputtering conditions as in the case of Mo, and a Ti film having a film thickness of about 1 mm was obtained. When the deposition plate with Ti adhered thereto was removed and the surface thereof was observed, no pulverization phenomenon occurred even after sputtering, and the stability of the sprayed film was not changed. Next, when this deposition preventing plate was treated with hot water at 80 ° C., the sprayed film was dissolved, and the Ti adhesion film was peeled off from the deposition preventing plate. For this reason, Ti as a film forming material was easily recovered. At this time, AlOOH was precipitated in the warm water.

本発明の製造方法に従って得られた水反応性Al合金溶射膜によって、スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法等で金属又は金属化合物の薄膜を形成するための真空成膜装置内の成膜室用構成部材の表面を被覆すれば、成膜プロセス中にこの成膜室用構成部材の表面上に付着した不可避的付着膜を、水分の存在する雰囲気中で剥離し、回収することができる。従って、本発明は、これらの成膜装置を使用する分野、例えば半導体素子や電子関連機器等の製造技術分野において、成膜室用構成部材の再利用回数を増加させ、有価金属を含んでいる成膜材料を回収するために利用可能である。   In a vacuum film forming apparatus for forming a metal or metal compound thin film by sputtering method, vacuum deposition method, ion plating method, CVD method, etc., using a water-reactive Al alloy sprayed film obtained according to the production method of the present invention If the surface of the film forming chamber constituent member is coated, the inevitable attached film adhering to the surface of the film forming chamber constituent member during the film forming process is peeled off and collected in an atmosphere containing moisture. be able to. Therefore, the present invention increases the number of times the film forming chamber components are reused and includes valuable metals in the field of using these film forming apparatuses, for example, in the manufacturing technical field of semiconductor elements and electronic equipment. It can be used to recover the film forming material.

Claims (3)

水と反応して基材から剥離する水反応性Al合金溶射膜の製造方法であって、Al合金を形成する材料を平均粒径50μm以上150μm以下の粉末とし、この粉末を前記基材の表面に対して粉末フレーム溶射して急冷凝固させることにより成膜することを特徴とする水反応性Al合金溶射膜の製造方法。   A method for producing a water-reactive Al alloy sprayed coating that reacts with water and peels from a substrate, wherein the material forming the Al alloy is a powder having an average particle size of 50 μm or more and 150 μm or less, and this powder is the surface of the substrate A method for producing a water-reactive Al alloy sprayed film, characterized in that a film is formed by spraying a powder frame and rapidly solidifying it. 前記基材は、成膜装置の成膜室用構成部材である請求項1記載の水反応性Al合金溶射膜の製造方法 The method for producing a water- reactive Al alloy sprayed film according to claim 1 , wherein the base material is a constituent member for a film forming chamber of a film forming apparatus . 前記基材が、防着板、シャッター又はマスクである請求項記載の水反応性Al合金溶射膜の製造方法Wherein the substrate, deposition preventing plate, the manufacturing method of the shutter or water-reactive Al alloy sprayed coating mask der Ru請 Motomeko 1 wherein.
JP2014181684A 2014-09-05 2014-09-05 Method for producing water-reactive Al alloy sprayed film Active JP6418854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181684A JP6418854B2 (en) 2014-09-05 2014-09-05 Method for producing water-reactive Al alloy sprayed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014181684A JP6418854B2 (en) 2014-09-05 2014-09-05 Method for producing water-reactive Al alloy sprayed film

Publications (2)

Publication Number Publication Date
JP2016056396A JP2016056396A (en) 2016-04-21
JP6418854B2 true JP6418854B2 (en) 2018-11-07

Family

ID=55757536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181684A Active JP6418854B2 (en) 2014-09-05 2014-09-05 Method for producing water-reactive Al alloy sprayed film

Country Status (1)

Country Link
JP (1) JP6418854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726523B2 (en) * 2016-05-10 2020-07-22 株式会社アルバック Moisture detecting element manufacturing method, water disintegrating wiring film manufacturing method, water disintegrating thin film manufacturing method, moisture detecting element
JP6890477B2 (en) * 2017-06-14 2021-06-18 株式会社アルバック Hydrogen generating material manufacturing method, fuel cell, hydrogen generating method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246592A (en) * 1997-03-07 1998-09-14 Furukawa Electric Co Ltd:The Extruded porous tube for brazing material of heat-exchanger and production thereof
JP2003138367A (en) * 2001-10-29 2003-05-14 Sulzer Metco (Japan) Ltd Thermal spray coating, method for forming thermal spray coating, and thermal spray raw material powder
JP3753981B2 (en) * 2001-12-27 2006-03-08 大豊工業株式会社 Aluminum alloy sprayed layer and sliding material with excellent sliding properties
CN102016101B (en) * 2008-04-30 2012-09-05 株式会社爱发科 Water-reactive Al composite material, water-reactive Al film, process for production of the Al film, and constituent member for film depostion chamber
KR101502253B1 (en) * 2010-08-27 2015-03-12 가부시키가이샤 알박 Water-reactive al composite material, water-reactive thermally sprayed al film, process for production of thermally sprayed al film, and structural member for film-forming chamber

Also Published As

Publication number Publication date
JP2016056396A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
KR101235999B1 (en) Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
JP5517371B2 (en) Water-reactive Al sprayed film, method for producing this Al sprayed film, and component for film forming chamber
JP5327758B2 (en) Water-reactive Al composite material for thermal spraying, water-reactive Al thermal-sprayed film, method for producing this Al-sprayed film, and component for film formation chamber
JP5371966B2 (en) Method for producing water-reactive Al film and component for film forming chamber
JP5371964B2 (en) Method for producing water-reactive Al film and component for film forming chamber
JP6418854B2 (en) Method for producing water-reactive Al alloy sprayed film
JP5327759B2 (en) Water-reactive Al composite material for thermal spraying, water-reactive Al thermal-sprayed film, method for producing this Al-sprayed film, and component for film formation chamber
JP5899387B1 (en) Water-reactive Al composite material, water-reactive Al alloy sprayed film, method for producing this Al alloy sprayed film, and component for film forming chamber
JP5327760B2 (en) Water-reactive Al composite material for thermal spraying, water-reactive Al thermal-sprayed film, method for producing this Al-sprayed film, and component for film formation chamber
JP5481492B2 (en) Water-reactive Al composite material, water-reactive Al film, method for producing this Al film, and component for film formation chamber
JP5371965B2 (en) Water-reactive Al composite material for thermal spraying, water-reactive Al thermal-sprayed film, method for producing this Al-sprayed film, and component for film formation chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6418854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250