JP6417734B2 - Ultrapure water production method - Google Patents

Ultrapure water production method Download PDF

Info

Publication number
JP6417734B2
JP6417734B2 JP2014119792A JP2014119792A JP6417734B2 JP 6417734 B2 JP6417734 B2 JP 6417734B2 JP 2014119792 A JP2014119792 A JP 2014119792A JP 2014119792 A JP2014119792 A JP 2014119792A JP 6417734 B2 JP6417734 B2 JP 6417734B2
Authority
JP
Japan
Prior art keywords
water
membrane
fine particle
ultrapure water
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014119792A
Other languages
Japanese (ja)
Other versions
JP2015231609A (en
Inventor
長雄 福井
長雄 福井
山田 聡
聡 山田
秀章 飯野
秀章 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54933454&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6417734(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014119792A priority Critical patent/JP6417734B2/en
Publication of JP2015231609A publication Critical patent/JP2015231609A/en
Application granted granted Critical
Publication of JP6417734B2 publication Critical patent/JP6417734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、超純水製造方法に関し、特に、半導体製造工業等における電子部品部材類の洗浄に好適な超純水製造方法に関する。   The present invention relates to an ultrapure water manufacturing method, and more particularly to an ultrapure water manufacturing method suitable for cleaning electronic component members in the semiconductor manufacturing industry or the like.

近年、半導体製造プロセスの発展に伴い、半導体基板等の洗浄を行う水(超純水)中の不純物(微粒子)は厳しく管理されている。国際半導体技術ロードマップ(ITRS)によると、2019年には粒子径>11.9nmの保証値<1000個/L(管理値<100個/L)が必要になると言われている。   In recent years, with the development of semiconductor manufacturing processes, impurities (fine particles) in water (ultra-pure water) for cleaning semiconductor substrates and the like are strictly managed. According to the International Semiconductor Technology Roadmap (ITRS), it is said that a guaranteed value <1000 particles / L (control value <100 particles / L) with a particle diameter> 11.9 nm is required in 2019.

従来、半導体洗浄用水として用いられている超純水は、前処理システム、一次純水システム及びサブシステムから構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造されている(例えば特許文献1参照)。   Conventionally, ultrapure water used as semiconductor cleaning water is treated with raw water (industrial water, city water, well water, etc.) using an ultrapure water production system consisting of a pretreatment system, primary pure water system and subsystems. (See, for example, Patent Document 1).

凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システムでは、原水中の懸濁物質やコロイド物質の除去を行う。逆浸透(RO)膜分離装置、脱気装置及びイオン交換装置(混床式、2床3塔式又は4床5塔式)を備える一次純水システムでは原水中のイオンや有機成分の除去を行う。なお、RO膜分離装置では、塩類除去のほかにイオン性、コロイド性の全有機酸素(TOC)を除去する。イオン交換装置では、塩類除去のほかにイオン交換樹脂によって吸着又はイオン交換されるTOC成分を除去する。脱気装置(窒素脱気又は真空脱気)では溶存酸素の除去を行う。   In a pretreatment system comprising agglomeration, pressurized flotation (precipitation), filtration device, etc., suspended substances and colloidal substances in raw water are removed. Primary pure water system equipped with reverse osmosis (RO) membrane separation device, deaeration device and ion exchange device (mixed bed type, 2 bed 3 tower type or 4 bed 5 tower type) removes ions and organic components in raw water. Do. The RO membrane separation apparatus removes ionic and colloidal total organic oxygen (TOC) in addition to removing salts. In the ion exchange device, in addition to removing salts, the TOC component adsorbed or ion exchanged by the ion exchange resin is removed. In the degassing device (nitrogen degassing or vacuum degassing), the dissolved oxygen is removed.

熱交換器、低圧紫外線(UV)酸化装置、混床式イオン交換装置及び限外濾過(UF)膜分離装置を備えるサブシステムでは、水の純度をより一層高め超純水にする。なお、低圧UV酸化装置では、低圧UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCOまで分解する。分解された有機酸及びCOは後段のイオン交換樹脂で除去される。UF膜分離装置では、微小粒子が除去されイオン交換樹脂の流出粒子も除去される。 In a subsystem including a heat exchanger, a low-pressure ultraviolet (UV) oxidizer, a mixed bed ion exchanger, and an ultrafiltration (UF) membrane separator, the purity of water is further increased to ultrapure water. In the low-pressure UV oxidizer, TOC is decomposed into an organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low-pressure UV lamp. The decomposed organic acid and CO 2 are removed by a subsequent ion exchange resin. In the UF membrane separation apparatus, the fine particles are removed and the outflow particles of the ion exchange resin are also removed.

このように従来は、サブシステムの末端にUF膜等の微粒子除去膜を設置することで、ナノメートルサイズの微粒子除去処理を行っていた。また、半導体・電子材料洗浄用の洗浄機直前にミニサブシステムをユースポイントポリッシャーとして設置し、最後段に微粒子除去膜を設置したり、洗浄機内のノズル直前に微粒子除去膜を設置して、より小さいサイズの微粒子を効率よく除去したりする方法が検討されている。   Thus, conventionally, a nanometer-sized fine particle removal process has been performed by installing a fine particle removal film such as a UF film at the end of the subsystem. In addition, a mini-subsystem is installed as a point-of-use polisher just before the cleaning machine for semiconductor / electronic material cleaning, and a particle removal film is installed at the last stage, or a particle removal film is installed just before the nozzle in the washing machine. A method for efficiently removing fine particles having a size has been studied.

サブシステム内において使用される微粒子除去膜としてのUF膜は、膜面の細孔径が微粒子径より小さいことが望ましいが、UF膜面には無数の細孔が存在し、その孔径にばらつきがある。そのため、粒子径が10nm程度の微粒子を完全に除去することが出来なかった。   The UF membrane as the fine particle removal membrane used in the subsystem preferably has a pore size smaller than the fine particle size, but there are innumerable pores on the UF membrane surface, and the pore size varies. . Therefore, the fine particles having a particle diameter of about 10 nm could not be completely removed.

微粒子除去膜の微粒子除去率を高めるために、サブシステム内に微粒子除去膜を2段直列に設ける手法が知られており、例えば、特許文献2の図2、3には、超純水製造装置の最後段にUF膜装置とイオン交換基修飾精密濾過(MF)膜装置とをこの順に直列に設置する構成が開示されている。しかし、この構成ではイオン交換基修飾MF膜装置から交換基体が脱離して微粒子源になるという問題があった。また、MF膜は孔径がサブミクロンオーダーであり、UF膜の孔径より大きく、微粒子(粒子径>10nm)を1000個/L以下のレベルで管理することが困難であった。   In order to increase the fine particle removal rate of the fine particle removal film, a technique of providing two stages of fine particle removal films in a subsystem is known. For example, FIGS. A configuration in which a UF membrane device and an ion exchange group-modified microfiltration (MF) membrane device are installed in this order in series is disclosed at the last stage. However, this configuration has a problem that the exchange base is detached from the ion exchange group-modified MF membrane device to become a fine particle source. In addition, the pore size of the MF membrane is on the order of submicron, which is larger than the pore size of the UF membrane, and it is difficult to manage fine particles (particle size> 10 nm) at a level of 1000 particles / L or less.

特許文献3の図4(a)には、二次純水装置の末端のUF膜装置の後段にRO膜装置を設ける構成が開示されている。RO膜は、UF膜より孔径が小さいため、微粒子の除去率を高めることが理論上可能である。しかし、RO膜はモジュールとしての清浄度が低く、ポッティング材からの発塵など微粒子を発生させることがあるため、サブシステムの末端に設けられる微粒子除去膜としては適当ではない。   FIG. 4A of Patent Document 3 discloses a configuration in which an RO membrane device is provided after the UF membrane device at the end of the secondary pure water device. Since the RO membrane has a smaller pore size than the UF membrane, it is theoretically possible to increase the removal rate of the fine particles. However, since the RO membrane has a low cleanliness as a module and may generate fine particles such as dust from the potting material, it is not suitable as a fine particle removal membrane provided at the end of the subsystem.

特許文献4には、二次純水装置にUF膜装置と孔径500〜5000Åのアニオン吸着膜装置とを設ける構成が開示されている。アニオン吸着膜として、孔径0.02μm、空隙率60%、膜厚0.35mmの中空糸膜が用いられているが、このアニオン吸着膜では、シリカを高度に除去できるものの、超純水製造に求められるレベルの微粒子は除去できなかった。   Patent Document 4 discloses a configuration in which a secondary pure water device is provided with a UF membrane device and an anion adsorption membrane device having a pore diameter of 500 to 5000 mm. A hollow fiber membrane having a pore size of 0.02 μm, a porosity of 60%, and a film thickness of 0.35 mm is used as the anion adsorption membrane. Although this anion adsorption membrane can highly remove silica, it is useful for producing ultrapure water. The required level of fine particles could not be removed.

特許文献5には、超純水製造用分離膜モジュールとして用いられているUF又はMF膜装置の前段に、粒径10μm以上の粒子を阻止するプレフィルターを設ける構成が開示されている。このプレフィルターは、粒径10μm以上の不純物がUF又はMF膜に衝突して膜破損が生じることを防止するためのものであり、粒径10μm未満の微粒子は除去されない。また、最終段のUF又はMF膜において、微粒子蓄積に伴う後段への微粒子リークが考えられ、ユースポイントでの水質が低下するおそれがあった。   Patent Document 5 discloses a configuration in which a prefilter for blocking particles having a particle size of 10 μm or more is provided in front of a UF or MF membrane device used as a separation membrane module for producing ultrapure water. This pre-filter is for preventing impurities having a particle diameter of 10 μm or more from colliding with the UF or MF film and causing damage to the film. Fine particles having a particle diameter of less than 10 μm are not removed. Further, in the final stage UF or MF membrane, fine particle leakage to the subsequent stage accompanying the accumulation of fine particles is considered, and there is a possibility that the water quality at the point of use may be lowered.

特開2010−196591号公報JP 2010-196591 A 特開2004−283710号公報JP 2004-283710 A 特開2003−190951号公報JP 2003-190951 A 特開平10−216721号公報Japanese Patent Laid-Open No. 10-216721 特開平4−338221号公報JP-A-4-338221

本発明は、以上の実情に鑑みてなされたものであり、微粒子除去率が高く、高純度の超純水を製造することができる超純水製造方法を提供することを課題とする。   This invention is made | formed in view of the above situation, and makes it a subject to provide the ultrapure water manufacturing method which can manufacture a highly purified ultrapure water with a high fine particle removal rate.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、UF膜には孔径分布が存在し、孔径と同程度、あるいは孔径よりも小さい微粒子を除去する場合、MF膜と同様に深層濾過のメカニズムをとるため、MF膜だけでなくUF膜においても、粒径10nmレベルの微粒子に関しては完全に除去しきれないが、微粒子除去膜の透過流束(Flux)を下げることで、膜面での微粒子蓄積を緩和し、モジュールとしての微粒子除去率を向上できることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have a pore size distribution in the UF membrane, and in the case of removing fine particles having the same size as the pore size or smaller than the pore size, the same as in the MF membrane. In addition to the MF membrane, not only the MF membrane but also the UF membrane cannot completely remove fine particles with a particle size of 10 nm, but by lowering the permeation flux (Flux) of the fine particle removal membrane, It has been found that the accumulation of fine particles on the film surface can be alleviated and the fine particle removal rate as a module can be improved, and the present invention has been completed based on this finding.

すなわち、本発明の超純水製造方法は、一次純水システムで一次純水を製造する工程と、一次純水をサブシステムで処理して超純水を製造する超純水製造工程と、を有し、該サブシステム又はそれよりも後段で微粒子除去膜装置によって微粒子除去処理が行われる超純水製造方法において、該微粒子除去膜装置の透過流束を0.1〜0.35m/Hrとすることを特徴とするものである。   That is, the method for producing ultrapure water of the present invention comprises a step of producing primary pure water in a primary pure water system, and a step of producing ultrapure water by treating primary pure water in a subsystem to produce ultrapure water. And having a permeation flux of 0.1 to 0.35 m / Hr of the fine particle removal membrane device. It is characterized by doing.

本発明では、前記微粒子除去膜装置への給水の微粒子濃度が1000個/mL以下であることが好ましい。   In this invention, it is preferable that the fine particle concentration of the water supply to the said fine particle removal film apparatus is 1000 pieces / mL or less.

本発明では、前記微粒子除去膜装置は、前記サブシステムの最後段に設置されていることが好ましい。   In the present invention, it is preferable that the fine particle removal film device is installed at the last stage of the subsystem.

本発明では、前記微粒子除去膜装置は、限外濾過膜装置又は精密濾過膜装置であることが好ましい。   In the present invention, the fine particle removal membrane device is preferably an ultrafiltration membrane device or a microfiltration membrane device.

本発明では、前記サブシステム内に設置されるポンプと前記微粒子除去膜装置との間に少なくとも1つの水処理機器が設置されていることが好ましい。また、水処理機器は、イオン交換装置、脱気装置、UV酸化器、及びH除去装置の少なくとも1つであることが好ましい。 In the present invention, it is preferable that at least one water treatment device is installed between the pump installed in the subsystem and the particulate removal membrane device. The water treatment device is preferably at least one of an ion exchange device, a deaeration device, a UV oxidizer, and an H 2 O 2 removal device.

本発明によれば、微粒子除去膜装置の透過流束を0.1〜0.35m/Hrとするため、膜面での微粒子蓄積を緩和し、微粒子除去率を高め、高純度の超純水を製造することができる。   According to the present invention, since the permeation flux of the fine particle removal membrane device is 0.1 to 0.35 m / Hr, the accumulation of fine particles on the membrane surface is alleviated, the fine particle removal rate is increased, and high purity ultrapure water is used. Can be manufactured.

また、微粒子除去膜装置への給水の微粒子濃度を1000個/mL以下とすることで、処理水微粒子濃度を1個/mL以下に管理することができる。   Further, by setting the fine particle concentration of the water supplied to the fine particle removal membrane device to 1000 particles / mL or less, the treated water particle concentration can be controlled to 1 particle / mL or less.

また、サブシステム内に設置されるポンプと微粒子除去膜装置との間に少なくとも1つの水処理ユニットを設置することで、ポンプの摺動部で発生した微粒子が微粒子除去膜装置に到達することを防止することができる。特に、ポンプと微粒子除去膜装置との間に設置する水処理ユニットを、イオン交換装置、脱気装置、UV酸化器、及びH除去装置のうちの少なくともいずれか1つとすることで、これらのユニットが有する微粒子吸着効果により水中の微粒子濃度を効果的に減少させることができる。 Also, by installing at least one water treatment unit between the pump installed in the subsystem and the particulate removal membrane device, the particulates generated at the sliding part of the pump can reach the particulate removal membrane device. Can be prevented. In particular, the water treatment unit installed between the pump and the particulate removal membrane device is at least one of an ion exchange device, a deaeration device, a UV oxidizer, and an H 2 O 2 removal device, The fine particle concentration in the water can be effectively reduced by the fine particle adsorption effect of these units.

本発明の実施形態に係る超純水製造装置の概略図である。It is the schematic of the ultrapure water manufacturing apparatus which concerns on embodiment of this invention. 実験例1の実験概略図である。FIG. 3 is an experimental schematic diagram of Experimental Example 1. 透過流束と粒子除去率との関係を示すグラフである。It is a graph which shows the relationship between a permeation flux and a particle removal rate. 実施例1で使用した超純水サブシステムの概略図である。It is the schematic of the ultrapure water subsystem used in Example 1. FIG.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1の超純水製造装置は、前処理システム1、一次純水システム2及びサブシステム3から構成される。   The ultrapure water production apparatus in FIG. 1 includes a pretreatment system 1, a primary pure water system 2, and a subsystem 3.

凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。逆浸透(RO)膜分離装置、脱気装置及びイオン交換装置(混床式、2床3塔式又は4床5塔式)を備える一次純水システム2では原水中のイオンや有機成分の除去を行う。なお、RO膜分離装置では、塩類除去のほかにイオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類除去のほかにイオン交換樹脂によって吸着又はイオン交換されるTOC成分を除去する。脱気装置(窒素脱気又は真空脱気)では溶存酸素の除去を行う。   In the pretreatment system 1 including agglomeration, pressurized flotation (precipitation), a filtration device, and the like, the suspended substances and colloidal substances in the raw water are removed. In the primary pure water system 2 equipped with a reverse osmosis (RO) membrane separation device, a deaeration device, and an ion exchange device (mixed bed type, 2 bed 3 tower type or 4 bed 5 tower type), removal of ions and organic components in the raw water I do. The RO membrane separation apparatus removes ionic and colloidal TOC in addition to removing salts. In the ion exchange device, in addition to removing salts, the TOC component adsorbed or ion exchanged by the ion exchange resin is removed. In the degassing device (nitrogen degassing or vacuum degassing), the dissolved oxygen is removed.

このようにして得られた一次純水(通常の場合、TOC濃度2ppb以下の純水)を、サブタンク11、ポンプP、熱交換器12、UV酸化装置13、触媒式酸化性物質分解装置14、脱気装置15、混床式イオン交換装置(脱イオン装置)16及び微粒子分離膜装置17に順次に通水し、得られた超純水をユースポイント18に送る。   The primary pure water thus obtained (usually pure water having a TOC concentration of 2 ppb or less) is converted into a sub tank 11, a pump P, a heat exchanger 12, a UV oxidation device 13, a catalytic oxidative substance decomposition device 14, Water is sequentially passed through the deaeration device 15, the mixed bed type ion exchange device (deionization device) 16 and the fine particle separation membrane device 17, and the obtained ultrapure water is sent to the use point 18.

UV酸化装置13としては、通常、超純水製造装置に用いられる185nm付近の波長を有するUVを照射するUV酸化装置、例えば低圧水銀ランプを用いたUV酸化装置が用いられる。このUV酸化装置13で、一次純水中のTOCが有機酸、更にはCOに分解される。 As the UV oxidation device 13, a UV oxidation device that irradiates UV having a wavelength near 185 nm, which is used in an ultrapure water production device, for example, a UV oxidation device using a low-pressure mercury lamp is used. This UV oxidation apparatus 13, primary pure water TOC is organic acid, further is decomposed into CO 2.

触媒式酸化性物質分解装置14により、UV酸化装置13で発生したH、その他の酸化性物質が触媒により効率的に分解除去される。触媒式酸化性物質分解装置14の酸化性物質分解触媒としては、酸化還元触媒として知られる貴金属触媒、例えば、金属パラジウム、酸化パラジウム、水酸化パラジウム等のパラジウム(Pd)化合物又は白金(Pt)などが用いられる。 The catalytic oxidizing substance decomposing apparatus 14 efficiently decomposes and removes H 2 O 2 and other oxidizing substances generated in the UV oxidizing apparatus 13 by the catalyst. Examples of the oxidant decomposition catalyst of the catalytic oxidant decomposition apparatus 14 include noble metal catalysts known as redox catalysts, such as palladium (Pd) compounds such as metal palladium, palladium oxide, and palladium hydroxide, or platinum (Pt). Is used.

脱気装置15としては、真空脱気装置、窒素脱気装置や膜式脱気装置が用いられる。この脱気装置15により、水中の溶存酸素(DO)やCOが効率的に除去される。 As the degassing device 15, a vacuum degassing device, a nitrogen degassing device, or a membrane degassing device is used. By this deaeration device 15, dissolved oxygen (DO) and CO 2 in the water are efficiently removed.

混床式イオン交換装置16により、水中のカチオン及びアニオンが除去され、水の純度が高められる。   The mixed bed ion exchange device 16 removes cations and anions in the water, thereby increasing the purity of the water.

微粒子分離膜装置17としては、UF膜分離装置又はMF膜分離装置を用いることができる。ただし、分画分子量は400〜10000、好ましくは400〜8000のUF膜分離装置を好適に用いることができる。分画分子量が大きすぎると、粒子径10nm程度の粒子を十分に除去することができず、分画分子量が小さすぎると、十分な透過流束を得るための動力(圧力)が大きくなりすぎるためである。なお、ここで分画分子量は、スクロース(340)、ラフィノース(590)、ビタミンB12(1360)、Bacitrancin(1410)、インシュリン(5700)、ミオグロビン(17000)、ペプシン(35000)、アルブミン(66000)などのポリペプチドや蛋白質等のマーカー分子を用いて、デッドエンド濾過を行い、分子量と阻止率の関係から、阻止率が90%となる分子量として算出される。この微粒子分離膜装置17で水中の微粒子、例えば混床式イオン交換装置16からのイオン交換樹脂の流出微粒子等が除去される。   As the fine particle separation membrane device 17, a UF membrane separation device or an MF membrane separation device can be used. However, a UF membrane separator having a fractional molecular weight of 400 to 10,000, preferably 400 to 8,000 can be suitably used. If the molecular weight cut off is too large, particles having a particle diameter of about 10 nm cannot be removed sufficiently. If the molecular weight cut off is too small, the power (pressure) for obtaining a sufficient permeation flux becomes too large. It is. Here, the molecular weight cut-off is sucrose (340), raffinose (590), vitamin B12 (1360), Bacitrancin (1410), insulin (5700), myoglobin (17000), pepsin (35000), albumin (66000), etc. Using a marker molecule such as polypeptide or protein, dead-end filtration is performed, and the molecular weight at which the blocking rate is 90% is calculated from the relationship between the molecular weight and the blocking rate. The fine particle separation membrane device 17 removes fine particles in water, such as outflow fine particles of the ion exchange resin from the mixed bed ion exchange device 16.

本発明では、微粒子分離膜装置17の透過流束を0.3m/Hr以下の低い値にすることで、膜面での微粒子蓄積を緩和し、高い微粒子除去率を実現する。微粒子分離膜装置17の透過流束は、0.1〜0.35m/Hr、特に0.2〜0.33m/Hr、更には0.25〜0.3m/Hrが好適である。   In the present invention, by setting the permeation flux of the particulate separation membrane device 17 to a low value of 0.3 m / Hr or less, particulate accumulation on the membrane surface is alleviated and a high particulate removal rate is realized. The permeation flux of the fine particle separation membrane device 17 is preferably 0.1 to 0.35 m / Hr, particularly preferably 0.2 to 0.33 m / Hr, and more preferably 0.25 to 0.3 m / Hr.

通常、中空糸型UF膜は、中空糸の内外面差圧を、中空糸が潰れる限界圧力である0.18MPaを十分に下回るようにし、かつ流量を多く確保するため、透過流束を約0.5m/Hrとして使用される。一方、本発明では、透過流束を通常使用時の2/3以下とすることで、10nmオーダーサイズの微粒子についても効率よく除去し、微粒子除去率を向上させることができる。   Normally, the hollow fiber type UF membrane has a permeation flux of about 0 in order to make the differential pressure on the inner and outer surfaces of the hollow fiber sufficiently lower than 0.18 MPa, which is a limit pressure at which the hollow fiber is crushed, and to secure a large flow rate. Used as 5 m / Hr. On the other hand, in the present invention, by setting the permeation flux to 2/3 or less of that during normal use, fine particles with an order of 10 nm can be efficiently removed, and the fine particle removal rate can be improved.

微粒子分離膜装置17で処理された水について、粒径10nm以上の微粒子を1000個/L(1個/mL)以下に管理するために、微粒子分離膜装置17に導入される水の微粒子濃度を1000個/mL以下にすることが好ましい。   In order to manage the water treated by the fine particle separation membrane device 17 to 1000 particles / L (1 piece / mL) or less of fine particles having a particle diameter of 10 nm or more, the fine particle concentration of water introduced into the fine particle separation membrane device 17 is It is preferable to make it 1000 pieces / mL or less.

サブシステム3において、ポンプPは、サブタンク11と熱交換器12との間だけでなく、他のユニット間にさらに設置されていてもよい。ポンプ等の回転機は摺動部から微粒子が発生し得るため、ポンプPは、微粒子分離膜装置17の前段(混床式イオン交換装置16と微粒子分離膜装置17との間)以外の箇所に設置することが好ましい。ポンプPと微粒子分離膜装置17との間に少なくとも1つのユニット(UV酸化装置13、触媒式酸化性物質分解装置14、脱気装置15、イオン交換装置16)が設置されることで、ポンプで発生した微粒子が除去され、微粒子分離膜装置17に導入される水の微粒子濃度を低減することができる。   In the subsystem 3, the pump P may be further installed not only between the sub tank 11 and the heat exchanger 12 but also between other units. Since a rotating machine such as a pump can generate fine particles from the sliding portion, the pump P is not provided at a position other than the front stage of the fine particle separation membrane device 17 (between the mixed bed ion exchange device 16 and the fine particle separation membrane device 17). It is preferable to install. At least one unit (UV oxidation device 13, catalytic oxidizing substance decomposition device 14, degassing device 15, ion exchange device 16) is installed between the pump P and the fine particle separation membrane device 17, so that the pump The generated fine particles are removed, and the fine particle concentration of water introduced into the fine particle separation membrane device 17 can be reduced.

[実験例1]
Auコロイド粒子をスパイク(添加)した超純水をUF膜モジュールに透過流束を変えて通水し、透過流束とUF膜モジュールの微粒子除去率との関係を求めた。即ち、粒径10nmのAuコロイド粒子(B B International社製)をAuコロイド粒子濃度が1×10個/mLとなるように添加した超純水を、図2のように分画分子量6000のUF膜モジュールの底部から供給し、頂部から処理水を排出した。UF膜モジュールの濃縮水量を給水水量の約5%で設定し、濃縮水は排水とした。UF膜モジュールへの給水水量を変えてUF膜の透過流束を変化させ、各透過流束における処理水中Auコロイド粒子濃度を測定し、コロイド粒子除去率を算出した。Auコロイド粒子濃度の分析には誘導結合プラズマ質量分析計(ICP−MS)を使用した。コロイド粒子除去率は、処理水中Auコロイド粒子濃度を給水中Auコロイド粒子濃度で除すことで算出した。結果を図3に示す。
[Experimental Example 1]
Ultrapure water spiked (added) with Au colloidal particles was passed through the UF membrane module while changing the permeation flux, and the relationship between the permeation flux and the particulate removal rate of the UF membrane module was determined. That is, ultrapure water in which Au colloidal particles having a particle diameter of 10 nm (manufactured by BB International) were added so that the concentration of Au colloidal particles was 1 × 10 9 particles / mL was obtained, as shown in FIG. Supplied from the bottom of the UF membrane module, and treated water was discharged from the top. The amount of concentrated water in the UF membrane module was set at about 5% of the amount of water supplied, and the concentrated water was discharged. The amount of water supplied to the UF membrane module was changed to change the permeation flux of the UF membrane, the concentration of Au colloid particles in the treated water in each permeation flux was measured, and the colloid particle removal rate was calculated. An inductively coupled plasma mass spectrometer (ICP-MS) was used for the analysis of Au colloid particle concentration. The colloid particle removal rate was calculated by dividing the Au colloid particle concentration in the treated water by the Au colloid particle concentration in the feed water. The results are shown in FIG.

図3より、透過流束を小さくするほど、Auコロイド粒子の除去率が高くなること、透過流束が0.3m/Hr以下では除去率が99.9%以上となることが認められた。   From FIG. 3, it was found that the smaller the permeation flux, the higher the Au colloidal particle removal rate, and that the permeation flux was 99.9% or more at 0.3 m / Hr or less.

次に、以下の数式を用いて、UF膜処理水中において粒径10nmの微粒子を1000個/L=1個/mL以下に管理するために必要なUF膜給水許容微粒子濃度を算出した。   Next, using the following formula, the UF membrane water supply allowable fine particle concentration necessary for managing fine particles having a particle diameter of 10 nm to 1000 / L = 1 / mL or less in the UF membrane treated water was calculated.

Figure 0006417734
Figure 0006417734

上記数式において、CはUF膜給水中の微粒子濃度[個/mL]、CはUF膜処理水中の微粒子濃度[個/mL]、ReはUF膜での微粒子除去率[%]、BはUF膜材自体から発生する微粒子数[個/mL]である。 In the above formula, C 0 is the fine particle concentration [number / mL] in the UF membrane feed water, C is the fine particle concentration [number / mL] in the UF membrane treated water, Re is the fine particle removal rate [%] in the UF membrane, and B is The number of fine particles generated from the UF membrane material itself [number / mL].

微粒子除去率Reに図3に示す結果から得られた(透過流束が0.3m/Hr以下の場合の除去率)99.9%を代入し、B=0とした場合の、UF膜給水微粒子濃度CとUF膜処理水微粒子濃度Cとの関係を以下の表1に示す。 Substituting 99.9% for the fine particle removal rate Re (removal rate when the permeation flux is 0.3 m / Hr or less) obtained from the results shown in FIG. the relationship between the particle concentration C 0 and UF membrane treated water particle concentration C shown in Table 1 below.

Figure 0006417734
Figure 0006417734

表1から、UF膜の微粒子除去率が99.9%の場合でも、UF膜処理水微粒子濃度を1個/mL以下とするためには、UF膜給水微粒子濃度を1000個/mL以下にする必要があることが分かった。   From Table 1, even when the fine particle removal rate of the UF membrane is 99.9%, in order to make the UF membrane treated water fine particle concentration 1 mL / mL or less, the UF membrane water supply fine particle concentration is set to 1000 particles / mL or less. I found it necessary.

[実施例1]
一次純水を、図4に示す超純水サブシステム20のサブタンク21、第1ポンプ22、熱交換器23、UV酸化器24、H分離触媒塔25、第2ポンプ26、脱気膜装置27、イオン交換樹脂塔28、UF膜装置29に順次に通水し、得られた超純水をユースポイント30に送った。一次純水は、原水としての工業用水を前処理システム及び一次純水システムで処理して得られたものであり、TOC濃度は10〜20ppbの純水である。第1ポンプ22、熱交換器23、UV酸化器24、H分離触媒塔25、第2ポンプ26、脱気膜装置27、イオン交換樹脂塔28、及びUF膜装置29の各機器の出口側(#1〜#8)からサンプル水を採取し、粒径10nmの微粒子濃度の分析を行った。微粒子濃度は、フィルターにサンプル水を所定量濾過した後、電子顕微鏡で観察しながら、フィルターに捕捉された微粒子の個数をカウントし、検出値を濾過水量で除すことで算出した。算出結果を以下の表2に示す。
[Example 1]
The primary pure water is separated from the sub tank 21 of the ultra pure water subsystem 20 shown in FIG. 4, the first pump 22, the heat exchanger 23, the UV oxidizer 24, the H 2 O 2 separation catalyst tower 25, the second pump 26, and degassed. Water was sequentially passed through the membrane device 27, the ion exchange resin tower 28, and the UF membrane device 29, and the obtained ultrapure water was sent to the use point 30. Primary pure water is obtained by treating industrial water as raw water with a pretreatment system and a primary pure water system, and has a TOC concentration of 10 to 20 ppb. The first pump 22, the heat exchanger 23, the UV oxidizer 24, the H 2 O 2 separation catalyst tower 25, the second pump 26, the degassing membrane device 27, the ion exchange resin tower 28, and the UF membrane device 29. Sample water was collected from the outlet side (# 1 to # 8) and analyzed for the concentration of fine particles having a particle diameter of 10 nm. The fine particle concentration was calculated by filtering a predetermined amount of sample water through a filter, counting the number of fine particles captured by the filter while observing with an electron microscope, and dividing the detected value by the amount of filtered water. The calculation results are shown in Table 2 below.

Figure 0006417734
Figure 0006417734

表2の通り、第1ポンプ出口(#1)、第2ポンプ出口(#5)で微粒子が多く確認され、熱交換器出口(#2)では微粒子濃度にほとんど変化がなかった。この結果から、ポンプの摺動部から微粒子が発生し、熱交換器は微粒子の増減にほとんど影響を与えないことが認められた。一方、UV酸化器、H分解触媒塔、脱気膜装置、イオン交換樹脂塔では、その前後で微粒子濃度が減少した。これは、これらの機器が有する微粒子吸着効果によって微粒子濃度が減少したものと考えられる。この結果から、UF膜(微粒子除去膜)装置の給水中の微粒子濃度を低くするためには、UF膜装置の直前以外の箇所にポンプを設置すべきであることが認められた。 As shown in Table 2, many fine particles were confirmed at the first pump outlet (# 1) and the second pump outlet (# 5), and there was almost no change in the fine particle concentration at the heat exchanger outlet (# 2). From this result, it was confirmed that fine particles were generated from the sliding part of the pump, and the heat exchanger hardly affected the increase or decrease of the fine particles. On the other hand, in the UV oxidizer, the H 2 O 2 decomposition catalyst tower, the degassing membrane apparatus, and the ion exchange resin tower, the fine particle concentration decreased before and after that. This is presumably because the fine particle concentration is reduced by the fine particle adsorption effect of these devices. From this result, in order to reduce the concentration of fine particles in the feed water of the UF membrane (particle removal membrane) device, it was recognized that the pump should be installed at a location other than just before the UF membrane device.

11 サブタンク
12熱交換器
13 UV酸化装置
14 触媒式酸化性物質分解装置
15 脱気装置
16 混床式イオン交換装置
17 微粒子分離膜装置
18 ユースポイント
DESCRIPTION OF SYMBOLS 11 Subtank 12 Heat exchanger 13 UV oxidation apparatus 14 Catalytic oxidative substance decomposition apparatus 15 Deaeration apparatus 16 Mixed bed type ion exchange apparatus 17 Fine particle separation membrane apparatus 18 Use point

Claims (4)

一次純水システムで一次純水を製造する工程と、
一次純水をサブシステムで処理して超純水を製造する超純水製造工程と、
を有し、
該サブシステム又はそれよりも後段で微粒子除去膜装置によって微粒子除去処理が行われる超純水製造方法において、
該微粒子除去膜装置への給水の微粒子濃度が1000個/mL以下であり、
該微粒子の粒径が10nm以上であり、
該微粒子除去膜装置は、分画分子量が400〜10000の限外濾過膜装置であり、
該限外濾過膜装置は、透過流束0.3m/Hr以下で粒径10nmの微粒子除去率が99.9%以上となるものであり、
限外濾過膜装置の透過流束を0.25〜0.3m/Hrとすることを特徴とする超純水製造方法。
Producing primary pure water with a primary pure water system;
An ultrapure water production process in which primary pure water is processed by a subsystem to produce ultrapure water;
Have
In the ultrapure water production method in which fine particle removal processing is performed by the fine particle removal membrane device at the subsystem or later stage thereof,
The fine particle concentration of water supplied to the fine particle removal membrane device is 1000 / mL or less,
The particle size of the fine particles is 10 nm or more,
The fine particle removal membrane device is an ultrafiltration membrane device having a molecular weight cut-off of 400 to 10,000.
The ultrafiltration membrane device has a permeation flux of 0.3 m / Hr or less and a particle removal rate of 10 nm and a particle size of 99.9% or more.
Ultrapure water producing method characterized by the flux of the ultrafiltration membrane apparatus to 0.25-0.3 m / Hr.
請求項1において、前記微粒子除去膜装置は、前記サブシステムの最後段に設置されていることを特徴とする超純水製造方法。   2. The method for producing ultrapure water according to claim 1, wherein the particulate removal membrane device is installed at the last stage of the subsystem. 請求項1又は2において、前記サブシステム内に設置されるポンプと前記微粒子除去膜装置との間に少なくとも1つの水処理機器が設置されていることを特徴とする超純水製造方法。   3. The method for producing ultrapure water according to claim 1, wherein at least one water treatment device is installed between a pump installed in the subsystem and the particulate removal membrane device. 請求項3において、前記水処理機器は、イオン交換装置、脱気装置、UV酸化器、及びH除去装置の少なくとも1つであることを特徴とする超純水製造方法。 4. The method for producing ultrapure water according to claim 3, wherein the water treatment device is at least one of an ion exchange device, a deaeration device, a UV oxidizer, and an H 2 O 2 removal device.
JP2014119792A 2014-06-10 2014-06-10 Ultrapure water production method Active JP6417734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119792A JP6417734B2 (en) 2014-06-10 2014-06-10 Ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119792A JP6417734B2 (en) 2014-06-10 2014-06-10 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2015231609A JP2015231609A (en) 2015-12-24
JP6417734B2 true JP6417734B2 (en) 2018-11-07

Family

ID=54933454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119792A Active JP6417734B2 (en) 2014-06-10 2014-06-10 Ultrapure water production method

Country Status (1)

Country Link
JP (1) JP6417734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634918B2 (en) * 2016-03-25 2020-01-22 栗田工業株式会社 Ultrapure water production system
JP2019214022A (en) * 2018-06-13 2019-12-19 野村マイクロ・サイエンス株式会社 Ultrapure water production device and ultrapure water production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647105B2 (en) * 1989-12-19 1994-06-22 株式会社荏原総合研究所 Purification method and device for pure water or ultrapure water
JP3059238B2 (en) * 1991-05-13 2000-07-04 日東電工株式会社 Operation method of ultrapure water production line and separation membrane module
US6579445B2 (en) * 2001-06-01 2003-06-17 Sartorius Ag System for the production of laboratory grade ultrapure water
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2008272713A (en) * 2007-05-07 2008-11-13 Nomura Micro Sci Co Ltd Method for producing ultrapure water, and production device therefor
JP2010162500A (en) * 2009-01-16 2010-07-29 Miura Co Ltd Water quality modification system
JP2011240344A (en) * 2011-08-05 2011-12-01 Kurita Water Ind Ltd Water treatment apparatus for manufacturing ultrapure water
JP5953726B2 (en) * 2011-12-07 2016-07-20 栗田工業株式会社 Ultrapure water production method and apparatus

Also Published As

Publication number Publication date
JP2015231609A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6304259B2 (en) Ultrapure water production equipment
JP5045099B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP6228531B2 (en) Ultrapure water production apparatus and ultrapure water production method
KR102287709B1 (en) Ultrapure Water Manufacturing System
CN109562964B (en) Ultrapure water production equipment
WO2016136650A1 (en) Removal device of fine particles in water and ultrapure water production/supply system
JP6417734B2 (en) Ultrapure water production method
CN109041579B (en) Wet cleaning device and wet cleaning method
JPH10216721A (en) Ultrapure water producing device
WO2019188965A1 (en) Ultrapure water production system and ultrapure water production method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP2009112944A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP3732903B2 (en) Ultrapure water production equipment
JP5135654B2 (en) Secondary pure water production equipment
JP2002307080A (en) Apparatus for producing ultrapure water
WO2019188964A1 (en) Ultrapure water production system and ultrapure water production method
JP2005118734A (en) Ultrapure water making apparatus
JP2010214300A (en) Ultrapure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250