JP6417383B2 - Steel sheet pile with underground heat exchange function and underground heat exchange piping system - Google Patents

Steel sheet pile with underground heat exchange function and underground heat exchange piping system Download PDF

Info

Publication number
JP6417383B2
JP6417383B2 JP2016242016A JP2016242016A JP6417383B2 JP 6417383 B2 JP6417383 B2 JP 6417383B2 JP 2016242016 A JP2016242016 A JP 2016242016A JP 2016242016 A JP2016242016 A JP 2016242016A JP 6417383 B2 JP6417383 B2 JP 6417383B2
Authority
JP
Japan
Prior art keywords
steel sheet
sheet pile
heat exchange
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016242016A
Other languages
Japanese (ja)
Other versions
JP2017057716A (en
Inventor
小林 賢知
賢知 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016242016A priority Critical patent/JP6417383B2/en
Publication of JP2017057716A publication Critical patent/JP2017057716A/en
Application granted granted Critical
Publication of JP6417383B2 publication Critical patent/JP6417383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、地中の土砂との間で熱交換を行う地中熱交換機能を有する鋼矢板および地中熱交換配管システムに関する。   The present invention relates to a steel sheet pile having an underground heat exchange function for exchanging heat with soil in the ground and an underground heat exchange piping system.

深さ10メートル程度の地中の温度は、地表の年平均気温とほぼ一定に保たれている。このため、夏季の地中の温度は外気温と比較して低く、冬季の地中の温度は外気温と比較して高い。この地中の熱(地中熱)の特性を活かし、地中熱を冷熱源および温熱源として利用する技術が知られている。   The underground temperature of about 10 meters deep is kept almost constant with the annual average temperature on the surface. For this reason, the underground temperature in summer is lower than the outside temperature, and the underground temperature in winter is higher than the outside temperature. A technique for utilizing the underground heat (ground heat) as a cold heat source and a heat source is known.

例えば、特許文献1に示される地中熱ヒートポンプシステムは、地中に埋設された地中熱交換配管に不凍液等の熱媒を流通させることで、地中熱と熱媒との間で熱交換を行う。そして、熱回収装置である地中熱ヒートポンプは、地中熱と熱交換を行った熱媒を熱源として室内の温度を変化させる。したがって、夏季には、外気温と比較して低い温度の熱源を利用して冷房とすることが可能となり、冬季には、外気温と比較して高い温度の熱源を利用して暖房とすることが可能となる。このため、地中熱ヒートポンプシステムは、外気を熱源とするヒートポンプと比較して、使用する電力を削減できるとともに、二酸化炭素排出量を低減することができる。また、冷房排熱を地中に放出するため、ヒートアイランド効果の抑制に繋がる。   For example, the geothermal heat pump system disclosed in Patent Document 1 allows heat exchange between the underground heat and the heat medium by circulating a heat medium such as antifreeze liquid through the underground heat exchange pipe buried in the ground. I do. And the geothermal heat pump which is a heat recovery device changes the indoor temperature using the heat medium that has exchanged heat with the underground heat as a heat source. Therefore, in summer, it is possible to cool using a heat source having a lower temperature than the outside temperature, and in winter, heating using a heat source having a higher temperature than the outside temperature. Is possible. For this reason, the geothermal heat pump system can reduce power consumption and carbon dioxide emissions compared to a heat pump that uses outside air as a heat source. Moreover, since the cooling exhaust heat is released into the ground, it leads to suppression of the heat island effect.

特開2009−257737号公報JP 2009-257737 A

上記の地中熱ヒートポンプシステムを採用するには、地中熱を回収するための熱交換配管を地中に埋設する必要がある。熱交換配管を地中に埋設する際には、油圧ショベル、ボーリング、アースオーガ等の大型の重機を用いて地下十数から百数十メートルの穴を掘削し、こうして形成された穴に、熱交換配管を挿入したり、敷き詰めたりするといった工法が採られる。しかしながら、こうした工法では、掘削のために大型の重機を用いることから、掘削作業時の騒音および振動が問題となり、また、作業時間が長時間となるばかりか、掘削により発生する残土処理が必要となり、熱交換配管の設置費用が高くなってしまうという課題がある。   In order to employ the above-described geothermal heat pump system, it is necessary to embed a heat exchange pipe for recovering the geothermal heat. When burying heat exchange pipes in the ground, excavate a hole of dozens to hundreds of meters underground using a large heavy machine such as a hydraulic excavator, boring, earth auger, etc. Methods such as inserting replacement piping or laying down are adopted. However, this method uses large heavy machinery for excavation, so noise and vibration during excavation work become a problem, and it takes a long time to process the excavated soil. There is a problem that the installation cost of the heat exchange pipe becomes high.

そこで、本発明はこのような課題に鑑み、熱交換配管の設置作業時の騒音および振動を低減するとともに、設置費用を低減することができる地中熱交換機能を有する鋼矢板および地中熱交換配管システムを提供することを目的としている。   Therefore, in view of such a problem, the present invention reduces the noise and vibration during the installation work of the heat exchange pipe, and has a steel sheet pile and a ground heat exchange function that can reduce the installation cost. The purpose is to provide a piping system.

上記課題を解決するために、本発明の地中熱交換機能を有する鋼矢板は、鋼矢板基体と、鋼矢板基体に設けられ、鋼矢板基体の長手方向に延在した収容空間が内部に形成される収容部と、収容空間に収容され、内部を熱媒が流通する熱交換配管と、収容部から外方に突出し、地中の土砂との接触面積を増加させる突出部と、を備え、収容部の底部には、収容部における鋼矢板基体と略水平な面の長手方向の一端から、鋼矢板基体に向かって傾斜面が形成されることを特徴とする。 In order to solve the above problems, a steel sheet pile having an underground heat exchange function according to the present invention is provided in the steel sheet pile base and the steel sheet pile base, and an accommodation space extending in the longitudinal direction of the steel sheet pile base is formed inside. A housing part, a heat exchange pipe that is housed in the housing space and through which the heat medium flows, and a projecting part that projects outward from the housing part and increases a contact area with the earth and sand in the ground , An inclined surface is formed on the bottom of the housing portion from one end in the longitudinal direction of a surface substantially horizontal to the steel sheet pile substrate in the housing portion toward the steel sheet pile substrate .

また、収容部は、鋼矢板基体に固定された板部材で構成され、板部材と鋼矢板基体との間に収容空間が形成され、突出部は、板部材から外方に突出してもよい。 Moreover, an accommodating part is comprised with the plate member fixed to the steel sheet pile base | substrate, an accommodation space may be formed between a plate member and a steel sheet pile base | substrate, and a protrusion part may protrude outward from a plate member.

上記課題を解決するために、本発明の地中熱交換配管システムは、地中に埋設される鋼矢板基体と、鋼矢板基体に設けられ、鋼矢板基体の長手方向に延在した収容空間が内部に形成される収容部と、収容部から外方に突出し、地中の土砂との接触面積を増加させる突出部と、収容空間に収容され、内部を熱媒が流通する熱交換配管と、熱交換配管に接続される配管を有し、配管と熱交換配管との間で熱媒を循環させるとともに、熱交換配管から配管に還流した熱媒の熱を回収する熱回収装置と、を備え、収容部の底部には、収容部における鋼矢板基体と略水平な面の長手方向の一端から、鋼矢板基体に向かって傾斜面が形成されることを特徴とする。
In order to solve the above-mentioned problems, the underground heat exchange piping system of the present invention has a steel sheet pile base embedded in the ground, and a housing space provided in the steel sheet pile base and extending in the longitudinal direction of the steel sheet pile base. A housing part formed inside, a projecting part projecting outward from the housing part and increasing the contact area with the earth and sand in the ground, a heat exchange pipe housed in the housing space and through which the heat medium flows, A heat recovery device that has a pipe connected to the heat exchange pipe, circulates the heat medium between the pipe and the heat exchange pipe, and collects the heat of the heat medium returned from the heat exchange pipe to the pipe. In addition, an inclined surface is formed on the bottom of the housing portion from one end in the longitudinal direction of a surface substantially horizontal to the steel sheet pile substrate in the housing portion toward the steel sheet pile substrate .

本発明によれば、熱交換配管の設置作業時の騒音および振動を低減するとともに、設置費用を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing the noise and vibration at the time of installation work of heat exchange piping, installation cost can be reduced.

地中熱交換配管システムを説明するための図である。It is a figure for demonstrating a underground heat exchange piping system. 第1の実施形態にかかる鋼矢板を説明するための図である。It is a figure for demonstrating the steel sheet pile concerning 1st Embodiment. 第1の実施形態にかかる鋼矢板の設置方法の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the installation method of the steel sheet pile concerning 1st Embodiment. 第1の実施形態の変形例1にかかる鋼矢板を説明するための図である。It is a figure for demonstrating the steel sheet pile concerning the modification 1 of 1st Embodiment. 第1の実施形態の変形例2にかかる鋼矢板を説明するための図である。It is a figure for demonstrating the steel sheet pile concerning the modification 2 of 1st Embodiment. 第1の実施形態の変形例3にかかる鋼矢板を説明するための図である。It is a figure for demonstrating the steel sheet pile concerning the modification 3 of 1st Embodiment. 第2の実施形態にかかる鋼矢板および第2の実施形態の変形例にかかる鋼矢板を説明するための図である。It is a figure for demonstrating the steel sheet pile concerning 2nd Embodiment and the steel sheet pile concerning the modification of 2nd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

本実施形態における地中熱交換機能を有する鋼矢板の構成について理解を容易にするため、まず、地中熱交換機能を有する鋼矢板を使用した地中熱交換配管システム100を説明する。図1は、地中熱交換配管システム100を説明するための図である。図中、熱媒の流れを黒矢印で、空気の流れを白抜き矢印で示す。   In order to facilitate understanding of the configuration of the steel sheet pile having the underground heat exchange function in the present embodiment, first, the underground heat exchange piping system 100 using the steel sheet pile having the underground heat exchange function will be described. FIG. 1 is a diagram for explaining the underground heat exchange piping system 100. In the figure, the flow of the heat medium is indicated by black arrows, and the flow of air is indicated by white arrows.

図1に示すように、地中熱交換配管システム100は、鋼矢板120と、ヒートポンプ140と、室内機160とを含んで構成される。鋼矢板120の詳細な説明は後述するが、鋼矢板120は、不凍液等の熱媒が流通する熱交換配管126を備えた地中熱交換器として機能し、深度20から100メートル程度に設置される。ヒートポンプ140は熱回収装置であり、例えば、冷暖房の室外機である。ヒートポンプ140は建物Bの屋外の地上部に設けられ、冷媒の圧縮と膨張を繰り返すことで空気の温度を変える。具体的には、夏季に冷房として使用する場合、配管140dを流通した冷媒は、膨張弁142により減圧されて低温の液体となり、配管140bを介して室内機160に送られ、室内の空気とを熱交換することで室内の空気を冷却する。熱交換された冷媒は配管140aを介してヒートポンプ140に戻り、コンプレッサ144により圧縮されて高温のガスとなり、配管140cを流通し、熱交換配管126を流通する熱媒と熱交換することで冷却される。このとき、外気温と比較して低い温度の地中熱を利用することができる。そして、冷却された冷媒は再び配管140dを流通する。   As shown in FIG. 1, the underground heat exchange piping system 100 includes a steel sheet pile 120, a heat pump 140, and an indoor unit 160. Although the detailed description of the steel sheet pile 120 will be described later, the steel sheet pile 120 functions as an underground heat exchanger provided with a heat exchange pipe 126 through which a heat medium such as antifreeze liquid flows, and is installed at a depth of about 20 to 100 meters. The The heat pump 140 is a heat recovery device, for example, an outdoor unit for air conditioning. The heat pump 140 is provided on the outdoor ground part of the building B, and changes the temperature of the air by repeatedly compressing and expanding the refrigerant. Specifically, when used as cooling in the summer, the refrigerant flowing through the pipe 140d is decompressed by the expansion valve 142 to become a low-temperature liquid, sent to the indoor unit 160 through the pipe 140b, and the indoor air. The indoor air is cooled by exchanging heat. The heat-exchanged refrigerant returns to the heat pump 140 via the pipe 140a, is compressed by the compressor 144 to become a high-temperature gas, and is cooled by exchanging heat with the heat medium flowing through the pipe 140c and the heat exchange pipe 126. The At this time, geothermal heat having a lower temperature than the outside air temperature can be used. And the cooled refrigerant | coolant distribute | circulates the piping 140d again.

冬季に暖房として使用する場合、配管140cを流通し、コンプレッサ144により圧縮されて高温のガスとなった冷媒が、配管140aを介して室内機160に送られ、室内の空気と熱交換することで室内の空気を暖める。熱交換された冷媒は、配管140bを介してヒートポンプ140に戻り、膨張弁142により減圧されて低温の液体となり、配管140dを流通し、熱交換配管126を流通する熱媒と熱交換することで温められる。このとき、外気温と比較して高い温度の地中熱を利用することができる。そして、暖められた冷媒は再び配管140cを流通する。   When used as heating in the winter, the refrigerant that has circulated through the pipe 140c and has been compressed by the compressor 144 into a high-temperature gas is sent to the indoor unit 160 through the pipe 140a, and exchanges heat with indoor air. Warm indoor air. The heat-exchanged refrigerant returns to the heat pump 140 through the pipe 140b, is decompressed by the expansion valve 142, becomes a low-temperature liquid, flows through the pipe 140d, and exchanges heat with the heat medium flowing through the heat-exchange pipe 126. Be warmed up. At this time, it is possible to use geothermal heat having a higher temperature than the outside air temperature. And the warmed refrigerant | coolant distribute | circulates the piping 140c again.

ここでは、一般的な地中熱ヒートポンプの事例を例示したが、河川熱利用、海水利用ヒートポンプの熱交換に用いてもよい。またヒートポンプを用いない直接熱交換に用いてもよい。すなわち、単純に夏季に冷熱を得るために開放型の配管構成にして冷媒を流通することや、空気循環にすることもある。   Here, an example of a general geothermal heat pump has been illustrated, but it may be used for heat exchange of a river heat utilization or seawater utilization heat pump. Moreover, you may use for the direct heat exchange which does not use a heat pump. That is, in order to obtain cold heat in the summer, the refrigerant may be circulated by using an open-type piping configuration or may be circulated by air.

また、太陽熱温水器と組み合わせた「ソルエア」方式の地中熱ヒートポンプシステムでは、季節単位で太陽熱を地中熱として蓄積することができる。具体的には、夏季に地中の温度は太陽熱によって数十℃に上昇するため、この熱を地中熱として蓄積し、冬季に利用する。なお、このような「ソルエア」方式の地中熱ヒートポンプシステムに本発明の鋼矢板120を用いる場合には、鋼矢板120を地中に埋設した状態で、鋼矢板120上方の地表面に断熱材を敷き、地中熱が地表から大気に漏れださないようにすることで地中熱の蓄積の効果を大きくできる。   In addition, a “sol air” type geothermal heat pump system combined with a solar water heater can accumulate solar heat as geothermal heat on a seasonal basis. Specifically, since the underground temperature rises to several tens of degrees Celsius due to solar heat in summer, this heat is accumulated as underground heat and used in winter. In addition, when using the steel sheet pile 120 of the present invention in such a “sol air” type geothermal heat pump system, a heat insulating material is provided on the ground surface above the steel sheet pile 120 with the steel sheet pile 120 embedded in the ground. The effect of the accumulation of underground heat can be increased by preventing the underground heat from leaking from the surface to the atmosphere.

地中熱交換用の鋼矢板120は、建物Bの下部の地中に限らず、道路、公園などにも、上下水道やガス管などの既設埋設物を避けさえすれば、埋設可能である。   The steel sheet pile 120 for underground heat exchange can be embedded not only in the underground of the lower part of the building B but also in roads, parks, etc., as long as existing buried objects such as water and sewage systems and gas pipes are avoided.

凍結の恐れのある道路などでは、ヒートパイプ方式で熱を汲み上げて冬季の路面凍結を避けることも可能となる。   On roads where there is a risk of freezing, it is possible to pump up heat using the heat pipe method and avoid freezing in the winter.

(第1の実施形態:鋼矢板120)
次に、第1の実施形態にかかる鋼矢板120の構成について説明する。図2は、第1の実施形態にかかる鋼矢板120を説明するための図であり、図2(a)は鋼矢板120の斜視図、図2(b)は図2(a)のII(b)−II(b)線における水平断面図である。
(First embodiment: steel sheet pile 120)
Next, the structure of the steel sheet pile 120 concerning 1st Embodiment is demonstrated. 2A and 2B are diagrams for explaining the steel sheet pile 120 according to the first embodiment, in which FIG. 2A is a perspective view of the steel sheet pile 120, and FIG. 2B is II (FIG. 2A). It is a horizontal sectional view in line b) -II (b).

図2に示すように、鋼矢板120は、鋼矢板基体122、収容部124、熱交換配管126を含んで構成される。鋼矢板基体122は、略方形の平板であるウェブ部122aと、ウェブ部122aの短手方向の両端部に、所定の角度を有して設けられた略方形の平板であるフランジ部122bとを含んで構成されるU型鋼矢板である。フランジ部122bにおける、ウェブ部122aと接合された短手方向の一端部と反対側の他端部には、継手部122cが設けられている。継手部122cは、フランジ部122bの短手方向の他端部を、ウェブ部122aと略平行となるようにウェブ部122a外方に屈曲させた部位である。継手部122cには爪部122dが設けられ、爪部122dと、別の鋼矢板120の継手部122cとを嵌合させることで、鋼矢板基体122を連結させることができる。   As shown in FIG. 2, the steel sheet pile 120 includes a steel sheet pile base 122, a housing portion 124, and a heat exchange pipe 126. The steel sheet pile base 122 includes a web portion 122a that is a substantially rectangular flat plate, and a flange portion 122b that is a substantially square flat plate provided at both ends in the short direction of the web portion 122a with a predetermined angle. It is a U-shaped steel sheet pile comprised including. A joint portion 122c is provided at the other end portion of the flange portion 122b opposite to the one end portion in the short direction joined to the web portion 122a. The joint portion 122c is a portion where the other end portion in the short direction of the flange portion 122b is bent outward from the web portion 122a so as to be substantially parallel to the web portion 122a. The joint portion 122c is provided with a claw portion 122d, and the steel sheet pile base 122 can be connected by fitting the claw portion 122d with the joint portion 122c of another steel sheet pile 120.

収容部124は、断面コ字(U字)型の板部材で構成され、収容部124の長手方向の長さは鋼矢板基体122の長手方向の長さよりも短く、収容部124の短手方向の長さは鋼矢板基体122におけるウェブ部122aの短手方向の長さより短い。収容部124を構成する板部材において、対向に配置される2枚の板の短手方向の一端側が、例えば溶接等により鋼矢板基体122のウェブ部122aに接合される。収容部124がウェブ部122aに設けられることで、収容空間124bが形成される。   The accommodating part 124 is configured by a U-shaped plate member, and the length of the accommodating part 124 in the longitudinal direction is shorter than the length of the steel sheet pile base 122 in the longitudinal direction. Is shorter than the length of the web portion 122a in the steel sheet pile base 122 in the short direction. In the plate member constituting the accommodating portion 124, one end side in the short direction of the two plates disposed opposite to each other is joined to the web portion 122a of the steel sheet pile base 122 by welding or the like, for example. The accommodation space 124b is formed by providing the accommodation portion 124 in the web portion 122a.

収容部124の長手方向の一端には底部124aが設けられている。底部124aには、収容部124におけるウェブ部122aと略水平な面の長手方向の一端から、ウェブ部122aに向かって傾斜面が形成される。底部124aの傾斜面により、鋼矢板120が地中に埋設される際の抵抗が軽減される。   A bottom portion 124 a is provided at one end in the longitudinal direction of the housing portion 124. An inclined surface is formed on the bottom portion 124a from one end in a longitudinal direction of a surface substantially horizontal to the web portion 122a in the housing portion 124 toward the web portion 122a. The resistance when the steel sheet pile 120 is buried in the ground is reduced by the inclined surface of the bottom portion 124a.

熱交換配管126は、不凍液等の熱媒が流通される配管であり、鋼矢板基体122のウェブ部122aと収容部124とで形成される収容空間124bに収容される。本実施形態で用いる熱交換配管126は、従来の地中熱ヒートポンプシステムで使用されている市販の熱交換配管(例えば、Uチューブ)を使用することができる。熱交換配管126は、ヒートポンプ140の配管140c、140dがそれぞれ接続される往路管126a、復路管126bと、往路管126aの一端と復路管126bの一端とを接続する接続管126cとを含んで構成される。接続管126cが鋼矢板基体122の長手方向の一端側(底部124a側)に位置し、往路管126aの他端側の入口端126dと、復路管126bの他端側の出口端126eとが、鋼矢板基体122の長手方向の他端側に位置するように、往路管126aと復路管126bとが並列して収容部124に収容される。   The heat exchange pipe 126 is a pipe through which a heat medium such as an antifreeze liquid is circulated, and is accommodated in an accommodation space 124 b formed by the web portion 122 a and the accommodation portion 124 of the steel sheet pile base 122. As the heat exchange pipe 126 used in the present embodiment, a commercially available heat exchange pipe (for example, a U tube) used in a conventional underground heat pump system can be used. The heat exchange pipe 126 includes a forward pipe 126a and a return pipe 126b to which pipes 140c and 140d of the heat pump 140 are connected, respectively, and a connection pipe 126c that connects one end of the forward pipe 126a and one end of the return pipe 126b. Is done. The connecting pipe 126c is located on one end side (bottom 124a side) in the longitudinal direction of the steel sheet pile base 122, and an inlet end 126d on the other end side of the forward path pipe 126a and an outlet end 126e on the other end side of the return path pipe 126b, The forward pipe 126a and the backward pipe 126b are accommodated in parallel in the accommodating portion 124 so as to be positioned on the other end side in the longitudinal direction of the steel sheet pile base 122.

熱媒は、入口端126dから往路管126aへ流入し、往路管126a内を流通しながら地中熱と熱交換される。そして、熱媒は、接続管126cを流通すると流通方向を略180度反転して、復路管126bを流通し、出口端126eから排出される。   The heat medium flows into the forward pipe 126a from the inlet end 126d and exchanges heat with the underground heat while flowing through the forward pipe 126a. When the heat medium flows through the connection pipe 126c, the flow direction is reversed by approximately 180 degrees, flows through the return pipe 126b, and is discharged from the outlet end 126e.

(鋼矢板120設置方法)
次に、鋼矢板120の具体的な設置方法について説明する。図3は、第1の実施形態にかかる鋼矢板120の設置方法の流れを説明するためのフローチャートである。図3に示すように、本実施形態にかかる鋼矢板120の設置方法は、埋設工程S210と配管収容工程S220とを含む。
(Steel sheet pile 120 installation method)
Next, a specific method for installing the steel sheet pile 120 will be described. FIG. 3 is a flowchart for explaining the flow of the installation method of the steel sheet pile 120 according to the first embodiment. As shown in FIG. 3, the installation method of the steel sheet pile 120 concerning this embodiment includes embedding process S210 and piping accommodation process S220.

(埋設工程S210)
収容部124を設けた鋼矢板基体122は、圧入工法やバイブロ工法により地中に埋設することが可能である。収容部124を設けた鋼矢板基体122が設置される地面の鉛直上方において、収容部124を設けた鋼矢板基体122は、長手方向における、収容部124の底部124a側の一端を下にした状態で、圧入機に支持される。そして、圧入機によって収容部124を設けた鋼矢板基体122の一端側から地中に圧入される。
(Embedding process S210)
The steel sheet pile base 122 provided with the accommodating portion 124 can be embedded in the ground by a press-fitting method or a vibro method. The steel sheet pile substrate 122 provided with the storage portion 124 is vertically below the ground on which the steel sheet pile substrate 122 provided with the storage portion 124 is installed, with one end on the bottom 124a side of the storage portion 124 in the longitudinal direction. It is supported by the press-fitting machine. And it press-fits in the ground from the one end side of the steel sheet pile base | substrate 122 which provided the accommodating part 124 with the press-fitting machine.

(配管収容工程S220)
熱交換配管126は、地中に埋設された、収容部124を設けた鋼矢板基体122における収容空間124b内に収容される。収容部124に収容された熱交換配管126は接続管126cが収容部124の底部124a側に位置し、往路管126aの入口端126dと、復路管126bの出口端126eとが、鋼矢板基体122の一端側に位置する。そして、往路管126aと復路管126bとが並列する。
(Piping accommodation step S220)
The heat exchange pipe 126 is housed in the housing space 124b of the steel sheet pile base 122 provided with the housing portion 124 embedded in the ground. In the heat exchange pipe 126 accommodated in the accommodating part 124, the connection pipe 126 c is located on the bottom 124 a side of the accommodating part 124, and the inlet end 126 d of the forward path pipe 126 a and the outlet end 126 e of the return path pipe 126 b are connected to the steel sheet pile base 122. It is located on one end side. The forward path pipe 126a and the backward path pipe 126b are arranged in parallel.

熱交換配管126が収容部124に収容された後、熱交換配管126の周囲の収容空間124bに土や砂が充填される。これにより、熱交換配管126と鋼矢板基体122および収容部124との伝熱効率を向上させることができる。   After the heat exchange pipe 126 is accommodated in the accommodation portion 124, the accommodation space 124 b around the heat exchange pipe 126 is filled with soil or sand. Thereby, the heat transfer efficiency with the heat exchange piping 126, the steel sheet pile base | substrate 122, and the accommodating part 124 can be improved.

従来、熱交換配管126を地中に埋設する際には、大型の重機を用いて地下数十から百数十メートルの穴を掘削し、こうして形成された穴に熱交換配管126が挿入されていた。このため、掘削作業時の騒音や振動が問題となり、また、作業時間が長時間となるばかりか、掘削により発生する残土の処理が必要となり、熱交換配管126の設置費用が高くなっていた。   Conventionally, when the heat exchange pipe 126 is buried in the ground, a large heavy machine is used to excavate a hole of several tens to hundreds of meters underground, and the heat exchange pipe 126 is inserted into the hole thus formed. It was. For this reason, noise and vibration at the time of excavation work become problems, and not only the work time becomes long, but also processing of the residual soil generated by excavation is necessary, and the installation cost of the heat exchange pipe 126 is high.

圧入工法では主に油圧式圧入機等の小型の重機を用いるため、大型の重機が必要となる従来の工法と比較して騒音や振動が小さい。また、圧入工法では残土が発生せず、残土の処理にかかる時間と費用を削減することができるため、鋼矢板120の設置費用を低減することが可能となる。さらに、従来大型の重機を使用することができないため熱交換配管126を設置することができなかった狭小地でも、鋼矢板120を設置することが可能となる。   Since the press-fitting method mainly uses small heavy machinery such as a hydraulic press-fitting machine, noise and vibration are small as compared with a conventional method that requires a large heavy machinery. In addition, no residual soil is generated by the press-fitting method, and the time and cost for processing the residual soil can be reduced, so that the installation cost of the steel sheet pile 120 can be reduced. Furthermore, the steel sheet pile 120 can be installed even in a narrow area where the heat exchange pipe 126 could not be installed because a large heavy machine cannot be used.

また、従来では、一度挿入された熱交換配管126は容易に撤去することができなかったため、熱交換配管126が損傷した際に修理および交換することが困難であった。また、地上の建物の建て替えの際には、地中に設けられた熱交換配管126が建て替えの障害となるおそれがあった。本実施形態にかかる鋼矢板120では、鋼矢板120を1枚ずつ挿入および撤去することが可能であるため、熱交換配管126が損傷した際の修理および交換や、地上の建物の建て替えの際の撤去が容易となる。   In addition, conventionally, since the heat exchange pipe 126 once inserted cannot be easily removed, it is difficult to repair and replace the heat exchange pipe 126 when it is damaged. Further, when rebuilding a building on the ground, the heat exchange pipe 126 provided in the ground may be an obstacle to rebuilding. In the steel sheet pile 120 according to the present embodiment, the steel sheet pile 120 can be inserted and removed one by one. Therefore, when the heat exchange pipe 126 is damaged or repaired, or when the ground building is rebuilt. Removal is easy.

なお、熱交換配管126を収容空間124bに収容した状態で、鋼矢板120を圧入してもよい。   Note that the steel sheet pile 120 may be press-fitted in a state where the heat exchange pipe 126 is accommodated in the accommodation space 124b.

以上説明したように、本実施形態にかかる鋼矢板120の設置方法によれば、作業時の騒音および振動を低減するとともに、設置費用を低減することができる。   As described above, according to the method for installing the steel sheet pile 120 according to the present embodiment, it is possible to reduce noise and vibration during work and to reduce installation costs.

(第1の実施形態の変形例1)
図4は、第1の実施形態の変形例1にかかる鋼矢板120を説明するための図であり、図4(a)は第1の実施形態の変形例1にかかる鋼矢板120の斜視図、図4(b)は、図4(a)のIII(b)−III(b)線における水平断面図である。なお、理解を容易にするため、図4(a)において収容部124を省略している。
(Modification 1 of the first embodiment)
FIG. 4 is a view for explaining a steel sheet pile 120 according to Modification 1 of the first embodiment, and FIG. 4A is a perspective view of the steel sheet pile 120 according to Modification 1 of the first embodiment. FIG. 4B is a horizontal sectional view taken along line III (b) -III (b) in FIG. In addition, in order to understand easily, the accommodating part 124 is abbreviate | omitted in Fig.4 (a).

熱交換配管126において、往路管126aを流通した熱媒は地中熱と熱交換され、復路管126bを流通してヒートポンプ140へ導入される。地中熱と熱交換された熱媒が復路管126bを流通する際、地表近くの土砂と熱交換されることで、熱交換配管126を流通する前と後との熱媒の温度差が小さくなる、つまり、結果として熱交換率が低下する可能性がある。そこで、図4に示すように、変形例1にかかる鋼矢板120では、復路管126bの外周面のうち、地表の近い部分に断熱材126fを設ける。断熱材126fによって、地中熱と熱交換された熱媒が復路管126bを流通する際に、地表近くの土砂と熱交換されることを抑制し、往路管126aにおいて地中熱と熱交換された温度の熱媒をヒートポンプ140へ導入させることが可能となる。   In the heat exchange pipe 126, the heat medium that has flowed through the forward pipe 126 a is heat-exchanged with the underground heat, flows through the return pipe 126 b, and is introduced into the heat pump 140. When the heat medium exchanged with the underground heat flows through the return pipe 126b, the temperature difference between the heat medium before and after flowing through the heat exchange pipe 126 is reduced by heat exchange with the earth and sand near the ground surface. That is, as a result, the heat exchange rate may decrease. Therefore, as shown in FIG. 4, in the steel sheet pile 120 according to the first modification, the heat insulating material 126 f is provided in a portion near the ground surface in the outer peripheral surface of the return pipe 126 b. When the heat medium 126f exchanged with the underground heat is circulated through the return pipe 126b by the heat insulating material 126f, the heat transfer with the earth and sand near the ground surface is suppressed, and is exchanged with the underground heat in the outgoing pipe 126a. It becomes possible to introduce a heat medium having a different temperature into the heat pump 140.

(第1の実施形態の変形例2)
図5は第1の実施形態の変形例2にかかる鋼矢板120を説明するための図であり、図5(a)は、鋼矢板120の斜視図、図5(b)は、図5(a)のIV(b)−IV(b)線における水平断面図である。
(Modification 2 of the first embodiment)
FIG. 5 is a view for explaining a steel sheet pile 120 according to the second modification of the first embodiment. FIG. 5 (a) is a perspective view of the steel sheet pile 120, and FIG. It is a horizontal sectional view in the IV (b) -IV (b) line of a).

図5に示すように、鋼矢板120における鋼矢板基体122および収容部124にはそれぞれ突出部としてフィン122e、124cが設けられている。フィン122eは、鋼矢板基体122のウェブ部122aにおいて、収容部124が設けられた側と逆側から外方に略垂直に突出し、鋼矢板基体122の長手方向に延在した平板である。本実施形態では、フィン122eは4個設けられている。また、フィン124cは、収容部124において、ウェブ部122aと対向する面から外方に略垂直に突出し、収容部124の長手方向に延在した平板である。本実施形態では、フィン124cは2個設けられている。   As shown in FIG. 5, the steel sheet pile base 122 and the accommodating part 124 in the steel sheet pile 120 are provided with fins 122e and 124c as protruding parts, respectively. The fin 122e is a flat plate that protrudes substantially perpendicularly outward from the opposite side of the web portion 122a of the steel sheet pile base 122 and extends in the longitudinal direction of the steel sheet pile base 122. In the present embodiment, four fins 122e are provided. Further, the fin 124 c is a flat plate that protrudes substantially perpendicularly outward from the surface facing the web portion 122 a in the housing portion 124 and extends in the longitudinal direction of the housing portion 124. In the present embodiment, two fins 124c are provided.

鋼矢板120がフィン122e、124cを設けることで、鋼矢板120と地中の土砂との接触面積が増加し、鋼矢板120と地中の土砂との伝熱効率を向上させることができる。   By providing the fins 122e and 124c in the steel sheet pile 120, the contact area between the steel sheet pile 120 and the underground soil and sand can be increased, and the heat transfer efficiency between the steel sheet pile 120 and the underground soil and sand can be improved.

(第1の実施形態の変形例3)
図6は第1の実施形態の変形例3にかかる鋼矢板120を説明するための図であり、図6(a)は、鋼矢板120の斜視図、図6(b)は図6(a)のV(b)−V(b)線における水平断面図である。
(Modification 3 of the first embodiment)
6A and 6B are views for explaining a steel sheet pile 120 according to the third modification of the first embodiment. FIG. 6A is a perspective view of the steel sheet pile 120, and FIG. Is a horizontal sectional view taken along line V (b) -V (b).

図6に示すように、鋼矢板120における鋼矢板基体122のウェブ部122aは波形に形成され、突出部122fが設けられている。このため、鋼矢板120と地中の土砂との接触面積が増加し、鋼矢板120と地中の土砂との伝熱効率を向上させることができる。   As shown in FIG. 6, the web part 122a of the steel sheet pile base 122 in the steel sheet pile 120 is formed in a waveform, and the protrusion part 122f is provided. For this reason, the contact area of the steel sheet pile 120 and the earth and sand in the ground increases, and the heat transfer efficiency between the steel sheet pile 120 and the earth and sand in the ground can be improved.

(第2の実施形態:鋼矢板300)
図7は、第2の実施形態にかかる鋼矢板300および第2の実施形態の変形例にかかる鋼矢板400を説明するための図であり、図7(a)は鋼矢板300の斜視図、図7(b)は第2の実施形態の変形例にかかる鋼矢板400の斜視図である。鋼矢板300は、従来周知の排水機能を有する鋼矢板に、熱交換配管126を備えた構成である。上述した第1の実施形態における構成要素として既に述べた熱交換配管126は実質的に機能が等しいので重複説明を省略し、ここでは、構成が相違する排水機能を有する鋼矢板を主に説明する。
(Second embodiment: steel sheet pile 300)
FIG. 7 is a view for explaining a steel sheet pile 300 according to the second embodiment and a steel sheet pile 400 according to a modification of the second embodiment, and FIG. 7A is a perspective view of the steel sheet pile 300, FIG.7 (b) is a perspective view of the steel sheet pile 400 concerning the modification of 2nd Embodiment. The steel sheet pile 300 has a configuration in which a heat exchange pipe 126 is provided on a steel sheet pile having a conventionally known drainage function. Since the heat exchange pipe 126 already described as a component in the first embodiment described above has substantially the same function, a duplicate description will be omitted, and here, a steel sheet pile having a drainage function having a different configuration will be mainly described. .

図7(a)に示すように、鋼矢板300では、液状化対策に用いられる市販の排水機能を有する鋼矢板を使用する。排水機能を有する鋼矢板は、鋼矢板基体122のウェブ部122aに、断面コ字(U字)型の板部材322が備えられている。板部材322には、フィルタ付きの多数の排水孔324が設けられている。土壌の液状化層において、地震等により間隙水圧が上昇すると、土壌中の水は、フィルタを介して、排水孔324から板部材322とウェブ部122aとの間に流入され、鋼矢板基体122の上方に排水される。収容部124(図2参照)に代えて、板部材322を収容部とし、板部材322とウェブ部122aとの間に形成される収容空間322aに熱交換配管126を挿入することで、市販の排水機能を有する鋼矢板を、地中熱交換機能を有する鋼矢板300として、地中熱交換配管システム100に利用することができる。   As shown to Fig.7 (a), the steel sheet pile 300 uses the steel sheet pile which has a commercially available drainage function used for a liquefaction countermeasure. The steel sheet pile having the drainage function is provided with a U-shaped plate member 322 in the web portion 122a of the steel sheet pile base 122. The plate member 322 is provided with a number of drain holes 324 with filters. When the pore water pressure rises due to an earthquake or the like in the soil liquefaction layer, the water in the soil flows through the filter from the drain hole 324 between the plate member 322 and the web portion 122a, and the steel sheet pile base 122 Drained upward. It replaces with the accommodating part 124 (refer FIG. 2), uses the plate member 322 as an accommodating part, inserts the heat exchange piping 126 in the accommodating space 322a formed between the plate member 322 and the web part 122a, and is commercially available. The steel sheet pile having the drainage function can be used for the underground heat exchange piping system 100 as the steel sheet pile 300 having the underground heat exchange function.

このように、第2の実施形態によれば、市販の排水機能を有する鋼矢板を用いればよいので、鋼矢板300を安価にかつ容易に製造することが可能となる。なお、排水機能を必要としない場合には、市販の排水機能を有する鋼矢板からフィルタを取り除いてもよい。   Thus, according to the second embodiment, since a commercially available steel sheet pile having a drainage function may be used, the steel sheet pile 300 can be manufactured inexpensively and easily. In addition, when a drainage function is not required, you may remove a filter from the steel sheet pile which has a commercially available drainage function.

(第2の実施形態の変形例)
図7(b)に示すように、鋼矢板基体122に、板部材322と収容部124とを備えることで、排水機能と地中熱交換機能をともに有する鋼矢板400として使用することができる。したがって、液状化対策を行う場合には、排水機能を有する鋼矢板と、地中熱交換配管システム100における鋼矢板とを別個に設置する必要がなく、省スペース化を図ることができる。また、液状化対策と地中熱交換器の設置を同時に行うことができるため、設置費用を削減することが可能となる。
(Modification of the second embodiment)
As shown in FIG.7 (b), by providing the steel sheet pile base | substrate 122 with the plate member 322 and the accommodating part 124, it can be used as the steel sheet pile 400 which has both a drainage function and a underground heat exchange function. Therefore, when taking measures against liquefaction, it is not necessary to separately install a steel sheet pile having a drainage function and a steel sheet pile in the underground heat exchange piping system 100, and space saving can be achieved. Moreover, since the liquefaction countermeasure and the installation of the underground heat exchanger can be performed at the same time, the installation cost can be reduced.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上記実施形態において、鋼矢板基体122はU型鋼矢板としたが、鋼矢板基体122の形状に制限はなく、H型鋼矢板、Z型鋼矢板等を使用してもよい。   For example, in the above embodiment, the steel sheet pile base 122 is a U-type steel sheet pile, but the shape of the steel sheet pile base 122 is not limited, and an H-type steel sheet pile, a Z-type steel sheet pile, or the like may be used.

また、上記実施形態において、熱交換配管126を収容空間124b、322aに収容した状態で鋼矢板120、300、400を地中に設置したが、熱交換配管126は、鋼矢板120、300、400を地中に設置した後に収容空間124b、322aに収容されてもよい。   Moreover, in the said embodiment, although the steel sheet pile 120,300,400 was installed in the ground in the state which accommodated the heat exchange piping 126 in the accommodation space 124b, 322a, the heat exchange piping 126 is the steel sheet pile 120,300,400. May be accommodated in the accommodation spaces 124b and 322a after being installed in the ground.

また、上記実施形態において、断面コ字(U字)型の収容部124が、鋼矢板基体122に設けられることで、鋼矢板基体122のウェブ部122aと収容部124との間に収容空間124bが形成されるとしたが、上部が開口した箱型の収容部を鋼矢板基体122に設け、収容部の内部を収容空間としてもよい。   Moreover, in the said embodiment, the accommodating space 124b between the web part 122a of the steel sheet pile base | substrate 122 and the accommodating part 124 is provided in the steel sheet pile base | substrate 122 by the accommodating part 124 of a U-shaped cross section. However, it is also possible to provide the steel sheet pile base 122 with a box-shaped accommodation part whose upper part is open, and the inside of the accommodation part as an accommodation space.

また、上記実施形態において、復路管126bの外周面の一部に断熱材126fを設ける構成としたが、復路管126bの外周面の全部に断熱材126fを設けてもよい。   In the above embodiment, the heat insulating material 126f is provided on a part of the outer peripheral surface of the return pipe 126b. However, the heat insulating material 126f may be provided on the entire outer peripheral surface of the return pipe 126b.

本発明は、地中の土砂との間で熱交換を行う地中熱交換機能を有する鋼矢板および地中熱交換配管システムに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a steel sheet pile having an underground heat exchange function for exchanging heat with underground soil and an underground heat exchange piping system.

100 地中熱交換配管システム
120、300、400 鋼矢板
122 鋼矢板基体
122e、124c フィン(突出部)
122f 突出部
124 収容部
124b、322a 収容空間
126 熱交換配管
140 ヒートポンプ(熱回収装置)
140c、140d 配管
100 Ground heat exchange piping system 120, 300, 400 Steel sheet pile 122 Steel sheet pile base 122e, 124c Fin (protrusion)
122f Protruding portion 124 Housing portion 124b, 322a Housing space 126 Heat exchange pipe 140 Heat pump (heat recovery device)
140c, 140d piping

Claims (3)

鋼矢板基体と、
前記鋼矢板基体に設けられ、該鋼矢板基体の長手方向に延在した収容空間が内部に形成される収容部と、
前記収容空間に収容され、内部を熱媒が流通する熱交換配管と、
前記収容部から外方に突出し、地中の土砂との接触面積を増加させる突出部と、
を備え
前記収容部の底部には、該収容部における前記鋼矢板基体と略水平な面の長手方向の一端から、該鋼矢板基体に向かって傾斜面が形成されることを特徴とする地中熱交換機能を有する鋼矢板。
A steel sheet pile substrate;
An accommodation portion provided in the steel sheet pile substrate, and an accommodation space extending in a longitudinal direction of the steel sheet pile substrate is formed inside;
A heat exchange pipe accommodated in the accommodation space and through which a heat medium flows; and
A protruding portion that protrudes outward from the housing portion and increases the contact area with the earth and sand in the ground; and
Equipped with a,
A ground heat exchange is characterized in that an inclined surface is formed at the bottom of the housing portion from one end in a longitudinal direction of a surface substantially horizontal to the steel sheet pile substrate in the housing portion toward the steel sheet pile substrate. Steel sheet pile with function.
前記収容部は、前記鋼矢板基体に固定された板部材で構成され、該板部材と該鋼矢板基体との間に前記収容空間が形成され、
前記突出部は、前記板部材から外方に突出することを特徴とする請求項1に記載の地中熱交換機能を有する鋼矢板。
The accommodating portion is composed of a plate member fixed to the steel sheet pile substrate, and the accommodating space is formed between the plate member and the steel sheet pile substrate,
The steel sheet pile having an underground heat exchange function according to claim 1, wherein the protruding portion protrudes outward from the plate member.
地中に埋設される鋼矢板基体と、
前記鋼矢板基体に設けられ、該鋼矢板基体の長手方向に延在した収容空間が内部に形成される収容部と、
前記収容部から外方に突出し、地中の土砂との接触面積を増加させる突出部と、
前記収容空間に収容され、内部を熱媒が流通する熱交換配管と、
前記熱交換配管に接続される配管を有し、該配管と該熱交換配管との間で前記熱媒を循環させるとともに、該熱交換配管から該配管に還流した該熱媒の熱を回収する熱回収装置と、
を備え
前記収容部の底部には、該収容部における前記鋼矢板基体と略水平な面の長手方向の一端から、該鋼矢板基体に向かって傾斜面が形成されることを特徴とする地中熱交換配管システム。
A steel sheet pile substrate embedded in the ground,
An accommodation portion provided in the steel sheet pile substrate, and an accommodation space extending in a longitudinal direction of the steel sheet pile substrate is formed inside;
A protruding portion that protrudes outward from the housing portion and increases the contact area with the earth and sand in the ground; and
A heat exchange pipe accommodated in the accommodation space and through which a heat medium flows; and
A pipe connected to the heat exchange pipe, circulating the heat medium between the pipe and the heat exchange pipe, and recovering heat of the heat medium returned from the heat exchange pipe to the pipe; A heat recovery device;
Equipped with a,
A ground heat exchange is characterized in that an inclined surface is formed at the bottom of the housing portion from one end in a longitudinal direction of a surface substantially horizontal to the steel sheet pile substrate in the housing portion toward the steel sheet pile substrate. Piping system.
JP2016242016A 2016-12-14 2016-12-14 Steel sheet pile with underground heat exchange function and underground heat exchange piping system Expired - Fee Related JP6417383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242016A JP6417383B2 (en) 2016-12-14 2016-12-14 Steel sheet pile with underground heat exchange function and underground heat exchange piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242016A JP6417383B2 (en) 2016-12-14 2016-12-14 Steel sheet pile with underground heat exchange function and underground heat exchange piping system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013142509A Division JP6087229B2 (en) 2013-07-08 2013-07-08 Steel sheet pile with underground heat exchange function, underground heat exchange piping system

Publications (2)

Publication Number Publication Date
JP2017057716A JP2017057716A (en) 2017-03-23
JP6417383B2 true JP6417383B2 (en) 2018-11-07

Family

ID=58389365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242016A Expired - Fee Related JP6417383B2 (en) 2016-12-14 2016-12-14 Steel sheet pile with underground heat exchange function and underground heat exchange piping system

Country Status (1)

Country Link
JP (1) JP6417383B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP4988205B2 (en) * 2006-01-05 2012-08-01 株式会社ジオパワーシステム Geothermal heat exchanger used for building air conditioning system and its anticorrosion method
JP2009250581A (en) * 2008-04-10 2009-10-29 Three Yuu:Kk Heating and cooling system using underground heat
EP2374942B1 (en) * 2010-04-01 2015-01-07 SPS Energy GmbH Device and method for generating heat from the environment
JP5363399B2 (en) * 2010-04-01 2013-12-11 ヒロセ株式会社 Construction method of underground heat exchanger
JP5088908B1 (en) * 2011-11-17 2012-12-05 秀樹 中込 Spacer for heat exchange duct

Also Published As

Publication number Publication date
JP2017057716A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4535981B2 (en) Tunnel heat exchange panel and tunnel heat utilization heat exchange system
JP5384058B2 (en) Geothermal heat exchanger for geothermal heat pump system
JP4966330B2 (en) Geothermal heat pump system
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP6087229B2 (en) Steel sheet pile with underground heat exchange function, underground heat exchange piping system
JP6165617B2 (en) Steel sheet pile
JP2005127612A (en) Underground heat utilizing system with underground water tank water heat source heat pump
JP6383339B2 (en) Heat exchange segment and tunnel heat exchange system
JP2005207718A (en) Snow melting device utilizing soil heat
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
KR100812316B1 (en) Heat pump system for using heat of rainwater heat source and geothermal
JP6417383B2 (en) Steel sheet pile with underground heat exchange function and underground heat exchange piping system
JP2004101115A (en) Underground heat exchange system using underground continuous wall
JP2013139957A (en) Heat exchanger consisting of cylindrical structure
KR101048398B1 (en) Tube type underground heat exchanger
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
KR20100085432A (en) Earth heat exchange pipe, earth heat exchange system and manufacturing method of the same
JP5859731B2 (en) Horizontally buried underground heat exchanger equipment for heat pump system using geothermal heat
JP7359361B2 (en) heat pump equipment
JP2007017138A (en) Method of forming heat exchange well, and underground thermal system
KR101189079B1 (en) Geothermal exchanging pile
KR100846164B1 (en) Subterranean heat collecting device and cooling and heating device thereby
KR101046522B1 (en) Installation method of underground heat exchanger using underground continuous wall
KR102114105B1 (en) Segment tunnel of solar heat exchange system
KR20100085416A (en) Earth heat exchange system for tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R150 Certificate of patent or registration of utility model

Ref document number: 6417383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees