JP6396645B2 - Travel route generator - Google Patents

Travel route generator Download PDF

Info

Publication number
JP6396645B2
JP6396645B2 JP2013145594A JP2013145594A JP6396645B2 JP 6396645 B2 JP6396645 B2 JP 6396645B2 JP 2013145594 A JP2013145594 A JP 2013145594A JP 2013145594 A JP2013145594 A JP 2013145594A JP 6396645 B2 JP6396645 B2 JP 6396645B2
Authority
JP
Japan
Prior art keywords
curvature
travel route
host vehicle
travel
lateral acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013145594A
Other languages
Japanese (ja)
Other versions
JP2015016799A (en
Inventor
鶴田 知彦
知彦 鶴田
里奈 林
里奈 林
井上 直哉
直哉 井上
ホセイン テヘラニニ
ホセイン テヘラニニ
誠一 三田
誠一 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013145594A priority Critical patent/JP6396645B2/en
Publication of JP2015016799A publication Critical patent/JP2015016799A/en
Application granted granted Critical
Publication of JP6396645B2 publication Critical patent/JP6396645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自車両が走行する走行経路を生成する走行経路生成装置に関する。   The present invention relates to a travel route generation device that generates a travel route on which a host vehicle travels.

自車両が走行する走行経路を車両自体が生成する技術が公知である(例えば、特許文献1参照。)。特許文献1には、前方距離と一定の左右幅で規定される走行領域を、走行可能領域内で最大の曲率半径および最大の左右幅になるように設定し、設定された走行領域の中央線を走行経路とすることが記載されている。   A technique is known in which the vehicle itself generates a travel route on which the host vehicle travels (see, for example, Patent Document 1). In Patent Document 1, a travel area defined by a forward distance and a constant left and right width is set so as to have a maximum radius of curvature and a maximum left and right width within the travelable area, and the center line of the set travel area Is described as a travel route.

特開2012−3365号公報JP 2012-3365 A

しかし、走行可能領域内において最大の曲率半径および最大の左右幅になるように走行領域を設定し、走行領域の中央線を走行経路とすると、走行経路の曲率半径は常に最大になるように設定される。   However, if the travel area is set to have the maximum radius of curvature and the maximum lateral width in the travelable area, and the center line of the travel area is the travel route, the radius of curvature of the travel route is always set to the maximum. Is done.

このように、走行経路の曲率半径が最大になるように、言い換えれば走行経路の曲率が最小になるように走行経路が生成されると、前方の障害物を避けるときや車線変更をする場合、車両が極力早いタイミングで緩やかに横方向に移動することになるので、発生する横加速度は小さくなる。しかし、緩やかに横方向に移動するので、自車両の移動先を走行する他の車両と接触するおそれが大きくなる。   In this way, when the travel route is generated so that the radius of curvature of the travel route is maximized, in other words, the curvature of the travel route is minimized, when avoiding obstacles ahead or changing lanes, Since the vehicle slowly moves in the lateral direction at the earliest possible timing, the generated lateral acceleration is reduced. However, since the vehicle slowly moves in the lateral direction, there is a greater risk of contact with another vehicle that travels along the destination of the host vehicle.

本発明は上記課題を解決するためになされたものであり、適切な横加速度となるように走行経路の曲率を設定する走行経路生成装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a travel route generation device that sets the curvature of a travel route so as to achieve an appropriate lateral acceleration.

本発明の走行経路生成装置は、周囲情報取得手段と、走行状態取得手段と、領域認識手段と、曲率設定手段と、経路生成手段と、を備えている。
周囲情報取得手段は自車両の周囲の物体および道路状況を周囲情報として取得し、走行状態取得手段は自車両の走行状態を取得する。領域認識手段は周囲情報取得手段が取得する周囲情報に基づいて自車両の走行可能領域および走行不可領域を認識し、曲率設定手段は、走行状態取得手段により走行状態として取得された自車両の車速、ならびに自車両の走行に伴い生じる横加速度として許容される値として設定された目標横加速度に基づいて、自車両が走行する走行経路の曲率を設定し、経路生成手段は、曲率設定手段により設定された曲率に基づいて、領域認識手段が認識する走行可能領域において自車両が走行する走行経路を生成する。
The travel route generation device of the present invention includes surrounding information acquisition means, travel state acquisition means, region recognition means, curvature setting means, and route generation means.
The surrounding information acquisition unit acquires the surrounding objects and road conditions of the host vehicle as the surrounding information, and the traveling state acquisition unit acquires the traveling state of the host vehicle. The area recognition means recognizes the travelable area and the travel impossible area of the host vehicle based on the surrounding information acquired by the surrounding information acquisition means, and the curvature setting means determines the vehicle speed of the host vehicle acquired as the travel state by the travel state acquisition means. And the curvature of the travel route on which the host vehicle travels is set based on the target lateral acceleration set as an allowable value for the lateral acceleration generated by the traveling of the host vehicle, and the route generation unit is set by the curvature setting unit. Based on the curvature, the travel route along which the host vehicle travels is generated in the travelable region recognized by the region recognition means.

これにより、走行可能領域において、車速と目標横加速度とに基づいて走行経路の曲率を適切な値に設定し、走行経路を走行するときに自車両に発生する横加速度を目標範囲内にすることができる。 尚、走行経路の曲率は、自車両の車速と、目標横加速度と、走行経路と走行不可領域との距離との少なくともいずれか一つに基づいて設定されることが望ましい。   As a result, in the travelable region, the curvature of the travel route is set to an appropriate value based on the vehicle speed and the target lateral acceleration, and the lateral acceleration generated in the host vehicle when traveling on the travel route is within the target range. Can do. Note that the curvature of the travel route is desirably set based on at least one of the vehicle speed of the host vehicle, the target lateral acceleration, and the distance between the travel route and the untravelable region.

本実施形態の走行経路生成装置を示す機能ブロック図。The functional block diagram which shows the driving | running route generation apparatus of this embodiment. 経路生成を説明する模式図。The schematic diagram explaining path | route production | generation. 経路生成処理を示すフローチャート。The flowchart which shows a route production | generation process. 走行経路の曲率とカーネル関数の係数との関係を示す特性図。The characteristic view which shows the relationship between the curvature of a driving | running route, and the coefficient of a kernel function. 経路生成を説明する模式図。The schematic diagram explaining path | route production | generation. 経路生成を説明する模式図。The schematic diagram explaining path | route production | generation.

以下、本発明の実施形態を図に基づいて説明する。
図1に示す走行経路生成装置10は、周囲情報取得部12と、走行状態取得部14と、走行可能領域認識部20と、曲率パラメータ設定部22と、経路生成部30とを備えており、CPU、RAM、ROM等を有するマイクロコンピュータにより主に構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The travel route generation device 10 illustrated in FIG. 1 includes a surrounding information acquisition unit 12, a travel state acquisition unit 14, a travelable region recognition unit 20, a curvature parameter setting unit 22, and a route generation unit 30. It is mainly composed of a microcomputer having a CPU, RAM, ROM and the like.

周囲情報取得部12は、車両前方の直進方向を中心とする所定角度範囲を検出エリアとする前方センサと、車両左側方の車幅方向を中心とする所定角度範囲を検出エリアとする左側方センサと、車両右側方の所定角度範囲(左側方センサと同様)を検出エリアとする右側方センサとが出力する信号に基づいて、車両周囲の物体および道路状況を表わす周囲情報を取得する。   The surrounding information acquisition unit 12 includes a front sensor whose detection area is a predetermined angle range centered on a straight direction ahead of the vehicle, and a left side sensor whose detection area is a predetermined angle range centered on the vehicle width direction on the left side of the vehicle. Then, based on a signal output from the right side sensor having a predetermined angular range on the right side of the vehicle (similar to the left side sensor) as a detection area, ambient information representing objects and road conditions around the vehicle is acquired.

前方センサおよび左右の側方センサは、カメラ等の画像センサ、レーザレーダ、ミリ波レーダ、ソナー等の少なくともいずれかから構成されている。
車両周囲の物体は、車線区画突起物、他車両、歩行者等の他、自車両の走行領域を制限する地形や建造物等を含む。周囲情報取得部12は、個々の物体の情報として、位置、大きさ、高さ、道路に沿った長さ等を取得する。
The front sensor and the left and right side sensors include at least one of an image sensor such as a camera, a laser radar, a millimeter wave radar, a sonar, and the like.
Objects around the vehicle include lane division protrusions, other vehicles, pedestrians, etc., and terrain, buildings, and the like that limit the traveling area of the host vehicle. The surrounding information acquisition unit 12 acquires a position, a size, a height, a length along a road, and the like as information on each object.

また、周囲情報取得部12は、道路状況として、車線境界線、車道中央線、車道外側線等の路面に描かれた区画線の種類と、区画線が自車両の進行方向に向かって直線であるか曲線であるかの道路形状の情報と、道路幅とを取得する。周囲情報取得部12は、道路状況として、ナビゲーション装置から道路形状および道路幅を取得してもよい。   In addition, the surrounding information acquisition unit 12 is configured so that the road conditions include the type of lane lines drawn on the road surface such as the lane boundary line, the lane center line, the lane outside line, and the lane line in a straight line toward the traveling direction of the host vehicle. Information on the shape of the road, which is a curve or a road, and the road width are acquired. The surrounding information acquisition unit 12 may acquire a road shape and a road width from the navigation device as a road situation.

例えば図2の(A)において、周囲情報取得部12は、駐車車両102の存在と、車道外側線200、202および車道中央線204の存在とを自車両100の周囲の物体および道路状況を表わす周囲情報として取得する。   For example, in FIG. 2A, the surrounding information acquisition unit 12 represents the presence of the parked vehicle 102 and the presence of the roadway outer lines 200 and 202 and the roadway center line 204 as objects around the host vehicle 100 and the road conditions. Obtain as ambient information.

走行状態取得部14は、車速センサから自車両の車速を取得し、加速度センサから自車両に加わる横加速度を取得し、GPS装置などの衛星測位装置から自車両の位置を取得する。走行状態取得部14は、GPS装置から取得する位置情報から自車両の車速を求めてもよい。   The traveling state acquisition unit 14 acquires the vehicle speed of the host vehicle from the vehicle speed sensor, acquires the lateral acceleration applied to the host vehicle from the acceleration sensor, and acquires the position of the host vehicle from a satellite positioning device such as a GPS device. The traveling state acquisition unit 14 may obtain the vehicle speed of the host vehicle from the position information acquired from the GPS device.

走行可能領域認識部20は、周囲情報取得部12が取得する周囲情報に基づいて、自車両が走行可能な領域を認識する。例えば図2の(A)において、走行可能領域認識部20は、車道外側線200と車道外側線202との間の領域で、駐車車両102を除いた領域を走行可能領域と認識する。自車両100から見て、走行可能領域の左右の外側が走行不可領域となる。   The travelable area recognition unit 20 recognizes an area in which the host vehicle can travel based on the surrounding information acquired by the surrounding information acquisition unit 12. For example, in FIG. 2A, the travelable area recognition unit 20 recognizes an area between the roadway outer line 200 and the roadway outer line 202 excluding the parked vehicle 102 as a travelable area. When viewed from the host vehicle 100, the left and right outer sides of the travelable area become the travel impossible area.

曲率パラメータ設定部22は、走行状態取得部14が取得する車速と、経路生成部30が生成する走行経路を自車両が走行するときに生じる横加速度として許容される値に設定された目標横加速度とに基づいて、経路生成部30が生成する走行経路の曲率を決定するパラメータを設定する。走行経路の曲率を決定するパラメータについては後述する。   The curvature parameter setting unit 22 is a target lateral acceleration that is set to a value that is allowed as a lateral acceleration that occurs when the host vehicle travels on the traveling speed that the traveling state obtaining unit 14 acquires and the traveling route that the route generating unit 30 generates. Based on the above, a parameter for determining the curvature of the travel route generated by the route generation unit 30 is set. Parameters for determining the curvature of the travel route will be described later.

経路生成部30は、走行可能領域認識部20が認識する走行可能領域において、曲率パラメータ設定部22が設定する曲率パラメータに基づいて、走行可能領域を走行する自車両の走行経路を生成する。   In the travelable area recognized by the travelable area recognition unit 20, the route generation unit 30 generates a travel route of the host vehicle that travels in the travelable area based on the curvature parameter set by the curvature parameter setting unit 22.

(経路生成処理)
図3に走行経路生成装置10が実行する経路生成処理のフローチャートを示す。経路生成処理は常時実行される。図3において「S」はステップを表わしている。
(Route generation process)
FIG. 3 shows a flowchart of route generation processing executed by the travel route generation device 10. The route generation process is always executed. In FIG. 3, “S” represents a step.

周囲情報取得部12は、カメラの画像およびレーダが走査する走査情報等から、自車両の周囲の物体および道路状況を表わす周囲情報を取得する(S400)。走行状態取得部14は、車速センサ、加速度センサ、GPS等から、車速、横加速度、自車位置等の走行状態を取得する(S402)。   The surrounding information acquisition unit 12 acquires surrounding information representing objects and road conditions around the host vehicle from the camera image and scanning information scanned by the radar (S400). The traveling state acquisition unit 14 acquires a traveling state such as a vehicle speed, a lateral acceleration, and a vehicle position from a vehicle speed sensor, an acceleration sensor, a GPS, and the like (S402).

走行可能領域認識部20は、S400において取得した周囲情報に基づいて取得する道路幅、道路形状および障害物等から、自車両の走行可能領域と走行不可領域とを認識する(S404)。   The travelable area recognition unit 20 recognizes the travelable area and the travel impossible area of the host vehicle from the road width, road shape, obstacles, and the like acquired based on the surrounding information acquired in S400 (S404).

次に、S406において曲率パラメータ設定部22が設定する曲率パラメータと、S408において曲率パラメータに基づいて経路生成部30が生成する走行経路とについて説明するために、まず、走行経路の曲率と車速と横加速度との関係について説明する。横加速度をalateral、車速をv、曲率半径をR、曲率をρ、角速度をωとすると、横加速度alateralは次式(1)で簡易的に表わされる。 Next, in order to explain the curvature parameter set by the curvature parameter setting unit 22 in S406 and the travel route generated by the route generation unit 30 based on the curvature parameter in S408, first, the curvature of the travel route, the vehicle speed, The relationship with acceleration will be described. When the lateral acceleration is a lateral , the vehicle speed is v, the radius of curvature is R, the curvature is ρ, and the angular velocity is ω, the lateral acceleration a lateral is simply expressed by the following equation (1).

lateral=Rω
lateral=v/R
lateral=ρv ・・・(1)
式(1)から、曲率ρは次式(2)で表わされる。
a lateral = Rω
a lateral = v 2 / R
a lateral = ρv 2 (1)
From the equation (1), the curvature ρ is expressed by the following equation (2).

ρ=alateral/v ・・・(2)
式(2)から、自車両の車速vが速いほど走行経路の曲率は小さくなり、横加速度alateralが大きいほど走行経路の曲率は大きくなる。
ρ = a lateral / v 2 (2)
From equation (2), the curvature of the travel route decreases as the vehicle speed v of the host vehicle increases, and the curvature of the travel route increases as the lateral acceleration a lateral increases.

ここで、ドライバは、例えば自車両が前方の駐車車両等の障害物を避けたり車線変更をする場合、車速が速い場合には大きな横加速度が生じると予測し、車速が遅い場合には小さな横加速度が生じると予測している。予測しているよりも横加速度が小さくなるか大きくなると、ドライバは違和感を覚えることがある。   Here, for example, when the host vehicle avoids an obstacle such as a parked vehicle ahead or changes lanes, the driver predicts that a large lateral acceleration will occur if the vehicle speed is fast, and a small lateral vehicle if the vehicle speed is slow. It is predicted that acceleration will occur. If the lateral acceleration is smaller or larger than expected, the driver may feel uncomfortable.

そこで、横加速度alateralの目標値は、車速が速いほど大きな値に設定され、車速が遅いほど小さな値に設定されることが望ましい。曲率パラメータ設定部22は、車速と目標横加速度との特性をマップ等に記憶している。ただし、目標横加速度には上限値が設定されている。 Therefore, it is desirable that the target value of the lateral acceleration a lateral is set to a larger value as the vehicle speed is faster, and set to a smaller value as the vehicle speed is slower. The curvature parameter setting unit 22 stores the characteristics of the vehicle speed and the target lateral acceleration in a map or the like. However, an upper limit is set for the target lateral acceleration.

また、道路形状や周囲の状況に基づいて目標横加速度を設定することが望ましい。例えば、道路のカーブの曲率が小さい場合には目標横加速度を小さくし、カーブの曲率が大きい場合には目標横加速度を大きくする。この場合、曲率パラメータ設定部22は、道路の曲率と目標横加速度との特性をマップ等に記憶している。   It is also desirable to set the target lateral acceleration based on the road shape and surrounding conditions. For example, when the curvature of the road curve is small, the target lateral acceleration is decreased, and when the curvature of the curve is large, the target lateral acceleration is increased. In this case, the curvature parameter setting unit 22 stores the characteristics of the road curvature and the target lateral acceleration in a map or the like.

また、緊急回避が必要な場合には目標横加速度を大きくする。この場合、曲率パラメータ設定部22は、例えば自車両が定常状態の場合に障害物に衝突すると予測される時間および車速と目標横加速度との特性をマップ等に記憶している。   When emergency avoidance is necessary, the target lateral acceleration is increased. In this case, the curvature parameter setting unit 22 stores, for example, the time and the characteristics of the vehicle speed and the target lateral acceleration that are predicted to collide with the obstacle when the host vehicle is in a steady state in a map or the like.

目標横加速度の上限値は、運転者の運転の傾向または運転者の設定によっても調整されることが望ましい。例えば、普段から大きく操舵を行う運転者の場合には目標横加速度を大きくし、小さく操舵を行う運転者の場合には目標横加速度を小さくする。この場合、曲率パラメータ設定部22は、運転履歴の学習によるマップや運転者による操作などを用いて目標横加速度を設定する。   It is desirable that the upper limit value of the target lateral acceleration is adjusted depending on the driving tendency of the driver or the driver's setting. For example, the target lateral acceleration is increased for a driver who normally steers large, and the target lateral acceleration is decreased for a driver who steers small. In this case, the curvature parameter setting unit 22 sets the target lateral acceleration using a map obtained by learning driving history, an operation by the driver, or the like.

曲率パラメータ設定部22は、自車両が走行している車速と、車速および道路形状に基づいてマップから取得する目標横加速度とに基づいて、式(2)から走行経路の曲率ρを求める。   The curvature parameter setting unit 22 obtains the curvature ρ of the travel route from Expression (2) based on the vehicle speed at which the host vehicle is traveling and the target lateral acceleration acquired from the map based on the vehicle speed and the road shape.

次に、経路生成部30がS408において走行経路を生成するために使用する曲率パラメータについて説明する。例えば、図2の(A)において、経路生成部30は、自車両100が駐車車両102を避けつつ、車道外側線200と車道外側線202との間で走行可能領域認識部20が認識する走行可能領域を走行するときの走行経路を生成する。   Next, the curvature parameter used for the route generation unit 30 to generate a travel route in S408 will be described. For example, in (A) of FIG. 2, the route generation unit 30 travels recognized by the travelable region recognition unit 20 between the roadway outer line 200 and the roadway outer line 202 while the host vehicle 100 avoids the parked vehicle 102. A travel route for traveling in the possible area is generated.

経路生成部30は、走行可能領域認識部20が認識する走行可能領域の情報に基づき、図2の(B)に示すように、車道外側線200と駐車車両102とを示す各点を一方のクラス210に属する特徴点とし、車道外側線202を示す各点を他方のクラス212に属する特徴点とする。そして、経路生成部30は、クラス210に属する特徴点と、クラス212に属する特徴点とを分類する識別面を、サポートベクターマシン(SVM)を識別器として生成する。   Based on the information on the travelable area recognized by the travelable area recognition unit 20, the route generation unit 30 sets each point indicating the roadway outer line 200 and the parked vehicle 102 as one of the points as shown in FIG. A feature point belonging to the class 210 is assumed, and each point indicating the roadway outside line 202 is assumed to be a feature point belonging to the other class 212. Then, the path generation unit 30 generates an identification surface for classifying the feature points belonging to the class 210 and the feature points belonging to the class 212 using the support vector machine (SVM) as a discriminator.

SVMは、クラス210、212にそれぞれ属する特徴点のうち識別面に最も近い特徴点をサポートベクターとし、サポートベクターと識別面との距離が最大になるように識別面を生成する。この識別面が走行可能領域を走行する自車両100の走行経路220となる。   The SVM generates a discrimination plane so that the feature point closest to the discrimination plane among the feature points belonging to the classes 210 and 212 is the support vector, and the distance between the support vector and the discrimination plane is maximized. This identification surface becomes the travel route 220 of the host vehicle 100 traveling in the travelable area.

識別面を生成するとき、経路生成部30はSVMのカーネル関数として次式(3)に示す動径基底関数を使用する。
K(x,y)=exp(−γ‖x−y‖) ・・・(3)
本出願人は、式(3)の係数γと、式(3)を用いてSVMが生成する走行経路の曲率ρとの間に、図4に示すように一方が増加すると他方が増加する特性があることに注目した。式(3)の係数γが、曲率パラメータ設定部22が設定する曲率パラメータである。尚、図4では、式(3)の係数γと走行経路の曲率ρとの特性を直線で示したが、実際の特性は直線とは限らない。
When generating an identification surface, the path generation unit 30 uses a radial basis function shown in the following equation (3) as a kernel function of the SVM.
K (x, y) = exp (−γ‖x−y‖ 2 ) (3)
As shown in FIG. 4, the applicant of the present invention has a characteristic that when one increases between the coefficient γ of Equation (3) and the curvature ρ of the travel route generated by the SVM using Equation (3), the other increases. Noted that there is. The coefficient γ in Expression (3) is a curvature parameter set by the curvature parameter setting unit 22. In FIG. 4, the characteristic of the coefficient γ of the equation (3) and the curvature ρ of the travel route is shown by a straight line, but the actual characteristic is not always a straight line.

図2の(B)に示すように、係数γが小さくなると走行経路220の曲率ρは小さくなり、曲率半径は大きくなる。一方、係数γが大きくなると走行経路220の曲率ρは大きくなり、曲率半径は小さくなる。   As shown in FIG. 2B, as the coefficient γ decreases, the curvature ρ of the travel route 220 decreases and the curvature radius increases. On the other hand, as the coefficient γ increases, the curvature ρ of the travel route 220 increases and the curvature radius decreases.

その結果、自車両100は、係数γが小さいほど駐車車両102を避けるために早いタイミングで右側に操舵し、係数γが大きいほど駐車車両102を避けるために遅いタイミングで右側に操舵する。また、係数γが小さいほど駐車車両102を通過してから遅いタイミングで左側に操舵し、係数γが大きいほど駐車車両102を通過してから早いタイミングで左側に操舵する。   As a result, the host vehicle 100 steers to the right at an earlier timing to avoid the parked vehicle 102 as the coefficient γ is smaller, and steers to the right at a later timing to avoid the parked vehicle 102 as the coefficient γ is larger. Further, the smaller the coefficient γ, the steer to the left at a later timing after passing through the parked vehicle 102, and the greater the coefficient γ, the steer to the left at an earlier timing after passing the parked vehicle 102.

曲率パラメータ設定部22は、式(3)の係数γと走行経路の曲率ρとの特性をマップ等に記憶しており、式(2)から取得する曲率ρに基づいてマップから曲率パラメータである係数γを取得して経路生成部30に出力する(S406)。   The curvature parameter setting unit 22 stores the characteristics of the coefficient γ of equation (3) and the curvature ρ of the travel route in a map or the like, and is a curvature parameter from the map based on the curvature ρ acquired from equation (2). The coefficient γ is acquired and output to the route generation unit 30 (S406).

S406において曲率パラメータ設定部22により曲率ρに応じた係数γが設定されると、経路生成部30は、曲率パラメータ設定部22で設定された係数γを式(3)に代入し、SVMにより識別面を生成する。経路生成部30はSVMが生成する識別面を走行経路220とする(S408)。経路生成部30が生成する走行経路220は、曲率パラメータ設定部22で設定された係数γに基づいて、走行可能領域に応じた形状になる。走行経路220の曲率ρは係数γにより決定される。   When the coefficient γ corresponding to the curvature ρ is set by the curvature parameter setting unit 22 in S406, the path generation unit 30 substitutes the coefficient γ set by the curvature parameter setting unit 22 into the equation (3), and is identified by SVM. Create a face. The route generation unit 30 sets the identification surface generated by the SVM as the travel route 220 (S408). The travel route 220 generated by the route generation unit 30 has a shape corresponding to the travelable area based on the coefficient γ set by the curvature parameter setting unit 22. The curvature ρ of the travel route 220 is determined by the coefficient γ.

図5の(A)に示すように、道路が折れ曲がっており、走行可能領域認識部20が認識する走行可能領域が折れ曲がっている場合にも、SVMは、図5の(B)に示すように、車道外側線230に相当するクラス240に属する特徴点と、車道外側線230に相当するクラス242に属する特徴点とを分類する場合、クラス240、242にそれぞれ属する特徴点のうち識別面に最も近い特徴点であるサポートベクターと識別面との距離が最大になるように識別面を生成する。これにより、道路形状に沿った形状の走行経路250が生成される。   As shown in (A) of FIG. 5, even when the road is bent and the travelable area recognized by the travelable area recognition unit 20 is bent, the SVM is as shown in (B) of FIG. 5. When the feature points belonging to the class 240 corresponding to the roadway outer line 230 and the feature points belonging to the class 242 corresponding to the roadway outer line 230 are classified, the feature points belonging to the classes 240 and 242 are the most on the identification plane. The identification surface is generated so that the distance between the support vector that is a close feature point and the identification surface is maximized. As a result, a travel route 250 having a shape along the road shape is generated.

また、図6に示すように、自車両100が交差点260を左折する場合、自車両100の前方が交差点であることを周囲情報取得部12が取得し、方向指示器が左折を指示するか、ステアリングが左側に操作されていることを走行状態取得部14が取得すると、走行可能領域認識部20は、走行可能領域がL字状であると認識する。   In addition, as shown in FIG. 6, when the host vehicle 100 makes a left turn at an intersection 260, the surrounding information acquisition unit 12 acquires that the front of the host vehicle 100 is an intersection, and the direction indicator instructs a left turn, When the travel state acquisition unit 14 acquires that the steering is operated to the left side, the travelable region recognition unit 20 recognizes that the travelable region is L-shaped.

このように交差点260を左折する場合、曲率パラメータ設定部22は、式(2)から求める曲率ρに加え、交差点260に進入する前と交差点260から抜け出た後の走行可能領域の直線部分の形状と、交差点260で左折するときの走行可能領域の角部の形状とに基づき、直線部分では係数γを小さくし、角部では係数γを大きくする。   In this way, when turning left at the intersection 260, the curvature parameter setting unit 22 adds the curvature ρ obtained from the equation (2), and the shape of the straight portion of the travelable area before entering the intersection 260 and after exiting the intersection 260 Based on the shape of the corner of the travelable area when making a left turn at the intersection 260, the coefficient γ is decreased at the straight portion and the coefficient γ is increased at the corner.

経路生成部30のSVMは、図6の(B)に示すように、車道外側線262に相当するクラス270に属する特徴点と、車道中央線264に相当するクラス272に属する特徴点とのうち、識別面に最も近い特徴点であるサポートベクターと識別面との距離が最大になるように識別面を生成する。   As shown in FIG. 6B, the SVM of the route generation unit 30 includes a feature point belonging to the class 270 corresponding to the roadway outer line 262 and a feature point belonging to the class 272 corresponding to the roadway center line 264. The identification surface is generated so that the distance between the support vector, which is the feature point closest to the identification surface, and the identification surface is maximized.

SVMは、図6の(B)において、走行可能領域の形状に応じて曲率パラメータ設定部22が設定する係数γに基づき、直線部分では直線状の走行経路280を生成し、曲線部分では交差点260の角部に沿った曲線状の走行経路280を生成する。   In FIG. 6B, the SVM generates a straight traveling route 280 in the straight line portion based on the coefficient γ set by the curvature parameter setting unit 22 in accordance with the shape of the travelable region, and the intersection 260 in the curved portion. A curved traveling route 280 along the corner is generated.

尚、図6の(B)では、交差点260の中央付近にも車道中央線264を延長して特徴点を設置したが、交差点260の中央付近の特徴点を空白にして識別面を生成してもよい。   In FIG. 6B, a feature point is set by extending the roadway center line 264 near the center of the intersection 260. However, a feature plane near the center of the intersection 260 is left blank to generate an identification plane. Also good.

ここで、図2、図5および図6において、走行可能領域と走行不可領域との境界に位置するサポートベクターと走行経路との距離が所定距離よりも近くなり、自車両100が走行不可領域に接触すると推測される場合、つまり自車両100が駐車車両または車道外側線に接触すると推測される場合(S410:No)、経路生成部30は、S406に処理を戻し、自車両が走行不可領域に接触しないように曲率パラメータ設定部22に曲率が大きくなるように係数γを再設定させる。   Here, in FIGS. 2, 5, and 6, the distance between the support vector located at the boundary between the travelable area and the travel impossible area and the travel route is closer than a predetermined distance, and the host vehicle 100 is in the travel impossible area. When it is estimated that the vehicle 100 is in contact, that is, when it is estimated that the host vehicle 100 is in contact with the parked vehicle or the roadway outer line (S410: No), the route generation unit 30 returns the process to S406, and the host vehicle is in the non-running region. In order to avoid contact, the curvature parameter setting unit 22 resets the coefficient γ so as to increase the curvature.

自車両100が走行不可領域に接触するか否かの判定に使用する所定距離は、車幅および接触を避けるための安全マージンを考慮して設定される。
以上説明した本実施形態では、走行可能領域と車速とに基づいて、目標横加速度となるように、自車両が走行する走行経路の曲率を設定した。これにより、車速に応じた適切な横加速度になるように走行経路の曲率を設定できる。その結果、ドライバは、車速に対して生じる横加速度に違和感を覚えることなく運転できる。
The predetermined distance used for determining whether or not the host vehicle 100 is in contact with the untravelable region is set in consideration of the vehicle width and a safety margin for avoiding contact.
In the present embodiment described above, the curvature of the travel route on which the host vehicle travels is set so as to achieve the target lateral acceleration based on the travelable region and the vehicle speed. Thereby, the curvature of a travel route can be set so that it may become a suitable lateral acceleration according to a vehicle speed. As a result, the driver can drive without feeling uncomfortable with the lateral acceleration generated with respect to the vehicle speed.

また、走行可能領域と車速とに基づいて適切な曲率で走行経路を生成するので、常に極力小さい曲率で極力大きい曲率半径により走行経路を形成することにより、発生する横加速度を低減する方式に比べ、自車両が走行経路に沿って横に移動する場合に移動先を走行する他車両と接触することを極力避けることができる。   In addition, since the travel route is generated with an appropriate curvature based on the travelable region and the vehicle speed, the travel route is always formed with the smallest possible curvature and the largest possible curvature radius, thereby reducing the lateral acceleration generated. When the host vehicle moves sideways along the travel route, it can be avoided as much as possible from coming into contact with another vehicle that travels the destination.

[他の実施形態]
上記実施形態では、車速および道路形状に基づいて目標横加速度を可変に設定した。これに対し、車速および道路形状に関わらず目標横加速度を固定値にしてもよい。
[Other Embodiments]
In the above embodiment, the target lateral acceleration is variably set based on the vehicle speed and the road shape. On the other hand, the target lateral acceleration may be a fixed value regardless of the vehicle speed and the road shape.

また、走行経路を生成する識別器として、SVM以外にも、パーセプトロン、ニューラルネットワークを用いてもよい。 また、経路生成部30が生成する走行経路を走行するときに加速度センサから取得する実際の横加速度が目標横加速度の範囲から外れる場合、曲率パラメータ設定部22は、加速度センサから取得する実際の横加速度が目標横加速度の範囲内に収まるように、係数γを適宜補正してもよい。   In addition to the SVM, a perceptron or a neural network may be used as an identifier for generating a travel route. When the actual lateral acceleration acquired from the acceleration sensor when traveling on the travel route generated by the route generation unit 30 is out of the range of the target lateral acceleration, the curvature parameter setting unit 22 acquires the actual lateral acceleration acquired from the acceleration sensor. The coefficient γ may be corrected as appropriate so that the acceleration falls within the range of the target lateral acceleration.

また、経路生成部30が生成する目標の走行経路と、GPS装置等から取得する自車両の実際の走行経路との差が所定値以上の場合、曲率パラメータ設定部22は、目標の走行経路と実際の走行経路との差が所定値未満になるように、係数γを適宜補正してもよい。   In addition, when the difference between the target travel route generated by the route generation unit 30 and the actual travel route of the host vehicle acquired from the GPS device or the like is a predetermined value or more, the curvature parameter setting unit 22 The coefficient γ may be appropriately corrected so that the difference from the actual travel route is less than a predetermined value.

上記実施形態では、図3に示す経路生成処理のS410において、走行経路と走行不可領域との距離に基づき、自車両100が走行不可領域に接触するか否かを判定したが、経路生成部30が生成した走行経路の曲率が適切に設定されるのであれば、S410の判定を省略してもよい。   In the above embodiment, in S410 of the route generation process shown in FIG. 3, it is determined whether or not the host vehicle 100 is in contact with the untravelable region based on the distance between the travel route and the untravelable region. If the curvature of the travel route generated by is set appropriately, the determination in S410 may be omitted.

また、走行可能領域と車速とから走行経路の曲率を設定する場合、道路形状または走行可能領域から目標車速を設定し、設定した目標車速と走行可能領域とから走行経路の曲率を設定してもよい。
また、周囲情報取得部12は、前方および側方を検出エリアとする一つのセンサにより周囲情報を取得してもよいし、車両後方の直進方向を中心とする所定角度範囲を検出エリアとする後方センサから周囲情報を取得してもよい。
Also, when setting the curvature of the travel route from the travelable area and the vehicle speed, the target vehicle speed is set from the road shape or the travelable area, and the curvature of the travel route is set from the set target vehicle speed and the travelable area. Good.
Moreover, the surrounding information acquisition part 12 may acquire surrounding information with one sensor which makes the front and the side a detection area, and the back which makes the detection area the predetermined angle range centering on the straight ahead direction of a vehicle back Ambient information may be acquired from the sensor.

上記実施形態では、GPS装置などの衛星測位装置から自車両の位置を取得した。これ以外にも、周囲情報取得部12が取得する周囲情報として、例えば実際の建物、横断歩道、信号等の情報と地図DBが示す情報とを照合して自車両の位置を取得してもよい。   In the above embodiment, the position of the host vehicle is acquired from a satellite positioning device such as a GPS device. In addition to this, as the surrounding information acquired by the surrounding information acquisition unit 12, for example, the position of the host vehicle may be acquired by collating information such as an actual building, a pedestrian crossing, and a signal with information indicated by the map DB. .

また、走行可能領域認識部20は、車線変更、合流、分流等の運転者の操作に基づいて、道路の区画線を跨ぐ走行可能領域の形状を認識してもよい。
上記実施形態では、曲率ρに基づいてマップから曲率パラメータである係数γを取得した。これに対し、障害物、道路形状等の周囲情報と、これらの周囲情報における車速、操舵角等の走行状態とから得られる走行パターンに基づいてマップから係数γを取得してもよい。また、これらの入力情報を変数とした数式を用いて係数γを取得してもよい。
In addition, the travelable area recognition unit 20 may recognize the shape of the travelable area that straddles the lane marking of the road based on the driver's operation such as lane change, merge, and diversion.
In the above embodiment, the coefficient γ, which is a curvature parameter, is acquired from the map based on the curvature ρ. On the other hand, the coefficient γ may be acquired from the map based on the travel pattern obtained from the surrounding information such as the obstacle and the road shape and the traveling state such as the vehicle speed and the steering angle in the surrounding information. Further, the coefficient γ may be acquired using a mathematical expression with these input information as variables.

本発明は、生成された走行経路に基づいて自動運転する車両に適用すると、目標横加速度となるように適切な曲率の走行経路を車両が生成するので効果的である。
このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
The present invention is effective when applied to a vehicle that automatically drives based on the generated travel route, because the vehicle generates a travel route with an appropriate curvature so as to achieve the target lateral acceleration.
As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

10:走行経路生成装置、12:周囲情報取得部(周囲情報取得手段)、14:走行状態取得部(走行状態取得手段)、20:走行可能領域認識部(領域認識手段)、22:曲率パラメータ設定部(曲率設定手段、加速度設定手段)、30:経路生成部(経路生成手段)   10: Traveling route generation device, 12: Ambient information acquisition unit (ambient information acquisition unit), 14: Traveling state acquisition unit (traveling state acquisition unit), 20: Travelable region recognition unit (region recognition unit), 22: Curvature parameter Setting unit (curvature setting unit, acceleration setting unit), 30: path generation unit (path generation unit)

Claims (6)

自車両の周囲の物体および道路状況を周囲情報として取得する周囲情報取得手段(12、S400)と、
自車両の走行状態を取得する走行状態取得手段(14、S402)と、
前記周囲情報取得手段が取得する前記周囲情報として、少なくとも道路形状と障害物とに基づいて自車両の走行可能領域および走行不可領域を認識する領域認識手段(20、S404)と、
前記走行状態取得手段により前記走行状態として取得された自車両の車速、ならびに自車両の走行に伴い生じる横加速度として許容される値として設定された目標横加速度に基づいて、自車両が走行する走行経路の曲率を設定する曲率設定手段(22、S406)と、
前記曲率設定手段により設定された前記曲率に基づいて、前記領域認識手段が認識する前記走行可能領域において前記走行経路を生成する経路生成手段(30、S408、S410)と、
を備え
前記経路生成手段は、サポートベクターマシンを識別器とし、サポートベクターマシンのカーネル関数K(x,y)において、前記走行可能領域の左右のクラスに属する特徴点を表すベクトルをxとし、左のクラスと右のクラスとを分類する識別面を表すベクトルをyとして次式
K(x,y)=exp(−γ‖x−y‖ )基づいて、前記式のベクトルyが表す前記識別面を前記走行経路として生成し、
前記曲率設定手段は、前記式のγが小さくなると前記曲率は小さくなり、前記式のγが大きくなると前記曲率は大きくなるという前記式のγと前記曲率との特性に基づいて、前記曲率に応じた前記式のγを設定する、
ことを特徴とする走行経路生成装置(10)。
Ambient information acquisition means (12, S400) for acquiring objects and road conditions around the host vehicle as ambient information;
Traveling state acquisition means (14, S402) for acquiring the traveling state of the host vehicle;
Area recognition means (20, S404) for recognizing a travelable area and a travel impossible area of the host vehicle based on at least a road shape and an obstacle as the ambient information acquired by the ambient information acquisition means;
Travel in which the host vehicle travels based on the vehicle speed of the host vehicle acquired as the driving state by the driving state acquisition means and the target lateral acceleration set as an allowable value for the lateral acceleration generated as the host vehicle travels Curvature setting means (22, S406) for setting the curvature of the route;
Route generating means (30, S408, S410) for generating the travel route in the travelable area recognized by the area recognition means based on the curvature set by the curvature setting means;
Equipped with a,
The path generation means uses a support vector machine as a discriminator, and in the kernel function K (x, y) of the support vector machine, sets a vector representing feature points belonging to the left and right classes of the travelable area as x, and sets the left class A vector representing the discriminating surface that classifies the right class and y
Based on K (x, y) = exp (−γ‖x−y‖ 2 ), the identification surface represented by the vector y of the equation is generated as the travel route,
The curvature setting means responds to the curvature based on the characteristic of γ and the curvature of the equation that the curvature decreases when γ of the equation decreases and the curvature increases when γ of the equation increases. Set γ in the above equation,
A travel route generation device (10) characterized by the above.
前記曲率設定手段は、自車両の車速が速いほど前記走行経路の曲率を小さくすることを特徴とする請求項1に記載の走行経路生成装置。   The travel path generation device according to claim 1, wherein the curvature setting unit decreases the curvature of the travel path as the vehicle speed of the host vehicle increases. 前記曲率設定手段は、前記目標横加速度が大きいほど前記走行経路の曲率を大きくすることを特徴とする請求項1または2に記載の走行経路生成装置。   The travel route generation device according to claim 1 or 2, wherein the curvature setting means increases the curvature of the travel route as the target lateral acceleration increases. 前記経路生成手段(S410)は、前記走行経路と前記走行不可領域との距離が所定距離より近くなると、前記走行経路の曲率が大きくなるように前記曲率設定手段に前記曲率を再設定させることを特徴とする請求項1から3のいずれか一項に記載の走行経路生成装
置。
The route generation means (S410) causes the curvature setting means to reset the curvature so that the curvature of the travel route becomes larger when the distance between the travel route and the non-travelable region becomes shorter than a predetermined distance. The travel route generation device according to any one of claims 1 to 3, wherein
前記周囲情報として取得される自車両が走行する道路の形状に基づいて前記目標横加速度を設定する加速度設定手段(22、S406)を備えることを特徴とする請求項1から4のいずれか一項に記載の走行経路生成装置。   5. The apparatus according to claim 1, further comprising acceleration setting means (22, S 406) for setting the target lateral acceleration based on a shape of a road on which the host vehicle is acquired as the surrounding information. The travel route generation device according to claim 1. 自車両の車速に基づいて前記目標横加速度を設定する加速度設定手段(22、S406)を備えることを特徴とする請求項1から5のいずれか一項に記載の走行経路生成装置。   The travel route generation device according to any one of claims 1 to 5, further comprising acceleration setting means (22, S406) for setting the target lateral acceleration based on a vehicle speed of the host vehicle.
JP2013145594A 2013-07-11 2013-07-11 Travel route generator Active JP6396645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145594A JP6396645B2 (en) 2013-07-11 2013-07-11 Travel route generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145594A JP6396645B2 (en) 2013-07-11 2013-07-11 Travel route generator

Publications (2)

Publication Number Publication Date
JP2015016799A JP2015016799A (en) 2015-01-29
JP6396645B2 true JP6396645B2 (en) 2018-09-26

Family

ID=52438240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145594A Active JP6396645B2 (en) 2013-07-11 2013-07-11 Travel route generator

Country Status (1)

Country Link
JP (1) JP6396645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768692C1 (en) * 2019-01-22 2022-03-24 Ниссан Мотор Ко., Лтд. Vehicle traffic control method and traffic control device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205048A1 (en) * 2015-03-20 2016-09-22 Robert Bosch Gmbh Method and device for monitoring a target trajectory to be traveled by a vehicle for collision freedom
CN106289271B (en) * 2016-07-26 2019-05-17 北京万集科技股份有限公司 A kind of bend vehicle locating device and method
US10875529B2 (en) 2016-10-25 2020-12-29 Honda Motor Co., Ltd. Vehicle control device
CN110191832A (en) * 2017-01-24 2019-08-30 本田技研工业株式会社 Controller of vehicle, control method for vehicle and vehicle control program
US10409280B2 (en) * 2017-03-21 2019-09-10 Baidu Usa Llc Control dominated planning and control system for autonomous driving vehicles
CN110809767B (en) * 2017-07-06 2022-09-09 华为技术有限公司 Advanced driver assistance system and method
DE102018210692B4 (en) * 2018-06-29 2020-07-02 Bayerische Motoren Werke Aktiengesellschaft Method for determining support points for estimating a course of an edge development of a roadway, computer-readable medium, system, and vehicle
US11097748B2 (en) * 2018-10-23 2021-08-24 Baidu Usa Llc Two-step reference line smoothing method to mimic human driving behaviors for autonomous driving cars
JP2020111090A (en) * 2019-01-08 2020-07-27 本田技研工業株式会社 Control system of vehicle, control method of vehicle and program
JP7230596B2 (en) * 2019-03-08 2023-03-01 マツダ株式会社 Arithmetic system for automobiles
JP7208106B2 (en) * 2019-05-30 2023-01-18 日産自動車株式会社 Driving support method and driving support device
CN114287025A (en) * 2019-06-14 2022-04-05 日产自动车株式会社 Driving assistance method and driving assistance device
JP7396906B2 (en) 2020-01-20 2023-12-12 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
CN111665845B (en) * 2020-06-24 2023-09-22 阿波罗智能技术(北京)有限公司 Method, apparatus, device and storage medium for planning path
CN112100565B (en) * 2020-08-31 2022-09-06 中国第一汽车股份有限公司 Road curvature determination method, device, equipment and storage medium
CN114694115A (en) * 2022-03-24 2022-07-01 商汤集团有限公司 Road obstacle detection method, device, equipment and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311691A (en) * 2004-04-21 2005-11-04 Toyota Central Res & Dev Lab Inc Apparatus and method for detecting object
JP2006024104A (en) * 2004-07-09 2006-01-26 Honda Motor Co Ltd Road adaptative traveling controller for vehicle
JP2006143051A (en) * 2004-11-22 2006-06-08 Honda Motor Co Ltd Vehicle control device
JP2011240816A (en) * 2010-05-18 2011-12-01 Denso Corp Autonomous running control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768692C1 (en) * 2019-01-22 2022-03-24 Ниссан Мотор Ко., Лтд. Vehicle traffic control method and traffic control device

Also Published As

Publication number Publication date
JP2015016799A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6396645B2 (en) Travel route generator
EP3581451B1 (en) Lane keeping assist system and method for improving safety in preceding vehicle follower longitudinal control
EP3611069B1 (en) Vehicle control device
KR101846072B1 (en) Automatic driving vehicle system
JP5952859B2 (en) Vehicle driving support device
JP6747597B2 (en) Driving control method and driving control device for driving assistance vehicle
JP6404722B2 (en) Vehicle travel control device
JP6128584B2 (en) Travel route generator
JP6301714B2 (en) Travel route generator
JP6363516B2 (en) Vehicle travel control device
CN111712414A (en) Vehicle control device
JP6363518B2 (en) Lane marking recognition system
JP2005524135A (en) Side guide support method and apparatus for vehicle
JP6647681B2 (en) Vehicle control device
JP2018067102A (en) Vehicle control device
JP2007269312A (en) Driving operation auxiliary device for vehicle
JP6304011B2 (en) Vehicle travel control device
JP6297956B2 (en) Route generator
KR20190045308A (en) A vehicle judging method, a traveling path correcting method, a vehicle judging device, and a traveling path correcting device
JP2009070254A (en) Vehicle risk estimation device
JP2019043192A (en) Vehicle control device
JP6143184B2 (en) Travelability determination device
JP2019130997A (en) Vehicle controlling apparatus
JP6154348B2 (en) Travel route generator
JP6673531B2 (en) Driving assistance vehicle target vehicle speed generation method and target vehicle speed generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6396645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250