JP6403438B2 - Surface acoustic wave oscillator - Google Patents

Surface acoustic wave oscillator Download PDF

Info

Publication number
JP6403438B2
JP6403438B2 JP2014112669A JP2014112669A JP6403438B2 JP 6403438 B2 JP6403438 B2 JP 6403438B2 JP 2014112669 A JP2014112669 A JP 2014112669A JP 2014112669 A JP2014112669 A JP 2014112669A JP 6403438 B2 JP6403438 B2 JP 6403438B2
Authority
JP
Japan
Prior art keywords
oscillation
acoustic wave
surface acoustic
temperature
saw element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014112669A
Other languages
Japanese (ja)
Other versions
JP2015228551A (en
Inventor
奈良 誠
誠 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2014112669A priority Critical patent/JP6403438B2/en
Publication of JP2015228551A publication Critical patent/JP2015228551A/en
Application granted granted Critical
Publication of JP6403438B2 publication Critical patent/JP6403438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

本発明は弾性表面波素子を用いた発振器、特に温度補償が可能な弾性表面波発振器の構成に関する。   The present invention relates to an oscillator using a surface acoustic wave element, and more particularly to a configuration of a surface acoustic wave oscillator capable of temperature compensation.

従来から、携帯電話等の無線通信機器や有線通信機器等には、弾性表面波(Surface acoustic wave:SAW)発振器が広く採用されており、このSAW発振器は、例えば図5に示される構成となっている。
図5(A)において、SAW発振器は、SAW素子1、このSAW素子1からの位相を調整する移相器2及び増幅回路(AMP)3を備え、この増幅回路3の出力をSAW素子1へ帰還させる帰還回路を構成してなる。
Conventionally, surface acoustic wave (SAW) oscillators have been widely used in wireless communication devices such as mobile phones and wired communication devices, and the SAW oscillator has a configuration shown in FIG. 5, for example. ing.
5A, the SAW oscillator includes a SAW element 1, a phase shifter 2 that adjusts the phase from the SAW element 1, and an amplifier circuit (AMP) 3. The output of the amplifier circuit 3 is supplied to the SAW element 1. A feedback circuit for feedback is formed.

図5(B)に示されるように、SAW素子1は、水晶等の圧電性基板に櫛形電極(IDT:Inter Digital Transducer)を形成してなり、中心周波数f1 の周波数帯の信号を通過させるフィルタ特性も有する。   As shown in FIG. 5B, the SAW element 1 has a comb-shaped electrode (IDT: Inter Digital Transducer) formed on a piezoelectric substrate such as quartz, and passes a signal in a frequency band of the center frequency f1. It also has characteristics.

このような構成によれば、上記移相器2は、SAW素子1の出力信号をある固定値の位相φp[rad]だけ進めて(或いは遅らせて)、増幅回路3に出力し、この増幅回路3の出力をSAW素子1へ帰還させることで、発振動作が行われる。
ここで、増幅回路3のゲインをGe[dB]、SAW素子1のゲインをGsaw[dB]、移相器2のゲインをGp[dB]とし、増幅回路3によって位相がφe[rad]進み(或いは遅れる)、SAW素子1によって位相がφsaw[rad]進む(或いは遅れる)とすると、発振条件は次のように表すことができる。
Gsaw+Ge+Gp≧ 0、かつφsaw +φe+φp= 2nπ(nは正数)
According to such a configuration, the phase shifter 2 advances (or delays) the output signal of the SAW element 1 by a fixed phase φp [rad], and outputs the signal to the amplifier circuit 3. The output of 3 is fed back to the SAW element 1, whereby the oscillation operation is performed.
Here, the gain of the amplifier circuit 3 is Ge [dB], the gain of the SAW element 1 is Gsaw [dB], the gain of the phase shifter 2 is Gp [dB], and the phase of the amplifier circuit 3 is advanced by φe [rad] ( If the phase is advanced (or delayed) by φSaw [rad] by the SAW element 1, the oscillation condition can be expressed as follows.
Gsaw + Ge + Gp ≧ 0 and φsaw + φe + φp = 2nπ (n is a positive number)

特開平1−284002号公報JP-A-1-284002

ところで、上記SAW素子1の位相特性は、温度によって変動することが知られており、この温度による位相変動は、SAW素子1を構成する圧電材料(基板)の種類によってもその変動幅が変わってしまうという問題がある。従って、SAW発振器において温度変動をなくすためには、温度変動の少ない発振用SAW素子1が必要であり、水晶等の温度安定性の優れた圧電材料を用いることが要請される。   By the way, it is known that the phase characteristic of the SAW element 1 varies depending on the temperature. The variation width of the phase variation due to the temperature also varies depending on the type of the piezoelectric material (substrate) constituting the SAW element 1. There is a problem of end. Therefore, in order to eliminate the temperature fluctuation in the SAW oscillator, the oscillation SAW element 1 with a small temperature fluctuation is required, and it is required to use a piezoelectric material having excellent temperature stability such as crystal.

しかしながら、発振用SAW素子1の圧電材料として水晶を用いた場合、電気機械結合係数が小さいために狭帯域発振器しか実現できないという問題があった。
また、発振用SAW素子1の製造のばらつき等により、発振周波数のばらつきが発生し、このために歩留まりも非常に悪いという不都合がある。
However, when quartz is used as the piezoelectric material of the oscillating SAW element 1, there is a problem that only a narrow-band oscillator can be realized due to a small electromechanical coupling coefficient.
In addition, the oscillation frequency varies due to variations in the manufacturing of the oscillation SAW element 1, and thus the yield is very poor.

一方、従来では、上記特許文献1(特開平1−284002号公報)に示されるように、周囲温度を検出する外付けの温度センサを設け、この温度センサで検出された温度変化に応じて、位相調整器にて発振周波数のずれを調整し、確実な温度補償を行うことも開示されている。
しかし、上記のように外付けの温度センサを備えるSAW発振器は、小型化には適さない構造であり、近年の小型携帯用通信機器への採用が困難である。
On the other hand, conventionally, as shown in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 1-284002), an external temperature sensor for detecting the ambient temperature is provided, and according to the temperature change detected by this temperature sensor, It is also disclosed that a temperature adjuster is used to adjust the deviation of the oscillation frequency to perform reliable temperature compensation.
However, the SAW oscillator provided with the external temperature sensor as described above has a structure that is not suitable for miniaturization, and is difficult to adopt in recent small portable communication devices.

本発明は上記問題点に鑑みてなされたものであり、その目的は、温度安定性が低い圧電材料からなる発振用弾性表面波素子を用いても、良好な温度補償ができ、また外付け温度センサを用いることなく、装置の小型化が可能となる弾性表面波発振器を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to achieve good temperature compensation even when using an oscillation surface acoustic wave element made of a piezoelectric material having low temperature stability, and to provide an external temperature. An object of the present invention is to provide a surface acoustic wave oscillator that can be downsized without using a sensor.

上記目的を達成するために、請求項1に係る発明の弾性表面波発振器は、発振機能を有すると共に、温度変化に基づく周波数変動を信号レベル(振幅)変動に変換する機能を持つ弾性表面波素子と、この弾性表面波素子から得られた信号レベル変動をDC(直流)電圧として出力する検波回路と、この検波回路からの検波出力に基づき、発振信号の位相を調整する温度補償用移相器と、を設け、上記温度補償用移相器の位相制御により発振周波数の温度補償を行うことを特徴とする。   In order to achieve the above object, a surface acoustic wave oscillator according to claim 1 has an oscillation function and also has a function of converting frequency fluctuations based on temperature changes into signal level (amplitude) fluctuations. And a detection circuit that outputs the signal level fluctuation obtained from the surface acoustic wave element as a DC (direct current) voltage, and a temperature compensation phase shifter that adjusts the phase of the oscillation signal based on the detection output from the detection circuit The temperature compensation of the oscillation frequency is performed by phase control of the temperature compensation phase shifter.

上記の構成によれば、例えば発振用の弾性表面波素子とレベル変換用の弾性表面波素子が設けられ、発振用弾性表面波素子からの出力信号において、温度変化により発振周波数が変動すると、この周波数の変動がレベル(振幅)の変動に変換されて、レベル変換用弾性表面波素子から得られる。このレベル変動は、検波回路にてDC電圧へ変換され、温度補償用移相器では、上記DC電圧により位相が調整されることになり、この結果、発振周波数が温度補償される。   According to the above configuration, for example, the surface acoustic wave element for oscillation and the surface acoustic wave element for level conversion are provided, and in the output signal from the surface acoustic wave element for oscillation, The frequency variation is converted into a level (amplitude) variation and obtained from the surface acoustic wave element for level conversion. This level fluctuation is converted into a DC voltage by a detection circuit, and the phase is adjusted by the DC voltage in the temperature compensation phase shifter. As a result, the oscillation frequency is temperature compensated.

本発明の弾性表面波発振器によれば、温度安定性が低い圧電材料からなる発振用弾性表面波素子を用いた場合でも、温度変化に対する良好な温度補償ができ、温度安定性の高い通信機器が得られる。また、水晶の発振用弾性表面波素子を用いた従来の狭帯域発振器を採用する必要もなく、製造ばらつきが原因の発振周波数のばらつきにも対応することが可能になるという効果がある。
更に、外付けの温度センサを用いないので、装置の小型化が可能であり、小型携帯用通信機器への適用が容易となるという利点がある。
According to the surface acoustic wave oscillator of the present invention, even when an oscillating surface acoustic wave element made of a piezoelectric material having low temperature stability is used, it is possible to perform good temperature compensation for temperature change, and a communication device having high temperature stability. can get. Further, there is no need to adopt a conventional narrow band oscillator using a surface acoustic wave element for crystal oscillation, and there is an effect that it is possible to cope with variations in oscillation frequency due to manufacturing variations.
Furthermore, since an external temperature sensor is not used, there is an advantage that the apparatus can be miniaturized and can be easily applied to a small portable communication device.

本発明に係る実施例の弾性表面波発振器の構成を示す回路図である。It is a circuit diagram which shows the structure of the surface acoustic wave oscillator of the Example which concerns on this invention. 実施例の弾性表面波発振器のSAW素子の構成を示す図である。It is a figure which shows the structure of the SAW element of the surface acoustic wave oscillator of an Example. 実施例の温度補償用移相器の構成を示す回路図である。It is a circuit diagram which shows the structure of the phase shifter for temperature compensation of an Example. 実施例の動作を示す波形図である。It is a wave form diagram which shows operation | movement of an Example. 従来の弾性表面波発振器の構成を示し、図(A)は回路図、図(B)はSAW素子の図である。The structure of a conventional surface acoustic wave oscillator is shown, in which FIG. (A) is a circuit diagram and FIG. (B) is a diagram of a SAW element.

図1に、実施例の弾性表面波(SAW)発振器の構成が示され、図2に、図1のSAW素子の構成が示されている。
図1に示されるように、SAW発振器は、SAW素子10、温度補償用移相器12、従来と同様の移相器2及び増幅回路(AMP)3をループ状に配置することにより、上記SAW素子10への帰還回路を構成し、かつこのSAW素子10のレベルを検波し、検波出力を上記温度補償用移相器12へ入力する検波回路14を設けてなる。
FIG. 1 shows a configuration of a surface acoustic wave (SAW) oscillator according to the embodiment, and FIG. 2 shows a configuration of the SAW element of FIG.
As shown in FIG. 1, the SAW oscillator includes the SAW element 10, the temperature compensation phase shifter 12, the phase shifter 2 and the amplifier circuit (AMP) 3, which are the same as the conventional one, and is arranged in a loop shape. A detection circuit 14 is provided which constitutes a feedback circuit to the element 10, detects the level of the SAW element 10, and inputs the detection output to the temperature compensation phase shifter 12.

図2に示されるように、実施例のSAW素子10は、従来のSAW素子1と同様の構成の発振用SAW素子10aと、レベル変換用SAW素子10bとからなり、この発振用SAW素子10aは、増幅回路3からの信号を入力し、発振信号を温度補償用移相器12へ出力し、上記レベル変換用SAW素子10bは、上記増幅回路3からの信号を入力し、温度変化に基づく周波数変動を振幅レベル変動に変換したレベル出力を検波回路14へ出力する。   As shown in FIG. 2, the SAW element 10 of the embodiment includes an oscillation SAW element 10a having the same configuration as the conventional SAW element 1 and a level conversion SAW element 10b. The oscillation SAW element 10a includes: The signal from the amplifier circuit 3 is input, the oscillation signal is output to the temperature compensation phase shifter 12, and the level conversion SAW element 10b receives the signal from the amplifier circuit 3 and has a frequency based on the temperature change. A level output obtained by converting the fluctuation into the amplitude level fluctuation is output to the detection circuit 14.

即ち、上記レベル変換用SAW素子10bは、IDT(櫛型電極)の重み付けを調整(電極形状等を調整)することにより、周波数に対して傾斜を持つ振幅特性となるように設計される。具体的には、図4(C)に示されるように、例えば周波数が高くなる程、振幅レベルが右肩下がりとなる(周波数が高い程、損失が大きくなる)特性に設定する。なお、このレベル変換用SAW素子10bは、温度安定性を有することが必要であるため、圧電材料として温度安定性の優れた水晶を用いるのが好ましい。   That is, the level converting SAW element 10b is designed to have an amplitude characteristic having an inclination with respect to the frequency by adjusting the weighting of the IDT (comb-shaped electrode) (adjusting the electrode shape or the like). Specifically, as shown in FIG. 4C, for example, the characteristic is set such that the higher the frequency, the lower the amplitude level (the higher the frequency, the greater the loss). Since the level converting SAW element 10b is required to have temperature stability, it is preferable to use quartz having excellent temperature stability as the piezoelectric material.

また、上記移相器2は、従来と同様に、定常状態での周波数を調整し、上記検波回路14は、レベル変換用SAW素子10bから出力されたレベルの変動をDC(直流)電圧へ変換し、上記温度補償用移相器12は、DC電圧に基づき発振用SAW素子10aから入力された発振周波数の位相(移相量)を調整する。   Further, the phase shifter 2 adjusts the frequency in a steady state as in the prior art, and the detection circuit 14 converts the level fluctuation output from the level converting SAW element 10b into a DC (direct current) voltage. The temperature compensation phase shifter 12 adjusts the phase (phase shift amount) of the oscillation frequency input from the oscillation SAW element 10a based on the DC voltage.

図3には、上記温度補償用移相器12の具体的構成が示されており、実施例の移相器12は、入力(IN)端子と出力(OUT)端子との間に、コンデンサC、抵抗R、バリキャップVD、コイルLを図のように接続してなり、端子12aから検波回路14からのDC電圧を入力するように構成される。   FIG. 3 shows a specific configuration of the temperature compensating phase shifter 12. The phase shifter 12 according to the embodiment includes a capacitor C between an input (IN) terminal and an output (OUT) terminal. The resistor R, the varicap VD, and the coil L are connected as shown in the figure, and the DC voltage from the detection circuit 14 is input from the terminal 12a.

実施例は、以上の構成からなり、次にその動作について説明する。
まず、発振ループの増幅回路3からの信号は、発振用SAW素子10aに入力されると共に、分岐される形で、レベル変換用SAW素子10bにも入力される。周囲温度が変化して、発振ループの発振周波数が変動するとき、上記レベル変換用SAW素子10bからの出力レベルが変動する。
The embodiment has the above configuration, and the operation thereof will be described next.
First, a signal from the oscillation circuit 3 of the oscillation loop is input to the oscillation SAW element 10a and is also input to the level conversion SAW element 10b in a branched form. When the ambient temperature changes and the oscillation frequency of the oscillation loop varies, the output level from the level converting SAW element 10b varies.

図4(A)〜(C)に示されるように、例えば点線と一点鎖線との間の変動の場合、発振周波数の変動fcをレベル変動Acに変換する。即ち、所定の温度から高温へ変化し、図4の特性が実線から点線へ変化した場合、位相が進んで発振ループの発振周波数は、低帯域へシフトする。一方、レベル変換用SAW素子10bの出力レベルは図4(C)のように上昇する。この上昇した電圧が、検波回路14でDC電圧へ変換された後、温度補償用移相器12に供給されることで、位相が制御され、発振周波数が高域側にシフトし、温度補償される。逆に、低温へ変化し、図の実線から一点鎖線へ変化した場合は、発振周波数は高帯域へシフトし、レベル変換用SAW素子10bの出力レベルは低下するが、DC電圧によって位相が制御されることで、発振周波数が低域側にシフトし、温度補償される。   As shown in FIGS. 4A to 4C, for example, in the case of a fluctuation between a dotted line and a one-dot chain line, the fluctuation fc of the oscillation frequency is converted into a level fluctuation Ac. That is, when the temperature changes from a predetermined temperature to a high temperature and the characteristic shown in FIG. 4 changes from a solid line to a dotted line, the phase advances and the oscillation frequency of the oscillation loop shifts to a low band. On the other hand, the output level of the level converting SAW element 10b rises as shown in FIG. This increased voltage is converted into a DC voltage by the detection circuit 14 and then supplied to the temperature compensation phase shifter 12 so that the phase is controlled, the oscillation frequency is shifted to the high frequency side, and the temperature is compensated. The Conversely, when the temperature changes to a low temperature and changes from a solid line to a one-dot chain line in the figure, the oscillation frequency shifts to a high band and the output level of the level converting SAW element 10b decreases, but the phase is controlled by the DC voltage. As a result, the oscillation frequency is shifted to the low frequency side and temperature compensation is performed.

実施例の構成によれば、以下の利点がある。
(1)発振用SAW素子10aとして低損失広帯域素子の使用が可能であり、温度安定性の良い広帯域発振器が得られる。なお、広帯域発振器としては、SAW発振器以外に誘電体発振器があり、これと比較しても、従来のSAW発振器は、温度安定性が低いという弱点があるが、この弱点が解消される。
(2)外付けの温度センサが不要であり、また発振用SAW素子10aとレベル変換用SAW素子10bを同一パッケージ内に搭載することで、小型化を図ることができる。なお、レベル変換用SAW素子10bの出力は小信号でよいため、このレベル変換用SAW素子10bの損失が発振器性能へ影響を与えることはない。
(3)発振用SAW素子10aの製造ばらつきによる歩留まりの影響を簡単な調整で回避できる。即ち、移相器2,12の移相量調整により周波数調整が可能であり、実装での調整を不要とすることができる。また、定数調整若しくは可変素子使用で対応することも可能である。
(4)発振ループの損失が少ないため、高利得の増幅回路が不要で、飽和レベルを高く設定できる。
The configuration of the embodiment has the following advantages.
(1) A low-loss broadband device can be used as the oscillation SAW device 10a, and a broadband oscillator with good temperature stability can be obtained. As a broadband oscillator, there is a dielectric oscillator in addition to the SAW oscillator. Compared with this, the conventional SAW oscillator has a weak point that the temperature stability is low, but this weak point is eliminated.
(2) An external temperature sensor is not required, and the oscillation SAW element 10a and the level conversion SAW element 10b are mounted in the same package, so that the size can be reduced. Since the output of the level converting SAW element 10b may be a small signal, the loss of the level converting SAW element 10b does not affect the oscillator performance.
(3) The influence of yield due to manufacturing variations of the oscillation SAW element 10a can be avoided by simple adjustment. That is, the frequency can be adjusted by adjusting the amount of phase shift of the phase shifters 2 and 12, and adjustment in mounting can be made unnecessary. Further, it is possible to cope with constant adjustment or use of a variable element.
(4) Since the loss of the oscillation loop is small, a high gain amplifier circuit is unnecessary and the saturation level can be set high.

なお、実施例では、定常状態での周波数を調整する役割の移相器2を設けているが、温度補償用移相器12にて移相器2の役割も兼ねることも可能である。
また、実施例では、ループ状の発振構成としたが、SAW素子を共振子として使用したループ状でない発振構成に適用することも可能である。
In the embodiment, the phase shifter 2 for adjusting the frequency in the steady state is provided. However, the temperature compensation phase shifter 12 can also serve as the phase shifter 2.
In the embodiment, the loop oscillation configuration is used. However, the present invention can be applied to a non-loop oscillation configuration using a SAW element as a resonator.

1,10…SAW(弾性表面波)素子、
2…移相器、 3…増幅回路(AMP)、
10a…発振用SAW素子、
10b…レベル変換用SAW素子
12…温度補償用移相器、
14…検波回路。
1,10 ... SAW (surface acoustic wave) element,
2 ... Phase shifter 3 ... Amplifier circuit (AMP)
10a: SAW element for oscillation,
10b ... Level conversion SAW element 12 ... Temperature compensation phase shifter,
14: Detection circuit.

Claims (1)

発振機能を有すると共に、温度変化に基づく周波数変動を信号レベル変動に変換する機能を持つ弾性表面波素子と、
この弾性表面波素子から得られた信号レベル変動をDC電圧として出力する検波回路と、
この検波回路からの検波出力に基づき、発振信号の位相を調整する温度補償用移相器と、を設け、
上記温度補償用移相器の位相制御により発振周波数の温度補償を行う弾性表面波発振器。
A surface acoustic wave element having an oscillation function and a function of converting frequency fluctuations based on temperature changes into signal level fluctuations;
A detection circuit that outputs a signal level variation obtained from the surface acoustic wave element as a DC voltage;
A temperature compensation phase shifter for adjusting the phase of the oscillation signal based on the detection output from the detection circuit;
A surface acoustic wave oscillator that performs temperature compensation of an oscillation frequency by phase control of the temperature compensation phase shifter.
JP2014112669A 2014-05-30 2014-05-30 Surface acoustic wave oscillator Active JP6403438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112669A JP6403438B2 (en) 2014-05-30 2014-05-30 Surface acoustic wave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112669A JP6403438B2 (en) 2014-05-30 2014-05-30 Surface acoustic wave oscillator

Publications (2)

Publication Number Publication Date
JP2015228551A JP2015228551A (en) 2015-12-17
JP6403438B2 true JP6403438B2 (en) 2018-10-10

Family

ID=54885804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112669A Active JP6403438B2 (en) 2014-05-30 2014-05-30 Surface acoustic wave oscillator

Country Status (1)

Country Link
JP (1) JP6403438B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154805A (en) * 1979-05-22 1980-12-02 Toshiba Corp Oscillator using elastic surface wave element
JPS55154806A (en) * 1979-05-22 1980-12-02 Toshiba Corp Oscillator using elastic surface wave element
JPH04314204A (en) * 1991-04-12 1992-11-05 Nec Corp Temperature compensation type surface wave oscillator
JPH05284011A (en) * 1992-01-14 1993-10-29 Nec Corp Temperature compensating oscillator
JPH05283934A (en) * 1992-02-05 1993-10-29 Nec Corp Temperature compensation saw oscillator
JPH09298420A (en) * 1996-05-07 1997-11-18 Nec Corp Temperature compensation saw oscillator

Also Published As

Publication number Publication date
JP2015228551A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US8395456B2 (en) Variable phase amplifier circuit and method of use
JPH104318A (en) Temperature compensation type crystal oscillator
US20140125422A1 (en) Self-oscillation circuit
US6794948B2 (en) Oscillation circuit and electronics using the same
US10033085B2 (en) Acoustic-wave device with active calibration mechanism
US20050057318A1 (en) Oscillation circuit and radio communication device using the same
JP5105345B2 (en) Oscillator
JP6403438B2 (en) Surface acoustic wave oscillator
JP4499457B2 (en) Crystal oscillator
US9240755B2 (en) Oscillator circuit
US9270281B1 (en) Apparatuses and methods for tuning center frequencies
JP3923263B2 (en) Composite crystal oscillator and overtone crystal oscillator using the same
JP4025127B2 (en) Oscillator circuit
US8686788B2 (en) Filter circuit
JP6148894B2 (en) Oscillator circuit
JP2003198250A (en) Oscillator circuit and electronic apparatus using the same
US9077281B2 (en) Oscillator circuit
RU2724795C1 (en) Excitation circuit of frequency sensor
JP2010161532A (en) Piezoelectric oscillator
JP6047058B2 (en) Oscillator circuit
JP2013197836A (en) Oscillator and electronic apparatus
JP2017175607A (en) Oscillation control apparatus and oscillation apparatus
JP2006074096A (en) Saw oscillator and electronic equipment
US8933758B1 (en) Bridge-stabilized oscillator with feedback control
JPH1093343A (en) Temperature compensation method for piezoelectric oscillating circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250