JP6399814B2 - Method for producing dichloromethyl alkyl ether compound - Google Patents

Method for producing dichloromethyl alkyl ether compound Download PDF

Info

Publication number
JP6399814B2
JP6399814B2 JP2014118756A JP2014118756A JP6399814B2 JP 6399814 B2 JP6399814 B2 JP 6399814B2 JP 2014118756 A JP2014118756 A JP 2014118756A JP 2014118756 A JP2014118756 A JP 2014118756A JP 6399814 B2 JP6399814 B2 JP 6399814B2
Authority
JP
Japan
Prior art keywords
compound
alkyl ether
dichloromethyl
formate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014118756A
Other languages
Japanese (ja)
Other versions
JP2015231961A (en
Inventor
木村 芳一
芳一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Nikkei Chemical Industry Co Ltd
Original Assignee
Ihara Nikkei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Nikkei Chemical Industry Co Ltd filed Critical Ihara Nikkei Chemical Industry Co Ltd
Priority to JP2014118756A priority Critical patent/JP6399814B2/en
Publication of JP2015231961A publication Critical patent/JP2015231961A/en
Application granted granted Critical
Publication of JP6399814B2 publication Critical patent/JP6399814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ジクロロメチルアルキルエーテル化合物を効率的に製造する方法に関する。   The present invention relates to a method for efficiently producing a dichloromethyl alkyl ether compound.

1,1−ジクロロメチル−2−アルキルエーテルは、他の塩素化剤ではできない反応を行うことができる特殊な塩素化剤として利用される(非特許文献1参照)。あるいは、幅広い芳香族化合物等のホルミル化剤としても反応活性が高く有用な化合物である(非特許文献2参照)。一方、その合成方法はこれまで限られており、例えばギ酸エステルに五塩化リンまたはホスゲンを反応させる方法が知られている(非特許文献3、特許文献1参照)。   1,1-dichloromethyl-2-alkyl ether is used as a special chlorinating agent capable of performing a reaction that cannot be performed by other chlorinating agents (see Non-Patent Document 1). Alternatively, it is a useful compound having high reaction activity as a formylating agent such as a wide range of aromatic compounds (see Non-Patent Document 2). On the other hand, the synthesis method has been limited so far. For example, a method of reacting formate with phosphorus pentachloride or phosgene is known (see Non-Patent Document 3 and Patent Document 1).

特開平08−239338号公報JP 08-239338 A

Organic Syntheses, Coll. Vol.7, p.467 (1990), Vol.61, p.1 (1983)Organic Syntheses, Coll.Vol.7, p.467 (1990), Vol.61, p.1 (1983) Chemical Berichte Jahrg.93, pp.88-94 (1955)Chemical Berichte Jahrg.93, pp.88-94 (1955) Organic Syntheses, Coll. Vol.5, p.365 (1973); Vol.47, p.51 (1967)Organic Syntheses, Coll. Vol.5, p.365 (1973); Vol.47, p.51 (1967)

五塩化リンはそれ自体の毒性が高く、使用後のリンの廃棄処理が問題となる。ホスゲンも毒性の極めて高い化学品であることが知られている。時代の要請は、有用な化合物を環境に優しい安全な方法で製造することである。そのような観点から、本発明は、安全で取扱い易く、環境にも影響の少ない、ジクロロメチルアルキルエーテル化合物の製造方法の提供を目的とする。また、それにより、農薬、医薬、香料、機能性高分子材料などの分野で有用な塩素化化合物やホルミル化化合物の提供に資することを目的とする。   Phosphorus pentachloride is highly toxic in itself, and disposal of phosphorus after use becomes a problem. Phosgene is also known to be a highly toxic chemical. The demand of the times is to produce useful compounds in an environmentally friendly and safe manner. From such a viewpoint, an object of the present invention is to provide a process for producing a dichloromethyl alkyl ether compound that is safe and easy to handle and has little influence on the environment. Moreover, it aims at contributing to provision of a chlorinated compound and a formylation compound useful in the field | areas, such as an agricultural chemical, a pharmaceutical, a fragrance | flavor, and a functional polymer material.

本発明者は、上記課題を解決するために鋭意検討し、N−フェニルホルムアミド触媒の存在下、ギ酸エステル化合物とシュウ酸ジクロリド等のクロリド化合物とを反応させることで、安全に収率良く1,1−ジクロロメチル−2−アルキルエーテル(以下、「DCMAE」と略称することがある)を製造できることを見出し、本発明を完成した。すなわち、本発明は以下の手段を有する。   The present inventor diligently studied to solve the above problems, and by reacting a formic acid ester compound with a chloride compound such as oxalic acid dichloride in the presence of an N-phenylformamide catalyst, 1 The inventors have found that 1-dichloromethyl-2-alkyl ether (hereinafter sometimes abbreviated as “DCMAE”) can be produced, and the present invention has been completed. That is, the present invention has the following means.

〔1〕下記一般式[1]で表されるホルムアニリド化合物の存在下、下記一般式[2]で表されるギ酸エステル化合物と下記一般式[P]で表されるクロリド化合物とを反応させる、一般式[3]で表されるジクロロメチルアルキルエーテル化合物の製造方法。

Figure 0006399814
(式中、Xはメチル基または置換基を有していてもよいフェニル基を表す。R’は炭素数1〜6のアルキル基またはハロゲン原子を表す。mは0〜5の整数を表す。Rは炭素数1〜6のアルキル基を表す。nは1または2を表す。)
〔2〕前記ホルムアニリド化合物を前記ギ酸エステル化合物に対して0.05〜0.2当量用いる〔1〕に記載のジクロロメチルアルキルエーテル化合物の製造方法。
〔3〕前記ギ酸エステル化合物と前記クロリド化合物との反応を無溶媒で行う〔1〕または〔2〕に記載のジクロロメチルアルキルエーテル化合物の製造方法。
〔4〕前記ギ酸エステル化合物のRの炭素数が3〜6であり、当該ギ酸エステル化合物と前記クロリド化合物とを反応させる反応温度を60℃以上80℃以下とする〔1〕〜〔3〕のいずれか1つに記載のジクロロメチルアルキルエーテル化合物の製造方法。
〔5〕 〔1〕〜〔4〕のいずれか1つに記載の製造方法でジクロロメチルアルキルエーテル化合物を得た後、当該ジクロロメチルアルキルエーテル化合物と原料化合物とを反応させ、当該原料化合物のホルミル化化合物を得るホルミル化化合物の製造方法。
〔6〕前記原料化合物が、芳香族化合物および複素芳香族化合物から選ばれる〔5〕に記載のホルミル化化合物の製造方法。 [1] A formic acid ester compound represented by the following general formula [2] is reacted with a chloride compound represented by the following general formula [P] in the presence of a formanilide compound represented by the following general formula [1]. The manufacturing method of the dichloromethyl alkyl ether compound represented by General formula [3].
Figure 0006399814
(In the formula, X represents a methyl group or a phenyl group which may have a substituent. R ′ represents an alkyl group having 1 to 6 carbon atoms or a halogen atom. M represents an integer of 0 to 5). R represents an alkyl group having 1 to 6 carbon atoms, and n represents 1 or 2.)
[2] The process for producing a dichloromethyl alkyl ether compound according to [1], wherein 0.05 to 0.2 equivalent of the formanilide compound is used with respect to the formate compound.
[3] The process for producing a dichloromethyl alkyl ether compound according to [1] or [2], wherein the reaction between the formate compound and the chloride compound is carried out without a solvent.
[4] The carbon number of R of the formate compound is 3 to 6, and the reaction temperature for reacting the formate compound and the chloride compound is 60 ° C. or higher and 80 ° C. or lower. The manufacturing method of the dichloromethyl alkyl ether compound as described in any one.
[5] After obtaining the dichloromethyl alkyl ether compound by the production method according to any one of [1] to [4], the dichloromethyl alkyl ether compound and the raw material compound are reacted to obtain a formylation compound of the raw material compound. A process for producing the formylation compound obtained.
[6] The method for producing a formylation compound according to [5], wherein the raw material compound is selected from an aromatic compound and a heteroaromatic compound.

本発明の製造方法により、安全で取扱い易く、環境にも影響の少ない、ジクロロメチルアルキルエーテル化合物の製造方法を提供することができる。また、それにより、農薬、医薬、香料、機能性高分子材料などの分野で有用な塩素化化合物やホルミル化化合物の提供に貢献することができる。   The production method of the present invention can provide a method for producing a dichloromethyl alkyl ether compound that is safe and easy to handle and has little influence on the environment. Moreover, it can contribute to provision of a chlorinated compound and a formylation compound useful in fields, such as an agricultural chemical, a pharmaceutical, a fragrance | flavor, and a functional polymer material.

以下、本発明について、その好ましい実施形態を中心に詳細に説明する。   Hereinafter, the present invention will be described in detail focusing on preferred embodiments thereof.

・ホルムアニリド化合物
本発明の製造方法において、ホルムアニリド化合物は下記一般式[1]で表され、触媒として用いられる。好ましい適用量は、ギ酸エステル化合物を基準として、0.01当量以上が好ましく、0.03当量以上がより好ましく、0.05当量以上が特に好ましい。上限としては、1当量以下が好ましく、0.5当量以下がさらに好ましく、0.2当量以下が特に好ましい。詳細は後述するが、上記上下限の範囲内とすることで、目的化合物を得る生成反応の逆反応を抑え、一方で十分な反応の活性(触媒作用)を得ることができる。
-Formanilide compound In the manufacturing method of this invention, a formanilide compound is represented by the following general formula [1], and is used as a catalyst. A preferable application amount is preferably 0.01 equivalent or more, more preferably 0.03 equivalent or more, and particularly preferably 0.05 equivalent or more, based on the formate compound. As an upper limit, 1 equivalent or less is preferable, 0.5 equivalent or less is more preferable, and 0.2 equivalent or less is especially preferable. Although details will be described later, by setting it within the above upper and lower limits, the reverse reaction of the production reaction to obtain the target compound can be suppressed, while sufficient reaction activity (catalysis) can be obtained.

Figure 0006399814
Figure 0006399814

式中、Xはメチル基または置換基を有していてもよいフェニル基を表す。R’は低級アルキル基(炭素数1〜6が好ましく、1〜3がより好ましい。)またはハロゲン原子(塩素原子、フッ素原子)を表す。R’はなかでも、メチル基、エチル基、プロピル基、ハロゲン原子(塩素原子、フッ素原子)が好ましい。mは0〜5の整数を表し、0〜2が好ましく、0または1がより好ましい。
置換基を有していてもよいフェニル基の置換基としては、上記R’が挙げられる。置換基を有していてもよいフェニル基は下記式(T−1)で表されることが好ましく、式(T−2)で表される置換基であることがより好ましい。R’は前記式(1)と同義である。R”は水素原子またはR’で表される置換基である。*はNとの結合位置を表す。
In the formula, X represents a methyl group or a phenyl group which may have a substituent. R ′ represents a lower alkyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3) or a halogen atom (chlorine atom, fluorine atom). Among them, R ′ is preferably a methyl group, an ethyl group, a propyl group, or a halogen atom (chlorine atom, fluorine atom). m represents an integer of 0 to 5, preferably 0 to 2, and more preferably 0 or 1.
Examples of the substituent of the phenyl group which may have a substituent include the above R ′. The phenyl group which may have a substituent is preferably represented by the following formula (T-1), and more preferably a substituent represented by the formula (T-2). R ′ is synonymous with the formula (1). R ″ is a hydrogen atom or a substituent represented by R ′. * Represents a bonding position with N.

Figure 0006399814
Figure 0006399814

・ギ酸エステル化合物
本発明の製造方法における基質の1つは下記式[2]で表されるギ酸エステル化合物である。その適用量は任意に調節すればよく、典型的には化学量論量で適用することができる。
-Formate compound One of the substrates in the production method of the present invention is a formate compound represented by the following formula [2]. The application amount may be arbitrarily adjusted, and can be typically applied in a stoichiometric amount.

Figure 0006399814
Figure 0006399814

Rは炭素数1〜6のアルキル基を表す。Rの炭素数は3以上が好ましい。上限としては、5以下が好ましい。   R represents an alkyl group having 1 to 6 carbon atoms. R has preferably 3 or more carbon atoms. As an upper limit, 5 or less is preferable.

ギ酸メチルまたはギ酸エチルはともに引火点がマイナス20℃と低く大量に扱うことが難しいことがある。この観点で、ギ酸ブチルは引火点16℃の液体であり、塩素化剤またはホルミル化剤としても活性を有する。本発明の好ましい実施形態においては、炭素数3〜5のギ酸エステル化合物を選定し、かつ、クロリド化合物としてもシュウ酸ジクロリド(塩化オキサリル)を用いることで、安全性及び取扱い性のきわめて高い製造方法を提供することができる。
原料に用いるギ酸エステル化合物はその沸点が60℃以上のものが好ましい。市販品の入手、次工程の反応後の副生物を考慮すると式[2]のRは上記のとおり炭素数3〜5のアルキル基であることが好ましい。
Both methyl formate and ethyl formate have a low flash point of minus 20 ° C. and may be difficult to handle in large quantities. In this respect, butyl formate is a liquid having a flash point of 16 ° C., and is also active as a chlorinating agent or a formylating agent. In a preferred embodiment of the present invention, a formic acid ester compound having 3 to 5 carbon atoms is selected, and oxalic acid dichloride (oxalyl chloride) is used as the chloride compound, so that the production method is extremely safe and easy to handle. Can be provided.
The formate compound used as the raw material preferably has a boiling point of 60 ° C. or higher. In consideration of the availability of commercially available products and by-products after the reaction in the next step, R in formula [2] is preferably an alkyl group having 3 to 5 carbon atoms as described above.

・クロリド化合物
本発明の製造方法におけるもう1つの基質は、下記式[P]で表されるクロリド化合物である。当該クロリド化合物は、n=1のときホスゲン、n=2のときシュウ酸ジクロリドとなる。本発明においては、なかでも、n=2のシュウ酸ジクロリドが安全性、取扱い性の観点で特に好ましい。
-Chloride compound Another substrate in the production method of the present invention is a chloride compound represented by the following formula [P]. The chloride compound is phosgene when n = 1 and oxalic acid dichloride when n = 2. In the present invention, n = 2 oxalic acid dichloride is particularly preferable from the viewpoints of safety and handleability.

Figure 0006399814
Figure 0006399814

式中、nは1または2を表し、nは2が好ましい。   In the formula, n represents 1 or 2, and n is preferably 2.

・ジクロロメチルアルキルエーテル化合物 ・ Dichloromethyl alkyl ether compounds

Figure 0006399814
Figure 0006399814

Rは前記式[2]と同義である。   R is synonymous with the formula [2].

以下に、反応スキームに基づく対比により、従来技術と本発明との相違についてより詳しく明らかにする。
特許文献1には、ギ酸メチルまたはギ酸エチルを1,1−ジクロロメチル−2−メチルエーテルまたは1,1−ジクロロメチルー2−エチルエーテルに限定した製造法を開示している。実施例で開示しているのはトリフェニルホスフィンオキシド(TPPO)またはN,N−ジブチルホルムアミド(DBF)を触媒としホスゲンを原料とする方法である。それらの触媒はホスゲンによりクロリド化合物に変化し、これがギ酸メチルあるいはギ酸エチルと反応すると解される(スキーム1)。
しかしながら、特許文献1の実施例5によるとDBFを触媒とした場合にはジクロロメチルメチルエーテルの収率は31%に留まっていた。また特許文献1にはシュウ酸ジクロリドが本文中で記載されているが、実施例はなく収率その他の詳細は不明である。
Hereinafter, the difference between the prior art and the present invention will be clarified in more detail by comparison based on the reaction scheme.
Patent Document 1 discloses a production method in which methyl formate or ethyl formate is limited to 1,1-dichloromethyl-2-methyl ether or 1,1-dichloromethyl-2-ethyl ether. Examples disclosed in the Examples are methods using triphenylphosphine oxide (TPPO) or N, N-dibutylformamide (DBF) as a catalyst and phosgene as a raw material. It is understood that these catalysts are converted into chloride compounds by phosgene, which reacts with methyl formate or ethyl formate (Scheme 1).
However, according to Example 5 of Patent Document 1, when DBF was used as a catalyst, the yield of dichloromethyl methyl ether was only 31%. Patent Document 1 describes oxalic acid dichloride in the text, but there is no example, and the yield and other details are unknown.

Figure 0006399814
Figure 0006399814

後記実施例の項で示したとおり、シュウ酸ジクロリドを用いた追試の結果では、TPPOを触媒とする反応(比較例1)のGCによる収率は74%であった。しかし、膨潤した固体が析出し蒸留することができなかった。DBFを触媒とする方法(比較例2)では反応系が汚濁し収率も低かった。もっとも、汎用されるジメチルホルムアミドを触媒とする方法(比較例3)では、さらに反応系が汚濁し目的物を単離することができなかった。このように、ジメチルホルムアミドとシュウ酸ジクロリドを用いる方法では、1,1−ジクロロメチル−2−ブチルエーテルを十分な収率と純度で与えない。
それらの問題点を、本発明においては、ホルムアミド触媒にフェニル基を導入することにより解決した。この改善効果がもたらされる理由として、系内に生じたイミドイルクロリド中間体の熱安定性がフェニル基の導入により向上し、触媒の分解による副反応の増加および反応速度の低下を阻止できることが考えられる。
本発明の好ましい実施形態に係る合成反応をその過程について分解した式で表すと、下記スキーム2のように示される。ここでR、Rは少なくとも1つが置換基を有していてもよいフェニル基である。本発明者の実験事実からの考察によると、以下のように説明することができる。式(1)は室温付近で速やかに反応が進行する。これに対して、式(2)の化合物[iii]は非常に反応性が高く、その逆反応が進行しやすい。式(2)の逆反応の抑制のみを考慮すると、化合物[i]の使用量は少なければ少ないほどよい。しかし、過度に減量すると、式(1)の反応が遅くなるので実用的ではない。両者を考慮し、反応成分の中でも、化合物[i](上記式(1)で表されるホルムアニリド化合物)の使用量が好適な範囲に調節されることが好ましい。
As shown in the Examples section below, in the results of the additional test using oxalic acid dichloride, the yield by GC of the reaction using TPPO as a catalyst (Comparative Example 1) was 74%. However, the swollen solid precipitated and could not be distilled. In the method using DBF as a catalyst (Comparative Example 2), the reaction system was contaminated and the yield was low. However, in the method using dimethylformamide as a catalyst (Comparative Example 3), the reaction system was further contaminated and the target product could not be isolated. Thus, the method using dimethylformamide and oxalic acid dichloride does not give 1,1-dichloromethyl-2-butyl ether in sufficient yield and purity.
In the present invention, these problems have been solved by introducing a phenyl group into the formamide catalyst. The reason for this improvement effect is that the thermal stability of the imidoyl chloride intermediate formed in the system is improved by introducing a phenyl group, and it is possible to prevent an increase in side reactions and a decrease in reaction rate due to decomposition of the catalyst. It is done.
A synthesis reaction according to a preferred embodiment of the present invention is represented by the formula decomposed for the process, as shown in the following scheme 2. Here, at least one of R 1 and R 2 is a phenyl group which may have a substituent. According to the inventor's examination from the experimental facts, it can be explained as follows. In Formula (1), the reaction proceeds promptly near room temperature. On the other hand, the compound [iii] of the formula (2) is very reactive, and its reverse reaction tends to proceed. Considering only suppression of the reverse reaction of formula (2), the smaller the amount of compound [i] used, the better. However, if the amount is excessively reduced, the reaction of formula (1) becomes slow, which is not practical. Considering both, it is preferable that the use amount of the compound [i] (formanilide compound represented by the above formula (1)) among the reaction components is adjusted to a suitable range.

前記ギ酸エステル化合物と前記クロリド化合物とを反応させる反応温度は、20℃以上が好ましく、40℃以上がより好ましく、60℃以上がさらに好ましい。上限としては、80℃以下が好ましい。この温度設定は、式[2]で表されるギ酸エステル化合物のRの炭素数が3〜6であるときに、特に好適である。   The reaction temperature at which the formate compound and the chloride compound are reacted is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 60 ° C. or higher. As an upper limit, 80 degrees C or less is preferable. This temperature setting is particularly suitable when the carbon number of R in the formate compound represented by the formula [2] is 3-6.

本発明においては、反応溶媒を不要化することができる。溶媒を使用してもよいが、容積効率の低下、生成物と溶媒との分離、溶媒の回収など余分な労力を要することが多く、溶媒を用いずに反応を行うことができることが好ましい。
式(1)の反応は速いので、化合物[iv]は滴下することが好ましい。一酸化炭素と二酸化炭素と発生を伴うので、一度に加えるとガスの発生が激しく反応が過度に進行することがある。
In the present invention, the reaction solvent can be eliminated. Although a solvent may be used, it often requires extra effort such as reduction in volumetric efficiency, separation of the product and the solvent, and recovery of the solvent, and it is preferable that the reaction can be performed without using the solvent.
Since the reaction of the formula (1) is fast, the compound [iv] is preferably added dropwise. Since carbon monoxide and carbon dioxide are generated, when they are added all at once, the gas generation is intense and the reaction may proceed excessively.

Figure 0006399814
Figure 0006399814

本発明によれば、精製操作を要さずに、ジクロロメチルアルキルエーテルを90〜95%の純度で得ることができる。上限としては、ジクロロメチルアルキルエーテルの逆反応により限定されるため、この観点からも上述したようにホルムアミド化合物の量を好適な範囲に調節することが好ましい。生成物は、そのまま芳香族化合物のホルミル化に用いることができる。芳香族化合物との反応は、Chem.Ber.1960、93、88−94に記載している通り幅広い芳香族化合物に適応することができる。触媒として既知のチタン、スズ、アルミの代わりに安価な塩化亜鉛、塩化鉄(III)などを用いても収率良くホルミル化反応が進行する。その実例としてピペロナールの合成を参考例1として記載する。ピペロナールは高級香料として産業界で有用な化合物であるが、多段階の合成法で実施されており、ジクロロメチルブチルエーテルと塩化鉄の反応により高収率で実施できることは興味深いことである。   According to the present invention, dichloromethyl alkyl ether can be obtained with a purity of 90 to 95% without requiring a purification operation. Since the upper limit is limited by the reverse reaction of dichloromethyl alkyl ether, it is preferable to adjust the amount of the formamide compound to a suitable range as described above also from this viewpoint. The product can be used as it is for formylation of aromatic compounds. Reactions with aromatic compounds are described in Chem. Ber. 1960, 93, 88-94 can be applied to a wide range of aromatic compounds. Even if inexpensive zinc chloride, iron (III) chloride, or the like is used as a catalyst instead of known titanium, tin, and aluminum, the formylation reaction proceeds with good yield. As an example, the synthesis of piperonal is described as Reference Example 1. Piperonal is a useful compound in the industry as a high-quality fragrance, but it is interesting that it can be produced in a high yield by the reaction of dichloromethylbutyl ether and iron chloride, which is carried out by a multi-step synthesis method.

塩素化反応の例としては、アルキルスルホン酸(例えばメタンスルホン酸)もしくはその塩等のスルホン酸化合物と、1,1−ジクロロメチル−2−アルキルエーテル(DCMAE)を反応させて、アルキルスルホニルクロリド(例えばメタンスルホニルクロリド)を得る反応が知られている(Rieche, A and Gross, H.Chem.Ber. 1959, 92, pp.83-91)。また、ケトン化合物(RCOR’)とDCMAEとを反応させて、ジクロロアルキル化合物を得る反応が知られている(Ottenheijim, H.C.J. and Tijhuis, M.W, OS VII p.467 (1970), Ottenheijim, H.C.J and Deman, J.H.M. Synthesis 1975, pp.163-164)。
ホルミル化反応の例としては、上記のとおり、芳香族化合物や複素芳香族化合物とDCMAEを反応させてホルミル化し、各種の(複素)芳香族ホルミル化化合物を得る方法が知られている(前記非特許文献2、Rieche, A, Gross, H, and Hoft, E.OS V p.49, Rieche, A, Gross, H, and Hoft,E.Chem.Ber. 1960, 93, pp.88-94 参照)。この合成法で得られる化合物としては、例えば、ベンズアルデヒド、クミンアルデヒド、3,4−ジメチルベンズアルデヒド、メシチルアルデヒド、フェニルベンズアルデヒド、ナフトアルデヒド、フルオレンアルデヒド、アントラセンアルデヒド、フェナントレンアルデヒド、ピレンアルデヒド、フルオロベンズアルデヒド、メトキシベンズアルデヒド、ベラトラムアルデヒド、メトキシニトロベンズアルデヒド、メトキシナフトアルデヒド、チオフェンアルデヒドなどが挙げられる。
この反応を応用することにより、上述のように、ピロナールなどの複雑な構造の化合物の合成も可能となる。あるいは、フルオロベンゼンのように官能基の導入が難しい化合物であっても、これとDCMAEを反応させることで、簡便に、フルオロベンズアルデヒドを得ることができる(US5,138,099)。
As an example of the chlorination reaction, a sulfonic acid compound such as an alkylsulfonic acid (for example, methanesulfonic acid) or a salt thereof and 1,1-dichloromethyl-2-alkyl ether (DCMAE) are reacted to obtain an alkylsulfonyl chloride ( For example, a reaction for obtaining methanesulfonyl chloride is known (Rieche, A and Gross, H. Chem. Ber. 1959, 92, pp. 83-91). In addition, a reaction in which a ketone compound (RCOR ′) and DCMAE are reacted to obtain a dichloroalkyl compound is known (Ottenheijim, HCJ and Tijhuis, MW, OS VII p.467 (1970), Ottenheijim, HCJ and Deman). , JHM Synthesis 1975, pp.163-164).
As an example of the formylation reaction, as described above, a method is known in which an aromatic compound or a heteroaromatic compound is reacted with DCMAE to formylate to obtain various (hetero) aromatic formylation compounds (the above non-formation). See Patent Document 2, Rieche, A, Gross, H, and Hoft, E.OS V p.49, Rieche, A, Gross, H, and Hoft, E.Chem.Ber. 1960, 93, pp.88-94 ). Examples of the compound obtained by this synthesis method include benzaldehyde, cuminaldehyde, 3,4-dimethylbenzaldehyde, mesitylaldehyde, phenylbenzaldehyde, naphthaldehyde, fluorenealdehyde, anthracene aldehyde, phenanthrenealdehyde, pyrenealdehyde, fluorobenzaldehyde, methoxy Examples include benzaldehyde, veratramaldehyde, methoxynitrobenzaldehyde, methoxynaphthaldehyde, thiophene aldehyde, and the like.
By applying this reaction, it is possible to synthesize a compound having a complicated structure such as pyronal as described above. Or even if it is a compound which is difficult to introduce | transduce a functional group like fluorobenzene, a fluorobenzaldehyde can be simply obtained by making this and DCMAE react (US5,138,099).

以下に、実施例を通じて本発明についてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。   Hereinafter, the present invention will be described in more detail through examples, but the present invention is not construed as being limited thereto.

実施例1
N−メチルホルムアニリド 1.40g(10.4ミリモル)、ギ酸ブチル 10.2g(100ミリモル)を60℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 16.2g(128ミリモル)を1時間30分かけて滴下した。その後、同じ温度で気体の発生がなくなるまで7時間30分撹拌を続けた。GC分析で87%のジクロロメチルブチルエーテルが生成していることを確認した。反応液は薄い褐色であった。反応液を減圧蒸留し、20torr、59℃の留分、13.0g(粗収率83%)GC純度92%を得た。(文献値 48−49℃/15torr:Rieche, A, Gross, H, and Hoft, E. Chem. Ber. 1960, 93, 88―94)GCMSで標品と一致することを確認した。m/z=113、83、57(最大)、41.
GC純度はモレキュラーシーブスで乾燥したジクロロメタンでジクロロメチルブチルエーテルを希釈し、その溶液を直接GCに導入し測定した。
Example 1
1.40 g (10.4 mmol) of N-methylformanilide and 10.2 g (100 mmol) of butyl formate were placed in an oil bath at 60 ° C., and 16.2 g (128 mmol) of oxalic acid dichloride was added over 1 hour and 30 minutes with stirring. And dripped. Thereafter, stirring was continued for 7 hours and 30 minutes until no more gas was generated at the same temperature. It was confirmed by GC analysis that 87% of dichloromethylbutyl ether was produced. The reaction solution was light brown. The reaction solution was distilled under reduced pressure to obtain a fraction of 20 torr, 59 ° C., 13.0 g (crude yield 83%) and GC purity 92%. (Reference value 48-49 ° C./15 torr: Rieche, A, Gross, H, and Hof, E. Chem. Ber. 1960, 93, 88-94) It was confirmed by GCMS that it was consistent with the standard product. m / z = 113, 83, 57 (maximum), 41.
The GC purity was measured by diluting dichloromethylbutyl ether with dichloromethane dried with molecular sieves and introducing the solution directly into GC.

実施例2〜4
実施例1のギ酸ブチルの代わりに、炭素数3〜6のギ酸エステルを使用した以外は同様に反応し、それぞれジクロロメチルアルキルエーテルを製造した。それらの結果を他の例の結果と合わせて表1に示す。
Examples 2-4
A dichloromethyl alkyl ether was produced in the same manner as in Example 1 except that a formic acid ester having 3 to 6 carbon atoms was used instead of butyl formate. The results are shown in Table 1 together with the results of other examples.

反応条件:原料(100ミリモル)、N−メチルホルムアニリド(10ミリモル)、シュウ酸ジクロリド(130ミリモル)滴下60℃で2時間、その後60℃で7時間撹拌   Reaction conditions: Raw material (100 mmol), N-methylformanilide (10 mmol), oxalic acid dichloride (130 mmol) dropwise at 60 ° C. for 2 hours, then stirred at 60 ° C. for 7 hours

実施例5
N,N−ジフェニルホルムアミド 1.97g(4.9ミリモル)、ギ酸ブチル 10.2g(100ミリモル)を60℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 16.2g(128ミリモル)を1時間30分かけて滴下した。その後、同じ温度で2時間撹拌を続けた。GC分析で80%のジクロロメチルブチルエーテルが生成していることを確認した。その後、反応を続けたが生成量の変化はなかった。反応液は薄い褐色であった。
Example 5
1.97 g (4.9 mmol) of N, N-diphenylformamide and 10.2 g (100 mmol) of butyl formate were placed in an oil bath at 60 ° C., and 16.2 g (128 mmol) of oxalic acid dichloride was stirred for 1 hour and 30 minutes. It was dripped over. Thereafter, stirring was continued for 2 hours at the same temperature. It was confirmed by GC analysis that 80% of dichloromethylbutyl ether was produced. Thereafter, the reaction was continued, but the amount produced was not changed. The reaction solution was light brown.

実施例6
実施例5のN,N−ジフェニルホルムアミドの量を半分 0.96g(4.9ミリモル)とした以外は実施例5と同様に反応した。滴下1時間、撹拌3時間での分析ではジクロロメチルブチルエーテルの生成は60%であり、さらに4時間撹拌しても生成量の変化はなかった。シュウ酸ジクロリドを1.0g(7.9ミリモル)追加して2時間撹拌すると、ジクロロメチルブチルエーテルの生成は67%となった。
Example 6
The reaction was conducted in the same manner as in Example 5 except that the amount of N, N-diphenylformamide in Example 5 was reduced to 0.96 g (4.9 mmol). According to the analysis of dropping for 1 hour and stirring for 3 hours, the production of dichloromethyl butyl ether was 60%, and even when the stirring was continued for 4 hours, the amount of production was unchanged. When 1.0 g (7.9 mmol) of oxalic acid dichloride was added and stirred for 2 hours, the production of dichloromethylbutyl ether was 67%.

実施例7
N−メチルホルムアニリド 2.72g(20.1ミリモル)、ギ酸メチル 12.0g(200ミリモル)を30℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 32.0g(252ミリモル)を6時間かけて滴下した。その間、穏やかな還流が認められた。その後、同じ温度で気体の発生がなくなるまで3時間撹拌を続けた。GC分析でギ酸メチルがほとんど残っていないことを確認した。反応液は薄い褐色であった。これを蒸留し沸点70―72℃の留分を14g得た。GCMS分析すると、57%のジクロロメチルメチルエーテルと43%のシュウ酸ジクロリドの混合物であった。それぞれは標品のマススペクトルと完全に一致した。初留分には36%のジクロロメチルメチルエーテルが含まれていた。それらを合計すると純分換算でジクロロメチルメチルエーテルの単離収率は52%であった。
Example 7
2.72 g (20.1 mmol) of N-methylformanilide and 12.0 g (200 mmol) of methyl formate were placed in an oil bath at 30 ° C. and 32.0 g (252 mmol) of oxalic acid dichloride was added dropwise over 6 hours while stirring. did. During that time, a gentle reflux was observed. Thereafter, stirring was continued for 3 hours until no more gas was generated at the same temperature. GC analysis confirmed that little methyl formate remained. The reaction solution was light brown. This was distilled to obtain 14 g of a fraction having a boiling point of 70-72 ° C. GCMS analysis revealed a mixture of 57% dichloromethyl methyl ether and 43% oxalic acid dichloride. Each matched the mass spectrum of the standard. The first fraction contained 36% dichloromethyl methyl ether. When they were combined, the isolated yield of dichloromethyl methyl ether was 52% in terms of pure content.

実施例8
N−メチルホルムアニリド 1.38g(10.2ミリモル)、ギ酸ブチル 10.2g(100ミリモル)を25−30℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 16.0g(126ミリモル)を1時間30分かけて滴下した。その後、同じ温度で気体の発生がなくなるまで27時間撹拌を続けた。GC分析で80%のジクロロメチルブチルエーテルが生成していることを確認した。反応液は薄い褐色であった。
Example 8
1.38 g (10.2 mmol) of N-methylformanilide and 10.2 g (100 mmol) of butyl formate were placed in an oil bath at 25-30 ° C., and 16.0 g (126 mmol) of oxalic acid dichloride was stirred for 30 hours. It was added dropwise over a period of minutes. Thereafter, stirring was continued for 27 hours until no more gas was generated at the same temperature. It was confirmed by GC analysis that 80% of dichloromethylbutyl ether was produced. The reaction solution was light brown.

比較例1
トリフェニルホスフィンオキシド 2.86g(10.0ミリモル)、ギ酸ブチル 10.4g(102ミリモル)の混合物にシュウ酸ジクロリド 16.2g(128ミリモル)を60℃にて2時間かけて滴下し、続いて7時間撹拌した。滴下の途中から白色結晶が析出し最後までスラリーのままであった。GC分析をすると74%のジクロロメチルブチルエーテルが生成していたが、トリフェニルホスフィンオキシドと思われる白色の結晶が大量に析出し蒸留は困難であった。
Comparative Example 1
To a mixture of 2.86 g (10.0 mmol) of triphenylphosphine oxide and 10.4 g (102 mmol) of butyl formate, 16.2 g (128 mmol) of oxalic acid dichloride was added dropwise at 60 ° C. over 2 hours, followed by Stir for 7 hours. White crystals precipitated from the middle of the dropping and remained as a slurry until the end. When GC analysis was performed, 74% of dichloromethylbutyl ether was produced, but a large amount of white crystals that seemed to be triphenylphosphine oxide were precipitated, making distillation difficult.

比較例2
N,N−ジブチルホルムアミド 1.57g(10.0ミリモル)、ギ酸イソブチル 8.23g(80.7ミリモル)を50℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 13.4g(106ミリモル)を3時間かけて滴下した。その後、70℃にて5時間撹拌を続けGC分析すると、全面積で43%のジクロロメチルイソブチルエーテルが生成しているが、57%のギ酸イソブチルが残存していた。反応液は濃い褐色であった。
Comparative Example 2
N, N-dibutylformamide (1.57 g, 10.0 mmol) and isobutyl formate (8.23 g, 80.7 mmol) were placed in an oil bath at 50 ° C., and 13.4 g (106 mmol) of oxalic acid dichloride was stirred for 3 hours with stirring. It was dripped over. Thereafter, stirring was continued at 70 ° C. for 5 hours, and GC analysis revealed that 43% of dichloromethyl isobutyl ether was formed in the entire area, but 57% of isobutyl formate remained. The reaction solution was dark brown.

比較例3
N,N−ジメチルホルムアミド 0.77g(10.5ミリモル)、ギ酸イソプロピル 8.8g(100ミリモル)を60℃のオイルバスにつけ撹拌しながらシュウ酸ジクロリド 16g(126ミリモル)を1時間30分かけて滴下した。その後、60℃にて6時間30分撹拌した。静置すると、濃い褐色成分が底に沈み、上層部は透明な薄い褐色であった。上層部をGC分析すると原料のギ酸イソプロピルは消失し、ジクロロメチルイソプロピルエーテルの生成を確認したが、蒸留するとほとんど目的物が得られなかった。
Comparative Example 3
0.77 g (10.5 mmol) of N, N-dimethylformamide and 8.8 g (100 mmol) of isopropyl formate were placed in an oil bath at 60 ° C. and 16 g (126 mmol) of oxalic acid dichloride was added over 1 hour and 30 minutes while stirring. It was dripped. Then, it stirred at 60 degreeC for 6 hours and 30 minutes. Upon standing, a dark brown component sinked to the bottom and the upper layer was a clear, light brown color. When the upper layer was analyzed by GC, the raw material isopropyl formate disappeared and the formation of dichloromethyl isopropyl ether was confirmed. However, when the product was distilled, the target product was hardly obtained.

参考例1
1,2−メチレンジオキシベンゼン 1.20g(10ミリモル)、塩化鉄(III) 1.6g(10ミリモル)をジクロロメタン 5mLに懸濁させた液を氷浴で冷却し、実施例1で得られたジクロロメチルジブチルエーテル 1.90g(12ミリモル)を加え0.5時間撹拌した。その後、室温にて0.5時間撹拌したのち、2M−HClを加え反応を停止した。有機層をGCMS分析すると、ピペロナールが91%収率で生成していることを確認した。m/z=150(M)で標品のマススペクトルと一致した。ジクロロメタン層を分離し、クーゲルロール(180℃/5torr)にて蒸留し1.0g(収率67%)の白色ピペロナールを単離した。融点36.1℃(文献値、36℃ 日本化学会誌1940年61巻583−591頁)。
Reference example 1
A solution obtained by suspending 1.20 g (10 mmol) of 1,2-methylenedioxybenzene and 1.6 g (10 mmol) of iron (III) chloride in 5 mL of dichloromethane was cooled in an ice bath and obtained in Example 1. Dichloromethyldibutyl ether 1.90 g (12 mmol) was added and stirred for 0.5 hour. Then, after stirring at room temperature for 0.5 hour, 2M-HCl was added and reaction was stopped. GCMS analysis of the organic layer confirmed that piperonal was produced in 91% yield. m / z = 150 (M + ), which agreed with the mass spectrum of the sample. The dichloromethane layer was separated and distilled with Kugelrohr (180 ° C./5 torr) to isolate 1.0 g (yield 67%) of white piperonal. Melting point: 36.1 ° C. (literature value, 36 ° C. Journal of Chemical Society of Japan, 1940, 61: 583-591).

Figure 0006399814
Figure 0006399814

Claims (6)

下記一般式[1]で表されるホルムアニリド化合物の存在下、下記一般式[2]で表されるギ酸エステル化合物と下記一般式[P]で表されるクロリド化合物とを反応させる、一般式[3]で表されるジクロロメチルアルキルエーテル化合物の製造方法。
Figure 0006399814
(式中、Xはメチル基または置換基を有していてもよいフェニル基を表す。R’は炭素数1〜6のアルキル基またはハロゲン原子を表す。mは0〜5の整数を表す。Rは炭素数1〜6のアルキル基を表す。nは1または2を表す。)
In the presence of a formanilide compound represented by the following general formula [1], a formic acid ester compound represented by the following general formula [2] is reacted with a chloride compound represented by the following general formula [P]. A method for producing a dichloromethyl alkyl ether compound represented by [3].
Figure 0006399814
(In the formula, X represents a methyl group or a phenyl group which may have a substituent. R ′ represents an alkyl group having 1 to 6 carbon atoms or a halogen atom. M represents an integer of 0 to 5). R represents an alkyl group having 1 to 6 carbon atoms, and n represents 1 or 2.)
前記ホルムアニリド化合物を前記ギ酸エステル化合物に対して0.05〜0.2当量用いる請求項1に記載のジクロロメチルアルキルエーテル化合物の製造方法。   The method for producing a dichloromethyl alkyl ether compound according to claim 1, wherein 0.05 to 0.2 equivalent of the formanilide compound is used with respect to the formate compound. 前記ギ酸エステル化合物と前記クロリド化合物との反応を無溶媒で行う請求項1または2に記載のジクロロメチルアルキルエーテル化合物の製造方法。   The method for producing a dichloromethyl alkyl ether compound according to claim 1 or 2, wherein the reaction between the formate compound and the chloride compound is carried out without a solvent. 前記ギ酸エステル化合物のRの炭素数が3〜6であり、当該ギ酸エステル化合物と前記クロリド化合物とを反応させる反応温度を60℃以上80℃以下とする請求項1〜3のいずれか1項に記載のジクロロメチルアルキルエーテル化合物の製造方法。   The carbon number of R of the said formate ester compound is 3-6, The reaction temperature which makes the said formate ester compound and the said chloride compound react is 60 degreeC or more and 80 degrees C or less. The manufacturing method of the dichloromethyl alkyl ether compound of description. 請求項1〜4のいずれか1項に記載の製造方法でジクロロメチルアルキルエーテル化合物を得た後、当該ジクロロメチルアルキルエーテル化合物と原料化合物とを反応させ、当該原料化合物のホルミル化化合物を得るホルミル化化合物の製造方法。   After obtaining a dichloromethyl alkyl ether compound by the manufacturing method of any one of Claims 1-4, the said dichloromethyl alkyl ether compound and a raw material compound are made to react, and the formyl which obtains the formylation compound of the said raw material compound Method for producing chemical compound. 前記原料化合物が、芳香族化合物および複素芳香族化合物から選ばれる請求項5に記載のホルミル化化合物の製造方法。
The method for producing a formylation compound according to claim 5, wherein the raw material compound is selected from an aromatic compound and a heteroaromatic compound.
JP2014118756A 2014-06-09 2014-06-09 Method for producing dichloromethyl alkyl ether compound Active JP6399814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118756A JP6399814B2 (en) 2014-06-09 2014-06-09 Method for producing dichloromethyl alkyl ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118756A JP6399814B2 (en) 2014-06-09 2014-06-09 Method for producing dichloromethyl alkyl ether compound

Publications (2)

Publication Number Publication Date
JP2015231961A JP2015231961A (en) 2015-12-24
JP6399814B2 true JP6399814B2 (en) 2018-10-03

Family

ID=54933696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118756A Active JP6399814B2 (en) 2014-06-09 2014-06-09 Method for producing dichloromethyl alkyl ether compound

Country Status (1)

Country Link
JP (1) JP6399814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873286A (en) * 2022-12-14 2023-03-31 武汉轻工大学 Semi-interpenetrating network anion exchange membrane and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156867A (en) * 1976-06-23 1977-12-27 Mitsui Toatsu Chem Inc Preparation of piperonal
US5138099A (en) * 1991-07-31 1992-08-11 Mallinckrodt Specialty Chemicals Company Synthesis of fluorobenzaldehydes
PL179920B1 (en) * 1994-07-20 2000-11-30 Monsanto Co Benzoyl derivatives and their synthesis
FR2726555B1 (en) * 1994-11-04 1996-12-06 Poudres & Explosifs Ste Nale PROCESS FOR THE PREPARATION OF 1,1-DICHLOROMETHYL AND METHYL OXIDE OR OF 1,1-DICHLOROMETHYL AND ETHYL OXIDE
DE10026645A1 (en) * 2000-05-29 2001-12-06 Merck Patent Gmbh Process for the formylation of organic compounds
JP2005232073A (en) * 2004-02-19 2005-09-02 Sumitomo Chemical Co Ltd Method for producing aromatic aldehyde

Also Published As

Publication number Publication date
JP2015231961A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6987930B2 (en) Method for producing 1- (3,5-dichlorophenyl) -2,2,2-trifluoro-etanone and its derivative
JP6399814B2 (en) Method for producing dichloromethyl alkyl ether compound
JP2019081748A (en) Method for producing halogen compound
JPWO2018159515A1 (en) Method for producing pentafluorosulfanyl aromatic compound
WO2011021492A1 (en) Process for production of formyl-substituted aromatic compounds
JP2009155280A (en) METHOD FOR PRODUCING gamma-BUTYROLACTONE COMPOUND
JP6535915B2 (en) Process for the formation of 1- (5,5-dimethylcyclohex-1-en-1-yl) ethanone and 1- (5,5-dimethylcyclohex-6-en-1-yl) ethanone
JP5219086B2 (en) Process for producing trifluoromethylarenes
JP2011140474A (en) Method for producing difluorocyclopropane compound
JP2008517967A (en) Process for producing phenyl 2-pyrimidinyl ketones and novel intermediates thereof
JP5482233B2 (en) Method for producing diaryl disulfide compound
JP4092111B2 (en) Fluorine-containing aromatic compound and process for producing the same
JP6249472B2 (en) Bis (trifluoromethyl) zinc / DMPU complex, production method thereof, and production method of trifluoromethyl group-containing compound using the same
JP6764158B2 (en) Method for producing carbonyl compound
EP2900634B1 (en) Process for the preparation of optionally substituted phenyl and pyridyl pyrrolidines
JP5238172B2 (en) Nitrogen-containing six-membered ring compound having perfluoroalkyl group and process for producing the same
JP6256577B2 (en) Method for producing diol
JP4243683B2 (en) Method for producing 1-tetralone
WO2017170884A1 (en) Novel method for producing hydroxamic acid derivative, and intermediate thereof
JP6347460B2 (en) (Trihalomethyl) benzene derivative and method for producing the same
WO2023048244A1 (en) Method for producing tetrafluorosulfanyl group-containing aryl compound
JP2019127449A (en) Manufacturing method of optically active 1-chloro-3,3-difluoro isopropyl alcohol
EP1756029B1 (en) Novel compounds, the preparation and the use thereof for a regiospesific synthesis of perfluor(alkyl) group heterocycles
JP5298678B2 (en) (Arylloyl or heteroaryloyl) methylpentafluorosulfanylbenzene compound production method
JP2005132752A (en) N-acyl cyclic carbamate compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180226

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250