JP6394913B2 - Metal strip cooling method - Google Patents

Metal strip cooling method Download PDF

Info

Publication number
JP6394913B2
JP6394913B2 JP2015193052A JP2015193052A JP6394913B2 JP 6394913 B2 JP6394913 B2 JP 6394913B2 JP 2015193052 A JP2015193052 A JP 2015193052A JP 2015193052 A JP2015193052 A JP 2015193052A JP 6394913 B2 JP6394913 B2 JP 6394913B2
Authority
JP
Japan
Prior art keywords
cooling
metal strip
floater
metal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015193052A
Other languages
Japanese (ja)
Other versions
JP2017066481A (en
Inventor
小林 弘和
弘和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015193052A priority Critical patent/JP6394913B2/en
Publication of JP2017066481A publication Critical patent/JP2017066481A/en
Application granted granted Critical
Publication of JP6394913B2 publication Critical patent/JP6394913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、金属帯の冷却方法に関し、具体的には、金属帯をフロータで浮上し、搬送しながら連続的に熱処理を施した後、冷却する連続焼鈍設備における金属帯の冷却方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for cooling a metal strip, and more specifically, to a method for cooling a metal strip in a continuous annealing facility in which the metal strip is levitated with a floater and subjected to continuous heat treatment while being conveyed. is there.

熱延鋼帯や冷延鋼帯のような帯状の金属(以降、単に「金属帯」という)を連続的に搬送する方法としては、ロールなどの支持体と接触させて搬送する方法がよく用いられている。しかし、上記のロール搬送方法は、ロールとの接触による金属帯への擦り傷の発生や、ロール表面への複合酸化物堆積(ピックアップ)による押し傷発生、金属帯表面に被成した皮膜の剥離などが問題となることがある。   As a method for continuously transporting a strip-shaped metal such as a hot-rolled steel strip or a cold-rolled steel strip (hereinafter simply referred to as “metal strip”), a method of transporting it in contact with a support such as a roll is often used It has been. However, the roll transport method described above may cause scratches on the metal strip due to contact with the roll, press scratches due to composite oxide deposition (pickup) on the roll surface, peeling of the coating formed on the surface of the metal strip, etc. May be a problem.

そこで、金属帯を気体の圧力によって浮上させ、支持体と非接触の状態にして搬送するフロータ装置が開発されている。特に、近年では、金属製品の品質、特に外観品質に対する要求が厳格化して来ているのに伴い、ロール等で支持して搬送する接触式の搬送方式ではなく、フロータ装置等で金属帯を浮上させて搬送する非接触式の搬送方式に対する期待が高まりつつある。   Therefore, a floater device has been developed in which a metal strip is levitated by gas pressure and conveyed in a non-contact state with a support. In particular, in recent years, with the stricter demands on the quality of metal products, especially the appearance quality, the metal belt is lifted by a floater device, etc. There is an increasing expectation for a non-contact type conveyance method that conveys the material in a non-contact manner.

しかし、金属帯をフロータ装置で浮上させて搬送する方法は、金属帯と支持体と間に摩擦力が働かないため、金属帯が幅方向に横滑り(蛇行)し易いという問題や、フロータから噴射された気体流によって金属帯がバタついたりする等の問題があり、金属帯を安定して搬送するには、解決すべき課題がまだ多く残されている。   However, the method of conveying the metal band by floating it with a floater device does not cause frictional force between the metal band and the support, so that the metal band is liable to skid (meander) in the width direction, or sprayed from the floater. There are problems such as the metal band fluttering due to the gas flow, and there are still many problems to be solved in order to stably transport the metal band.

また、連続焼鈍炉等における金属帯の冷却手段の一つに、冷却媒体として気体を用いる技術があり、例えば、金属帯に冷却ガスを吹き付け、対流熱伝達によって冷却するガスジェット冷却や、霧状にした水を金属帯に吹き付け、水の顕熱、潜熱によって冷却するミスト冷却等の冷却方法が知られている。   In addition, one of the means for cooling a metal strip in a continuous annealing furnace is a technique that uses a gas as a cooling medium, for example, a gas jet cooling in which a cooling gas is blown onto the metal strip and cooled by convection heat transfer, There is known a cooling method such as mist cooling in which the formed water is sprayed onto a metal strip and cooled by sensible heat or latent heat of the water.

この点、フロータ装置は、金属帯を浮上させるため、高い熱伝達係数を有するガスの噴流を用いているため、上記ガスに高温ガスや冷却ガスを用いることで、金属帯の浮上・搬送しながら加熱や冷却も効率よく行うことができる。しかし、前述したように、ロール搬送のときのような金属帯への拘束力が働かないため、冷却時の熱収縮によって、金属帯が座屈変形し易いという問題がある。   In this regard, since the floater device uses a jet of gas having a high heat transfer coefficient to levitate the metal strip, the high temperature gas or the cooling gas is used as the gas while Heating and cooling can also be performed efficiently. However, as described above, there is a problem that the metal band is likely to buckle and deform due to thermal contraction during cooling because the restraining force on the metal band does not work as in the case of roll conveyance.

金属帯搬送時の座屈変形を防止する技術として、例えば、特許文献1には、連続焼鈍炉で加熱後の鋼帯を浮上湾曲させて搬送する際、加熱した気体を鋼帯の湾曲部内側へ吹き付けることによって鋼帯の座屈変形の発生を防止する技術を開示されている。また、特許文献2には、鋼板を急速加熱する際、鋼板中央部を先行して加熱し、鋼板幅方向に1つのしわを発生させることによって、鋼板の絞りを防止する技術が開示されている。しかし、これらの技術は、金属帯を加熱するときの座屈変形を防止する技術であり、冷却には適用できない。   As a technique for preventing buckling deformation at the time of transporting a metal strip, for example, in Patent Document 1, when a steel strip after heating is levitated and transported in a continuous annealing furnace, the heated gas is conveyed inside the curved portion of the steel strip A technique for preventing the occurrence of buckling deformation of a steel strip by spraying on the steel is disclosed. Patent Document 2 discloses a technique for preventing the drawing of a steel sheet by heating the steel sheet in advance and generating one wrinkle in the width direction of the steel sheet when rapidly heating the steel sheet. . However, these techniques are techniques for preventing buckling deformation when the metal strip is heated, and are not applicable to cooling.

また、特許文献3には、横型(水平型)熱処理炉を用いて金属帯を熱処理する際に発生する金属帯の板絞り(しわ状欠陥)を、金属帯進行方向の局所的な板温変動量を熱変形が発生する限界の板温変動量未満に制御することによって防止する技術が開示されている。しかし、この技術は、冷却にも適用できるものの、板温変動を抑制するために冷却速度が制限されるという問題がある。   Further, in Patent Document 3, a metal band plate drawing (wrinkle-like defect) generated when a metal band is heat-treated using a horizontal (horizontal) heat treatment furnace, local plate temperature fluctuation in the metal band traveling direction is disclosed. There is disclosed a technique for preventing the amount by controlling the amount to less than the limit plate temperature fluctuation amount at which thermal deformation occurs. However, although this technique can also be applied to cooling, there is a problem that the cooling rate is limited in order to suppress plate temperature fluctuations.

また、特許文献4には、水焼入れ処理によって高強度冷延鋼板を製造する際、冷却水を噴射するスプレーノズルを板幅端部側に配置あるいは多く配置し、鋼板の板幅方向端部から板幅方向中央部に向かって鋼板温度が高くなるような温度分布を形成させてから冷却水に浸漬することによって、鋼板が板幅方向に複数の筋状(波状)に変形して絞り疵となるのを防止する技術が開示されている。   Moreover, in patent document 4, when manufacturing a high intensity | strength cold-rolled steel plate by a water quenching process, the spray nozzle which injects a cooling water is arrange | positioned or arrange | positioned many at the plate width end part side, and from the plate width direction edge part of a steel plate. By forming a temperature distribution that increases the steel plate temperature toward the center in the plate width direction and then immersing it in cooling water, the steel plate is deformed into a plurality of streaks (waves) in the plate width direction. Techniques for preventing this are disclosed.

特開平08−092659号公報Japanese Patent Laid-Open No. 08-092659 特開2013−047372号公報JP 2013-043772 A 特開2002−069536号公報JP 2002-069536 A 特開2012−177145号公報JP 2012-177145 A

しかしながら、搬送設備や加熱・冷却設備としてフロータを用いる連続焼鈍設備においては、上記特許文献4の技術のように冷却用フロータの噴射口の形状を変更することは、鋼板の安定通板に支障をきたすため好ましくない。例えば、金属帯の両幅端部のみにガスを噴射しても、安定浮上できない。また、フロータの前で鋼板端部を冷却した場合、闇雲に冷却するのでは、金属帯のC反り(幅方向の反り)が大きくなって、金属帯の浮上が安定せず、却って蛇行が大きくなったり、フロータとの接触が多発したりするなど、通板性に大きな問題が生ずる。   However, in a continuous annealing facility using a floater as a transfer facility or a heating / cooling facility, changing the shape of the injection port of the cooling floater as in the technique of the above-mentioned Patent Document 4 will hinder the stable passage of the steel plate. It is not preferable because it comes. For example, stable levitation cannot be achieved by injecting gas only to both width ends of the metal strip. In addition, when the steel plate end is cooled in front of the floater, if it is cooled to the dark clouds, the C warp (width direction warp) of the metal strip becomes large, the levitation of the metal strip is not stable, and the meander is large on the contrary There is a big problem in the plate passing property, such as the contact with the floater frequently occurs.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、フロータから気体を噴射して金属帯を浮上し、搬送しながら連続的に金属帯に熱処理を施した後、冷却する際、金属帯を安定して搬送するだけでなく、冷却時における絞り等の形状不良をも効果的に防止することができる金属帯の冷却方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to inject a gas from a floater to float the metal strip and continuously heat-treat the metal strip while being conveyed. Then, when cooling, it is to propose a method for cooling the metal band that not only stably conveys the metal band but also effectively prevents shape defects such as a restriction during cooling.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、フロータで金属帯を浮上して搬送しながら冷却する本冷却の前に、金属帯の両幅端部を冷却する先行冷却を行うことによって、金属帯の絞りを効果的に防止し得ることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, it is possible to effectively prevent throttling of the metal band by performing pre-cooling that cools both width ends of the metal band before the main cooling that cools the metal band while floating and transporting with a floater. As a result, the present invention has been developed.

すなわち、本発明は、金属帯をフロータで浮上し、搬送しながら連続的に熱処理を施した後、冷却する連続焼鈍設備における金属帯の冷却方法において、金属帯の幅をW[mm]、金属帯の幅中央部の最高温度と両幅端部の最低温度との差をΔT[℃]としたとき、Wに対するΔTの比(ΔT/W)が0.01〜0.16の範囲となるよう、フロータで冷却する前に金属帯の両幅端部を先行冷却することを特徴とする金属帯の冷却方法。ここで、上記両幅端部の最低温度とは、両幅端部の最低温度の平均温度のことをいう。   That is, the present invention relates to a method for cooling a metal strip in a continuous annealing facility in which a metal strip is levitated with a floater and continuously subjected to heat treatment while being conveyed, and then the width of the metal strip is set to W [mm] When the difference between the maximum temperature at the central portion of the band and the minimum temperature at both width ends is ΔT [° C.], the ratio of ΔT to W (ΔT / W) is in the range of 0.01 to 0.16. A cooling method for a metal strip, characterized by pre-cooling both ends of the metal strip before cooling with a floater. Here, the minimum temperature of both width end portions means the average temperature of the minimum temperatures of both width end portions.

本発明の上記金属帯の冷却方法は、上記(ΔT/W)が0.03〜0.15の範囲となるよう金属帯の両幅端部を先行冷却することを特徴とする。   The method for cooling the metal strip according to the present invention is characterized in that both end portions of the metal strip are precooled so that the (ΔT / W) is in the range of 0.03 to 0.15.

また、本発明の上記金属帯の冷却方法は、上記金属帯両幅端部の先行冷却を、ノズルから冷却ガスを噴射するガスジェット方式で行うことを特徴とする。   The metal band cooling method of the present invention is characterized in that the preceding cooling of both ends of the metal band is performed by a gas jet method in which a cooling gas is injected from a nozzle.

また、本発明の上記金属帯の冷却方法は、上記冷却ガスに、焼鈍炉内の雰囲気ガスを冷却したガスを用いることを特徴とする。   Moreover, the cooling method of the said metal strip of this invention uses the gas which cooled the atmospheric gas in an annealing furnace as the said cooling gas.

本発明によれば、金属帯をフロータで浮上し、搬送しながら連続的に熱処理を施す連続焼鈍設備において、フロータで金属帯を冷却する際、金属帯の両幅端部を先行して先行冷却することで、金属帯を安定して搬送するだけでなく、急速冷却に伴う金属帯幅方向中央部の凸状座屈変形を抑止することができるので、金属帯製品の生産性向上や品質向上に大いに寄与する。   According to the present invention, in a continuous annealing facility in which a metal strip is floated by a floater and continuously heat-treated while being transported, when the metal strip is cooled by a floater, both width ends of the metal strip are preceded and cooled in advance. As a result, not only can the metal band be transported stably, but also the convex buckling deformation at the center of the metal band width direction that accompanies rapid cooling can be suppressed, improving the productivity and quality of the metal band product. Greatly contributes to.

フロータを有する連続焼鈍設備を説明する図であり、(a)は側面図、(b)は平面図である。It is a figure explaining the continuous annealing equipment which has a floater, (a) is a side view, (b) is a top view. フロータで蛇行修正力が発生するメカニズムを説明する図である。It is a figure explaining the mechanism in which the meandering correction force generate | occur | produces with a floater. 金属帯の幅中央部に発生する凸状の座屈変形を説明する図である。It is a figure explaining the convex buckling deformation which generate | occur | produces in the width | variety center part of a metal strip. 金属帯にC反りが発生したときの蛇行修正力が生じない理由を説明する図である。It is a figure explaining the reason that meandering correction force does not arise when C curvature occurs in a metal belt. 本発明に用いるフロータを有する連続焼鈍設備を説明する図であり、(a)は側面図、(b)は平面図である。It is a figure explaining the continuous annealing equipment which has the floater used for this invention, (a) is a side view, (b) is a top view.

以下、本発明について説明する。
図1は、金属帯1の下方に設置したフロータ2(2a,2b)から金属帯1の下面に向けて気体を噴射することによって金属帯1を浮上して搬送ながら連続的に金属帯に熱処理を施す連続焼鈍設備における均熱帯および冷却帯部分を抜き出して示したものである。なお、図中の3は、連続焼鈍設備の均熱帯と冷却帯を区分する炉壁である。
The present invention will be described below.
FIG. 1 shows that heat is continuously applied to a metal band while the metal band 1 is lifted and conveyed by injecting a gas from a floater 2 (2a, 2b) installed below the metal band 1 toward the lower surface of the metal band 1. This figure shows the soaking zone and the cooling zone in the continuous annealing facility. In addition, 3 in a figure is the furnace wall which divides a soaking zone and a cooling zone of a continuous annealing equipment.

フロータ2の内部には、図示されていないブロアなどから気体が供給され、周囲の圧力よりも高圧に保持されている。フロータ2の上面には、金属帯進行方向に対して垂直方向に2つのノズル4が、気体の噴射方向を互いに対向して設けられている。上記2つのノズル4から金属帯1の下面に向けて気体が噴射されることによって、金属帯1とフロータ2の上面との間に静圧が生じて、金属帯1は浮上したまま搬送される。また、フロータ2の上面の両幅端部には、金属帯の進行方法に並行し、金属帯の浮上高さとほぼ同じ高さを有するサイドプレート5が設けられている。   Gas is supplied into the inside of the floater 2 from a blower (not shown) or the like, and is maintained at a pressure higher than the ambient pressure. On the upper surface of the floater 2, two nozzles 4 are provided in the direction perpendicular to the metal band traveling direction so that the gas injection directions are opposed to each other. By injecting gas from the two nozzles 4 toward the lower surface of the metal band 1, a static pressure is generated between the metal band 1 and the upper surface of the floater 2, and the metal band 1 is conveyed while floating. . In addition, side plates 5 having a height substantially the same as the flying height of the metal band are provided at both width ends of the upper surface of the floater 2 in parallel with the metal band traveling method.

上記フロータ2によって、金属帯1を蛇行することなく安定して搬送することができる原理について、図2を用いて説明する。この図2は、フロータ2の金属帯進行方向断面図中に、フロータ上面に浮上した金属帯1が片側(図2では、左側)に蛇行した状態を示したものである。金属帯1が蛇行すると、蛇行した側のサイドプレート5と金属帯1との間が狭くなるため、この部分の金属帯下面に発生する静圧は高くなる。その結果、金属帯1の浮上量(浮上高さ)は蛇行した側で高くなり、金属帯1は傾いた状態となる。金属帯下面に働く静圧は、金属帯下面に垂直な方向に作用する。そこで、上記力を、鉛直方向と水平方向の力に分けると、鉛直方向の力は金属帯1の自重を支える浮上力として働き、水平方向の力は蛇行方向とは反対方向の力、即ち、金属帯1の蛇行を矯正する修正力として働くことがわかる。そのため、上記フロータ2では、金属帯1が蛇行しても修正力が自動的に働くため、金属帯1は蛇行し続けることなく安定して搬送することができる。   The principle by which the metal strip 1 can be stably conveyed without meandering by the floater 2 will be described with reference to FIG. FIG. 2 shows a state in which the metal band 1 floating on the upper surface of the floater meanders on one side (left side in FIG. 2) in the cross-sectional view of the floater 2 in the metal band traveling direction. If the metal band 1 meanders, the space between the side plate 5 on the meandering side and the metal band 1 becomes narrow, so that the static pressure generated on the lower surface of the metal band in this part increases. As a result, the flying height (flying height) of the metal strip 1 increases on the meandering side, and the metal strip 1 is inclined. The static pressure acting on the lower surface of the metal band acts in a direction perpendicular to the lower surface of the metal band. Therefore, when the above force is divided into a vertical force and a horizontal force, the vertical force acts as a levitation force that supports the weight of the metal strip 1, and the horizontal force is a force in a direction opposite to the meandering direction, that is, It can be seen that this works as a correction force to correct the meandering of the metal strip 1. For this reason, in the floater 2, the correction force automatically works even if the metal band 1 meanders, and therefore the metal band 1 can be stably conveyed without continuing to meander.

また、上記フロータ2は、フロータ上面に設けたノズルから噴射する気体によって金属帯を浮上させて搬送するだけでなく、上記噴射する気体を高温ガスや冷却ガスとすることによって、金属帯を加熱したり、冷却したりすることも可能である。例えば、図1中に示したフロータ2aは、浮上機能と加熱機能を兼備した、また、フロータ2bは、金属帯の浮上機能と冷却機能を兼備したものである。   The floater 2 not only floats and conveys the metal strip by the gas jetted from the nozzle provided on the upper surface of the floater, but also heats the metal strip by using the jetted gas as a high-temperature gas or a cooling gas. Or can be cooled. For example, the floater 2a shown in FIG. 1 has a floating function and a heating function, and the floater 2b has a floating function and a cooling function for a metal strip.

ところで、上記冷却機能を有するフロータ2bでは、フロータの上面のノズルから噴射される低温の冷却ガスによって金属帯は急激に冷却される。その際、金属帯に、「絞り」もしくは「ヒートバックル」と呼ばれる座屈変形が生じることがある。これは、金属帯の急激な温度低下による幅収縮よって、温度が高い側、即ち、冷却帯上流側の金属帯の幅中央部に圧縮応力が作用するためである。ロール搬送のように、金属帯と搬送ロールとが接触するときは、金属帯の自重と張力とによるロールとの接触面圧に摩擦係数を乗じた摩擦力が拘束力となって、上記座屈変形はある程度抑制される。しかし、フロータ搬送においては、上記拘束力が生じないため、容易に座屈変形して、図3に示したように断面が凸状の座屈変形を引き起こす。   By the way, in the floater 2b which has the said cooling function, a metal strip is rapidly cooled with the low temperature cooling gas injected from the nozzle of the upper surface of a floater. At that time, buckling deformation called “drawing” or “heat buckle” may occur in the metal strip. This is because the compressive stress acts on the higher temperature side, that is, the central portion of the width of the metal band on the upstream side of the cooling zone due to the width contraction due to the rapid temperature drop of the metal band. When the metal strip and the transport roll are in contact with each other as in roll transport, the friction force obtained by multiplying the contact surface pressure between the metal strip and the roll due to its own weight and tension by the friction coefficient becomes the restraining force, and the buckling is performed. Deformation is suppressed to some extent. However, since the restraint force is not generated in the floater conveyance, it easily buckles and causes buckling deformation with a convex cross section as shown in FIG.

そこで、発明者らは、この凸状の座屈変形を抑制する方法について、金属帯の冷却条件に着目して検討を重ねた。その結果、金属帯をフロータで本冷却する前に、金属帯の幅両端部を先行して冷却し、金属帯の幅中央部より両幅端部側を低温にすることで、フロータでの冷却時における幅中央部の凸状座屈変形を抑制し、外観品質が良好な金属帯を製造することができることを見出した。この理由は、板幅端部は自由端であるため、冷却により収縮しても、鋼板の変形には殆ど影響しないためであると考えられる。   Therefore, the inventors have repeatedly studied a method for suppressing the convex buckling deformation, focusing on the cooling condition of the metal strip. As a result, before the metal strip is actually cooled with the floater, both ends of the width of the metal strip are cooled in advance, and both ends of the width of the metal strip are cooled at a lower temperature than the center of the width of the metal strip. The present inventors have found that a metal band with good appearance quality can be produced by suppressing convex buckling deformation at the center of the width at the time. The reason for this is considered to be that the plate width end portion is a free end, and therefore, even when contracted by cooling, the deformation of the steel plate is hardly affected.

しかし、金属帯の幅中央部と両幅端部側との間に過剰な温度差を付与すると、図4に示したように、金属帯の幅方向に大きなC反りが発生し、却って、フロータで金属帯を安定した搬送することが難しくなることもわかった。これは、図4のように、金属帯に大きな上向きのC反りが発生すると、金属帯の下面とフロータ上面との間に発生する静圧が不安定となるため、金属帯の浮上量も不安定となって、金属帯がフロータと接触して擦り傷が発生する。また、金属帯に大きな上向きのC反りが発生すると、蛇行発生時に蛇行した側のサイドプレートと金属帯との間が狭くならないため、金属帯を傾斜して蛇行を矯正する能力が低下するからである。   However, if an excessive temperature difference is applied between the width center portion of the metal strip and the width end portions, as shown in FIG. 4, a large C warp occurs in the width direction of the metal strip. It has also been found that it is difficult to transport the metal strip stably. As shown in FIG. 4, when a large upward C-warp occurs in the metal band, the static pressure generated between the lower surface of the metal band and the upper surface of the floater becomes unstable. The metal band comes into contact with the floater and scratches are generated. Also, if a large upward C-warp occurs in the metal band, the gap between the side plate on the meandering side and the metal band does not become narrow when the meandering occurs, so the ability to correct the meander by tilting the metal band decreases. is there.

上記のように、フロータでの急速冷却時に発生する金属帯の幅中央部の座屈変形を防止するためには、フロータで本冷却する前に、金属帯の両幅端部を先行して冷却し、金属帯の幅中央部と両幅端部との間に温度差を付与することが有効である一方、金属帯の平坦度を維持して、安定搬送を実現するためには、過度な温度差の付与は却って好ましくないことを知見した。   As described above, in order to prevent buckling deformation at the center of the width of the metal strip, which occurs during rapid cooling with the floater, cool both width ends of the metal strip in advance before the main cooling with the floater. However, it is effective to provide a temperature difference between the width center portion and both width end portions of the metal strip, while maintaining the flatness of the metal strip and realizing stable conveyance is excessive. It has been found that the application of a temperature difference is not preferable.

そこで、発明者らは、上記座屈変形の抑止と、安定搬送の両立を確保するための先行冷却条件について検討した。その結果、金属帯の幅方向中央部の温度と両幅端部の最低温度との温度差をΔT[℃]、金属帯の幅をW[mm]としたとき、Wに対するΔTの比(ΔT/W)を0.01〜0.16の範囲に制御することで、凸状座屈変形の抑制と安定搬送とが可能になることを見出した。ここで、上記両幅端部の最低温度とは、両幅端部の最低温度の平均温度のことをいう。また、両幅端部の位置は、板幅端部から板幅の1/10内側の位置とする。(ΔT/W)が0.01未満では、凸状座屈変形を抑制する効果が小さく、一方、(ΔT/W)が0.16を超えると、C反り(上反り)が大きくなり、フロータでの安定搬送が難しくなる。好ましい(ΔT/W)は0.03〜0.15の範囲である。   Therefore, the inventors studied the pre-cooling condition for ensuring both the suppression of the buckling deformation and the stable conveyance. As a result, when the temperature difference between the temperature at the center in the width direction of the metal strip and the lowest temperature at both ends is ΔT [° C.] and the width of the metal strip is W [mm], the ratio of ΔT to W It has been found that by controlling (/ W) within the range of 0.01 to 0.16, convex buckling deformation can be suppressed and stable conveyance can be achieved. Here, the minimum temperature of both width end portions means the average temperature of the minimum temperatures of both width end portions. Further, the positions of both width end portions are positions on the inside of 1/10 the plate width from the plate width end portion. When (ΔT / W) is less than 0.01, the effect of suppressing the convex buckling deformation is small. On the other hand, when (ΔT / W) exceeds 0.16, the C warp (upward warp) increases, and the floater Makes it difficult to stably transport the product. Preferred (ΔT / W) is in the range of 0.03 to 0.15.

ここで、金属帯の凸状座屈変形が発生する臨界条件を決定する条件式(ΔT/W)には、パラメーターとして金属帯の板厚やヤング率が含まれていない理由は、以下のように考えている。高温側、即ち、冷却帯上流側の金属帯の幅中央部に凸状座屈変形を引き起こす圧縮応力は、金属帯の長手方向での温度低下による幅収縮に起因する熱応力である。これに対して、凸状座屈変形を抑制するために付与する金属帯幅方向の温度差ΔTにより発生するのも熱応力である。両熱応力に影響する板厚やヤング率は同じであり、これらは次元的に捨象することができるので、温度差ΔTと金属帯の幅Wにより上記の臨界条件を決定できる。   Here, the reason why the condition (ΔT / W) for determining the critical condition for the convex buckling deformation of the metal band does not include the thickness of the metal band and the Young's modulus as parameters is as follows. I am thinking. The compressive stress that causes convex buckling deformation at the center of the width of the metal strip on the high temperature side, that is, the upstream side of the cooling zone, is a thermal stress caused by width shrinkage due to a temperature drop in the longitudinal direction of the metal strip. On the other hand, the thermal stress is also caused by the temperature difference ΔT in the metal band width direction applied to suppress the convex buckling deformation. The plate thickness and Young's modulus that affect both thermal stresses are the same and can be dimensionally discarded. Therefore, the above critical condition can be determined by the temperature difference ΔT and the width W of the metal strip.

ここで、上記のようにフロータで金属帯を本冷却する前に、金属帯の両幅端部を先行冷却する方法としては、図5に示したように、フロータ2bの前段に、先行冷却設備を設けて金属帯の両幅端部を冷却するのが好ましい。なお、図5では、均熱帯側に先行冷却設備を設けた例を示したが、冷却帯側に設けてもよい。   Here, as shown in FIG. 5, as a method for pre-cooling the both ends of the metal strip before the main cooling of the metal strip with the floater as described above, a pre-cooling facility is provided at the front stage of the floater 2b. It is preferable to cool the both ends of the metal strip by providing. In addition, in FIG. 5, although the example which provided the prior cooling equipment in the soaking zone was shown, you may provide in the cooling zone side.

上記フロータを用いた設備における金属帯の先行冷却手段としては、金属帯と非接触で行う必要があることから、冷却媒体をノズルから噴射して冷却する方式、例えば、ガスジェット冷却やミスト冷却が望ましい。しかし、ミスト冷却は、冷却媒体として水を使用するため、鋼板表面が酸化してしまう。そのため、鋼板表面の酸化が望ましくないときには、ガスジェット冷却を採用するのが好ましい。   As a pre-cooling means for the metal strip in the equipment using the floater, since it is necessary to perform the contact without contacting the metal strip, a cooling medium is jetted from the nozzle and cooled, for example, gas jet cooling or mist cooling is used. desirable. However, since mist cooling uses water as a cooling medium, the steel plate surface is oxidized. Therefore, it is preferable to employ gas jet cooling when oxidation of the steel sheet surface is not desirable.

なお、上記先行冷却は、板厚が厚い場合(例えば1mm以上)には、金属帯の上面のみまたは下面のみを冷却すると、表裏面の冷却速度に差が生じると、金属帯が形状不良を起こし、安定搬送することが難しくなるおそれがあるため、金属帯の上下面を均等に冷却するのが好ましい。   In the preceding cooling, when the plate thickness is large (for example, 1 mm or more), if only the upper surface or the lower surface of the metal strip is cooled, the metal strip will cause a shape defect if there is a difference in the cooling rate between the front and back surfaces. Since it may be difficult to stably convey, it is preferable to cool the upper and lower surfaces of the metal strip evenly.

また、上記両幅端部を冷却する範囲は、金属帯の幅Wに対して、片側で(0.1〜0.4)×Wの範囲とするのが好ましい。板幅の0.1倍未満の場合、温度差ΔTを設けても座屈変形防止効果が小さいからである。また、板幅の0.4倍を超えると、温度差がつき難くなるため、座屈変形防止効果が小さくなる。   Moreover, it is preferable that the range which cools both said width | variety edge parts shall be the range of (0.1-0.4) * W with respect to the width W of a metal strip on one side. This is because if the temperature is less than 0.1 times the plate width, the buckling deformation prevention effect is small even if the temperature difference ΔT is provided. Moreover, since it will become difficult to attach a temperature difference when it exceeds 0.4 times the board width, the buckling deformation prevention effect becomes small.

また、上記冷却ガスは、金属帯表面の酸化を防止する観点から、非酸化性のガス、例えば、窒素や水素、アルゴン等を使用するのが好ましい。しかし、上記ガスは、高価であり、製造コストの上昇を招く。そこで、循環使用されている非酸化性の炉内雰囲気ガスを冷却し、冷却ガスとして使用するのが好ましい。なお、上記冷却ガスの温度は、雰囲気温度より低い温度とするのが望ましい。   Moreover, it is preferable to use non-oxidizing gas, for example, nitrogen, hydrogen, argon etc., from a viewpoint of preventing the oxidation of the metal strip surface as the cooling gas. However, the gas is expensive and causes an increase in manufacturing cost. Therefore, it is preferable to cool the non-oxidizing furnace atmosphere gas being circulated and use it as a cooling gas. The temperature of the cooling gas is desirably lower than the ambient temperature.

図5に示したフロータで金属帯を浮上し、搬送しながら連続して熱処理を施す連続焼鈍設備において、表1に示した種々の板厚、板幅を有する冷延鋼帯を100m/sの速度で通板しながら熱処理を施した後、フロータ2bで急速冷却する際、フロータ2bの前段に設置した先行冷却装置で冷延鋼帯の両幅端部を先行冷却することによって、鋼帯の板幅方向に、表1に示した温度差ΔTを付与し、フロータ2bで発生する幅中央部の座屈変形の高さ、蛇行の大きさおよび擦り傷発生の有無について評価した。
ここで、上記連続焼鈍設備におけるフロータは、長さが各1.5m、フロータ2aおよび2b間の距離はフロータ中心間で9mであり、フロータ2b内に供給する冷却ガスの圧力は、板厚、冷却速度、浮上量に応じて0.5〜1.0kPaの範囲内で適宜調整した。また、フロータ2bを設置した冷却帯内の炉内温度は、冷却速度を変更するため500〜800℃の範囲内で適宜調整した。
また、均熱帯出側に設置した先行冷却装置は、鋼帯の上下に設置したスリットノズルから冷却ガスを鋼帯表面に噴射するガスジェット方式を採用した。先行冷却装置の長さは4mで、開口幅が10mmのスリットノズルを鋼帯の進行方向に400mm間隔で11本配設したものである。ノズルから噴射する冷却ガスは、均熱帯の炉内雰囲気ガスを冷却したものを用い、ノズルヘッダ圧は0kPa超え5kPa以下に、また、上下のスリットノズルと鋼帯との間の距離は約100mmとなるように設定した。また、先行冷却設備の幅方向設置位置は、鋼帯幅の変動や蛇行量に応じて可変とし、鋼帯の両幅端部から幅中央部側に200mmの範囲を、常時、先行冷却するようにした。
In a continuous annealing facility in which a metal strip is levitated by the floater shown in FIG. 5 and continuously heat-treated while being conveyed, cold-rolled steel strips having various plate thicknesses and plate widths shown in Table 1 are 100 m / s. After performing heat treatment while passing through the plate at a speed, when rapidly cooling with the floater 2b, the both ends of the cold-rolled steel strip are precooled with a precooling device installed in the previous stage of the floater 2b. A temperature difference ΔT shown in Table 1 was given in the plate width direction, and the height of buckling deformation at the center of the width generated in the floater 2b, the size of meandering, and the presence or absence of scratches were evaluated.
Here, the floater in the above-mentioned continuous annealing equipment has a length of 1.5 m, the distance between the floaters 2 a and 2 b is 9 m between the floater centers, and the pressure of the cooling gas supplied into the floater 2 b is the plate thickness, It adjusted suitably in the range of 0.5-1.0 kPa according to the cooling rate and the flying height. Moreover, the furnace temperature in the cooling zone in which the floater 2b was installed was appropriately adjusted within a range of 500 to 800 ° C. in order to change the cooling rate.
In addition, the pre-cooling device installed on the soaking side of the tropical zone adopts a gas jet method in which cooling gas is injected onto the steel strip surface from slit nozzles installed above and below the steel strip. The length of the pre-cooling device is 4 m, and 11 slit nozzles having an opening width of 10 mm are arranged at intervals of 400 mm in the traveling direction of the steel strip. The cooling gas sprayed from the nozzle uses a soaked atmosphere gas inside the furnace, the nozzle header pressure is over 0 kPa and below 5 kPa, and the distance between the upper and lower slit nozzles and the steel strip is about 100 mm. Was set to be. In addition, the installation position in the width direction of the pre-cooling equipment is variable according to the fluctuation of the steel strip width and the amount of meandering, so that the pre-cooling is always performed in a range of 200 mm from both width ends of the steel strip to the width central portion side. I made it.

ここで、上記鋼帯幅方向の温度差ΔTは、接触式の温度計を用いて、冷却帯入側直前における鋼帯幅中央部と、鋼帯両幅端部から板幅の1/10内側の板温を測定し、両幅端部の最低温度の平均温度と中央部温度の差をΔTとして求めた。
また、鋼帯幅中央部に発生した座屈変形の凸状部高さは、焼鈍設備出側でコイルをせん断してサンプルを採取し、定盤上でレーザー変位計にて測定した。
また、蛇行量の測定は、冷却帯の出側において、2次元レーザーセンサーを用いて鋼帯の端部を検出することにより測定し、最大蛇行量が50mm以下を蛇行防止性良(〇)、50mm超えを蛇行防止性不良(×)と評価した。なお、1条件当たりの通板時間は、蛇行発生頻度から考えて最大蛇行量が十分に測定可能な30分以上とした。
また、擦り傷発生は、連続焼鈍設備の出側において、十分に明るい蛍光灯の下で鋼板表面を目視検査し、フロータと接触した痕跡から有無を判定した。
Here, the temperature difference ΔT in the steel strip width direction is obtained by using a contact-type thermometer, the steel strip width central portion immediately before the cooling zone entry side, and 1/10 inside the plate width from both ends of the steel strip. The plate temperature was measured, and the difference between the average temperature and the center temperature of the lowest temperatures at both width ends was determined as ΔT.
The height of the convex part of the buckling deformation that occurred in the central part of the steel strip width was measured with a laser displacement meter on a platen by shearing the coil on the exit side of the annealing equipment and collecting a sample.
The meandering amount is measured by detecting the end of the steel strip using a two-dimensional laser sensor on the exit side of the cooling zone, and the maximum meandering amount is 50 mm or less. A value exceeding 50 mm was evaluated as a meandering prevention defect (x). The plate passing time per condition was set to 30 minutes or longer so that the maximum amount of meandering can be sufficiently measured in consideration of the meandering frequency.
Further, the occurrence of scratches was determined by visually inspecting the surface of the steel sheet under a sufficiently bright fluorescent lamp on the exit side of the continuous annealing equipment, and determining the presence or absence from the traces in contact with the floater.

上記の実験の結果を表1に併記した。この結果から、本発明に適合する条件では、鋼帯幅中央部の座屈変形による凸状部の高さを1.7mm以下に抑えることができ、また、蛇行量は50mmを超えることがなく、しかも、擦り傷の発生もなく、鋼帯を安定して搬送可能であることがわかる。これに対して、本発明の範囲を外れる条件においては、鋼帯幅中央部の座屈変形による凸状部の高さが2.0mm以上であるか、あるいは、蛇行量が50mmを超え、かつ、浮上不安定による擦り傷が発生しており、安定した搬送ができていないことがわかる。   The results of the above experiment are also shown in Table 1. From this result, under the conditions suitable for the present invention, the height of the convex part due to buckling deformation at the central part of the steel strip width can be suppressed to 1.7 mm or less, and the meandering amount does not exceed 50 mm. Moreover, it can be seen that the steel strip can be stably conveyed without generation of scratches. On the other hand, in the condition outside the scope of the present invention, the height of the convex portion due to buckling deformation at the central portion of the steel strip width is 2.0 mm or more, or the meandering amount exceeds 50 mm, and It can be seen that scratches due to unstable floating occurred and stable conveyance was not possible.

Figure 0006394913
Figure 0006394913

Figure 0006394913
Figure 0006394913

上記実施例では、金属帯として、厚さが0.35、0.50mmの鋼帯を用いた例を示したが、本発明の技術は、上記鋼帯に限定されるものではなく、他の寸法のものであってもよく、また、ステンレスやアルミニウムなどの他の金属帯にも適用することができる。   In the said Example, although the example which used the steel strip whose thickness is 0.35 and 0.50 mm was shown as a metal strip, the technique of this invention is not limited to the said steel strip, It may be of a size and can also be applied to other metal bands such as stainless steel and aluminum.

1:金属帯(鋼帯)
2:フロータ
3:スリットノズル
4:均熱帯−冷却帯間の炉壁
5:サイドプレート
6:先行冷却装置
1: Metal strip (steel strip)
2: Floater 3: Slit nozzle 4: Furnace wall between soaking zone and cooling zone 5: Side plate 6: Advance cooling device

Claims (4)

金属帯をフロータで浮上し、搬送しながら連続的に熱処理を施した後、冷却する連続焼鈍設備における金属帯の冷却方法において、
金属帯の幅をW[mm]、冷却帯入側直前の金属帯の幅中央部の温度と、同時点の両幅端部の温の平均値との差をΔT[℃]としたとき、Wに対するΔTの比(ΔT/W)が0.01〜0.16の範囲となるよう、フロータで冷却する前に金属帯の両幅端部を先行冷却することを特徴とする金属帯の冷却方法
In the method of cooling a metal strip in a continuous annealing facility that is cooled after the metal strip is levitated with a floater and continuously subjected to heat treatment while being conveyed,
The width of the metal strip W [mm], and temperature of the width center portion of the cooling zone inlet side just before the metal strip, the difference between the average value of the temperature of both width ends of the same time was set to [Delta] T [° C.] In this case, the metal band is characterized by precooling both ends of the metal band before cooling with a floater so that the ratio of ΔT to W (ΔT / W) is in the range of 0.01 to 0.16. Cooling method .
上記(ΔT/W)が0.03〜0.15の範囲となるよう金属帯の両幅端部を先行冷却することを特徴とする請求項1に記載の金属帯の冷却方法。 2. The metal band cooling method according to claim 1, wherein both end portions of the metal band are precooled so that the ([Delta] T / W) is in a range of 0.03 to 0.15. 上記金属帯両幅端部の先行冷却を、ノズルから冷却ガスを噴射するガスジェット方式で行うことを特徴とする請求項1または2に記載の金属帯の冷却方法。 The metal band cooling method according to claim 1 or 2, wherein the preceding cooling of both ends of the metal band is performed by a gas jet method in which a cooling gas is injected from a nozzle. 上記冷却ガスに、焼鈍炉内の雰囲気ガスを冷却したガスを用いることを特徴とする請求項3に記載の金属帯の冷却方法。
The method for cooling a metal strip according to claim 3, wherein a gas obtained by cooling an atmospheric gas in an annealing furnace is used as the cooling gas.
JP2015193052A 2015-09-30 2015-09-30 Metal strip cooling method Active JP6394913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193052A JP6394913B2 (en) 2015-09-30 2015-09-30 Metal strip cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193052A JP6394913B2 (en) 2015-09-30 2015-09-30 Metal strip cooling method

Publications (2)

Publication Number Publication Date
JP2017066481A JP2017066481A (en) 2017-04-06
JP6394913B2 true JP6394913B2 (en) 2018-09-26

Family

ID=58491856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193052A Active JP6394913B2 (en) 2015-09-30 2015-09-30 Metal strip cooling method

Country Status (1)

Country Link
JP (1) JP6394913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286539B2 (en) * 2017-11-20 2022-03-29 Primetals Technologies Japan, Ltd. Cooling apparatus for metal strip and continuous heat treatment facility for metal strip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016499B2 (en) * 1978-08-06 1985-04-25 住友軽金属工業株式会社 Heat treatment method for metal strips
JPS5524921A (en) * 1978-08-06 1980-02-22 Daido Steel Co Ltd Cooling of metal strip
JPS56102525A (en) * 1980-01-15 1981-08-17 Daido Steel Co Ltd Heat treatment of aluminum strip
JPH07150259A (en) * 1993-11-29 1995-06-13 Kobe Steel Ltd Method and device for cooling strip in continuous annealing furnace
JP5573728B2 (en) * 2011-02-25 2014-08-20 Jfeスチール株式会社 Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet

Also Published As

Publication number Publication date
JP2017066481A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP6624113B2 (en) Quenching and quenching equipment
US20120067470A1 (en) Cooling method and cooling device of hot-rolled steel strip
EP3156512A1 (en) Cooling method and cooling device for strip steel
JP2019090106A (en) Rapid cooling hardening apparatus and rapid cooling hardening method, and manufacturing method for metal plate product
JP6394913B2 (en) Metal strip cooling method
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP6020838B2 (en) Belt-like body transport device and transport method
JP5991282B2 (en) Steel strip manufacturing method and manufacturing equipment
JP6381858B1 (en) Metal plate warpage straightening device and metal plate continuous plating equipment
JP5573728B2 (en) Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet
WO2013140495A1 (en) Method and apparatus for manufacturing high-strength cold-rolled steel sheet
JP5991283B2 (en) Steel strip manufacturing method and manufacturing equipment
US11414288B2 (en) Method and device for correcting meandering in non-contact conveying apparatus for strip material
JP5097394B2 (en) Cold rolled steel sheet manufacturing method and manufacturing apparatus
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
CN113677811A (en) Quenching device and method for manufacturing metal plate
JP2006144104A (en) Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP4453522B2 (en) Steel plate cooling device and cooling method
JP2005232495A (en) Facility and method for heat-treating metal strip
JP3088903B2 (en) Prevention of meandering and slippage of metal strip in continuous heat treatment furnace
TWI413556B (en) Cooling apparatus and cooling method for hot rolling
JPH07252539A (en) Induction heating device of metal strip
JPH08257623A (en) Method for cooling thick steel plate
JP2020105630A (en) Method for cooling steel sheet, method for manufacturing steel sheet, and cooling system for steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6394913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250