JP6414300B2 - Structure with liquid layer on the surface - Google Patents
Structure with liquid layer on the surface Download PDFInfo
- Publication number
- JP6414300B2 JP6414300B2 JP2017169249A JP2017169249A JP6414300B2 JP 6414300 B2 JP6414300 B2 JP 6414300B2 JP 2017169249 A JP2017169249 A JP 2017169249A JP 2017169249 A JP2017169249 A JP 2017169249A JP 6414300 B2 JP6414300 B2 JP 6414300B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- layer
- resin
- liquid layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Wrappers (AREA)
- Laminated Bodies (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
Description
本発明は、表面に液層が形成されている構造体に関するものである。 The present invention relates to a structure having a liquid layer formed on the surface.
プラスチック容器は、成形が容易であり、安価に製造できることなどから、各種の用途に広く使用されている。特に、容器壁の内面が低密度ポリエチレンなどのオレフィン系樹脂で形成され且つダイレクトブロー成形で成形されたボトル形状のオレフィン系樹脂容器は、内容物を絞り出し易いという観点から、ケチャップなどの粘稠なスラリー状或いはペースト状の内容物を収容するための容器として好適に使用されている。 Plastic containers are widely used in various applications because they are easy to mold and can be manufactured at low cost. In particular, a bottle-shaped olefin resin container in which the inner surface of the container wall is formed of an olefin resin such as low density polyethylene and is formed by direct blow molding is a viscous material such as ketchup from the viewpoint that the contents can be easily squeezed out. It is suitably used as a container for containing slurry-like or paste-like contents.
また、粘稠な内容物を収容するボトルでは、該内容物を速やかに排出するため、或いはボトル内に残存させることなくきれいに最後まで使いきるために、ボトルを倒立状態で保存しておかれる場合が多い。従って、ボトルを倒立させたときには、粘稠な内容物がボトル内壁面に付着残存せずに、速やかに落下するという特性が望まれている。 For bottles containing viscous contents, the bottles may be stored in an inverted state so that the contents can be discharged quickly or used up to the end without remaining in the bottle. There are many. Therefore, when the bottle is turned upside down, there is a demand for the characteristic that the viscous contents do not remain attached to the inner wall surface of the bottle and fall quickly.
このような要求を満足するボトルとして、例えば、特許文献1には、最内層が、MFR(メルトフローレート)が10g/10min以上のオレフィン系樹脂からなる多層構造のボトルが提案されている。
この多層構造ボトルは、最内層が油性内容物に対する濡れ性に優れており、この結果、ボトルを倒立させたり、或いは傾斜させたりすると、マヨネーズ等の油性内容物は、最内層表面に沿って広がりながら落下していき、ボトル内壁面(最内層表面)に付着残存することなく、綺麗に排出することができるというものである。
As a bottle satisfying such requirements, for example, Patent Document 1 proposes a bottle having a multilayer structure in which an innermost layer is made of an olefin resin having an MFR (melt flow rate) of 10 g / 10 min or more.
In this multi-layered bottle, the innermost layer has excellent wettability to oily contents. As a result, when the bottle is inverted or tilted, the oily contents such as mayonnaise spread along the innermost surface. However, it can be discharged neatly without dropping and remaining attached to the inner wall surface of the bottle (the innermost layer surface).
また、ケチャップのような植物繊維が水に分散されている粘稠な非油性内容物用のボトルについては、特許文献2或いは特許文献3に、最内層に滑剤として飽和或いは不飽和の脂肪族アミドが配合されたポリオレフィン系樹脂ボトルが提案されている。 In addition, regarding a bottle for viscous non-oil content in which plant fibers such as ketchup are dispersed in water, Patent Document 2 or Patent Document 3 describes a saturated or unsaturated aliphatic amide as a lubricant in the innermost layer. There has been proposed a polyolefin resin bottle in which is blended.
上述した特許文献1〜3は、何れもプラスチック容器について、容器内面を形成する熱可塑性樹脂組成物の化学組成によって内容物に対する滑り性を向上させたものであり、ある程度の滑り性向上は達成されているが、用いる熱可塑性樹脂の種類や添加剤が限定される為、滑り性向上には限界があり、飛躍的な向上は達成されていないのが実情である。 Patent Documents 1 to 3 mentioned above all improve the slipperiness with respect to the contents by the chemical composition of the thermoplastic resin composition forming the inner surface of the plastic container, and a certain degree of slipperiness improvement is achieved. However, since the types and additives of the thermoplastic resin to be used are limited, there is a limit in improving the slipperiness, and the fact is that a dramatic improvement has not been achieved.
このような観点から、最近では物理的な観点からも滑り性向上の検討がなされている。
例えば、特許文献4には、一次粒子平均径が3〜100nmの疎水性酸化物微粒子が内面に付着している容器が提案されている。
また、特許文献5には、平均粒径が1μm〜20μmの樹脂粒子により形成された樹脂膜の表面に平均粒径が5nm〜100nmの酸化物微粒子が分散付着している構造の撥水性膜が表面に形成されている蓋体が提案されている。
From this viewpoint, recently, improvement of slipperiness has also been studied from a physical viewpoint.
For example, Patent Document 4 proposes a container in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to the inner surface.
Patent Document 5 discloses a water-repellent film having a structure in which oxide fine particles having an average particle diameter of 5 nm to 100 nm are dispersed and adhered to the surface of a resin film formed of resin particles having an average particle diameter of 1 μm to 20 μm. A lid formed on the surface has been proposed.
特許文献5で提案されている技術は、何れも内容物が接触する面に微細な凹凸を形成し、微細な凹凸面により撥水性(疎水性)を発現させている。即ち、この凹凸面を形成する材料の疎水性に加え、凹凸面に存在する空隙中に空気層が形成され、この空気層は容器を形成する材料よりも撥水性が高く、この結果、水性の内容物に対する非付着性が高められるというものである。
しかるに、このような微細な凹凸面を形成した場合では、水性の内容物に対する非付着性が高められるものの、内容物と微細な凹凸面が常時接触する場合、微細な凹凸面の凹部では水分の凝縮が非常におこりやすく、水分凝縮により凹部が埋まるためにその滑り性が悪化していく問題があり、さらなる滑り性の向上が求められている。
In any of the technologies proposed in Patent Document 5, fine irregularities are formed on the surface in contact with the contents, and water repellency (hydrophobicity) is expressed by the fine irregular surfaces. That is, in addition to the hydrophobicity of the material forming the uneven surface, an air layer is formed in the voids existing on the uneven surface, and this air layer has a higher water repellency than the material forming the container. The non-adhesiveness to the contents is improved.
However, when such a fine uneven surface is formed, the non-adhesiveness to the aqueous content is improved, but when the content is always in contact with the fine uneven surface, moisture in the concave portion of the fine uneven surface Condensation is very easy to occur, and there is a problem that the slipperiness is deteriorated because the concave portion is filled by moisture condensation, and further improvement of the slipperiness is demanded.
また、本発明者等は、表面に液層が形成されているプラスチック容器或いは樹脂構造体を提案している(例えば、WO2014/010534、WO2014/123217、WO2014/175378、WO2014/188883)。
即ち、これらは、何れも内容物と非混和性の液体による液層を形成することにより内容物に対する滑り性を従来公知のものに比して格段に向上させることに成功したものであり、容器を倒立或いは傾倒せしめることにより、容器内壁に付着・残存させることなく、内容物を速やかに容器外に排出することが可能となっている。
このように表面に液層を形成した構造の成形体は、容器の形態に限らず、フィルム等の形態を有する成形体にも適用できるものであり、液体の種類を適宜選択することにより、表面の性質を大幅に改質することができる。
しかしながら、液層を表面に有するプラスチック容器などの樹脂構造体に関しては、未だ十分な解析が行われておらず、どのような形態で液層が形成されている場合に、表面の性質を大幅に且つ安定して改善できるか、十分に解明されておらず、このため目下、種々の改良等が行われているのが現状である。
In addition, the present inventors have proposed a plastic container or a resin structure having a liquid layer formed on the surface (for example, WO2014 / 010534 , WO2014 / 123217 , WO2014 / 175378 , WO2014 / 18883 ).
That is, all of these have succeeded in significantly improving the slipperiness with respect to the contents by forming a liquid layer that is immiscible with the contents as compared with the conventionally known ones. By inverting or tilting, the contents can be quickly discharged out of the container without adhering to or remaining on the inner wall of the container.
Thus, the molded body having a structure in which a liquid layer is formed on the surface is applicable not only to the shape of the container but also to a molded body having a form such as a film. These properties can be greatly modified.
However, regarding resin structures such as plastic containers having a liquid layer on the surface, sufficient analysis has not yet been performed, and the surface properties can be greatly improved when the liquid layer is formed in any form. Moreover, whether it can be stably improved has not been fully elucidated, and for this reason, various improvements are currently being made.
従って、本発明の目的は、成形体の表面に液層が形成され且つ液層表面に流動体が存在する構造体であって、成形体表面の性質、例えば種々の物質に対する滑り性や非付着性が液層によって安定的に改善されている構造体を提供することにある。 Accordingly, an object of the present invention is a structure in which a liquid layer is formed on the surface of the molded body and a fluid is present on the surface of the liquid layer. The object of the present invention is to provide a structure whose properties are stably improved by a liquid layer.
本発明者等は、成形体の表面に液層が形成されている構造体に関して、粘稠な物質に対する滑り性について多くの実験を行った結果、液面が局部的に突出するように液層を形成するときには、フラットな液面を有するように液層を形成した場合よりも優れた滑り性が得られるという知見を見出し、本発明を完成させるに至った。 As a result of conducting many experiments on slipperiness with respect to a viscous substance with respect to the structure in which the liquid layer is formed on the surface of the molded body, the present inventors have found that the liquid layer is projected so that the liquid surface protrudes locally. When forming the film, the inventors have found that a slipperiness superior to that obtained when the liquid layer is formed so as to have a flat liquid surface, and have completed the present invention.
即ち、本発明によれば、表面に液層を有する成形体からなり、該液層上に流動体が存在している構造体において、
前記液層を支持している表面には、局部的に突出している部分が形成されており、この突出している部分に対応して、該液層の表面にも局部的に突出している部分が形成されおり、
前記液層の表面には、0.7μm以上の高さを有する微細突起が、20〜100個/mm 2 の密度で分布し、平均して100〜300μmの間隔で観測されることを特徴とする構造体が提供される。
That is, according to the present invention, in a structure comprising a molded body having a liquid layer on the surface, and a fluid is present on the liquid layer,
The surface supporting the liquid layer is formed with a locally protruding portion, and a portion protruding locally on the surface of the liquid layer corresponding to the protruding portion. Formed,
On the surface of the liquid layer, fine protrusions having a height of 0.7 μm or more are distributed at a density of 20 to 100 pieces / mm 2 and are observed at an average interval of 100 to 300 μm. A structure is provided.
本発明の構造体においては、
(1)前記液層は、0.5乃至30g/m 2 の量で前記成形体表面に存在していること、
(2)前記液層を支持している表面が樹脂製であること、
(3)前記液層を支持している表面を形成する前記樹脂がオレフィン樹脂又はポリエステル樹脂であること、
(4)前記成形体が容器の形態を有していること、
が好適である。
In the structure of the present invention,
(1) The liquid layer is present on the surface of the molded body in an amount of 0.5 to 30 g / m 2 .
(2) The surface supporting the liquid layer is made of resin.
(3) The resin forming the surface supporting the liquid layer is an olefin resin or a polyester resin,
(4) The molded body has the form of a container,
Is preferred.
尚、本発明において、液層の表面が局部的に突出しているとは、液層の表面(即ち、液面)がフラットではなく、該液層を形成している液体による凸部(液状凸部)が形成されていることを意味しており、このような液状凸部は、液層を支持している下地の樹脂の表面が露出しているのではない。このような液状凸部は、波のように、液体の移動により形成されるものではなく、一定の位置に安定して存在しているものであり、原子間力顕微鏡、レーザー顕微鏡や白色干渉顕微鏡などにより確認することができる。 In the present invention, the surface of the liquid layer protrudes locally means that the surface of the liquid layer (that is, the liquid surface) is not flat, and a convex portion (liquid protrusion) formed by the liquid forming the liquid layer. Part) is formed, and the surface of the underlying resin supporting the liquid layer is not exposed in such a liquid convex part. Such a liquid convex portion is not formed by the movement of the liquid like a wave, but is stably present at a certain position, such as an atomic force microscope, a laser microscope or a white interference microscope. Etc. can be confirmed.
本発明の構造体では、表面に液層が形成されているため、この液層によって多層構造体に種々の表面特性を発現させることができるのであるが、特に液層表面に局部的に突出した部分(液状凸部)が形成されているため、特に表面特性の改善効果が著しい。
例えば、フッ素系液体、フッ素系の界面活性剤、シリコーンオイルや植物油などの油性の液体により形成されている場合には、水等の水性物質に対する滑り性や非付着性を大幅に向上させることができるのであるが、後述する実施例及び比較例の実験結果に示されているように、液状凸部が形成されているときのマヨネーズの滑り速度は、液状凸部が形成されていない場合に比して、約2倍も向上していることが判る。同様に、本発明では、液層が撥油性の液体により形成されているときには、油性物質に対する滑り性や非付着性を大幅に高めることができる。
In the structure of the present invention, since a liquid layer is formed on the surface, various surface characteristics can be expressed in the multilayer structure by this liquid layer. Since the portion (liquid convex portion) is formed, the effect of improving the surface characteristics is particularly remarkable.
For example, when formed with an oleaginous liquid such as a fluorinated liquid, a fluorinated surfactant, silicone oil or vegetable oil, the slipperiness and non-adhesiveness to aqueous substances such as water can be greatly improved. However, as shown in the experimental results of Examples and Comparative Examples described later, the sliding speed of mayonnaise when the liquid convex portion is formed is higher than that when the liquid convex portion is not formed. It can be seen that the improvement is about twice as much. Similarly, in the present invention, when the liquid layer is formed of an oil-repellent liquid, the slipperiness and non-adhesiveness with respect to the oily substance can be greatly improved.
また、本発明においては、液層を支持している成形体の表面樹脂層の下側に、液層を形成している液体の拡散を抑制もしくは遮断する液拡散防止層を設けることにより、液層を長期間にわたって安定に保持することができ、その表面改質効果を長期間にわたって発揮させることができる。 Further, in the present invention, a liquid diffusion preventing layer that suppresses or blocks the diffusion of the liquid forming the liquid layer is provided below the surface resin layer of the molded body supporting the liquid layer. The layer can be stably held over a long period of time, and the surface modification effect can be exhibited over a long period of time.
このような本発明の構造体は、その表面改善特性を活かして、適宜の液体により液層を形成することにより種々の用途に適用することができるが、特に粘稠な液体(例えばケチャップ、マヨネーズ、ドレッシングなど)が収容される包装容器として好適に使用される。 Such a structure of the present invention can be applied to various applications by forming a liquid layer with an appropriate liquid by taking advantage of its surface improvement characteristics, but is particularly viscous liquid (for example, ketchup, mayonnaise) , Dressing, etc.) are suitably used as packaging containers.
<樹脂構造体の表面形態>
図1を参照して、本発明の樹脂構造体(全体として10で示す)は、樹脂成形体1と、該樹脂成形体1の表面を被覆している液層3とから形成されているものであるが、特に重要な特徴は、液層3の表面に液状凸部3aが形成されており、液状凸部3aの間はフラットな面3bとなっている。即ち、図1から理解されるように、樹脂成形体1の表面には、比較的大きな突起1aと比較的小さな突起1bとが混在しているが、液層3の表面は、大まかに言って、このような突起1a,1bが混在している樹脂成形体1の表面に沿った形態を有しており、比較的大きな突起1aに対応して液状凸部3aが形成され、フラットな面3bの部分では、比較的小さな突起1bを覆っている。
<Surface morphology of resin structure>
Referring to FIG. 1, a resin structure (indicated by 10 as a whole) of the present invention is formed of a resin molded body 1 and a liquid layer 3 covering the surface of the resin molded body 1. However, a particularly important feature is that the liquid protrusions 3a are formed on the surface of the liquid layer 3, and a flat surface 3b is formed between the liquid protrusions 3a. That is, as can be understood from FIG. 1, the surface of the resin molded body 1 is mixed with relatively large protrusions 1a and relatively small protrusions 1b, but the surface of the liquid layer 3 is roughly speaking. The projections 1a and 1b have a shape along the surface of the resin molded body 1, and the liquid projections 3a are formed corresponding to the relatively large projections 1a, and the flat surface 3b. This part covers a relatively small protrusion 1b.
表面に液層3を形成する場合、その液面はフラットになるのが技術常識といってよく、例えば突起1a,1bが混在するような面に液層3が形成されるときには、突起1a,1bの全てを覆うように液層3が形成されるか、或いは比較的高い突起1a露出しているが、比較的低い突起1bは覆うように液層3が形成され、いずれの場合も液層3の表面(液面)はフラットな面となるのが一般的である。しかるに、本発明では、液層3の表面がフラットな面のみならず、液状凸部3aが形成されており、極めて特異的なものとなっている。
本発明では、このような液層3の特異的な表面形状により、優れた滑り性を発現させることができるのである。
When the liquid layer 3 is formed on the surface, it may be said that the liquid level is flat. For example, when the liquid layer 3 is formed on a surface where the protrusions 1a and 1b are mixed, the protrusion 1a, The liquid layer 3 is formed so as to cover all of 1b, or the relatively high protrusion 1a is exposed, but the liquid layer 3 is formed so as to cover the relatively low protrusion 1b. In general, the surface (liquid surface) 3 is a flat surface. However, in the present invention, not only the surface of the liquid layer 3 is flat, but also the liquid convex portions 3a are formed, which is extremely specific.
In the present invention, excellent slipperiness can be expressed by such a specific surface shape of the liquid layer 3.
本発明の原理を説明するための図2を参照して、流動体5に対する樹脂成形体1の表面の滑り性等の表面特性を液層3により改善する場合、従来では、図2(a)に示されているように、液層3の表面に流動体5が全面接触し、これにより、流動体5の材質に応じて液層3を形成する液体の種類を選択することによって表面特性が大きく改善されるというものである。即ち、液層3を形成する液体の流動体5に対する性質によって流動体5に対する表面特性の改善を図っていたわけである。
しかるに、本発明では、図2(b)に示されているように、流動体5が樹脂成形体1上を滑るとき、流動体5は液層3に接触するものの、全面接触とはならず、液状凸部3aが形成されている部分で部分的に液層3に接触して滑ることとなる。即ち、本発明では、液層3の表面に液状凸部3aが形成され、流動体5と液層3とが部分的に接触して滑ることにより、図2(a)のように、流動体5と液層3とが全面接触して滑る場合に比して、流動体5に対する滑り性がさらに大幅に向上することとなる。
Referring to FIG. 2 for explaining the principle of the present invention, when surface properties such as slipperiness of the surface of the resin molded body 1 with respect to the fluid 5 are improved by the liquid layer 3, conventionally, FIG. As shown in FIG. 4, the fluid 5 is brought into full contact with the surface of the liquid layer 3, so that the surface characteristics can be improved by selecting the type of liquid that forms the liquid layer 3 according to the material of the fluid 5. It is a big improvement. That is, the surface properties of the fluid 5 are improved by the property of the liquid forming the liquid layer 3 with respect to the fluid 5.
However, in the present invention, as shown in FIG. 2B, when the fluid 5 slides on the resin molded body 1, the fluid 5 contacts the liquid layer 3 but does not come into full contact. Then, the liquid convex portion 3a is partly formed so as to partially come into contact with the liquid layer 3 and slide. That is, in the present invention, the liquid convex portion 3a is formed on the surface of the liquid layer 3, and the fluid 5 and the liquid layer 3 partially slide in contact with each other, as shown in FIG. Compared with the case where the liquid 5 and the liquid layer 3 slide in contact with each other, the slipperiness with respect to the fluid 5 is further greatly improved.
このように、流動体5と液層3とが部分的に接触して滑ることにより滑り性のさらなる向上がもたらされる理由については完全に解明されたわけではないが、本発明者等は、次のように推定している。
即ち、流動体5が液層3の表面を滑るときの流動体5の流れは流速が直線分布となるクエット流に相当するので、流動体5が液層3から受ける摩擦力Fは、下記式;
F=ηVA/h
式中、ηは液層3を形成する液体の粘性、
Vは、流動体5の流速V、
Aは、流動体5と液層3との接触面積、
hは、液層3の厚みである、
で表される。
この摩擦力Fを、図2(a)の場合の流動体5の流れと図2(b)の場合の流れとで比較すると、図2(b)の流れの場合の方が接触面積が著しく小さく(ηは液の種類によるものであるから両者は同じである)、従って、摩擦力Fは、図2(b)の流れの方がかなり小さくなることが理解される。即ち、本発明のように、液状凸部3aを液層3の表面に形成することにより、流動体5の滑りに対する摩擦力Fが極めて小さくなっており、この結果、滑り速度は極めて大となり、滑り性が大幅に向上するものと推定される。要するに、図2(a)の場合は、液層3を形成する液体の化学的性質のみによって滑り性が向上するのであるが、本発明では、液体の化学的性質に加え、接触面積減少による摩擦力低減という物理的な作用も加わっているため、さらなる滑り性の向上が得られるのである。
As described above, the reason why the fluid 5 and the liquid layer 3 partially slip and come into contact with each other does not completely elucidate the reason why the slipperiness is further improved. It is estimated that.
That is, since the flow of the fluid 5 when the fluid 5 slides on the surface of the liquid layer 3 corresponds to a Couette flow in which the flow velocity has a linear distribution, the frictional force F received by the fluid 5 from the liquid layer 3 is expressed by the following equation: ;
F = ηVA / h
Where η is the viscosity of the liquid forming the liquid layer 3,
V is the flow velocity V of the fluid 5,
A is the contact area between the fluid 5 and the liquid layer 3;
h is the thickness of the liquid layer 3;
It is represented by
When the frictional force F is compared between the flow of the fluid 5 in the case of FIG. 2A and the flow in the case of FIG. 2B, the contact area is significantly more in the case of the flow of FIG. It is understood that the friction force F is considerably smaller in the flow of FIG. 2B, since the friction force F is smaller (η is due to the type of liquid and is the same). That is, by forming the liquid convex portion 3a on the surface of the liquid layer 3 as in the present invention, the frictional force F against the sliding of the fluid 5 is extremely small. As a result, the sliding speed becomes extremely large, It is estimated that the slipperiness is greatly improved. In short, in the case of FIG. 2A, the slipperiness is improved only by the chemical property of the liquid forming the liquid layer 3, but in the present invention, the friction due to the reduction of the contact area is added in addition to the chemical property of the liquid. Since the physical action of force reduction is also added, further improvement in slipperiness can be obtained.
ところで、本発明による滑り性向上効果を考察する際、流動体5と液層3との間に空気が巻き込まれることにより、滑り性が向上することも考えられる。しかしながら、液層3の表面に形成される液状凸部3aは極めて微細で背の低いものである(フラットな面3bとの高低差Δhが小さい)。このため、流動体5と液層3との間に空気を巻き込むような大きな空間が形成されるとは考えられず、従って、上記のように、摩擦力Fが低減されることにより、滑り性が向上するものと考えるのが妥当である。 By the way, when considering the effect of improving the slipperiness according to the present invention, it is conceivable that the slipperiness is improved by entraining air between the fluid 5 and the liquid layer 3. However, the liquid protrusion 3a formed on the surface of the liquid layer 3 is extremely fine and short (the height difference Δh from the flat surface 3b is small). For this reason, it is not considered that a large space that entrains air between the fluid 5 and the liquid layer 3 is formed. Therefore, as described above, the frictional force F is reduced, so that the slipping property is reduced. It is reasonable to think that
上述した本発明の樹脂構造体における表面構造は、後述する実施例で説明するように、原子力間顕微鏡、レーザ顕微鏡や白色干渉顕微鏡などによって解析することができ、また、液層3の存在は水の接触角(WCA)を測定することによって簡単に確認することができる。 The surface structure of the resin structure of the present invention described above can be analyzed by an atomic force microscope, a laser microscope, a white interference microscope, or the like, as described in the examples described later. This can be easily confirmed by measuring the contact angle (WCA).
このような表面構造の解析によると、本発明においては、液層3の表面には、0.7μm以上の高さΔhの液状凸部3a(微細突起)が、20〜100個/mm2の密度で分布していることが望ましく、さらには、平均して100〜300μmの間隔(L)で観測されることが望ましい。尚、液状凸部3aの高さΔhとは、該凸部3aとフラットな面3bとの高低差である。
即ち、上記のような高さの液状凸部3aの間隔(L)が上記範囲よりも狭い(液状凸部3aが密に形成されている)ときには、流動体5が滑り落ちるときの液層3との接触面積が大きくなってしまうため、摩擦力Fの低減化が望めず、滑り性向上効果が小さくなってしまう傾向がある。また、液状凸部3aの間隔Lが上記範囲よりも大きい(液状凸部3aが疎に形成されている)ときにも、流動体5が滑り落ちるときの液層3との接触面積は大きくなってしまう。液状凸部3a間が広くなってしまうため、当然、フラットな面3b上でも流動体5と液層3との接触を生じてしまうからである。特に、流動体5が粘稠な流動体のような場合には、その形状が変化するため、接触面積の増大傾向は特に著しい。従って、この場合にも、摩擦力Fの低減は望めず、滑り性向上効果が小さくなってしまう。
また、上記のような間隔Lを満足するように液状凸部3aが形成されていたとしても、その高さΔhが上記範囲よりも低い場合には、やはり、流動体5が滑り落ちるときの液層3との接触面積が大きくなってしまい、摩擦力Fの低減化が望めず、滑り性向上効果が小さくなってしまう。
According to the analysis of such a surface structure, in the present invention, the surface of the liquid layer 3 has 20 to 100 pieces / mm 2 of liquid protrusions 3a (fine protrusions) having a height Δh of 0.7 μm or more. It is desirable to be distributed by density, and further, it is desirable to observe at an interval (L) of 100 to 300 μm on average. The height Δh of the liquid convex portion 3a is a difference in height between the convex portion 3a and the flat surface 3b.
That is, when the interval (L) between the liquid convex portions 3a having the height as described above is narrower than the above range (the liquid convex portions 3a are formed densely), the liquid layer 3 when the fluid 5 slides down and Therefore, the frictional force F cannot be reduced, and the effect of improving slipperiness tends to be reduced. Further, when the interval L between the liquid convex portions 3a is larger than the above range (the liquid convex portions 3a are formed sparsely), the contact area with the liquid layer 3 when the fluid 5 slides down becomes large. End up. This is because the space between the liquid convex portions 3a is widened, and naturally, the fluid 5 and the liquid layer 3 are brought into contact with each other even on the flat surface 3b. In particular, when the fluid 5 is a viscous fluid, the shape of the fluid 5 changes, so the tendency of increasing the contact area is particularly remarkable. Therefore, also in this case, the reduction of the frictional force F cannot be expected, and the effect of improving the slipperiness becomes small.
Further, even if the liquid convex portion 3a is formed so as to satisfy the interval L as described above, if the height Δh is lower than the above range, the liquid layer when the fluid 5 slides down is again. 3 is increased, the frictional force F cannot be reduced, and the effect of improving slipperiness is reduced.
尚、上記のような液状凸部3aの高低差Δhには限界があり、通常、その上限は、50〜100μm程度である。即ち、液層3を支持している樹脂成形体1の表面に大きな高さの突起1aを形成することはできるが、このような高さの突起1a上に液層3を形成する場合には、液層3を形成する液体の量を多くしなければならず、この結果、液層3のほぼ全面がフラットな面3bとなってしまい、大きな高低差Δhを実現することができないからである。 There is a limit to the height difference Δh of the liquid convex portion 3a as described above, and the upper limit is usually about 50 to 100 μm. That is, the projection 1a having a large height can be formed on the surface of the resin molded body 1 supporting the liquid layer 3, but when the liquid layer 3 is formed on the projection 1a having such a height, This is because the amount of liquid forming the liquid layer 3 must be increased, and as a result, almost the entire surface of the liquid layer 3 becomes a flat surface 3b, and a large height difference Δh cannot be realized. .
上述した本発明において、液層3はかなり薄層であり、例えば、液層3を形成する液体の量は、0.5乃至30g/m2、特に0.5乃至20g/m2、特に0.5乃至10g/m2の範囲にあることが好ましい。即ち、この液量が少ないと、液層3が不連続層となってしまい、この液体の流動体5に対する化学的性質(例えば撥水性、撥油性など)を十分に活かすことが困難となり、大きな滑り性向上効果を得ることが困難となってしまう。また、液量が多すぎると、液状凸部3aの高さΔhが小さくなってしまい、この結果、接触面積の低減による摩擦力Fの低減化が不十分となり、大きな滑り性向上効果を得ることが困難となってしまう。 In the present invention described above, the liquid layer 3 is quite thin. For example, the amount of liquid forming the liquid layer 3 is 0.5 to 30 g / m 2 , particularly 0.5 to 20 g / m 2 , especially 0. It is preferably in the range of 5 to 10 g / m 2 . That is, if the amount of the liquid is small, the liquid layer 3 becomes a discontinuous layer, and it becomes difficult to make full use of the chemical properties (for example, water repellency and oil repellency) of the liquid to the fluid 5. It becomes difficult to obtain the effect of improving slipperiness. On the other hand, when the amount of liquid is too large, the height Δh of the liquid convex portion 3a becomes small, and as a result, the reduction of the frictional force F due to the reduction of the contact area becomes insufficient, and a large slip improvement effect is obtained. Becomes difficult.
また、本発明においては、上述した液層3は、液体による表面特性を安定に且つムラなく付与するために、下記式(1):
F=(cosθ−cosθB)/(cosθA−cosθB) (1)
式中、
θは、前記樹脂構造体10表面での水接触角であり、
θAは、前記液層3を形成する液体上での水接触角であり、
θBは、前記樹脂成形体1を形成するプラスチック単体上での水接触角である、
で算出される液層3の被覆率Fが0.5以上、好ましくは0.6以上となるように形成されるべきである。即ち、樹脂構造体10の表面での水接触角θと液層3上での水の接触角水θAが同じである場合には、被覆率Fは1.0であり樹脂成形体1の全体が液層3で覆われていることになる。
例えば、被覆率Fが上記範囲よりも小さいと、液量が多量にあっても、表面に液体が点在するような形態で液層3が形成され、十分な表面特性を発揮することが困難となってしまう。
Further, in the present invention, the liquid layer 3 described above has the following formula (1) in order to stably and uniformly impart surface characteristics due to the liquid:
F = (cos θ−cos θ B ) / (cos θ A −cos θ B ) (1)
Where
θ is a water contact angle on the surface of the resin structure 10,
θ A is a water contact angle on the liquid forming the liquid layer 3,
θ B is a water contact angle on a single plastic that forms the resin molded body 1.
The coverage F of the liquid layer 3 calculated in step (1) should be 0.5 or more, preferably 0.6 or more. That is, when the water contact angle θ on the surface of the resin structure 10 and the water contact angle water θ A on the liquid layer 3 are the same, the coverage F is 1.0 and the resin molding 1 The whole is covered with the liquid layer 3.
For example, if the coverage F is smaller than the above range, the liquid layer 3 is formed in such a form that the liquid is scattered on the surface even if the liquid amount is large, and it is difficult to exhibit sufficient surface characteristics. End up.
ここで、上述の式(1)は、表面が2種類の成分(A、B)から形成された複合表面上における見かけの接触角θを表現するCassie−Baxterの式を変形して得られる。これは下記式で表現される。
cosθ=FAcosθA+FBcosθB
=FAcosθA+(1−FA)cosθB
式中、
FAは、A成分の割合を示し、
FBは、B成分の割合を示し(但し、FA+FB=1)、
θAは、A成分単体上での液体の接触角を示し
θBは、B成分単体上での液体の接触角を示す。
Here, the above-described equation (1) is obtained by modifying the Cassie-Baxter equation that expresses the apparent contact angle θ on the composite surface whose surface is formed from two types of components (A, B). This is expressed by the following equation.
cos θ = F A cos θ A + F B cos θ B
= F A cos θ A + (1−F A ) cos θ B
Where
F A indicates the proportion of the A component,
F B represents the ratio of the B component (where F A + F B = 1),
θ A represents the contact angle of the liquid on the component A alone, and θ B represents the contact angle of the liquid on the component B alone.
本発明においては、液層3の表面に上述した液状凸部3aが形成されていることに関連して、液層3を支持している樹脂成形体1の表面(以下、下地面と呼ぶことがある)には、比較的大きな突起1aと比較的小さな突起1bが混在しており、先にも述べた通り、比較的大きな突起1aに対応して液状凸部3aが形成され、比較的小さな突起1b上に、液層3のフラットな面3bが形成されている。このような突起1a及び1bについても原子力間顕微鏡、レーザ顕微鏡や白色干渉顕微鏡などによって解析することができる。 In the present invention, the surface of the resin molded body 1 supporting the liquid layer 3 (hereinafter referred to as a base surface) in relation to the formation of the liquid protrusion 3a described above on the surface of the liquid layer 3. ) Includes a relatively large protrusion 1a and a relatively small protrusion 1b. As described above, the liquid protrusion 3a is formed corresponding to the relatively large protrusion 1a and is relatively small. A flat surface 3b of the liquid layer 3 is formed on the protrusion 1b. Such protrusions 1a and 1b can also be analyzed by an atomic force microscope, a laser microscope, a white interference microscope, or the like.
例えば、白色干渉顕微鏡により1.4mmx1.05mmの範囲を走査して得られる樹脂成形体1の表面の3次元表面形状プロファイルにおいて、0.7μm以上の高さの突起密度が20〜100個/mm2の範囲にあり、さらに、このような突起の間隔(L)は、平均して100〜300μmの範囲にあることが望ましい。また、かかる突起の最大突起高さは1.5乃至40μm、特に2.5乃至30μmの範囲にあることが、液層3を下地面全体にわたって安定に保持すると共に、前述した条件を満足する液状凸部3aを形成するために好ましい。即ち、突起密度が上記範囲よりも小さく、かつ最大突起高さが上記範囲より小さい場合には、突起間隔Lが大きくなり、液状凸部3aに対応する大きな突起1aが形成されず、前述した液状凸部3aの形成が困難となり、フラットな面3bとの接触面積が大きくなり本発明の効果が発現しなくなってしまう。また、突起密度が上記範囲よりも大きい場合には、突起間隔Lが小さくなるため、液層の被覆量にも依るが、突起間の空間を液体が埋めてしまう傾向が強くなるため、液状凸部3aが形成されず、フラットな面3bとの接触面積が大きくなり、本発明の効果が発現しなくなってしまうおそれがある。 For example, in a three-dimensional surface shape profile of the surface of the resin molded body 1 obtained by scanning a range of 1.4 mm × 1.05 mm with a white interference microscope, the density of protrusions having a height of 0.7 μm or more is 20 to 100 / mm. In addition, the distance (L) between the protrusions is preferably in the range of 100 to 300 μm on average. Further, the maximum protrusion height of such protrusions is in the range of 1.5 to 40 μm, particularly 2.5 to 30 μm, so that the liquid layer 3 can be stably held over the entire ground surface and can satisfy the above-described conditions. It is preferable for forming the convex portion 3a. That is, when the projection density is smaller than the above range and the maximum projection height is smaller than the above range, the projection interval L becomes large and the large projection 1a corresponding to the liquid convex portion 3a is not formed, and the above-described liquid state The formation of the convex portion 3a becomes difficult, the contact area with the flat surface 3b becomes large, and the effect of the present invention is not exhibited. Further, when the protrusion density is larger than the above range, the protrusion interval L is small, and although depending on the coating amount of the liquid layer, the liquid tends to fill the space between the protrusions. The portion 3a is not formed, the contact area with the flat surface 3b is increased, and the effects of the present invention may not be exhibited.
<表面構造の形成>
本発明において、上述した樹脂構造体10の表面構造は、樹脂成形体1(下地面)を形成するための樹脂に、粗面化用添加剤と液層3を形成するための液体とを配合し、このような樹脂組成物を用いての成形により樹脂成形体1の表面(下地面)を形成することにより実現できる。
<Formation of surface structure>
In the present invention, the above-described surface structure of the resin structure 10 includes a resin for forming the resin molded body 1 (underlying surface) and a surface roughening additive and a liquid for forming the liquid layer 3. And it can implement | achieve by forming the surface (base surface) of the resin molding 1 by shaping | molding using such a resin composition.
樹脂成形体1(下地面)を形成するための樹脂としては、樹脂構造体10の用途に応じた形状に成形可能である限り、特に制限されず、任意の樹脂を使用することができるが、特に液体の滲出による液層3の形成を可能とするという点で、比較的低密度(例えば約1.7g/cm3以下程度)の熱可塑性樹脂が好ましく、特に、低密度ポリエチレン、直鎖低密度ポリエチレン、中或いは高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテンなどのオレフィン系樹脂や、これらのオレフィン類の共重合樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンテレフタレート/イソフタレート等のポリエステル樹脂が好ましい。特に、この樹脂構造体10を、内容物を絞り出すスクイズ容器として使用する場合には、低密度ポリエチレンや直鎖低密度ポリエチレンに代表されるオレフィン系樹脂を用いることが好ましい。 The resin for forming the resin molded body 1 (base surface) is not particularly limited as long as it can be molded into a shape according to the use of the resin structure 10, and any resin can be used. In particular, a thermoplastic resin having a relatively low density (for example, about 1.7 g / cm 3 or less) is preferable in that the liquid layer 3 can be formed by liquid leaching. Olefin resins such as density polyethylene, medium or high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, copolymer resins of these olefins, polyethylene terephthalate, polyethylene naphthalate, polyethylene terephthalate / Polyester resins such as isophthalate are preferred. In particular, when this resin structure 10 is used as a squeeze container for squeezing the contents, it is preferable to use an olefin resin typified by low density polyethylene or linear low density polyethylene.
上記の樹脂に配合される粗面化用添加剤は、下地面の表面を前述した突起密度(1/mm2)と最大突起高さが所定の範囲にある粗面とするために使用されるものであり、通常、平均粒子径が40μm以下、特に0.2〜20μmの微細粒子が使用される。例えば、上記範囲にある微細粒子の中でも、シリカなどの無機微粒子は粒子の構成単位として、一次粒子径が0.003〜0.2μmの非常に小さい微細粒子であり、一次粒子間に強い引力が働くため一次粒子径のまま単独で存在することができず、通常、凝集して高比表面積で且つ細孔容積の大きい二次粒子の形で存在している。このため、このような微細粒子を樹脂に配合して成形を行ったとき、これらの微細粒子が連なった突起1a,1bを形成し、しかも、微細粒子により形成された突起は、液体を保持し易く、例えば背の高い大きな突起1a上にも液層3を形成し、液層3の表面に液状凸部3aを容易に形成することができる。
尚、微細粒子の平均粒子径は、微細粒子の種類や大きさによっても異なるが、一般的には、透過型電子顕微鏡や走査型電子顕微鏡など電子顕微鏡観察による方法や、レーザ回折式粒度分布測定装置などのレーザ回折・散乱法による方法等によって測定することができる。微粒子の平均粒子径は、電子顕微鏡観察による測定においては測定した粒子の平均径として定義され、また、レーザ回折・散乱法による測定においては得られた粒度分布における体積換算での積算値50%での粒子径として定義される。なお、シリカなどの一次粒子径が0.2μm以下の微粒子においては、一次粒子のまま単独で存在させることが極めて困難であるため、二次粒子の粒子径が平均粒子径として定義される。
The surface roughening additive blended in the above resin is used to make the surface of the base surface a rough surface having the above-described protrusion density (1 / mm 2 ) and maximum protrusion height within a predetermined range. Usually, fine particles having an average particle diameter of 40 μm or less, particularly 0.2 to 20 μm are used. For example, among the fine particles in the above range, inorganic fine particles such as silica are very small fine particles having a primary particle diameter of 0.003 to 0.2 μm as a structural unit of the particles, and there is a strong attractive force between the primary particles. Since it works, it cannot exist alone as the primary particle diameter, and is usually present in the form of secondary particles that are aggregated and have a high specific surface area and a large pore volume. For this reason, when such fine particles are blended with a resin and molded, the projections 1a and 1b in which these fine particles are continuous are formed, and the projections formed by the fine particles retain liquid. For example, the liquid layer 3 can be formed on the tall and large protrusion 1 a, and the liquid protrusion 3 a can be easily formed on the surface of the liquid layer 3.
The average particle size of the fine particles varies depending on the type and size of the fine particles, but in general, a method using an electron microscope such as a transmission electron microscope or a scanning electron microscope, or a laser diffraction particle size distribution measurement. It can be measured by a laser diffraction / scattering method using an apparatus. The average particle size of the fine particles is defined as the average particle size measured in the observation by an electron microscope, and in the measurement by the laser diffraction / scattering method, the integrated value in terms of volume in the obtained particle size distribution is 50%. Is defined as the particle size. In addition, in the fine particles having a primary particle size of 0.2 μm or less such as silica, it is extremely difficult to make the primary particles alone, so the particle size of the secondary particles is defined as the average particle size.
上記のような微細粒子としては、平均粒子径が上記範囲にある限り特に制限されないが、一般的には、例えば酸化チタン、アルミナ、シリカ等の金属酸化物粒子、炭酸カルシウムなどの炭酸塩、カーボンブラックなどの炭素系微粒子、ポリメチル(メタ)アクリレートや、ポリエチレン、ポリオルガノシルセスキオキサンに代表されるシリコーン粒子などから成る有機微粒子が代表的であり、これらは、シランカップリング剤やシリコーンオイル等により疎水化処理されていてもよい。本発明においては、ダイレクトブロー成形に代表される押出成形によっても実施可能であるため、溶融成形後に粒子径が保持できれば良く、例えば、疎水化処理されている微細粒子、特に疎水性シリカ、ポリメチルメタクリレート硬化物、超高分子量ポリエチレン、ポリオルガノシルセスキオキサン、シリコーン粒子が好適に使用される。 The fine particles as described above are not particularly limited as long as the average particle diameter is in the above range. In general, for example, metal oxide particles such as titanium oxide, alumina and silica, carbonates such as calcium carbonate, carbon Typical are carbon fine particles such as black, organic fine particles composed of polymethyl (meth) acrylate, silicone particles such as polyethylene and polyorganosilsesquioxane, and these include silane coupling agents and silicone oils. May be hydrophobized. In the present invention, since it can be carried out also by extrusion molding typified by direct blow molding, it is only necessary to maintain the particle diameter after melt molding. For example, fine particles that have been hydrophobized, particularly hydrophobic silica, polymethyl A methacrylate cured product, ultrahigh molecular weight polyethylene, polyorganosilsesquioxane, and silicone particles are preferably used.
このような粗面化用添加剤として使用される微細粒子は、通常、樹脂100重量部当り0.1乃至30重量部、好ましくは0.3乃至20重量部、さらに好ましくは0.3乃至10重量部の量で使用される。この範囲外での使用量では、液状凸部3aを好適に形成し得る粗面を形成することが困難である。 The fine particles used as the roughening additive are usually 0.1 to 30 parts by weight, preferably 0.3 to 20 parts by weight, more preferably 0.3 to 10 parts by weight per 100 parts by weight of the resin. Used in parts by weight. When the amount used is outside this range, it is difficult to form a rough surface that can suitably form the liquid convex portion 3a.
さらに、液層3の形成に使用される液体としては、この樹脂構造体(樹脂成形体1)の表面に付与しようとする表面特性に応じて適宜のものが使用されるが、かかる液体は、当然、大気圧下での蒸気圧が小さい不揮発性の液体、例えば沸点が200℃以上の高沸点液体でなければならない。揮発性液体を用いた場合には、容易に揮散して経時と共に消失し、液層3を形成することが困難となってしまうからである。 Furthermore, as the liquid used for forming the liquid layer 3, an appropriate one is used according to the surface characteristics to be applied to the surface of the resin structure (resin molded body 1). Of course, it must be a non-volatile liquid having a low vapor pressure under atmospheric pressure, for example, a high-boiling liquid having a boiling point of 200 ° C. or higher. This is because when a volatile liquid is used, it easily evaporates and disappears with time, and it becomes difficult to form the liquid layer 3.
このような液体の具体例としては、上記のような高沸点液体であることを条件として、種々のものを挙げることができるが、特に表面張力が、滑り性の対象となる物質と大きく異なるものほど、潤滑効果が高く、本発明には好適である。例えば、水や水を含む親水性物質に対する滑り性を高めるには、表面張力が10乃至40mN/m、特に16乃至35mN/mの範囲にある液体を用いるのが良く、フッ素系液体、フッ素系界面活性剤、シリコーンオイル、脂肪酸トリグリセライド、各種の植物油などが代表的である。植物油としては、大豆油、菜種油、オリーブオイル、米油、コーン油、べに花油、ごま油、パーム油、ひまし油、アボガド油、ココナッツ油、アーモンド油、クルミ油、はしばみ油、サラダ油などが好適に使用できる。 Specific examples of such a liquid include various liquids provided that the liquid is a high-boiling liquid as described above. In particular, the surface tension is significantly different from a material to be slidable. The higher the lubrication effect, the better the present invention. For example, in order to improve the slipperiness with respect to water or a hydrophilic substance containing water, it is preferable to use a liquid having a surface tension of 10 to 40 mN / m, particularly 16 to 35 mN / m. Typical examples include surfactants, silicone oils, fatty acid triglycerides, and various vegetable oils. Suitable vegetable oils include soybean oil, rapeseed oil, olive oil, rice oil, corn oil, bean flower oil, sesame oil, palm oil, castor oil, avocado oil, coconut oil, almond oil, walnut oil, sandwich oil, salad oil, etc. Can be used for
この液体は、一般に、前述した樹脂100重量部当り0.3〜20重量部、特に1〜10重量部の量で使用される。この量が少ないと、液層3の形成自体が困難となり、使用量が多すぎると、液層3を形成することはできても、所定の高さΔhの液状凸部3aを液層3の表面に形成することが困難となる。 This liquid is generally used in an amount of 0.3 to 20 parts by weight, in particular 1 to 10 parts by weight, per 100 parts by weight of the aforementioned resin. If the amount is small, the formation of the liquid layer 3 becomes difficult. If the amount is too large, the liquid layer 3 can be formed even if the liquid layer 3 can be formed. It becomes difficult to form on the surface.
本発明の樹脂構造体10は、上述した樹脂と粗面化用添加剤及び液層形成用液体とを混合することにより調製された樹脂組成物を使用し、押出成形、ダイレクトブロー成形等のそれ自体公知の手段で所定形状に成形することにより製造することができる。また、適当な低沸点有機溶剤(例えば炭化水素系溶剤やアルコール系溶剤など)を用いて上記の樹脂組成物が溶解乃至分散された塗布液を調製し、この塗布液を、予め所定形状に成形された成形体上にコーティングし、乾燥するという手段によっても製造することができる。
このようにして、適度に粗面化された樹脂成形体1の下地面上に液体が滲出し、液状凸部3aを表面に有する液層3が形成されることとなる。
The resin structure 10 of the present invention uses a resin composition prepared by mixing the above-described resin, the surface roughening additive, and the liquid layer forming liquid, such as extrusion molding and direct blow molding. It can be produced by molding into a predetermined shape by means known per se. Also, a coating solution in which the above resin composition is dissolved or dispersed is prepared using an appropriate low boiling point organic solvent (for example, a hydrocarbon solvent or an alcohol solvent), and the coating solution is molded into a predetermined shape in advance. It can also be produced by means of coating on a formed molded body and drying.
In this way, the liquid oozes onto the lower ground of the appropriately roughened resin molded body 1, and the liquid layer 3 having the liquid convex portions 3a on the surface is formed.
尚、レーザ加工やサンドブラスト等の機械加工により樹脂成形体1の表面を適度な粗面とする手法も考えられるが、液状凸部3aを形成するに適した表面の粗さは、かなり微細なものであり、機械加工による形成には適しておらず、前述したように微細粒子が粗面化用添加剤として内添されている樹脂組成物を用いるのがよい。
また、液層3を形成する液体をスプレーや浸漬等の方法により外添することにより液層3を形成する手法も考えられるが、液状凸部3aを有する液層3はかなり薄層であり、このような液体を外添する手法には適しておらず、かかる液層3の形成も液体を内添した樹脂組成物を用いるのがよい。
Although a method of making the surface of the resin molded body 1 an appropriate rough surface by machining such as laser processing or sand blasting can be considered, the surface roughness suitable for forming the liquid convex portion 3a is quite fine. Therefore, it is not suitable for formation by machining, and it is preferable to use a resin composition in which fine particles are internally added as an additive for roughening as described above.
Further, although a method of forming the liquid layer 3 by externally adding a liquid forming the liquid layer 3 by a method such as spraying or dipping is also conceivable, the liquid layer 3 having the liquid protrusions 3a is a fairly thin layer, Such a method of externally adding a liquid is not suitable, and the liquid layer 3 may be formed by using a resin composition having a liquid internally added.
<多層構造体>
上述した表面構造を有する本発明の樹脂構造体10は、そのまま単独で使用することもできるが、通常は、この表面構造を残したまま、他の材料からなる層が積層された多層構造体として使用することが好ましい。例えば、液層3を支持する下地面を形成している樹脂成形体の下側に液拡散防止層を設けた多層構造を採用することが好適である。
<Multilayer structure>
Although the resin structure 10 of the present invention having the above-described surface structure can be used alone as it is, it is usually a multilayer structure in which layers made of other materials are laminated while leaving this surface structure. It is preferable to use it. For example, it is preferable to employ a multilayer structure in which a liquid diffusion prevention layer is provided on the lower side of the resin molded body forming the base surface that supports the liquid layer 3.
例えば、図3の例では、全体として30で示す構造体は、前述した液状凸部3a(図3では省略)を有する液層3を面上に備えた下地樹脂層1’を有しており、この下地樹脂層1’は、液拡散防止層20上に積層されており、液拡散防止層20は、適宜の材質からなる基材23上に設けられている。
即ち、下地樹脂層1’は前述した樹脂成形体1に相当し、下地樹脂層1’と液層3との組み合わせが図1の樹脂構造体10に相当する。
For example, in the example of FIG. 3, the overall structure indicated by 30 has a base resin layer 1 ′ having the liquid layer 3 having the liquid convex portion 3 a (not shown in FIG. 3) on the surface. The base resin layer 1 ′ is laminated on the liquid diffusion preventing layer 20, and the liquid diffusion preventing layer 20 is provided on a base material 23 made of an appropriate material.
That is, the base resin layer 1 ′ corresponds to the resin molded body 1 described above, and the combination of the base resin layer 1 ′ and the liquid layer 3 corresponds to the resin structure 10 of FIG.
かかる図3の層構造において、液拡散防止層20は、液層3を形成する液体の浸透・拡散を遮断するものであり、このような層を形成することにより、液層3により付与される表面特性が長期間にわたって安定に維持されることとなる。
即ち、一定の量の液体が下地樹脂層1’に配合され、この液体の滲出により液層3が形成されていたとしても、該液体が下地樹脂層1’の反対側の面にも徐々に移行していくため、その液層3を形成している液量が経時と共に減少し、この結果、液層3に付与される表面特性が経時と共に失われていくおそれがある。しかるに、図3の態様では、液拡散防止層20の存在により、液層3(或いは下地樹脂層1’)からの液の浸透拡散が遮断されるため、液層3の液量減少が有効に抑制され、表面特性の経時的損失を回避することが可能となる。
In the layer structure of FIG. 3, the liquid diffusion preventing layer 20 blocks penetration and diffusion of the liquid forming the liquid layer 3, and is provided by the liquid layer 3 by forming such a layer. Surface characteristics will be maintained stably over a long period of time.
That is, even if a certain amount of liquid is blended in the base resin layer 1 ′ and the liquid layer 3 is formed by the exudation of this liquid, the liquid gradually spreads on the surface opposite to the base resin layer 1 ′. Since it moves, the amount of liquid forming the liquid layer 3 decreases with time, and as a result, the surface properties imparted to the liquid layer 3 may be lost with time. However, in the embodiment of FIG. 3, since the penetration and diffusion of the liquid from the liquid layer 3 (or the base resin layer 1 ′) is blocked by the presence of the liquid diffusion preventing layer 20, it is effective to reduce the liquid volume of the liquid layer 3. It is possible to avoid the loss of surface characteristics over time.
このような液拡散防止層20の材質は、液の浸透拡散を防止し得るものであれば、特に制限されず、例えば金属箔、金属蒸着膜或いはガラスやセラミックス類などの無機材料から形成されていてもよいし、ダイヤモンドライクカーボン(DLC)蒸着膜、熱硬化性樹脂や熱可塑性樹脂などの有機材料から形成されていてもよいが、無機材料により形成されている場合、成形手段が限定され、多層構造体30或いは下地樹脂層1’の形態がフィルムなどに限定されてしまうため、一般的には、有機材料、特に熱可塑性樹脂により形成されていることが好ましい。即ち、熱可塑性樹脂は成形性が優れ、多層構造体30の形態が制限されず、例えばブロー成形容器などの形態も採り得るからである。 The material of the liquid diffusion preventing layer 20 is not particularly limited as long as it can prevent the permeation and diffusion of the liquid. For example, the liquid diffusion preventing layer 20 is made of a metal foil, a metal vapor deposition film, or an inorganic material such as glass or ceramics. Alternatively, it may be formed from an organic material such as a diamond-like carbon (DLC) vapor-deposited film, a thermosetting resin or a thermoplastic resin, but when it is formed from an inorganic material, the molding means is limited, Since the form of the multilayer structure 30 or the base resin layer 1 ′ is limited to a film or the like, it is generally preferable that the multilayer structure 30 or the base resin layer 1 ′ be formed of an organic material, particularly a thermoplastic resin. That is, the thermoplastic resin is excellent in moldability, and the form of the multilayer structure 30 is not limited. For example, a form such as a blow molded container can be adopted.
上記のような液拡散防止層20を形成するための熱可塑性樹脂としては、密度が1.00g/cm3以上であり且つガラス転移点(Tg)が35℃以上のものあるいは、結晶化度が0.5以上のものが使用される。即ち、このような熱可塑性樹脂は緻密であり、樹脂中での液体の移動拡散が非常に制限されると考えられるため、液体の浸透拡散を有効に抑制することができる。例えば、密度及びガラス転移点(Tg)が上記範囲を下回る樹脂では、液拡散防止層がルーズな層となり、液体の移動拡散の制限が弱まってしまい、液の浸透拡散を効果的に防止することが困難となる。また、結晶化度が0.5未満の樹脂では、樹脂中での液体の移動拡散を制限する結晶成分が少なく、制限が弱まってしまうため、液の浸透拡散を効果的に防止することが困難となる。 The thermoplastic resin for forming the liquid diffusion preventing layer 20 as described above has a density of 1.00 g / cm 3 or more and a glass transition point (Tg) of 35 ° C. or higher, or a crystallinity degree. The thing of 0.5 or more is used. That is, since such a thermoplastic resin is dense and the movement and diffusion of the liquid in the resin is considered to be extremely limited, the penetration and diffusion of the liquid can be effectively suppressed. For example, in a resin whose density and glass transition point (Tg) are lower than the above ranges, the liquid diffusion prevention layer becomes a loose layer, and the limitation of liquid migration and diffusion is weakened, effectively preventing liquid penetration and diffusion. It becomes difficult. In addition, in a resin having a crystallinity of less than 0.5, since there are few crystal components that restrict the movement and diffusion of liquid in the resin and the restriction is weakened, it is difficult to effectively prevent the permeation and diffusion of the liquid. It becomes.
尚、上記の熱可塑性樹脂は金属箔、金属蒸着膜やガラスなどの無機材料と比較すると、液拡散防止性能は劣るため、液拡散防止層20の厚みを比較的厚くする必要があり、例えば2μm以上、特に5〜80μm程度の厚みで液拡散防止層20を形成することが好ましい。即ち、この厚みが薄すぎると液拡散防止能が不満足となってしまうおそれがあり、また過度に厚くしても、多層構造体30が不必要に厚肉となってしまい、コスト的にもメリットが無いからである。この液拡散防止層20の厚みは、必要とする表面特性の維持期間に応じて調整することができる。 The above thermoplastic resin is inferior in liquid diffusion preventing performance compared to inorganic materials such as metal foil, metal vapor deposition film and glass, so the thickness of the liquid diffusion preventing layer 20 needs to be relatively thick. For example, 2 μm As described above, it is particularly preferable to form the liquid diffusion preventing layer 20 with a thickness of about 5 to 80 μm. That is, if this thickness is too thin, the liquid diffusion preventing ability may be unsatisfactory, and even if it is excessively thick, the multilayer structure 30 becomes unnecessarily thick, which is advantageous in terms of cost. Because there is no. The thickness of the liquid diffusion preventing layer 20 can be adjusted according to the required maintenance period of the surface characteristics.
本発明において、上記のような密度及びガラス転移点(Tg)を有する熱可塑性樹脂は特に制限されないが、一般的には、エチレン・ビニルアルコール共重合体(エチレン・酢酸ビニル共重合体ケン化物)、芳香族ポリアミド及び環状ポリオレフィンなどのガスバリア性樹脂や、ポリエチレンテレフタレートや液晶ポリマーのようなポリエステル、ポリカーボネート等が好ましい。例えば、このようなガスバリア性樹脂により液拡散防止層20を形成した場合には、液拡散防止層20に酸素などのガスの透過を防止するガス遮断性をも付与することができ、特に容器のような形態で構造体20を用いる場合には、内容物の酸化劣化を防止することができ、極めて有利となる。中でもエチレン・ビニルアルコール共重合体は、特に優れた酸素バリア性を示すため、最も好適である。 In the present invention, the thermoplastic resin having the above-described density and glass transition point (Tg) is not particularly limited, but in general, an ethylene / vinyl alcohol copolymer (saponified ethylene / vinyl acetate copolymer). Gas barrier resins such as aromatic polyamide and cyclic polyolefin, polyesters such as polyethylene terephthalate and liquid crystal polymer, and polycarbonate are preferable. For example, when the liquid diffusion preventing layer 20 is formed of such a gas barrier resin, the liquid diffusion preventing layer 20 can be provided with a gas barrier property that prevents permeation of a gas such as oxygen. When the structure 20 is used in such a form, it is possible to prevent oxidative deterioration of the contents, which is extremely advantageous. Among these, an ethylene / vinyl alcohol copolymer is most preferable because it exhibits particularly excellent oxygen barrier properties.
上記のようなエチレン・ビニルアルコール共重合体としては、一般に、エチレン含有量が20乃至60モル%、特に25乃至50モル%のエチレン−酢酸ビニル共重合体を、ケン化度が96モル%以上、特に99モル%以上となるようにケン化して得られる共重合体ケン化物が好適であり、これらの中から、密度且つガラス転移点(Tg)が前述した範囲にあるものが選択的に使用するのがよい。 The ethylene-vinyl alcohol copolymer as described above is generally an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%, and a saponification degree of 96 mol% or more. In particular, a saponified copolymer obtained by saponification so as to be 99 mol% or more is suitable. Of these, those having a density and a glass transition point (Tg) in the above-mentioned range are selectively used. It is good to do.
尚、前述したガスバリア性樹脂は、それぞれ単独で使用することもできるし、また、密度やガラス転移点(Tg)が前記範囲内にある限り、ポリエチレン等のポリオレフィンとガスバリア性樹脂とをブレンドして液拡散防止層20を形成することもできる。 The gas barrier resins described above can be used alone, respectively, and as long as the density and glass transition point (Tg) are within the above ranges, a polyolefin such as polyethylene and a gas barrier resin are blended. The liquid diffusion preventing layer 20 can also be formed.
ところで、上記のようなガスバリア性樹脂を液拡散防止層20として用いる場合には、下地樹脂層1’(或いは基材23)との接着性を高め、デラミネーションを防止するために、液拡散防止層20に隣接して接着剤樹脂層(図視せず)を設けることが好ましい。これにより、液拡散防止層20をしっかりと下地層樹脂層1或いは基材23に接着固定することができる。このような接着樹脂層の形成に用いる接着剤樹脂はそれ自体公知であり、例えば、カルボニル基(>C=O)を主鎖若しくは側鎖に1乃至100meq/100g樹脂、特に10乃至100meq/100g樹脂の量で含有する樹脂、具体的には、マレイン酸、イタコン酸、フマル酸などのカルボン酸もしくはその無水物、アミド、エステルなどでグラフト変性されたオレフィン樹脂;エチレン−アクリル酸共重合体;イオン架橋オレフィン系共重合体;エチレン−酢酸ビニル共重合体;などが接着性樹脂として使用される。このような接着剤樹脂層の厚みは、適宜の接着力が得られる程度でよく、一般的には、0.5乃至20μm、好適には1乃至8μm程度の厚みでよい。 By the way, when the gas barrier resin as described above is used as the liquid diffusion prevention layer 20, the liquid diffusion prevention is performed in order to improve adhesion with the base resin layer 1 ′ (or the base material 23) and prevent delamination. It is preferable to provide an adhesive resin layer (not shown) adjacent to the layer 20. Thereby, the liquid diffusion preventing layer 20 can be firmly bonded and fixed to the base layer resin layer 1 or the base material 23. Adhesive resins used for forming such an adhesive resin layer are known per se. For example, a carbonyl group (> C═O) is 1 to 100 meq / 100 g resin in the main chain or side chain, particularly 10 to 100 meq / 100 g. Resin contained in the amount of resin, specifically, olefin resin graft-modified with carboxylic acid such as maleic acid, itaconic acid, fumaric acid or its anhydride, amide, ester, etc .; ethylene-acrylic acid copolymer; An ion-crosslinked olefin copolymer; an ethylene-vinyl acetate copolymer; and the like are used as the adhesive resin. The thickness of such an adhesive resin layer may be such that an appropriate adhesive force can be obtained, and is generally 0.5 to 20 μm, preferably about 1 to 8 μm.
また、フィルムの形態で上述のようなガスバリア性樹脂を液拡散防止層20として用いる場合には、接着剤樹脂として、例えば、ドライラミネーション用やアンカーコート用、プライマー用として一般に用いられるものであればよく、特に限定されないが、例えばそれ自体公知である、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、アルキッド樹脂、メラミン樹脂、アクリル樹脂、ポリエステル樹脂、アミノ樹脂、フッ素樹脂、セルロース系樹脂、イソシアネート樹脂などを用いることができる。これら接着剤樹脂は単独で使用してもよいし、また必要に応じ、ブレンドしてもよい。また、基材との密着や濡れが確保できる限り、水系と溶剤系のどちらでも使用できる。また上記成分の他に、接着剤としての性能を損なわない限り、それ自体公知である、硬化促進触媒、充填剤、軟化剤、老化防止剤、シランカップリング剤、安定剤、接着促進剤、レベリング剤、消泡剤、可塑剤、無機フィラー、粘着付与性樹脂などを使用することもできる。これら接着剤の塗布量は、塗装性や経済性を損なわない範囲であれば特に限定されず、好ましくは0.01乃至10μmの範囲、さらに好ましくは、0.1乃至5.0μmの範囲で、例えばスプレー塗装、浸漬、或いはスピンコーター、バーコーター、ロールコーター、グラビアコーター等により塗布すればよい。 Further, when the gas barrier resin as described above is used as the liquid diffusion preventing layer 20 in the form of a film, any adhesive resin may be used, for example, for dry lamination, anchor coating, and primer. Well, although not particularly limited, for example, urethane resin, phenol resin, epoxy resin, alkyd resin, melamine resin, acrylic resin, polyester resin, amino resin, fluororesin, cellulose resin, isocyanate resin, etc., known per se are used. be able to. These adhesive resins may be used alone or may be blended if necessary. Moreover, as long as adhesion and wettability with a base material can be ensured, either water-based or solvent-based can be used. In addition to the above components, as long as the performance as an adhesive is not impaired, a curing acceleration catalyst, a filler, a softening agent, an anti-aging agent, a silane coupling agent, a stabilizer, an adhesion promoter, and leveling are known per se. Agents, antifoaming agents, plasticizers, inorganic fillers, tackifying resins, and the like can also be used. The application amount of these adhesives is not particularly limited as long as it does not impair the paintability and economy, preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.1 to 5.0 μm, For example, it may be applied by spray coating, dipping, or spin coater, bar coater, roll coater, gravure coater or the like.
尚、このような接着剤樹脂も、通常、前述した範囲の密度とガラス転移点、結晶化度を有しており、従って、液拡散防止層20としての機能を有している。即ち、前述した液拡散防止層20がガスバリア性樹脂で形成されている場合、このようなガスバリア性樹脂の層の厚みと接着剤樹脂層との厚みの合計が、前述した厚みの範囲(2μm以上、特に5〜80μm程度)となるように厚み設定することにより、液拡散防止層20として十分な機能を発揮させることができる。 Such an adhesive resin usually has the density, glass transition point, and crystallinity in the above-described range, and therefore has a function as the liquid diffusion preventing layer 20. That is, when the liquid diffusion preventing layer 20 described above is formed of a gas barrier resin, the total thickness of the gas barrier resin layer and the adhesive resin layer is within the above-described thickness range (2 μm or more). In particular, by setting the thickness to be about 5 to 80 μm, a sufficient function as the liquid diffusion preventing layer 20 can be exhibited.
また、本発明においては、上述した液拡散防止層20は、下地樹脂層1’の表面(下地樹脂層1’と液層3との界面)からの間隔dが200μm以下、好ましくは150μm以下の範囲となるように形成されていることが好適である。即ち、この間隔dが大きすぎると、液拡散防止層20により液の浸透拡散が防止されるとしても、液拡散防止層20と下地樹脂層1’の表面との間に存在し得る量が多量となってしまい、この結果、液層3の形成や液層3の経時的消失を効果的に抑制することが困難となるおそれがあるからである。 In the present invention, the liquid diffusion prevention layer 20 described above has an interval d from the surface of the base resin layer 1 ′ (interface between the base resin layer 1 ′ and the liquid layer 3) of 200 μm or less, preferably 150 μm or less. It is preferable that it is formed to be in the range. That is, if the distance d is too large, even if the liquid diffusion preventing layer 20 prevents the penetration and diffusion of the liquid, a large amount can exist between the liquid diffusion preventing layer 20 and the surface of the base resin layer 1 ′. As a result, it may be difficult to effectively suppress the formation of the liquid layer 3 and the disappearance of the liquid layer 3 over time.
また、上述した説明から理解されるように、下地樹脂層1’は、その表面(液層3との界面)と液拡散防止層20との間隔dが一定値以下となるように形成されるが、液層3に対して適度なアンカー効果を発現させるため、少なくとも5μm以上、特に10μm以上の厚みを有していることが好ましい。 Further, as can be understood from the above description, the base resin layer 1 ′ is formed such that the distance d between the surface (interface with the liquid layer 3) and the liquid diffusion preventing layer 20 is a certain value or less. However, in order to develop an appropriate anchor effect for the liquid layer 3, it is preferable that the liquid layer 3 has a thickness of at least 5 μm, particularly 10 μm.
また、図3の多層構造において、液拡散防止層20の他方側に形成されている基材23は、特に必要ではないが、多層構造体30の使用形態に応じて適宜設けられる。
この基材23の材質は、多層構造体30の使用形態に応じて選択されるが、一般的には、各種プラスチックや紙などから形成され、複数の層から形成されていてもよい。例えば、この基材23を、前述した液拡散防止層20と同じ機能を有する樹脂層を含む多層構造とすることもできるし、さらに、この構造体30を成形する際に生じるバリなどのスクラップ樹脂を含むリプロ層を基材23中に形成することもできる。
即ち、この多層構造体30を、内容物を絞り出すスクイズ容器として使用する場合には、スクイズ性の観点から、低密度ポリエチレンや直鎖低密度ポリエチレン、ポリプロピレンを用いて基材23が形成される。この場合、基材23と液拡散防止層20との間に適宜接着材樹脂層を設けることもできるし、上記で説明したように、基材23よりも内部の層(液層3とは逆側の層)として、さらにガスバリア―樹脂層(液拡散防止層としても機能する)やリプロ層を設けることができる。
In the multilayer structure of FIG. 3, the base material 23 formed on the other side of the liquid diffusion preventing layer 20 is not particularly necessary, but is appropriately provided according to the usage form of the multilayer structure 30.
The material of the base material 23 is selected according to the usage pattern of the multilayer structure 30, but is generally formed of various plastics, paper, or the like, and may be formed of a plurality of layers. For example, the base material 23 can have a multilayer structure including a resin layer having the same function as the liquid diffusion prevention layer 20 described above. Further, scrap resin such as burrs generated when the structure 30 is molded. A repro layer containing can also be formed in the substrate 23.
That is, when this multilayer structure 30 is used as a squeeze container for squeezing the contents, the base material 23 is formed using low density polyethylene, linear low density polyethylene, or polypropylene from the viewpoint of squeeze properties. In this case, an adhesive resin layer can be provided as appropriate between the base material 23 and the liquid diffusion preventing layer 20, and as described above, the inner layer than the base material 23 (opposite to the liquid layer 3). Further, a gas barrier-resin layer (which also functions as a liquid diffusion preventing layer) and a repro layer can be provided as the side layer.
上述した構造体20の層構成は、図3に示される層構成に限定されるものではなく、例えば図4に示されているように、下地樹脂層1’と液拡散防止層20との間に液拡散調節層25を設けることができる。
既に述べたように、下地樹脂層1’中には液層3を形成する液体がブレンドされており、下地樹脂層1’からの液の滲出により液層3が形成されるが、図4の態様では、液拡散調節層25中にも液体が浸透し拡散していくこととなり、下地樹脂層1’の表面に滲出する液の量を適度な範囲に調節し、過剰量の液の滲出を防止し、適正な液量により液状凸部3aを液面に有する液層3を形成する上で有利である。
The layer structure of the structure 20 described above is not limited to the layer structure shown in FIG. 3. For example, as shown in FIG. 4, the layer structure between the base resin layer 1 ′ and the liquid diffusion prevention layer 20 is used. The liquid diffusion adjusting layer 25 can be provided on the substrate.
As already described, the liquid for forming the liquid layer 3 is blended in the base resin layer 1 ′, and the liquid layer 3 is formed by the leaching of the liquid from the base resin layer 1 ′. In the aspect, the liquid penetrates and diffuses also in the liquid diffusion control layer 25, and the amount of the liquid leached on the surface of the base resin layer 1 ′ is adjusted to an appropriate range, so that an excessive amount of liquid oozes out. This is advantageous in preventing the formation of the liquid layer 3 having the liquid convex portions 3a on the liquid surface with an appropriate liquid amount.
このような液拡散調節層25を形成する樹脂は、液層3を形成する液体が浸透・拡散し得る限り、基本的にはどのような樹脂であってもよいが、通常は、下地樹脂層1’を形成する樹脂と同種の樹脂で形成される。 The resin forming the liquid diffusion adjusting layer 25 may be basically any resin as long as the liquid forming the liquid layer 3 can permeate and diffuse, but usually the base resin layer It is formed of the same kind of resin as that forming 1 ′.
尚、上記のような液拡散調節層25が設けられている場合も、液拡散防止層20と下地樹脂層1’の表面との間隔dは前述した範囲にあることが好ましく、このような範囲に間隔dが維持されていることを条件として、液拡散調節層25の厚みt1と下地樹脂層3の厚みt2との厚み比t1/t2は0.1〜10の範囲に設定することが液拡散調節層25の機能を十分に発揮させる上で好ましい。 Even when the liquid diffusion adjusting layer 25 as described above is provided, the distance d between the liquid diffusion preventing layer 20 and the surface of the base resin layer 1 ′ is preferably in the above-described range. setting the condition that the distance d is maintained, the thickness ratio t 1 / t 2 and the thickness t 2 of the thickness t 1 and the base resin layer 3 of the liquid diffusion modulating layer 25 is in the range of 0.1 to 10 in It is preferable to sufficiently perform the function of the liquid diffusion control layer 25 .
尚、上述した下地樹脂層1’、液拡散防止層20及び液拡散調整層25、さらには基材23には、これを形成する材料の種類に応じて、各層の特性を損なわない範囲で、酸化防止剤、界面活性剤、着色剤などの添加剤が適宜配合されていてもよい。 In addition, in the range which does not impair the characteristic of each layer according to the kind of material which forms this in the base resin layer 1 'mentioned above, the liquid diffusion prevention layer 20, the liquid diffusion adjustment layer 25, and further the base material 23, Additives such as antioxidants, surfactants, and colorants may be appropriately blended.
上記のような層構成を有している多層構造体30は、その形態や用途によっても液層3を形成する液体の種類は異なるが、液層3による表面特性を十分に発揮させるために、液層3の液面には液状凸部3aが形成されており、前記式(1)で表される液層3の被覆率Fは、0.5以上、特に0.6以上、最も効果的には0.8以上に保持されている。 The multilayer structure 30 having the layer structure as described above is different in the type of liquid that forms the liquid layer 3 depending on its form and use, but in order to fully exhibit the surface characteristics of the liquid layer 3, A liquid convex portion 3a is formed on the liquid surface of the liquid layer 3, and the coverage F of the liquid layer 3 represented by the formula (1) is 0.5 or more, particularly 0.6 or more, and is most effective. Is held at 0.8 or more.
<樹脂構造体10及び多層構造体30の用途>
本発明の樹脂構造体10及びこの樹脂構造体10が積層されている多層構造体30は、種々の形態を有することができ、その形態に応じて液層3を形成する液体を選択して所望の表面特性を発揮させることができる。
<Uses of Resin Structure 10 and Multilayer Structure 30>
The resin structure 10 of the present invention and the multilayer structure 30 on which the resin structure 10 is laminated can have various forms, and a liquid that forms the liquid layer 3 is selected according to the form. The surface characteristics can be exhibited.
例えば、樹脂構造体10或いは多層構造体30をフィルムの形態とし、これを所定の場所に貼り付けて使用することができる。
このような場合、多層構造体30の下地樹脂層1’の表面及び液拡散防止層20(或いは基材23)の裏面には、適宜、粘着剤などを介してシリコンペーパーやポリエステルフィルムなどの剥離フィルムを設けておき、使用に先立って、この剥離フィルムを引き剥がし、下地樹脂層1’の表面が露出するように所定の表面に貼り付ければよい。このような形態で本発明の多層構造体30を使用する場合には、任意の場所に液層3による表面特性を発現させることができる。例えば、液層3を形成する液体としてフッ素系界面活性剤を使用し、浴室の鏡などに多層構造体30を貼付すれば、水滴が鏡の表面に付着せず、速やかに流れ落ちるため、鏡の曇り止めとしての機能を発揮させることができる。
上記の使用形態は、図1に示す単層構造の樹脂構造体10においても全く同様である。
For example, the resin structure 10 or the multilayer structure 30 can be used in the form of a film, which is attached to a predetermined place.
In such a case, the surface of the base resin layer 1 ′ of the multilayer structure 30 and the back surface of the liquid diffusion prevention layer 20 (or the base material 23) are appropriately peeled off such as silicon paper or polyester film via an adhesive or the like. A film may be provided, and the release film may be peeled off prior to use and attached to a predetermined surface such that the surface of the base resin layer 1 ′ is exposed. When the multilayer structure 30 of the present invention is used in such a form, the surface characteristics of the liquid layer 3 can be expressed at an arbitrary place. For example, if a fluorosurfactant is used as a liquid for forming the liquid layer 3 and the multilayer structure 30 is attached to a mirror in a bathroom, water droplets do not adhere to the surface of the mirror and quickly flow down. The function as anti-fogging can be exhibited.
The above usage pattern is exactly the same in the single-layer resin structure 10 shown in FIG.
尚、剥離フィルムを下地樹脂層1’の表面(図1の樹脂成形体1)に設ける場合には、剥離フィルムを引き剥がすことにより、下地樹脂層1’(或いは樹脂成形体1)に内添されている液体が表面に滲出して液層3が形成されることとなる。 When the release film is provided on the surface of the base resin layer 1 ′ (resin molded body 1 in FIG. 1), the release resin is peeled off to internally add to the base resin layer 1 ′ (or resin molded body 1). The liquid that has been exuded to the surface will form the liquid layer 3.
上記のようなフィルム形態の多層構造体30は、キャスト法、Tダイ法、カレンダー法又はインフレーション法などの通常の方法により、下地樹脂層1’、液拡散防止層20及び液拡散調整層15、さらには基材23となるフィルムを成形し、これを加熱圧着することにより形成し、或いは、これらの層を形成する樹脂を同時押出することにより形成することができる。
また、フィルム形状の多層構造体30の2枚を貼り付けることにより、袋状の容器とすることもできる。
図1の単層構造の樹脂成形体も基本的には同じである。
The multilayer structure 30 in the form of a film as described above is obtained by using a conventional method such as a casting method, a T-die method, a calendar method, or an inflation method, the base resin layer 1 ′, the liquid diffusion preventing layer 20, and the liquid diffusion adjusting layer 15, Furthermore, it can be formed by forming a film to be the base material 23 and heat-pressing it, or by simultaneously extruding resins forming these layers.
Moreover, it can also be set as a bag-shaped container by affixing two sheets of the film-shaped multilayer structure 30. FIG.
The resin molded body having a single layer structure in FIG. 1 is basically the same.
また、本発明においては、液層3による表面特性を十分に活用するという観点から、この多層構造体30(或いは樹脂構造体10)を容器の形態で使用することが好適である。即ち、容器の内面(内容物と接触する面)に液層3を形成することにより、容器壁への内容物の付着を防止し、容器の形態によっては内容物を速やかに短時間で排出することができる。 Moreover, in this invention, it is suitable to use this multilayer structure 30 (or resin structure 10) with the form of a container from a viewpoint of fully utilizing the surface characteristic by the liquid layer 3. FIG. That is, by forming the liquid layer 3 on the inner surface (the surface in contact with the contents) of the container, the contents are prevented from adhering to the container wall, and depending on the form of the container, the contents can be discharged quickly and in a short time. be able to.
容器の形態は特に制限されず、カップ乃至コップ状、ボトル状、袋状(パウチ)、シリンジ状、ツボ状、トレイ状等、容器材質に応じた形態を有していてよく、延伸成形されていてもよい。 The form of the container is not particularly limited, and may have a form corresponding to the container material, such as a cup or cup shape, a bottle shape, a bag shape (pouch), a syringe shape, an acupoint shape, or a tray shape, and is stretch-molded. May be.
上述した包装容器では、液層3による表面特性を十分に発揮させることができるため、特に、ケチャップ、水性糊、蜂蜜、各種ソース類、マヨネーズ、マスタード、ドレッシング、ジャム、チョコレートシロップ、乳液等の化粧液、液体洗剤、シャンプー、リンス等の粘稠な内容物が充填された容器として最も好適である。即ち、内容物の種類に応じて適宜の液により液層3を形成しておくことにより、容器を傾斜或いは倒立させることにより、これらの内容物が容器内壁に付着することなく、速やかに排出できるからである。
例えば、ケチャップ、各種ソース類、蜂蜜、マヨネーズ、マスタード、ジャム、チョコレートシロップ、乳液などは、水分を含む親水性物質であり、液層3を形成する液体としては、シリコーンオイル、グリセリン脂肪酸エステル、食用油などの食品添加物として認可されている油性液体が好適に使用される。
In the packaging container described above, the surface characteristics of the liquid layer 3 can be sufficiently exerted, and in particular, makeup such as ketchup, aqueous paste, honey, various sauces, mayonnaise, mustard, dressing, jam, chocolate syrup, and emulsion. It is most suitable as a container filled with viscous contents such as liquid, liquid detergent, shampoo and rinse. That is, by forming the liquid layer 3 with an appropriate liquid according to the type of contents, the contents can be quickly discharged without being attached to the inner wall of the container by tilting or inverting the container. Because.
For example, ketchup, various sauces, honey, mayonnaise, mustard, jam, chocolate syrup, milky lotion, etc. are hydrophilic substances containing moisture, and the liquid forming the liquid layer 3 includes silicone oil, glycerin fatty acid ester, edible Oily liquids approved as food additives such as oil are preferably used.
本発明を次の実施例にて説明する。
尚、以下の実施例等で行った各種の特性、物性等の測定方法及び樹脂構造体(容器)の成形に用いた樹脂等は次の通りである。
The invention is illustrated in the following examples.
In addition, various properties, methods for measuring physical properties, and the like used in the following examples, and resins used for molding the resin structure (container) are as follows.
1.液層の被覆率の測定
後述の方法で作製した容量500gの樹脂構造体である多層容器の胴部から10mm×60mmの試験片を切り出した。23℃50%RHの条件下、固液界面解析システムDropMaster700(協和界面化学(株)製)を用い、試験片の内層が上になるように固定し、3μLの純水を試験片にのせ、水接触角θを測定した。得られた水接触角を用いて、下記式(1)より、樹脂構造体表面での液層の被覆率Fを求めた。
F=(cosθ−cosθB)/(cosθA−cosθB) (1)
式中、θは、樹脂構造体表面での水接触角であり、
θAは、液層を形成する液体上での水接触角であり、
θBは、樹脂成形体を形成するプラスチック単体上での水接触角である。
液層の被覆率Fを求めるにあたり、θAとθBの値として、下記水接触角の値を用いた。
θB:100.1°
(樹脂成形体を形成する高圧法低密度ポリエチレン(MFR=0.3)単体での値)
θA:80.3°
(中鎖脂肪酸トリグリセライド(液体)上での値)
1. Measurement of Coverage of Liquid Layer A test piece of 10 mm × 60 mm was cut out from the trunk of a multilayer container which is a resin structure having a capacity of 500 g produced by the method described later. Using a solid-liquid interface analysis system DropMaster700 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the condition of 23 ° C. and 50% RH, the test sample was fixed so that the inner layer was on top, and 3 μL of pure water was placed on the test piece. The water contact angle θ was measured. Using the obtained water contact angle, the coverage F of the liquid layer on the surface of the resin structure was determined from the following formula (1).
F = (cos θ−cos θ B ) / (cos θ A −cos θ B ) (1)
In the formula, θ is a water contact angle on the surface of the resin structure,
θ A is the water contact angle on the liquid forming the liquid layer,
θ B is a water contact angle on a single plastic forming the resin molding.
In obtaining the liquid layer coverage F, the following water contact angle values were used as the values of θ A and θ B.
θ B : 100.1 °
(Value in the high pressure method low density polyethylene (MFR = 0.3) simple substance forming the resin molding)
θ A : 80.3 °
(Value on medium chain fatty acid triglyceride (liquid))
2.液層被覆量の測定
後述の方法で作製した容量500gの多層容器を用いて、容器内面に形成された液層を、液層と混和性の溶剤(ヘプタン)30mLで回収し、エバポレーターを用いて濃縮した後、残留物を蒸発皿へ移し取り、液層成分の重さを求めた。得られた重さを容器内面の面積で除し、ボトル内面における液層被覆量(g/m2)とした。この値が小さい程、容器内面には薄い液層が形成されている。
2. Measurement of coating amount of liquid layer Using a multi-layer container having a capacity of 500 g produced by the method described later, the liquid layer formed on the inner surface of the container is recovered with 30 mL of a solvent miscible with the liquid layer (heptane), and an evaporator is used. After concentration, the residue was transferred to an evaporating dish and the weight of the liquid layer component was determined. The obtained weight was divided by the area of the inner surface of the container to obtain the liquid layer coating amount (g / m 2 ) on the inner surface of the bottle. The smaller this value is, the thinner the liquid layer is formed on the inner surface of the container.
3.流動性内容物の滑落速度測定
後述の方法で作製した容量500gの樹脂構造体である多層容器の胴部から20mmx70mmの試験片を切り出した。23℃50%RHの条件下、固液界面解析システムDropMaster700(協和界面化学(株)製)を用い、試験片の内層が上になるように固定し、70mgの流動性内容物を試験片にのせ、45°の傾斜角における滑落挙動をカメラで撮影し、滑落挙動を解析し、移動距離−時間のプロットから滑落速度を算出した。この滑落速度を滑落性の指標とした。前記滑落速度の値が大きい程、内容物の滑落性が優れている。用いた流動性内容物は下記の通りである。なお、内容物の粘度として、音叉型振動式粘度系SV−10((株)エー・アンド・デイ製)を用いて25℃で測定した値も共に示す。
用いた流動性内容物;
キユーピーハーフ
キユーピー(株)製マヨネーズ風低カロリー食品
粘度=1260mPa・s
3. Measurement of sliding speed of fluid contents A test piece of 20 mm × 70 mm was cut out from the body of a multilayer container which is a resin structure having a capacity of 500 g produced by the method described later. Using a solid-liquid interface analysis system DropMaster700 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the condition of 23 ° C. and 50% RH, the inner layer of the test piece is fixed so that 70 mg of fluid content is placed on the test piece. On top of that, the sliding behavior at an inclination angle of 45 ° was photographed with a camera, the sliding behavior was analyzed, and the sliding speed was calculated from the movement distance-time plot. This sliding speed was used as an index of sliding ability. The larger the sliding speed value, the better the sliding performance of the contents. The flowable contents used are as follows. In addition, as a viscosity of the contents, a value measured at 25 ° C. using a tuning fork type vibration viscosity system SV-10 (manufactured by A & D Co., Ltd.) is also shown.
Fluid content used;
QP Half KYOPY Co., Ltd. mayonnaise style low calorie food Viscosity = 1260mPa ・ s
4.樹脂構造体における液拡散防止層の深さ・厚み、および全体厚みの測定
後述の方法で成形した樹脂構造体である多層容器の底から50mmの位置での胴部水平断面における層構成を偏光顕微鏡にて観察し、多層樹脂構造体中における液拡散防止層の深さ・厚み、および全体厚みを求めた。断面に対し、0°、90°、180°、270°の位置での構成を観察し、4方向での平均値を多層樹脂構造体中における液拡散防止層の深さ・厚み、および全体厚みとした。
4). Measurement of depth / thickness and total thickness of liquid diffusion preventing layer in resin structure Layer structure in body horizontal cross section at position of 50 mm from bottom of multilayer container which is resin structure molded by method described later The depth and thickness of the liquid diffusion preventing layer in the multilayer resin structure and the overall thickness were determined. The configuration at 0 °, 90 °, 180 °, and 270 ° relative to the cross section was observed, and the average value in the four directions was the depth / thickness of the liquid diffusion preventing layer in the multilayer resin structure, and the overall thickness. It was.
5.樹脂構造体の表面形状測定
後述の方法で作製した容量500gの樹脂構造体である多層容器の胴部から10mmx10mmの試験片を切り出した。非接触表面形状測定機(NewView7300,zygo社製)を用いて、樹脂構造体の表面の画像解析及び形状測定を行った。
画像解析及び表面形状の測定には、アプリケーションとして、MetroPro(Ver.9.1.4 64−bit)を用いた。
1.40mmx1.05mmの範囲を測定し、得られた生データから、ノイズ除去のため高周波成分の波長6.576μm以下をカットし、測定データとした。測定データから、0.7μm以上の高さの突起に対し、突起密度(1mm2面積当たりの突起個数)、平均突起間隔、最大突起高さ、平均突起高さ、および突起高さの標準偏差を求めた。
5. Measurement of surface shape of resin structure A test piece of 10 mm × 10 mm was cut out from the body of a multilayer container, which was a resin structure having a capacity of 500 g, prepared by the method described later. Image analysis and shape measurement of the surface of the resin structure were performed using a non-contact surface shape measuring machine (NewView 7300, manufactured by zygo).
MetroPro (Ver. 9.1.4 64-bit) was used as an application for image analysis and surface shape measurement.
A range of 1.40 mm × 1.05 mm was measured, and from the obtained raw data, a wavelength of 6.576 μm or less of a high frequency component was cut for noise removal to obtain measurement data. From the measurement data, the projection density (number of projections per 1 mm 2 area), average projection spacing, maximum projection height, average projection height, and standard deviation of projection height for projections with a height of 0.7 μm or more Asked.
<液層形成用液体>
中鎖脂肪酸トリグリセライド(MCT)
表面張力:28.8mN/m(23℃)
粘度:33.8mPa・s(23℃)
沸点:210℃以上
引火点:242℃(参考値)
尚、液体の表面張力は固液界面解析システムDropMaster700(協和界面科学(株)製)を用いて23℃にて測定した値を用いた。また、液体の表面張力測定に必要な液体の密度は、密度比重計DA−130(京都電子工業(株)製)を用いて23℃で測定した値を用いた。さらに、液体の粘度は音叉型振動式粘度計SV−10((株)エー・アンド・デイ製)を用いて23℃にて測定した値を示した。
<Liquid for forming a liquid layer>
Medium chain fatty acid triglyceride (MCT)
Surface tension: 28.8 mN / m (23 ° C.)
Viscosity: 33.8 mPa · s (23 ° C)
Boiling point: 210 ° C or higher Flash point: 242 ° C (reference value)
In addition, the surface tension of the liquid used the value measured at 23 degreeC using the solid-liquid interface analysis system DropMaster700 (made by Kyowa Interface Science Co., Ltd.). Moreover, the density of the liquid required for the liquid surface tension measurement used the value measured at 23 degreeC using the density specific gravity meter DA-130 (made by Kyoto Electronics Industry Co., Ltd.). Furthermore, the viscosity of the liquid showed the value measured at 23 degreeC using the tuning fork type vibration viscometer SV-10 (made by A & D Co., Ltd.).
<下地面形成用樹脂>
低密度ポリエチレン(LDPE)
密度:0.922g/cm3
結晶化度:0.37
<Base surface forming resin>
Low density polyethylene (LDPE)
Density: 0.922 g / cm 3
Crystallinity: 0.37
<液拡散防止層形成用樹脂>
エチレン・ビニルアルコール共重合体(EVOH)
密度:1.20g/cm3
Tg:60℃
<Liquid diffusion prevention layer forming resin>
Ethylene / vinyl alcohol copolymer (EVOH)
Density: 1.20 g / cm 3
Tg: 60 ° C
<接着層形成用樹脂>
無水マレイン酸変性ポリエチレン
<Adhesive layer forming resin>
Maleic anhydride modified polyethylene
<基材>
低密度ポリエチレン(LDPE)
密度:0.922g/cm3
結晶化度:0.37
<Base material>
Low density polyethylene (LDPE)
Density: 0.922 g / cm 3
Crystallinity: 0.37
<粗面化用添加剤>
疎水性シリカ
架橋ポリメタクリル酸メチルA(架橋PMMA−A)
平均粒子径:3μm
架橋ポリメタクリル酸メチルB(架橋PMMA−B)
平均粒子径:20μm
超高分子量ポリエチレン(超高分子量PE)
平均粒子径:10μm
<Roughening additive>
Hydrophobic silica Crosslinked polymethyl methacrylate A (Crosslinked PMMA-A)
Average particle size: 3 μm
Cross-linked polymethyl methacrylate B (cross-linked PMMA-B)
Average particle size: 20 μm
Ultra high molecular weight polyethylene (ultra high molecular weight PE)
Average particle size: 10 μm
<樹脂の結晶化度測定>
使用した樹脂のうち、低密度ポリエチレンに対しては、示差走査熱量計(PERKIN ELMER社製Diamond DSC)を用いて、下記条件で測定を行い、樹脂の結晶化度を求めた。
樹脂約7mgの試料に対し、25℃から200℃まで昇温速度10℃/minで走査し、200℃にて3分間保持し、200℃から−50℃まで降温速度10℃/minで走査し、−50℃にて3分間保持した。その後、−50℃から200℃まで昇温速度10℃/minで走査した際に得られたプロファイルから、樹脂の融解熱(ΔH)を求めた。測定で得られた融解熱(ΔH)を低密度ポリエチレンに対しては、完全結晶の融解熱(ΔH0)=293J/gで除し、各々の結晶化度を算出した。
<Measurement of crystallinity of resin>
Among the resins used, for low density polyethylene, a differential scanning calorimeter (Diamond DSC manufactured by PERKIN ELMER) was used for measurement under the following conditions to determine the crystallinity of the resin.
A sample of about 7 mg of resin is scanned from 25 ° C. to 200 ° C. at a heating rate of 10 ° C./min, held at 200 ° C. for 3 minutes, and scanned from 200 ° C. to −50 ° C. at a cooling rate of 10 ° C./min. And held at −50 ° C. for 3 minutes. Thereafter, the heat of fusion (ΔH) of the resin was determined from the profile obtained when scanning from −50 ° C. to 200 ° C. at a heating rate of 10 ° C./min. The heat of fusion (ΔH) obtained by the measurement was divided by the heat of fusion of complete crystals (ΔH 0 ) = 293 J / g for low density polyethylene, and the degree of crystallinity of each was calculated.
<実施例1>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 95重量部
粗面化用添加剤 1重量部
日本アエロジル(株)製R972
(ジメチルシリル基被覆疎水性シリカ)
液層形成用液体 4重量部
中鎖脂肪酸トリグリセライド(MCT)
40mm押出機に上記の下地層形成用樹脂組成物、30mm押出機Aに接着層形成用樹脂(無水マレイン酸変性ポリエチレン)、30mm押出機Bに液拡散防止層形成用樹脂(エチレン・ビニルアルコール共重合体)、50mm押出機に基材形成用樹脂(低密度ポリエチレン)を、それぞれ供給し、温度210℃の多層ダイヘッドより溶融パリソンを押し出し、金型温度20℃にてダイレクトブロー成形を行い、内容量500g、重量20gの多層構造体から成る容器を作製した。
作製した容器を用い、液層の被覆率、液層の被覆量、流動性内容物の滑落速度、液拡散防止層の深さ・厚み、および全体厚みの測定、ならびに容器内面の表面観察を行った。
得られた表面形状の3次元像と任意断面での形状プロファイルを図5に示す。
成形後1日区の段階において、液層の被覆率の測定の結果から、成形した多層構造体の表面には液層が形成されていることが確認された。
また、成形後の容器を22℃60%RHに所定の期間保管し、液層の被覆率の測定および流動性内容物の滑落速度測定を行った。結果をまとめて表1に示す。
<Example 1>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 95 parts by weight Roughening additive 1 part by weight
Nippon Aerosil Co., Ltd. R972
(Dimethylsilyl group-coated hydrophobic silica)
Liquid layer forming liquid 4 parts by weight
Medium chain fatty acid triglyceride (MCT)
The resin composition for forming the base layer described above in a 40 mm extruder, the resin for forming an adhesive layer (maleic anhydride-modified polyethylene) in 30 mm extruder A, and the resin for forming a liquid diffusion preventing layer (both ethylene and vinyl alcohol) in 30 mm extruder B Polymer) and resin for forming substrate (low density polyethylene) are fed to a 50 mm extruder, respectively, a molten parison is extruded from a multilayer die head having a temperature of 210 ° C., and direct blow molding is performed at a mold temperature of 20 ° C. A container composed of a multilayer structure having an amount of 500 g and a weight of 20 g was produced.
Using the prepared container, measure the coverage of the liquid layer, the coating amount of the liquid layer, the sliding speed of the fluid content, the depth and thickness of the liquid diffusion prevention layer, and the total thickness, and observe the surface of the inner surface of the container It was.
FIG. 5 shows a three-dimensional image of the obtained surface shape and a shape profile in an arbitrary cross section.
From the result of measuring the coverage of the liquid layer at the stage of one day after molding, it was confirmed that a liquid layer was formed on the surface of the molded multilayer structure.
Further, the molded container was stored at 22 ° C. and 60% RH for a predetermined period, and the coverage of the liquid layer and the sliding speed of the fluid content were measured. The results are summarized in Table 1.
多層構造体であるこの容器の層構成は、液層を内面として以下の通りである。
液層/下地層(35)/接着層(10)/液拡散防止層(20)/接着層(10)
/基材(340)、
液拡散防止層の深さ(45)
全体厚み(415)
ここで、括弧内は各層の厚み(μm)を示す(以下同様)。
The layer structure of this container which is a multilayer structure is as follows with the liquid layer as the inner surface.
Liquid layer / Underlayer (35) / Adhesive layer (10) / Liquid diffusion prevention layer (20) / Adhesive layer (10)
/ Base material (340),
Depth of liquid diffusion prevention layer (45)
Overall thickness (415)
Here, the value in parentheses indicates the thickness (μm) of each layer (the same applies hereinafter).
<実施例2>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 94.7重量部
粗面化用添加剤 0.3重量部
架橋PMMA−A
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(80)/接着層(10)/液拡散防止層(25)/接着層(10)
/基材(370)
液拡散防止層の深さ(90)
全体厚み(495)
<Example 2>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 94.7 parts by weight Roughening additive 0.3 parts by weight
Cross-linked PMMA-A
Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (80) / Adhesive layer (10) / Liquid diffusion prevention layer (25) / Adhesive layer (10)
/ Base material (370)
Depth of liquid diffusion prevention layer (90)
Overall thickness (495)
<実施例3>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 94重量部
粗面化用添加剤 1重量部
架橋PMMA−B
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(80)/接着層(10)/液拡散防止層(20)/接着層(10)
/基材(300)
液拡散防止層の深さ(90)
全体厚み(420)
<Example 3>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 94 parts by weight Roughening additive 1 part by weight
Cross-linked PMMA-B
Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (80) / Adhesive layer (10) / Liquid diffusion prevention layer (20) / Adhesive layer (10)
/ Base material (300)
Depth of liquid diffusion prevention layer (90)
Overall thickness (420)
<実施例4>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 92重量部
粗面化用添加剤 3重量部
架橋PMMA−B
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(80)/接着層(10)/液拡散防止層(20)/接着層(10)
/基材(350)
液拡散防止層の深さ(90)
全体厚み(470)
<Example 4>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 92 parts by weight Roughening additive 3 parts by weight
Cross-linked PMMA-B
Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (80) / Adhesive layer (10) / Liquid diffusion prevention layer (20) / Adhesive layer (10)
/ Base material (350)
Depth of liquid diffusion prevention layer (90)
Overall thickness (470)
<実施例5>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 94.5重量部
粗面化用添加剤 0.5重量部
超高分子量PE
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(80)/接着層(15)/液拡散防止層(25)/接着層(10)
/基材(340)
液拡散防止層の深さ(95)
全体厚み(470)
<Example 5>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 94.5 parts by weight Roughening additive 0.5 parts by weight
Ultra high molecular weight PE
Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (80) / Adhesive layer (15) / Liquid diffusion prevention layer (25) / Adhesive layer (10)
/ Base material (340)
Depth of liquid diffusion prevention layer (95)
Overall thickness (470)
<実施例6>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 94重量部
粗面化用添加剤 1重量部
超高分子量PE
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(85)/接着層(10)/液拡散防止層(25)/接着層(10)
/基材(350)
液拡散防止層の深さ(95)
全体厚み(480)
<Example 6>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 94 parts by weight Roughening additive 1 part by weight
Ultra high molecular weight PE
Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (85) / Adhesive layer (10) / Liquid diffusion prevention layer (25) / Adhesive layer (10)
/ Base material (350)
Depth of liquid diffusion prevention layer (95)
Overall thickness (480)
<比較例1>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 96重量部
液層形成用液体 4重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。また、容器(樹脂構造体)内面の表面観察から得られた表面形状の3次元像と任意断面での形状プロファイルを図6に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(40)/接着層(10)/液拡散防止層(20)/接着層(10)
/基材(320)
液拡散防止層の深さ(50)
全体厚み(400)
<Comparative Example 1>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 96 parts by weight Liquid layer forming liquid 4 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1. Further, FIG. 6 shows a three-dimensional image of the surface shape obtained from the surface observation of the inner surface of the container (resin structure) and a shape profile in an arbitrary cross section.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (40) / Adhesive layer (10) / Liquid diffusion prevention layer (20) / Adhesive layer (10)
/ Base material (320)
Depth of liquid diffusion prevention layer (50)
Overall thickness (400)
<比較例2>
下記組成の下地層形成用樹脂組成物を用意した。
低密度ポリエチレン(LDPE) 95重量部
液層形成用液体 5重量部
中鎖脂肪酸トリグリセライド(MCT)
上記の下地層形成用樹脂組成物を用いた以外は実施例1と同様に多層構造体から成る容器を作製した。作製した容器を用いて実施例1と同様に各種測定を行った。結果をまとめて表1に示す。
尚、これらの容器の層構成は、液層を内面としており、以下の通りである。
液層/下地層(50)/接着層(10)/液拡散防止層(10)/接着層(10)
/基材(335)
液拡散防止層の深さ(60)
全体厚み(415)
<Comparative example 2>
The resin composition for base layer formation of the following composition was prepared.
Low-density polyethylene (LDPE) 95 parts by weight Liquid layer forming liquid 5 parts by weight
Medium chain fatty acid triglyceride (MCT)
A container composed of a multilayer structure was produced in the same manner as in Example 1 except that the above resin composition for forming an underlayer was used. Various measurements were performed in the same manner as in Example 1 using the prepared container. The results are summarized in Table 1.
The layer structure of these containers is as follows, with the liquid layer as the inner surface.
Liquid layer / Underlayer (50) / Adhesive layer (10) / Liquid diffusion prevention layer (10) / Adhesive layer (10)
/ Base material (335)
Depth of liquid diffusion prevention layer (60)
Overall thickness (415)
表1ならびに図5、6に示した表面形状測定の結果から、実施例1から6においては、0.7μm以上の高さの微細突起が20〜100個/mm2の密度範囲で存在し、かつ平均突起間隔Lが100〜300μmの範囲にあることが分かる。また、液層被覆率の結果から、それらの表面は液層によって0.80以上の割合で被覆されていることが確認できる。一方、比較例1、2においては、0.7μm以上の高さ微細突起の突起密度が20個/mm2未満であって、液層被覆率が0.80以上であることが確認できる。
これらの表面上での滑落性を見ると、0.7μm以上の高さの微細突起が20〜100個/mm2の密度範囲で存在し、かつ平均突起間隔Lが100〜300μmの範囲にある微細突起表面上に液膜を形成させた実施例1〜6においては、いずれの例においても5日区以降は12mm/min以上の滑落速度を示すのに対し(最大で18.5mm/min)、0.7μm以上の高さの微細突起の突起密度が20個/mm2未満である表面上に液膜を形成させた比較例1、2においては、滑落速度が最大でも8.5mm/minとなっており、実施例1〜6において滑落速度が向上していることが理解できる。
From the results of the surface shape measurement shown in Table 1 and FIGS. 5 and 6, in Examples 1 to 6, fine protrusions having a height of 0.7 μm or more exist in a density range of 20 to 100 / mm 2 , And it turns out that the average protrusion space | interval L exists in the range of 100-300 micrometers. Moreover, it can confirm that those surfaces are coat | covered by the ratio of 0.80 or more with the liquid layer from the result of the liquid layer coverage. On the other hand, in Comparative Examples 1 and 2, it can be confirmed that the projection density of fine projections having a height of 0.7 μm or more is less than 20 / mm 2 and the liquid layer coverage is 0.80 or more.
Looking at the sliding properties on these surfaces, there are fine projections having a height of 0.7 μm or more in a density range of 20 to 100 pieces / mm 2 , and the average projection interval L is in the range of 100 to 300 μm. In Examples 1 to 6 in which a liquid film was formed on the surface of the fine protrusions , the sliding speed of 12 mm / min or more was exhibited after 5th day in any example (maximum of 18.5 mm / min). In Comparative Examples 1 and 2 in which a liquid film was formed on the surface where the projection density of fine projections having a height of 0.7 μm or more was less than 20 pieces / mm 2 , the sliding speed was 8.5 mm / min at the maximum. It can be understood that the sliding speed is improved in Examples 1 to 6.
以上の結果から、本発明においては、液層表面に局部的に突出部分(液状凸部)が形成されているため、流動性内容物との接触面積が低減し、該内容物との摩擦力が低減したため、優れた滑り性が発現されたと考えられる。 From the above results, in the present invention, since the protruding portion (liquid protruding portion) is locally formed on the surface of the liquid layer, the contact area with the fluid content is reduced, and the frictional force with the content is reduced. Therefore, it is considered that excellent slipperiness was expressed.
1:樹脂成形体
3:液層
3a:液状凸部
5:流動体
10:樹脂構造体
20:液拡散防止層
23:基材
25:液拡散調節層
30:多層構造体
1: Resin molded body 3: Liquid layer 3a: Liquid convex part 5: Fluid 10: Resin structure 20: Liquid diffusion prevention layer 23: Base material 25: Liquid diffusion control layer 30: Multilayer structure
Claims (5)
前記液層を支持している表面には、局部的に突出している部分が形成されており、この突出している部分に対応して、該液層の表面にも局部的に突出している部分が形成されおり、
前記液層の表面には、0.7μm以上の高さを有する微細突起が、20〜100個/mm 2 の密度で分布し、平均して100〜300μmの間隔で観測されることを特徴とする構造体。 In a structure comprising a molded body having a liquid layer on the surface, and a fluid is present on the liquid layer,
The surface supporting the liquid layer is formed with a locally protruding portion, and a portion protruding locally on the surface of the liquid layer corresponding to the protruding portion. Formed,
On the surface of the liquid layer, fine protrusions having a height of 0.7 μm or more are distributed at a density of 20 to 100 pieces / mm 2 and are observed at an average interval of 100 to 300 μm. Structure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156008 | 2013-07-26 | ||
JP2013156008 | 2013-07-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014260303A Division JP6206391B2 (en) | 2013-07-26 | 2014-12-24 | Structure with liquid layer on the surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018039264A JP2018039264A (en) | 2018-03-15 |
JP6414300B2 true JP6414300B2 (en) | 2018-10-31 |
Family
ID=53438545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014260303A Active JP6206391B2 (en) | 2013-07-26 | 2014-12-24 | Structure with liquid layer on the surface |
JP2017169249A Active JP6414300B2 (en) | 2013-07-26 | 2017-09-04 | Structure with liquid layer on the surface |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014260303A Active JP6206391B2 (en) | 2013-07-26 | 2014-12-24 | Structure with liquid layer on the surface |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6206391B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135476A1 (en) * | 2017-01-18 | 2018-07-26 | 東洋製罐株式会社 | Structure having oil film on surface thereof |
JP2021080404A (en) | 2019-11-21 | 2021-05-27 | 株式会社リコー | Liquid composition and method for producing electrochemical device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113244A (en) * | 1994-08-15 | 1996-05-07 | Nippon Nohyaku Co Ltd | Container for viscous liquid and production thereof |
JP2001200281A (en) * | 2000-01-14 | 2001-07-24 | Nishikawa Rubber Co Ltd | Slidable sealing member |
CA2703038C (en) * | 2007-10-15 | 2012-05-01 | Millercoors, Llc | Inserted thermal barrier liner for containers |
JP5598098B2 (en) * | 2010-06-04 | 2014-10-01 | 東洋製罐株式会社 | Olefin resin bottle for non-oil content |
CA2825008C (en) * | 2011-01-19 | 2020-10-13 | President And Fellows Of Harvard College | Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics |
RU2013158147A (en) * | 2011-06-27 | 2015-08-10 | Мицубиси Гэс Кемикал Компани, Инк. | MULTILAYER PRODUCT OBTAINED BY PRESSURE INJECTION |
KR20220012400A (en) * | 2011-08-05 | 2022-02-03 | 메사추세츠 인스티튜트 오브 테크놀로지 | Devices incorporating a liquid-impregnated surface |
JP6044060B2 (en) * | 2011-09-28 | 2016-12-14 | 凸版印刷株式会社 | Heat sealable packaging material |
JP5195993B2 (en) * | 2011-10-11 | 2013-05-15 | 東洋製罐株式会社 | Multi-layer container |
-
2014
- 2014-12-24 JP JP2014260303A patent/JP6206391B2/en active Active
-
2017
- 2017-09-04 JP JP2017169249A patent/JP6414300B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018039264A (en) | 2018-03-15 |
JP2015107835A (en) | 2015-06-11 |
JP6206391B2 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5673870B1 (en) | Resin structure having a liquid layer on the surface | |
JP5971337B2 (en) | Packaging container with excellent slipperiness for contents | |
JP5673905B1 (en) | Multilayer structure having a liquid layer on the surface | |
JP6554886B2 (en) | Structure with liquid film on the surface | |
RU2675145C1 (en) | Structured product with hydrophobic surface and method for manufacture thereof | |
KR102061243B1 (en) | Structure with external region on surface | |
JP6237154B2 (en) | Packaging container for containing viscous contents | |
WO2016170882A1 (en) | Structure with solid particles distributed on surface | |
JP6414300B2 (en) | Structure with liquid layer on the surface | |
JP6734661B2 (en) | Laminated structure provided with wax layer having uneven surface and method for manufacturing the same | |
JP2018090314A (en) | Package with fluid stored therein | |
JP6295666B2 (en) | Multilayer structure | |
JP6406412B2 (en) | Packaging container containing viscous contents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6414300 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |