JP6392308B2 - Damping brace joint structure - Google Patents
Damping brace joint structure Download PDFInfo
- Publication number
- JP6392308B2 JP6392308B2 JP2016256616A JP2016256616A JP6392308B2 JP 6392308 B2 JP6392308 B2 JP 6392308B2 JP 2016256616 A JP2016256616 A JP 2016256616A JP 2016256616 A JP2016256616 A JP 2016256616A JP 6392308 B2 JP6392308 B2 JP 6392308B2
- Authority
- JP
- Japan
- Prior art keywords
- sleeve tube
- steel
- brace
- damping brace
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 title claims description 54
- 229910000831 Steel Inorganic materials 0.000 claims description 79
- 239000010959 steel Substances 0.000 claims description 79
- 239000000463 material Substances 0.000 claims description 56
- 238000005304 joining Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 15
- 239000004480 active ingredient Substances 0.000 claims description 5
- 238000006703 hydration reaction Methods 0.000 claims description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 2
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 2
- 239000004571 lime Substances 0.000 claims description 2
- 230000036571 hydration Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 34
- 238000010276 construction Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 10
- 230000007774 longterm Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 210000002445 nipple Anatomy 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 239000011162 core material Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000004033 plastic Substances 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000004567 concrete Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003351 stiffener Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910001006 Constantan Inorganic materials 0.000 description 1
- 101000954570 Mus musculus V-type proton ATPase 16 kDa proteolipid subunit c Proteins 0.000 description 1
- -1 RC members Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011210 fiber-reinforced concrete Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011444 non-shrink grout Substances 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 239000011178 precast concrete Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Landscapes
- Joining Of Building Structures In Genera (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Description
本発明は、制振補強用として建築物の鉄骨架構に取付ける制振ブレースの接合構造に関する。 The present invention relates to a joint structure for a vibration-damping brace attached to a steel frame of a building for vibration-damping reinforcement.
地震等による建築物への揺れや振動に対しては、ダンパーを用いて振動エネルギーを吸収し、制振する方策が有効である。建築物へのダンパー導入に際しては、鉄骨架構からなるフレームの柱梁交叉部にガセットプレートを設け、これにダンパーをブレース形式にして連結させる。連結するための制振用のブレースと前記ガセットプレートとの接合は、大地震の際の主架構の変位を抑える制振構造の要となるため、通常の耐震用の構造の場合とは異なる接合が必要である。従来、鉄骨架構で行われてきた接合は、溶接接合、高力ボルトによる接合、ピン接合のいずれかの接合方式であった。(例えば、非特許文献1参照。)しかるに、溶接接合では、ガセットプレートの溶接部に応力集中を引き起こし、ガセットプレートが破断し易い。また、高力ボルトによる接合では、制振ブレースに関する接合部係数は著しく高いため、必要となるボルト本数が増大し、所要接合部長さが長くなり、施工上問題となる。さらに、ピン接合では、制振ブレースに架構が受けた振動エネルギーが十分伝わらない虞があった。 For vibrations and vibrations of buildings due to earthquakes, etc., measures to absorb vibration energy using dampers and suppress vibrations are effective. When introducing a damper to a building, a gusset plate is provided at the crossing of the column of the steel frame, and the damper is connected in a brace form. The connection between the brace for vibration control and the gusset plate for connection is the key to the vibration control structure that suppresses the displacement of the main frame in the event of a large earthquake, so it is different from the normal structure for earthquake resistance. is necessary. Conventionally, the joining performed on the steel frame has been one of welding joining, joining with a high-strength bolt, and pin joining. (For example, refer nonpatent literature 1.) However, in welding joining, stress concentration is caused in the welding part of a gusset plate, and a gusset plate tends to fracture. Further, in joining with high-strength bolts, the joint coefficient relating to the vibration-damping brace is remarkably high, so that the number of necessary bolts increases and the required joint length becomes long, which causes a problem in construction. Further, in the pin joint, there is a possibility that the vibration energy received by the frame is not sufficiently transmitted to the vibration suppression brace.
鉄骨架構に取付ける制振ブレースの接合に要求される特性としては、大きなダンパー力を短い接合長さで接合でき、その接合部分で応力集中を起こさないような力学的特徴と、ボルト孔位置のあけ直しなど無く、迅速に接合できる施工上の利便性を兼ね備えることであり、従前の鉄骨架構で行われてきた接合技術では、かかる要求特性を満足するには至らなかった。一方、CFRPより線やPC鋼棒より線等の局部的支圧や軸直交方向剪断力に対して弱い材料を接合する方法として、材料の接合しようとする部分をスリーブ管内に挿入し、この管内に定着材を充填して接合することも提案されている。また、定着材に樹脂系の接着剤を使用すると、施工は簡単であるが、単調引張積載時に急激な脆性的引き抜きが生じやすい。このため、水和膨張性の特定の膨張材(例えば、非特許文献2参照)を充填することで、管内に高い拘束膨張圧が発生し、管内に強固に定着化でき、応力集中を避けてより線同士を接合できることが報告されている(例えば、非特許文献3参照)。また、同様の膨張材は、スリーブ管内で鉄筋同士を接続するための定着材として充填することで、鉄筋継手を形成できることも報告されている(例えば、非特許文献4参照)。さらに、膨張材や無収縮グラウトをスリーブ管に充填し、スリーブ管内でブレースとして配置するFRP(繊維強化樹脂)製補強ロッドの定着を行うことも提案されている(例えば、特許文献1参照)。 The characteristics required for joining a damping brace attached to a steel frame include a mechanical characteristic that allows a large damper force to be joined with a short joint length and does not cause stress concentration at the joint, and the opening of bolt holes. It has the convenience of construction that can be quickly joined without any repairs, and the joining technology that has been performed with conventional steel frames has not been able to satisfy the required characteristics. On the other hand, as a method of joining a material that is weak against local bearing pressure such as a CFRP strand or a PC steel rod or a shear force perpendicular to the axis, a portion to be joined is inserted into a sleeve tube, It has also been proposed to fill and bond a fixing material. When a resin adhesive is used as the fixing material, the construction is simple, but abrupt brittle pulling is likely to occur during monotonic tension loading. For this reason, by filling a specific hydrating and expansive material (for example, see Non-Patent Document 2), a high restraint expansion pressure is generated in the tube, and it can be firmly fixed in the tube, avoiding stress concentration. It has been reported that stranded wires can be joined (for example, see Non-Patent Document 3). It has also been reported that the same expansion material can be formed as a fixing material for connecting reinforcing bars in a sleeve tube to form a reinforcing bar joint (for example, see Non-Patent Document 4). Furthermore, it has also been proposed to fix an FRP (fiber reinforced resin) reinforcing rod that is filled with an expansion material or non-shrink grout into a sleeve tube and arranged as a brace in the sleeve tube (see, for example, Patent Document 1).
しかしながら、膨張材を接合に使用することは、より線等の金属線同士の接合や鉄筋同士の接続への適用例等が知られているに過ぎず、他の用途、特に大地震による震動など設計耐力以上の強い外力が作用するような鉄骨架構の接合に用いるための策は知られていない。少なくとも、鉄骨架構に取付ける制振ブレースの接合に要求される前記特性を満たす接合手段は、見出されていないことから、本発明は、前記特性を満たすことのできる制振ブレース接合構造の提供を課題とする。 However, the use of expandable materials for joining is only known for applications such as joining of metal wires such as twisted wires or connecting of reinforcing bars, and other uses, especially vibration caused by large earthquakes, etc. There is no known measure for use in joining steel frames where a strong external force exceeding the design strength is applied. Since at least a joining means that satisfies the above-mentioned characteristics required for joining a vibration-damping brace attached to a steel frame has not been found, the present invention provides a vibration-damping brace joint structure that can satisfy the above-mentioned characteristics. Let it be an issue.
本発明者は、前記課題解決のため検討した結果、鉄骨架構の柱と梁との交叉する角部に設けられたガセットプレートと制振ブレースとの接続を、特定の接合材を介在させた特定の接合構造とすることで、前記課題を全て解決できることがわかり、本発明を完成させた。 As a result of studying to solve the above problems, the present inventor has identified the connection between the gusset plate provided at the corner where the steel frame column and the beam cross each other and the vibration brace with a specific joining material interposed therebetween. It was found that the above-described joint structure could solve all the above problems, and the present invention was completed.
即ち、本発明は以下の[1]〜[2]で表される制振ブレース接合構造を提供するものである。 That is, the present invention provides a vibration-damping brace joint structure represented by the following [1] to [ 2 ].
〔1〕ブレースを含む鉄骨架構の柱と梁との交叉する角部に設けられたガセットプレートと制振ブレースとの接合構造であって、開口端と閉口端を具備し開口端が対角側に向くようガセットプレートに固着された円筒状のスリーブ管に、前記スリーブ管内径より小さい径の円柱状の鋼製ロッドを両端に具備した制振ブレースの前記ロッドが挿入嵌合され、前記スリーブ管とこれに嵌合された前記ロッドとで形成されるスリーブ管内の空隙に、水和膨張性の無機組成物からなる制振ブレース接合用の接合材が充填されていることを特徴とする制振ブレース接合構造。
〔2〕和膨張性の無機組成物が遊離生石灰を有効成分とする組成物である〔1〕記載の制振ブレース接合構造。
[1] A joining structure of a gusset plate and a damping brace provided at a corner where a steel frame column and beam including braces cross each other, and has an open end and a closed end, and the open end is on the diagonal side The rod of the vibration-damping brace having a cylindrical steel rod having a diameter smaller than the inner diameter of the sleeve tube is inserted and fitted into a cylindrical sleeve tube fixed to the gusset plate so as to face the sleeve tube, and the sleeve tube And a rod in the sleeve formed by the rod is fitted with a damping material for joining a damping brace made of a hydrated and expandable inorganic composition. Brace joint structure.
[2] The vibration-damping brace joint structure according to [ 1 ], wherein the Japanese expansive inorganic composition is a composition containing free quick lime as an active ingredient.
本発明による接合構造で鉄骨架構に設置された制震ブレースは、大地震等によって発生する大きな振動エネルギーを、従来の高剛性接合とは異なり、設計耐力以上の外力が作用して弾塑性状態になった後にも耐力を維持しながら変形追従する機能(構造冗長性)を保持することが可能である。しかも、特定箇所に応力集中を起こさない強力な接合力が得られることから、接合部分の長さは短くでき、穿孔等も不要であり、総じて施工性に優れる。 Unlike the conventional high-rigidity joint, the seismic brace installed on a steel frame with a joint structure according to the present invention produces an elasto-plastic state due to the large vibration energy generated by a large earthquake, etc. It is possible to maintain the function of following deformation (structural redundancy) while maintaining the yield strength even after it has become. In addition, since a strong joining force that does not cause stress concentration at a specific location can be obtained, the length of the joining portion can be shortened, no drilling or the like is required, and the workability is generally excellent.
本発明の制振ブレース接合構造は、鉄や鋼等の柱、梁、筋交いを含むブレース構造の建築物において、制振用のブレースを鉄骨構造に取付けるための接合部の構造である(図1及び図2)。 The vibration-damping brace joint structure of the present invention is a joint structure for attaching a vibration-damping brace to a steel frame structure in a brace structure including iron, steel, and other columns, beams, and braces (FIG. 1). And FIG. 2).
制振ブレースは、両端に円柱状のロッド6を有し、中央に芯材2bを有する構造を有する(図3、図4)。制振ブレース2は、好ましくは次の仕様とする。形状は拘束材2aが柱状で、芯材2bを有し、本体両端部の軸方向に鋼製のロッド6を具備する。前記ロッド6は、例えばネジ等の摺動で拘束材2aから伸縮可能とするのが好ましい(図4)。すなわち、拘束材2aは中空構造をなし、その端部にナット2alが固着されている。ロッド6にはナット2alと嵌合する部分にネジ61が切ってあり、ロッド6に回転力を作用させるための頭部62が設けてある。頭部62は六角ボルトの頭部と同様の形状を成している。また、前記ロッド6は拘束材から突出させたときの突出部分の最大長さを、後述するスリーブ管の内寸の軸方向長さと同等か短くする。制振ブレースの材質は特に限定されるものではないが、ロッド部を含め、通常は鋼などの金属を使用する。ここで、制振ブレースとしては、芯材に平鋼、十字形鋼、H形鋼、円形鋼管を用い、拘束材に(a)円形鋼管、角形鋼管,コンクリート充填部材を用いたもの、(b)プレキャストコンクリートによる組立材、RC部材、繊維補強コンクリート部材を用いたもの、(c)平鋼、角形鋼管などを溶接やボルトで組み合わせて拘束材にしたものがあり、これらを前記芯材と組み合わせた座屈拘束ブレース(ダンパー)等が挙げられる。 The vibration-damping brace has a structure having cylindrical rods 6 at both ends and a core member 2b at the center (FIGS. 3 and 4). The damping brace 2 preferably has the following specifications. Constraining material 2a is columnar, has a core material 2b, and has rods 6 made of steel in the axial direction of both ends of the main body. It is preferable that the rod 6 can be expanded and contracted from the restraining material 2a, for example, by sliding with a screw or the like (FIG. 4). That is, the restraining material 2a has a hollow structure, and the nut 2al is fixed to the end thereof. The rod 6 is provided with a screw 61 at a portion where the nut 6al is fitted with the nut 2al, and a head 62 for applying a rotational force to the rod 6 is provided. The head 62 has the same shape as the head of the hexagon bolt. The rod 6 has a maximum length of a protruding portion when protruding from the restraining material, which is equal to or shorter than an axial length of an inner dimension of a sleeve tube to be described later. The material of the damping brace is not particularly limited, but usually a metal such as steel is used including the rod portion. Here, as the damping brace, a flat steel, a cross-shaped steel, an H-shaped steel, a circular steel pipe is used as a core material, and (a) a circular steel pipe, a square steel pipe, a concrete filling member is used as a restraining material, (b ) There are precast concrete assembly materials, RC members, fiber reinforced concrete members, and (c) flat steel, square steel pipes, etc., combined with welding or bolts, and these are combined with the core material. And buckling restrained braces (damper).
具備する両ロッド6を最も突出させたときの制振ブレース2の全長は、後述する角部に存するスリーブ管5の開口端とその対角に存するスリーブ管5の開口端の間の距離よりも長くなるようにし、具備する両ロッド6を収納したときの制振ブレース2の全長は、後述する角部に存するスリーブ管5の開口端とその対角に存するスリーブ管の開口端の間の距離よりも短くなるようにするのが好ましい。 The total length of the vibration-damping brace 2 when the rods 6 are protruded to the maximum is greater than the distance between the open end of the sleeve tube 5 at the corner described later and the open end of the sleeve tube 5 at the opposite corner. The total length of the vibration-damping brace 2 when the rods 6 are accommodated so as to be long is the distance between the open end of the sleeve tube 5 at the corner described later and the open end of the sleeve tube at the opposite corner. It is preferable to make it shorter.
制振ブレースの取り付けは、建築物の例えばH鋼などを材質とする柱と梁との交叉によって形成される角に、その対角方向に制振ブレースの軸方向が向くよう取り付ける。ブレース取り付け箇所の好ましい仕様としては、前記の柱と梁との交叉によって形成された角に、ガセットプレート1が設けられる(図5)。ガセットプレート1と制振ブレース2を接合するに際しての好ましい態様とそのためのガセットプレートの仕様は以下の通りである。 The damping brace is attached to the corner formed by the crossing of a column made of, for example, H steel of a building and a beam so that the axial direction of the damping brace faces in the diagonal direction. As a preferable specification of the brace attachment location, the gusset plate 1 is provided at the corner formed by the intersection of the column and the beam (FIG. 5). The preferred mode for joining the gusset plate 1 and the vibration-damping brace 2 and the specifications of the gusset plate are as follows.
ガセットプレート1は、開口端と閉口端を有し開口端が対角側に向くように円筒状のスリーブ管5が固着された構造を有する(図5)。
当該ガセットプレート1は、図5のように、鋼や鉄等の材質とし、前記角に取り付けられたガセットプレートは、対角方向に対角側からスリット11が切り込まれたものとする。前記スリット11の幅は後述するスリーブ管5の外径と同一とする。また前記スリット11の長さは前記スリーブ管5の長さと同等か短いものとする。また、角部へのガセットプレートの設置は、単体パーツとしてのガセットプレートを、角を形成する柱や梁への高力ボルト接合又は溶接接合によってなされたものでも良いし、予めガセットブレートと一体となった鋼材を柱や梁に使用しても良い。かかるガセットプレート1は、前記のようにガセットプレートが設けられた角の対角部にも同様に設けられている(図1)。
The gusset plate 1 has a structure in which a cylindrical sleeve tube 5 has an open end and a closed end and is fixed so that the open end faces diagonally (FIG. 5).
As shown in FIG. 5, the gusset plate 1 is made of a material such as steel or iron, and the gusset plate attached to the corner has slits 11 cut in the diagonal direction from the diagonal side. The width of the slit 11 is the same as the outer diameter of the sleeve tube 5 described later. The length of the slit 11 is equal to or shorter than the length of the sleeve tube 5. In addition, the gusset plate may be installed at the corner by making the gusset plate as a single part by high-strength bolt joining or welding joining to a pillar or beam forming the corner, or in advance integrated with the gusset plate. You may use the used steel for the pillar and the beam. The gusset plate 1 is also provided in the same manner at the corners where the gusset plates are provided as described above (FIG. 1).
前記ガセットプレートのスリット11には、スリーブ管5が、スリーブ管の軸方向とスリットの切り込み方向が一致するように嵌合固着したものとする。スリーブ管5は、材質が例えば鋼であり、一方の端面が閉口し、他方が開口した円筒形状であり、前記スリーブ管の開口端から管底までの内寸長さ(軸方向の長さ)は、前記のロッドが前記制振ブレースから最も突出した時の突出長さよりも長くし、またスリーブ管の内径は前記ロッド外径よりも大きいものとするのが好ましい。このようなスリーブ管が、閉口部がスリット深部に向くようにスリットに嵌め込み、ガセットプレートに固着される。かかるスリーブ管は対角部に存在するガセットプレートのスリットにも同様に嵌め込まれて固着される。スリーブ管のガセットプレートへの固着は例えば溶接されることによって行うことができる。即ち、制振ブレースと接合する、柱と梁から形成される角部側は、前記ガセットプレートと前記スリーブ管から構成される部材となる。 It is assumed that the sleeve tube 5 is fitted and fixed to the slit 11 of the gusset plate so that the axial direction of the sleeve tube and the slit cutting direction coincide with each other. The sleeve tube 5 is made of, for example, steel and has a cylindrical shape in which one end face is closed and the other is opened, and the inner length from the open end of the sleeve tube to the tube bottom (the length in the axial direction). Preferably, the rod is longer than the protruding length when the rod protrudes most from the damping brace, and the inner diameter of the sleeve tube is larger than the outer diameter of the rod. Such a sleeve tube is fitted into the slit so that the closed portion faces the deep portion of the slit, and is fixed to the gusset plate. Such a sleeve tube is similarly fitted into and fixed to the slits of the gusset plate present at the diagonal portion. The sleeve tube can be fixed to the gusset plate by welding, for example. That is, the corner side formed by the column and the beam joined to the vibration suppression brace is a member constituted by the gusset plate and the sleeve tube.
前記のように対角した2つの角にそれぞれ設けられたガセットプレート1に固着された各スリーブ管5に、前記制振ブレースの両端に具備するロッド6を突出させて嵌め込むことにより、スリーブ管とロッドが嵌合される。 By inserting the rods 6 provided at both ends of the damping brace into the sleeve tubes 5 fixed to the gusset plates 1 provided at the two opposite corners as described above, the sleeve tubes are fitted. And the rod are fitted.
嵌合したスリーブ管とロッドの隙間は、接合材7で充填される。接合材は、水和膨張性の無機組成物が膨張圧発現性や耐久性および施工性の点で優れるため特に好ましい。水和膨張性の無機組成物としては、カルシウムサルホアルミネートを有効成分とする組成物や遊離生石灰を有効成分とする組成物が挙げられるが、後者の組成物が非常に高い膨張圧を発現できるのでより好ましい。前記充填に際しては、できるだけ充填する直前に、水和膨張性の無機組成物を水性スラリー化し、このスラリーを充填に使用する。水性スラリー化のための水/膨張材比率は、組成物の化学および鉱物組成、温度等の環境等により左右されるが、例えば、遊離生石灰を有効成分とする組成物の場合、25〜30重量%が好ましい。なお、水性スラリーには、減水剤、増粘剤を添加してもよい。充填後は速やかにスリーブ開口端側を蓋8などで封止すると、膨張圧の散逸が低減されるので望ましい(図2)。 The gap between the fitted sleeve tube and rod is filled with the bonding material 7. The bonding material is particularly preferable because the hydrated and expandable inorganic composition is excellent in terms of expansion pressure development, durability, and workability. Examples of the hydrated and expandable inorganic composition include a composition containing calcium sulfoaluminate as an active ingredient and a composition containing free quick lime as an active ingredient, but the latter composition can express a very high expansion pressure. It is more preferable. At the time of filling, immediately before filling as much as possible, the hydrate-swellable inorganic composition is made into an aqueous slurry, and this slurry is used for filling. The water / swelling material ratio for aqueous slurrying depends on the chemistry and mineral composition of the composition, the environment such as temperature, etc., for example, in the case of a composition containing free quick lime as an active ingredient, 25 to 30 wt. % Is preferred. In addition, you may add a water reducing agent and a thickener to aqueous slurry. Immediately after filling, it is desirable to seal the sleeve opening end side with the lid 8 or the like because the dissipation of the expansion pressure is reduced (FIG. 2).
本発明の制振ブレース接合構造は、柱と梁から形成された角部に設けられたスリーブ管に制振ブレースを構成するロッドを嵌合させ、その間隙に高膨張の接合材を満たすことで、スリーブ管とロッドが拘束膨張圧によって強固に固定されることで接合された構造である。また、制振ブレースを前記スリーブ管に接合する際は、制振ブレースの接合部を緊張させた状態で接合すると、繰返し負荷の引張応力に対しても安定した耐久性が得られるため好ましい。 The vibration-damping brace joint structure of the present invention is such that a rod constituting the vibration-bracing brace is fitted into a sleeve tube provided at a corner formed by a column and a beam, and a high expansion bonding material is filled in the gap. The sleeve tube and the rod are joined together by being firmly fixed by the restraining expansion pressure. Further, when joining the damping brace to the sleeve tube, it is preferable to join the damping brace in a state in which the joint of the damping brace is in tension, since stable durability can be obtained even against repeated tensile stress.
以下、本発明を実施例によって具体的に説明するが、本発明は記載した実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the described examples.
実施例1
(1)図3の制振ブレースを準備する。芯材は、鋼材履歴ダンパー及び粘弾性ダンパーとし、ロッド6は伸縮可能な高強度PC鋼棒とする(図7(a))。ロッド6には蓋8が、ロッド6の突出部の根本側に固着されている。スリーブ管5としては接合材を充填する孔を備えた鋼管スリーブとする(図7(b)。同図において、スリーブ管5の閉口端は、底板51を溶接して形成されている。当該閉口端の近傍に、スリーブ管5の外側面から管内に連通する貫通孔52が設けられている。当該貫通孔にはニップル13が取り付けられ、それによって開口及び閉口が設定される。またスリーブ管5の開口端の近傍に、スリーブ管5の外側面から管内に連通する貫通孔53が設けられている。当該貫通孔にはニップル13が取り付けられ、それによって開口及び閉口が設定される。スリーブ管5の開口端には、ロッド6に固着された蓋8が嵌合する段付け部54が設けられている。更にスリーブ管5には接合材の膨張圧を測定するための圧力計12が設けられている。
Example 1
(1) Prepare the damping brace shown in FIG. The core material is a steel history damper and a viscoelastic damper, and the rod 6 is a high-strength PC steel bar that can be expanded and contracted (FIG. 7A). A lid 8 is fixed to the rod 6 on the base side of the protruding portion of the rod 6. The sleeve tube 5 is a steel tube sleeve having a hole filled with a bonding material (FIG. 7B), in which the closed end of the sleeve tube 5 is formed by welding a bottom plate 51. In the vicinity of the end, there is provided a through hole 52 that communicates with the inside of the tube from the outer surface of the sleeve tube 5. A nipple 13 is attached to the through hole, thereby opening and closing the sleeve tube 5. A through hole 53 is provided in the vicinity of the open end of the sleeve tube 5. The through hole 53 communicates with the inside of the tube from the outer surface of the sleeve tube 5. A nipple 13 is attached to the through hole, thereby opening and closing the sleeve tube. 5 is provided with a stepped portion 54 into which the lid 8 fixed to the rod 6 is fitted, and the sleeve tube 5 is provided with a pressure gauge 12 for measuring the expansion pressure of the bonding material. It has been.
(2)以下の手順で施工する。
(i)柱と梁から形成される対角した2つの角部に、前記ガセットプレート1と前記スリーブ管5から構成される部材を固着する。
(ii)制振ブレースの両ロッド6を収納し、制振ブレース2の全長を角部に存するスリーブ管5の開口端とその対角に存するスリーブ管の開口端の間の距離よりも短くなるようにして、柱と梁から形成される対角部に挿入する。
(iii)下側の角部(図1における左下角)のスリーブ管5に向けて制振ブレース2の下側のロッド6を突出させてスリーブ管5に嵌合するとともに、ロッド6に固着された蓋8とスリーブ管5の段付け部54を嵌合する。
(iv)同様に上側の角部(図1における右上角)についても(iii)と同様の操作を行う。
(v)左下角のスリーブ管5の貫通孔52および貫通孔53のニップル13を開口し、遊離石灰スラリー(水/膨張材比率;27重量%)から成る接合材を貫通孔52から圧入し、貫通孔53から接合材が射出されることにより充填を確認し、ニップル13を閉口する。右上角のスリーブ管5については、貫通孔53から圧入し、貫通孔52から接合材が射出されることにより充填を確認する。すなわち、接合材の充填は下側の貫通孔から行う。
(vi)接合材スラリーを充填した後は、水和反応熱による硬化不全を起こさないように温度確認をしながら、圧力計12によりスリーブ管5内部の圧力を監視し、設定圧力50N/mm2に達するまで養生する。養生環境は特に制限されない。
(2) Construction is performed according to the following procedure.
(I) A member composed of the gusset plate 1 and the sleeve tube 5 is fixed to two diagonal corners formed by columns and beams.
(Ii) Both rods 6 of the damping brace are housed, and the entire length of the damping brace 2 is shorter than the distance between the opening end of the sleeve tube 5 at the corner and the opening end of the sleeve tube at the opposite corner. Thus, it inserts in the diagonal part formed from a column and a beam.
(Iii) The lower rod 6 of the damping brace 2 protrudes toward the sleeve tube 5 at the lower corner (the lower left corner in FIG. 1) and is fitted to the sleeve tube 5 and is fixed to the rod 6. The lid 8 and the stepped portion 54 of the sleeve tube 5 are fitted.
(Iv) Similarly, the same operation as in (iii) is performed for the upper corner (upper right corner in FIG. 1).
(V) The through hole 52 of the sleeve tube 5 at the lower left corner and the nipple 13 of the through hole 53 are opened, and a bonding material made of free lime slurry (water / expandable material ratio: 27 wt%) is press-fitted from the through hole 52; Filling is confirmed by injecting the bonding material from the through hole 53, and the nipple 13 is closed. The sleeve tube 5 in the upper right corner is press-fitted from the through hole 53 and filling is confirmed by injecting the bonding material from the through hole 52. That is, the bonding material is filled from the lower through hole.
(Vi) After filling the bonding material slurry, the pressure inside the sleeve tube 5 is monitored by the pressure gauge 12 while checking the temperature so as not to cause curing failure due to the heat of hydration reaction, and the set pressure is 50 N / mm 2. Curing until it reaches. The curing environment is not particularly limited.
(3)前記接合材による定着力は標準(膨張圧50MPa)で30N/mm2のせん断耐力が確保できるので、短い定着長さで大きな引張接合耐力が期待できる。また、摩擦ボルト接合のように中板・添板のボルト孔のくい違いで生じる施工しにくさは全くなく、接合部のブレース軸方向のくい違いは容易に修正・吸収できるという施工上のメリットがある。更にはガタが生じないことで高い接合剛性が期待できる。
このように本発明の接合構造は、接合部係数が大きく高い接合精度を必要とする制振ブレース接合構造として有効かつ有用である。
(3) Since the fixing force by the bonding material can ensure a shear strength of 30 N / mm 2 as standard (expansion pressure 50 MPa), a large tensile bonding strength can be expected with a short fixing length. In addition, there is no construction difficulty caused by the difference between the bolt holes in the middle plate and the accessory plate as in the friction bolt connection, and the difference in the brace axial direction of the joint can be easily corrected and absorbed. There is. Furthermore, high joining rigidity can be expected because no play occurs.
Thus, the joint structure of the present invention is effective and useful as a vibration-damping brace joint structure that requires a high joint accuracy with a large joint coefficient.
試験例
本発明の制振ブレース接合構造のモデル試験体を用いて、施工試験と載荷試験を行った。
(1)モデル試験体
図6に接合部試験体の概要を、図7に試験体各部の説明を(a)PC鋼棒、(b)鋼管スリーブ、(c)アンカープレート、(d)ニップル、圧力計について示す。
制振ブレース部に見立てたボルト孔付アンカープレート(SM490,t=40mm)(表1においては「PL40」と表記。)が板厚16mmの鋼板(SM490,t=16mm)に溶接され、PC鋼棒(φ26mm,B種2号)(表1においては「φ26」と表記。)がねじ留めできるようになっている。一方、柱梁接合部に見立てた鋼管スリーブ(外径76.3mm,t=20mm)(表1においては「○−76.3×20」と表記。)に板厚16mmのガセットプレート(SM490,t=16mm)(表1においては「PL16」と表記。)が溶接され、このガセットプレートと直交に板厚9mmのフィンスチフナ(SM490,t=9mm)(表1においては「PL9」と表記。)が取り付けられている。両端にはくさび型つかみ具におさまり、かつ十分な耐力を有する平板接合部(W=100mm,L=250,t=16mm補強PC,W=60mm,t=9mm×2)を設けてある。
PC鋼棒は、全塑性軸力を494kN、最大引張耐力627kNの素材とし、全長500mm、定着長350mmで細目ネジを端部から150mmまで切削ネジ加工してある。
鋼管スリーブ厚肉の中空円形断面で外径76.3mm、内径36.3mm、板厚20mmであり一端は6mmの鋼板の底板が溶接してある。上下端には膨張材スラリーの圧入及び充填確認用のニップルが取り付けてある。また、底板から180mmの位置には、膨張圧計測用の圧力計がねじ込まれている。表1には各鋼素材の素材試験結果を示す。表2には接合材として使用した定着用膨張材(太平洋マテリアル、エクスグリッパーTYPE−B)の成分と用いた水/膨張材比率を示す。
Test Example A construction test and a loading test were performed using the model specimen of the vibration-damping brace joint structure of the present invention.
(1) Model test body Fig. 6 shows an outline of a joint test body, and Fig. 7 explains each part of the test body. (A) PC steel rod, (b) steel pipe sleeve, (c) anchor plate, (d) nipple, It shows about a pressure gauge.
An anchor plate with a bolt hole (SM490, t = 40 mm) (designated as “PL40” in Table 1) that looks like a vibration-damping brace is welded to a steel plate (SM490, t = 16 mm) with a plate thickness of 16 mm. A rod (φ26 mm, Type B No. 2) (indicated as “φ26” in Table 1) can be screwed. On the other hand, a steel pipe sleeve (outer diameter 76.3 mm, t = 20 mm) (referred to as “◯ -76.3 × 20” in Table 1) regarded as a column beam joint is a gusset plate (SM490, (t = 16 mm) (indicated as “PL16” in Table 1), and a fin stiffener (SM490, t = 9 mm) having a thickness of 9 mm perpendicular to the gusset plate (indicated as “PL9” in Table 1). ) Is attached. Flat plate joints (W = 100 mm, L = 250, t = 16 mm reinforced PC, W = 60 mm, t = 9 mm × 2) are provided at both ends and fit in wedge-shaped grippers and have sufficient strength.
The PC steel bar is made of a material having a total plastic axial force of 494 kN and a maximum tensile strength of 627 kN, and has a total length of 500 mm, a fixing length of 350 mm, and a fine thread cut from the end to 150 mm.
The steel tube sleeve has a thick circular hollow cross section with an outer diameter of 76.3 mm, an inner diameter of 36.3 mm, a plate thickness of 20 mm, and a bottom plate of a 6 mm steel plate welded at one end. Nipples for press-fitting and filling the expansion material slurry are attached to the upper and lower ends. In addition, a pressure gauge for measuring expansion pressure is screwed into a position 180 mm from the bottom plate. Table 1 shows the material test results for each steel material. Table 2 shows the components of the fixing expansion material (Pacific Material, Ex Gripper TYPE-B) used as the bonding material and the water / expansion material ratio used.
(2)施工試験
図8に制振ブレース接合工程の施工試験の概要を示す。雰囲気温度が20℃に設定した恒温槽において梁柱接合部を冶具で鉛直に立て、鋼管スリーブに制振ブレース部のPC鋼棒を奥まで挿入する。その後漏れないよう、漏斗をつけ膨張材スラリーを上方から打設(充填)する。本試験においては、接合部を鉛直に立て、鋼管スリーブ管の開口端を上向きにしているため、重力落下による打設方法としている。
温度は図8に示す位置で雰囲気温度、鋼管スリーブ中央表面、フィンスチフナ中央表面の3点をクロメルーコンスタンタン熱電対で計測した。圧力は鋼管に取り付けた圧力計で鋼管スリーブ内の代表的圧力を計測した。時刻は打設開始から計測し、各計測を80時間行った(A−1 シリーズ)。
(2) Construction test Fig. 8 shows an outline of the construction test in the vibration-damping brace joining process. In the thermostatic chamber set to an atmospheric temperature of 20 ° C., the beam-column joint is vertically set with a jig, and the PC steel rod of the vibration-damping brace is inserted into the steel pipe sleeve all the way. Then, a funnel is attached and the expansion material slurry is cast (filled) from above so as not to leak. In this test, since the joint portion is set up vertically and the open end of the steel tube sleeve pipe is directed upward, it is a placing method by gravity drop.
The temperature was measured at the position shown in FIG. 8 at three points of the ambient temperature, the steel tube sleeve central surface, and the fin stiffener central surface with a Chromel Constantan thermocouple. The pressure was measured with a pressure gauge attached to the steel pipe to measure the representative pressure in the steel pipe sleeve. The time was measured from the start of placing and each measurement was performed for 80 hours (A-1 series).
(3)載荷試験
図9に制振ブレース接合部の引張片振り繰返し載荷試験の概要を示す。施工試験を行った試験体に制振ブレース部を取り付け、図6のように試験体を組み立てる。制振ブレース部を上、梁柱接合部を下にして、2000kNアムスラー試験機のくさび式チャックに取り付ける(図9(a)参照)。
引張荷重Nはアムスラー試験機の荷重計より、変位は鋼管スリーブ端とアンカープレートとの相対変位δを、クリップ型変位計(UB−2,東京測器)で(図9(b)参照)、歪は検長2mmの箔歪ゲージを用いて、鋼管スリーブには図9(c)の位置に20mmピッチで鋼管軸方向垂直ひずみεiを、ガセットプレートには先端から20mm位置のブレース軸方向垂直ひずみεqを計測した。
鋼管軸方向垂直ひずみεiを用いて、鋼管内壁近傍の膨張材のせん断応力τiを求める。
(3) Loading test Fig. 9 shows an outline of the repeated tensile loading test for the vibration brace joint. A vibration-damping brace part is attached to the test body subjected to the construction test, and the test body is assembled as shown in FIG. Attach to the wedge-type chuck of the 2000 kN Amsler testing machine with the damping brace part up and the beam column joint down (see Fig. 9 (a)).
The tensile load N is from the load meter of the Amsler testing machine, the displacement is the relative displacement δ between the steel sleeve end and the anchor plate, using a clip-type displacement meter (UB-2, Tokyo Sokki) (see FIG. 9B), The strain was measured using a foil strain gauge with a length of 2 mm. The steel pipe sleeve was perpendicular to the steel pipe axial strain ε i at a pitch of 20 mm at the position shown in FIG. 9C, and the gusset plate was perpendicular to the brace axial direction 20 mm from the tip. the strain ε q was measured.
Using the steel pipe axial direction vertical strain ε i , the shear stress τ i of the expanded material near the inner wall of the steel pipe is obtained.
Es・As:鋼管スリーブの軸剛性
rI:鋼管スリーブの内法半径
xi:i番目の歪ゲージ中央の鋼管軸座標値
εi:i番目の歪ゲージの指示値
N+1:歪ゲージ貼付枚数
Es · As: axial stiffness of the steel pipe sleeve r I : inner radius of the steel pipe sleeve x i : steel pipe axis coordinate value at the center of the i-th strain gauge ε i : indicated value of the i-th strain gauge N + 1: number of strain gauges attached
高静水圧下の膨張材の平均的せん断力−せん断歪関係は次式のようにモデル化できる。 The average shear force-shear strain relationship of the expanded material under high hydrostatic pressure can be modeled as:
ここに、
γ:せん断ひずみ
G,τy,a:材料係数
であり、Gは平均的せん断弾性係数、τyは弾性限せん断応力という物理的意味を持っている。
here,
γ: shear strain G, τ y , a: material coefficient, G has an average shear elastic modulus, and τ y has a physical meaning of elastic limit shear stress.
G、τy、aの材料定数は初期静水圧P0と表面状態(PC鋼棒,鋼管スリーブ)との関数であり、
表面状態を静摩擦係数μで表すことにすると、次式のように表現できる。
The material constants of G, τ y , and a are functions of the initial hydrostatic pressure P 0 and the surface condition (PC steel rod, steel pipe sleeve),
If the surface state is expressed by a static friction coefficient μ, it can be expressed as follows.
G、τy、aを仮定した(2)式を用いて試験結果と比較する。
加力は荷重制御として引張片振り繰返し載荷を行う。最大荷重振幅をPC鋼棒の全塑性軸力NY(494kN)の67%(1/1.5)、最小荷重振幅をNYの5%とし、30回繰返す長期荷重繰返し載荷試験(B−1 シリーズ)と最大荷重振幅をNYの95%、最小荷重振幅をNYの5%とし、1回単調に行う短期荷重単調載荷試験(B−2 シリーズ)を行った。
The test result is compared with the equation (2) assuming G, τ y , and a.
The applied force is repeatedly loaded with a tension piece as load control. Long-term load repeated loading test repeated 30 times with maximum load amplitude of 67% (1 / 1.5) of total plastic axial force N Y (494kN) of PC steel bar and minimum load amplitude of 5% of N Y (B- 1 series), the maximum load amplitude was 95% of N Y , the minimum load amplitude was 5% of N Y , and a short-term load monotonous loading test (B-2 series) performed monotonically once was performed.
(4)試験結果
(4−1)施工試験(A−1 シリーズ)の結果
施工試験の結果(A−1 シリーズ)を図10、11に示す。図10は、鋼管スリーブ内部の圧力Pと養生時間tの関係を、図11は、雰囲気温度、鋼管スリーブ表面温度Ts、フィンスチフナ表面温度Tfと養生時間tとの関係を示す。
これらの図より、以下のことがわかる。
1)打設後60時間程度で所定の設計圧力50N/mm2が確保できる。
2)φ26のPC鋼棒で、弾性限軸力500kNクラスの制振ブレース接合部における接合工程で、膨張圧に悪影響を与える水和反応熱による温度上昇はほとんど表れない。
(4) Test results (4-1) Results of construction test (A-1 series) Results of construction tests (A-1 series) are shown in FIGS. FIG. 10 shows the relationship between the pressure P inside the steel tube sleeve and the curing time t, and FIG. 11 shows the relationship between the ambient temperature, the steel tube sleeve surface temperature T s , the fin stiffener surface temperature T f, and the curing time t.
From these figures, the following can be understood.
1) A predetermined design pressure of 50 N / mm 2 can be secured in about 60 hours after placing.
2) With a φ26 PC steel rod, almost no increase in temperature due to heat of hydration reaction that adversely affects the expansion pressure appears in the joining process at the damping brace joint with an elastic limit axial force of 500 kN class.
(4−2)載荷試験(B−1,B−2 シリーズ)の結果
載荷試験(B−1,B−2 シリーズ)の結果を図12〜17に示す。図12には(a)B−1、(b)B−2 シリーズについてPC鋼棒の全塑性軸力NYで無次元化した軸力N/NYと、口元相対伸びδの関係を、図13にはB−1 シリーズについて(a)初期サイクル、(b)10サイクル目、(c)30サイクル目の引張載荷時における鋼管スリーブの歪分布εを、鋼管の降伏歪εsyで無次元化して示す。図14はB−1 シリーズについて(1,a〜c)式で求めた、弾性限せん断応力で無次元化した膨張材のせん断応力の分布を図13と同様に(a)初期サイクル、(b)10サイクル目、(c)30サイクル目の引張載荷時に分けて示す。図15にはB−2 シリーズについて(a)無次元化した鋼管スリーブ歪分布εs/εsyと(b)無次元化した膨張材のせん断応力分布τ/τyを示す。図16にはB−1 シリーズの30サイクル目の最大荷重時における鋼管スリーブ分担軸力Ns及びPC鋼棒の分担軸力NPCの分布を最大軸力Nmaxで無次元化して示す。図17にはB−2 シリーズについて図16と同様の関係を(A)最大荷重時、(B)口元変位δが2mm時について示す。
1)図12、図13より長期荷重繰返し載荷では、初期サイクルでは口元付近で鋼管スリーブに歪が残留するものの、それ以降は同じ歪分布形を維持する。それに伴って軸力−口元相対伸び関係も弾性的挙動を示す。
2)図13より長期繰返し載荷では、軸力が小さい場合に歪がマイナスとなる。これは引張荷重が作用しても定着内部に高膨張圧が持続的に作用しており、除荷過程において、膨張圧によって拘束されるために負のせん断力が作用することが要因だと予想できる。
3)図14より長期荷重繰返し載荷では、口元から150mmの位置での膨張材せん断応力が大きくなり、それより遠い位置ではせん断力は漸減する傾向にある。
4)図14、図16より弾性的な挙動をする荷重範囲内であればPC鋼棒の軸力は約280mmで鋼管スリーブに完全に伝達できる、480kNクラスの制振ブレースの真の定着長さは300mm程度あればよい。
5)図12、図16より、短期荷重単調載荷時では本接合部は最大荷重の90%付近まで荷重を良好に伝達できる。
6)図12、図17より、短期荷重単調載荷時において最大荷重を超えても脆性的な引き抜けは生じず、摩擦ダンパーのようにNYの85%の荷重を維持する。その際、膨張材のせん断応力の最大負担位置は口元より奥の部位で生じる。またPC鋼棒の軸力が鋼管スリーブに完全に伝達される長さは、長期荷重時と大きく変化しない。
引き抜け後のPC鋼棒の表面に大きな傷は見られなかった。
(4-2) Results of Loading Test (B-1, B-2 Series) The results of the loading test (B-1, B-2 series) are shown in FIGS. FIG. 12 shows the relationship between the axial force N / N Y made dimensionless with the total plastic axial force N Y of the PC steel rod and the mouth relative elongation δ for (a) B-1 and (b) B-2 series. the Figure 13 for B-1 series (a) an initial cycle, (b) 10 cycle, (c) the strain distribution of the steel pipe sleeve epsilon at the 30th cycle of tensile loading, dimensionless at yield strain epsilon sy steel pipe Shown in the form. FIG. 14 shows the distribution of the shear stress of the inflated material made dimensionless by the elastic limit shear stress obtained from the formula (1, a to c) for the B-1 series in the same manner as in FIG. ) Shown separately at the time of tensile loading at the 10th cycle and (c) 30th cycle. FIG. 15 shows (a) dimensionless steel tube sleeve strain distribution ε s / ε sy and (b) dimensionless expanded material shear stress distribution τ / τ y for the B-2 series. Denotes dimensionless by the maximum axial force N max the distribution of shared axial force N PC steel pipe sleeve sharing axial force N s and PC steel rod at the maximum load of 30 cycle of B-1 series in Figure 16. FIG. 17 shows the same relationship as FIG. 16 for the B-2 series when (A) the maximum load is applied and (B) when the mouth displacement δ is 2 mm.
1) From FIG. 12 and FIG. 13, in the long-term cyclic loading, strain remains in the steel tube sleeve near the mouth in the initial cycle, but thereafter the same strain distribution is maintained. Accordingly, the axial force-mouth relative elongation relationship also exhibits elastic behavior.
2) In the case of long-term repeated loading from FIG. 13, the strain becomes negative when the axial force is small. This is expected to be due to the fact that high expansion pressure continues to act inside the anchorage even when a tensile load is applied, and that negative shearing force acts in the unloading process because it is constrained by the expansion pressure. it can.
3) In FIG. 14, in the case of repeated long-term load, the expansion material shear stress increases at a position 150 mm from the mouth, and the shear force tends to gradually decrease at a position farther than that.
4) The true anchoring length of the 480kN class damping brace that can be completely transmitted to the steel pipe sleeve when the axial force of the PC steel rod is about 280mm within the load range that behaves more elastically than in FIGS. Is about 300 mm.
5) From FIG. 12 and FIG. 16, when the short-term load is monotonically loaded, the main joint can transmit the load satisfactorily up to about 90% of the maximum load.
6) From FIGS. 12 and 17, brittle pull-out does not occur even when the maximum load is exceeded during short-term monotonic loading, and a load of 85% of NY is maintained like a friction damper. At that time, the maximum load position of the shearing stress of the expansion material is generated at a position deeper than the mouth. In addition, the length at which the axial force of the PC steel bar is completely transmitted to the steel pipe sleeve is not greatly changed from that during a long-term load.
No large scratch was found on the surface of the PC steel bar after pulling out.
以上の試験の結果から、本発明の制振ブレース接合構造は、次の機能を有することが判明した。
(1)PC鋼棒の全塑性軸力を基準として長期荷重下の引張片振り繰返し載荷時に本接合部は弾性挙動する。
(2)必要接合長さは300mm以下と比較的短い。
(3)単調引張載荷時において最大荷重以後、急激で脆性的な引き抜け現象は生じない。
From the above test results, it was found that the vibration-damping brace joint structure of the present invention has the following functions.
(1) The joint part behaves elastically during repeated loading of a tension piece under a long-term load based on the total plastic axial force of the PC steel bar.
(2) The required joining length is relatively short, 300 mm or less.
(3) No sudden and brittle pull-out phenomenon occurs after the maximum load during monotonic tension loading.
1:ガセットプレート
2:制振ブレース
2a:拘束材
2a1:ナット
2b:芯材
3:柱
4:梁
5:スリーブ管
6:ロッド
7:接合材
8:蓋
11:スリット
12:圧力計
13:ニップル
51:底板
52:貫通孔
53:貫通孔
54:段付け部
61:ネジ
62:頭部
1: Gusset plate 2: Damping brace 2a: Restraint material 2a1: Nut 2b: Core material 3: Column 4: Beam 5: Sleeve tube 6: Rod 7: Joining material 8: Lid 11: Slit 12: Pressure gauge 13: Nipple 51: Bottom plate 52: Through hole 53: Through hole 54: Stepped portion 61: Screw 62: Head
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016256616A JP6392308B2 (en) | 2016-12-28 | 2016-12-28 | Damping brace joint structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016256616A JP6392308B2 (en) | 2016-12-28 | 2016-12-28 | Damping brace joint structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018109276A JP2018109276A (en) | 2018-07-12 |
JP6392308B2 true JP6392308B2 (en) | 2018-09-19 |
Family
ID=62844839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016256616A Active JP6392308B2 (en) | 2016-12-28 | 2016-12-28 | Damping brace joint structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6392308B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153103A (en) * | 2019-03-19 | 2020-09-24 | 博 入田 | Brace and building skelton structure |
CN113756460B (en) * | 2021-08-20 | 2022-09-09 | 北京工业大学 | Movable composite energy consumption damper adopting vacuum chuck |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220918A (en) * | 2000-02-10 | 2001-08-17 | Ohbayashi Corp | Variable rigidity device corresponding to load changing speed and brace structure |
-
2016
- 2016-12-28 JP JP2016256616A patent/JP6392308B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018109276A (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009097165A (en) | Outer shell-reinforcing structure of existing building | |
JP2009197416A (en) | Joint metal fitting and joining method for wooden column-beam member | |
JP6392308B2 (en) | Damping brace joint structure | |
Abdul Ghani et al. | Comparing the seismic performance of beam-column joints with and without SFRC when subjected to cyclic loading | |
Quan et al. | Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds | |
Ebadi et al. | Conceptual study of X-braced frames with different steel grades using cyclic half-scale tests | |
JP6921536B2 (en) | Construction method of anchors to be installed in existing masonry and post-construction anchors | |
JP6236974B2 (en) | Ground anchor and method for constructing ground anchor | |
CA3072732C (en) | A rock bolt | |
Hoveidae et al. | Global buckling prevention condition of all-steel buckling restrained braces | |
Kang et al. | Experimental investigation of composite moment connections with external stiffeners | |
Wang et al. | Experimental research on seismic behavior of+-shaped columns reinforced with high-strength steel bars under cyclic loading | |
JP2007321503A (en) | Composite pc steel material and composite pc steel strand | |
JP2017137690A (en) | Structure for reinforcing steel pipe | |
Hadade et al. | Moment-rotation response of beam-column connections in precast concrete structures | |
JP2005126894A (en) | Earthquake resisting frame using damper-integrated brace, and oil damper for use therein | |
Chan et al. | Buckling-restrained-lug connection for energy dissipation | |
Pokharel et al. | Improved performance of moment resisting connections to concrete filled square hollow sections using double headed anchored blind bolts | |
Madhkhan et al. | Performance of the modified precast beam to column connection placed on a concrete corbel | |
Bedoya-Ruíz et al. | Cyclic behavior of prestressed precast concrete walls | |
Yamamoto et al. | Strength of unstiffened connection between beams and concrete filled tubular column | |
Tjahjanto et al. | Behaviour of improved direct-welded connections in square cfst column moment frames under bidirectional loading | |
Wijanto et al. | Experimental testing and design of BRB with bolted and pinned connections | |
Oktavianus et al. | A study towards the development of a low damage moment-resisting connection using blind bolts, CFCHS columns and a replaceable energy dissipating device | |
Wu et al. | Seismic responses of RC braced frames with buckling restrained braced connected to corbels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6392308 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |