JP6390230B2 - Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles - Google Patents
Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles Download PDFInfo
- Publication number
- JP6390230B2 JP6390230B2 JP2014144513A JP2014144513A JP6390230B2 JP 6390230 B2 JP6390230 B2 JP 6390230B2 JP 2014144513 A JP2014144513 A JP 2014144513A JP 2014144513 A JP2014144513 A JP 2014144513A JP 6390230 B2 JP6390230 B2 JP 6390230B2
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- nickel composite
- lithium
- oxide particles
- organic sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、ニッケル含有量の高い被覆リチウム−ニッケル複合酸化物粒子に関し、大気雰囲気下の安定性を向上させた取り扱いしやすい被覆リチウム−ニッケル複合酸化物粒子及びその製造方法に関するものである。 The present invention relates to a coated lithium-nickel composite oxide particle having a high nickel content, and relates to a coated lithium-nickel composite oxide particle having improved stability in the atmosphere and easy to handle, and a method for producing the same.
近年、携帯電話、ノートパソコン等の小型電子機器の急速な拡大とともに、充放電可能な電源として、リチウムイオン二次電池の需要が急激に伸びている。リチウムイオン二次電池の正極で充放電に寄与する正極活物質として、リチウム−コバルト酸化物(以下、コバルト系と明記することがある。)が広く用いられている。しかしながら、電池設計の最適化によりコバルト系正極の容量は理論容量と同等程度まで改善され、さらなる高容量化は困難になりつつある。 In recent years, with the rapid expansion of small electronic devices such as mobile phones and notebook computers, the demand for lithium ion secondary batteries as a chargeable / dischargeable power source has increased rapidly. As a positive electrode active material that contributes to charging / discharging in the positive electrode of a lithium ion secondary battery, lithium-cobalt oxide (hereinafter sometimes referred to as cobalt-based) is widely used. However, by optimizing the battery design, the capacity of the cobalt-based positive electrode is improved to the same level as the theoretical capacity, and it is becoming difficult to further increase the capacity.
そこで、従来のコバルト系よりも理論容量の高いリチウム−ニッケル酸化物を用いたリチウム−ニッケル複合酸化物粒子の開発が進められている。しかしながら、純粋なリチウム−ニッケル酸化物は、水や二酸化炭素等に対する反応性の高さから安全性、サイクル特性等に問題があり、実用電池として使用することは困難であった。そこで上記問題の改善策として、コバルト、マンガン、鉄等の遷移金属元素またはアルミニウムを添加したリチウム−ニッケル複合酸化物粒子が開発されている。 Therefore, development of lithium-nickel composite oxide particles using lithium-nickel oxide having a theoretical capacity higher than that of conventional cobalt-based materials is in progress. However, pure lithium-nickel oxide has problems in safety, cycle characteristics, etc. due to its high reactivity with water, carbon dioxide and the like, and it has been difficult to use it as a practical battery. Accordingly, lithium-nickel composite oxide particles to which transition metal elements such as cobalt, manganese, iron or the like or aluminum are added have been developed as measures for improving the above problems.
リチウム−ニッケル複合酸化物には、ニッケル、マンガン、コバルトがそれぞれ当モル量添加されてなるいわゆる三元系と呼ばれる遷移金属組成Ni0.33Co0.33Mn0.33で表される複合酸化物粒子(以下、三元系と明記することがある。)といわゆるニッケル系と呼ばれるニッケル含有量が0.65モルを超えるリチウム−ニッケル複合酸化物粒子(以下、ニッケル系と明記することがある。)がある。容量の観点からは三元系と比べ、ニッケル含有量の多いニッケル系に大きな優位性がある。 The lithium-nickel composite oxide is a composite oxide particle represented by a transition metal composition Ni0.33Co0.33Mn0.33 called a so-called ternary system in which equimolar amounts of nickel, manganese, and cobalt are added (hereinafter, referred to as “ternary system”). Ternary system) and so-called nickel-based lithium-nickel composite oxide particles (hereinafter sometimes referred to as nickel-based) having a nickel content exceeding 0.65 mol. From the viewpoint of capacity, the nickel system having a high nickel content has a great advantage over the ternary system.
しかしながら、ニッケル系は、水や二酸化炭素等に対する反応性の高さからコバルト系や三元系と比べ環境により敏感であり、空気中の水分や二酸化炭素(CO2)をより吸収しやすい特徴がある。水分、二酸化炭素は、粒子表面にそれぞれ水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)といった不純物として堆積され、正極製造工程や電池性能に悪影響を与えることが報告されている。 However, nickel is more sensitive to the environment than cobalt and ternary because of its high reactivity with water and carbon dioxide, and has a feature that it absorbs moisture and carbon dioxide (CO 2 ) in the air more easily. is there. It has been reported that moisture and carbon dioxide are deposited on the particle surface as impurities such as lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ), respectively, and adversely affect the positive electrode manufacturing process and battery performance.
ところで、正極の製造工程では、リチウム−ニッケル複合酸化物粒子、導電助剤、バインダーと有機溶媒等を混合した正極合剤スラリーをアルミニウム等の集電体上に塗布・乾燥する工程を経る。一般的に水酸化リチウムは、正極合剤スラリー製造工程において、バインダーと反応しスラリー粘度を急激に上昇させる、またスラリーをゲル化させる原因となることがある。これらの現象は不良や欠陥、正極製造の歩留まりの低下を引き起こし、製品の品質に差を生じさせることがある。また、充放電時、これら不純物は電解液と反応しガスを発生させることがあり、電池の安定性に問題を生じさせかねない。 By the way, in the manufacturing process of a positive electrode, it passes through the process of apply | coating and drying the positive mix slurry which mixed lithium- nickel composite oxide particle | grains, a conductive support agent, a binder, the organic solvent, etc. on collectors, such as aluminum. In general, lithium hydroxide may react with a binder to rapidly increase the slurry viscosity or cause the slurry to gel in the positive electrode mixture slurry manufacturing process. These phenomena can cause defects and defects, and a decrease in the yield of positive electrode manufacturing, resulting in a difference in product quality. In addition, during charging and discharging, these impurities may react with the electrolytic solution to generate gas, which may cause problems in battery stability.
したがって、ニッケル系を正極活物質として用いる場合、上述した水酸化リチウム(LiOH)等の不純物の発生を防ぐため、その正極製造工程を脱炭酸雰囲気下におけるドライ(低湿度)環境下で行う必要がある。そのため、ニッケル系は理論容量が高くリチウムイオン二次電池の材料として有望であるにも関わらず、その製造環境を維持するために高額な設備導入コストが掛かるため、その普及の障壁となっているという問題がある。 Therefore, when nickel-based material is used as the positive electrode active material, it is necessary to perform the positive electrode manufacturing process in a dry (low humidity) environment in a decarboxylation atmosphere in order to prevent the generation of impurities such as lithium hydroxide (LiOH). is there. Therefore, despite the high theoretical capacity of nickel-based materials, which is promising as a material for lithium ion secondary batteries, high installation costs are required to maintain the manufacturing environment, and this is a barrier to their spread. There is a problem.
このような問題を解決するために、リチウム−ニッケル複合酸化物粒子表面上にコーティング剤を用いることにより被覆する方法が提案されている。このようなコーティング剤としては、無機系のコーティング剤と有機系のコーティング剤に大別され、無機系のコーティング剤としてはヒュームドシリカ、酸化チタン、酸化アルミニウム、リン酸アルミニウム、リン酸コバルト、フッ化リチウムなどの材料が、有機系のコーティング剤としては、カルボキシメチルセルロース、フッ素含有ポリマーなどの材料が提案されている。 In order to solve such a problem, a method of coating the surface of the lithium-nickel composite oxide particles by using a coating agent has been proposed. Such coating agents are broadly classified into inorganic coating agents and organic coating agents, and inorganic coating agents include fumed silica, titanium oxide, aluminum oxide, aluminum phosphate, cobalt phosphate, and fluoride. of materials such as lithium, as the coating agent of organic, carboxymethyl cellulose, the material such as a fluorine-containing polymer has been proposed.
例えば、特許文献1では、リチウム−ニッケル複合酸化物粒子表面にフッ化リチウム(LiF)またはフッ素含有ポリマー層を形成する方法、また、特許文献2では、リチウム−ニッケル複合酸化物粒子にフッ素含有ポリマー層を形成し、さらに不純物を中和するためのルイス酸化合物を添加する方法が提案されている。いずれの処理もフッ素系材料を含有するコーティング層によりリチウム−ニッケル複合酸化物粒子を疎水性に改質され、水分の吸着を抑制し、水酸化リチウム(LiOH)などの不純物の堆積を抑制することが可能となる。 For example, Patent Document 1 discloses a method of forming a lithium fluoride (LiF) or fluorine-containing polymer layer on the surface of lithium-nickel composite oxide particles, and Patent Document 2 discloses a fluorine-containing polymer formed on lithium-nickel composite oxide particles. A method of forming a layer and adding a Lewis acid compound for further neutralizing impurities has been proposed. In both treatments, lithium-nickel composite oxide particles are modified to be hydrophobic by a coating layer containing a fluorine-based material, suppressing moisture adsorption and suppressing deposition of impurities such as lithium hydroxide (LiOH). Is possible.
しかしながら、これらのコーティング方法に用いられる上記のフッ素系材料を含有するコーティング層は、静電引力のみによってリチウム−ニッケル複合酸化物粒子に付着しているに過ぎない。そのため、コーティング層とリチウム−ニッケル複合酸化物粒子との密着性は低く、スラリー製造工程等においてコーティング層がリチウム−ニッケル複合酸化物粒子から脱離しやすい。その結果、ニッケル系において問題とされている不良や欠陥、歩留まりの低下を十分に抑制することができないばかりか、実質的に不純物の発生による電池の安定性の問題を十分に解決することができるものとはなっていなかった。 However, the coating layer containing the above-described fluorine-based material used in these coating methods is only attached to the lithium-nickel composite oxide particles only by electrostatic attraction. Therefore, the adhesion between the coating layer and the lithium-nickel composite oxide particles is low, and the coating layer is likely to be detached from the lithium-nickel composite oxide particles in a slurry manufacturing process or the like. As a result, it is not only possible to sufficiently suppress defects, defects, and yield reduction, which are problems in the nickel system, but it can substantially solve the problem of battery stability due to the generation of impurities. It was not a thing.
本発明は、上記従来技術の問題点に鑑み、大気雰囲気下で取り扱うことができ、且つ電池特性に悪影響がないリチウム−ニッケル複合酸化物粒子の被膜を得ることのできる、被覆リチウム−ニッケル複合酸化物粒子及びその製造方法の提供を目的とする。 In view of the above-described problems of the prior art, the present invention provides a coated lithium-nickel composite oxide that can be handled in an air atmosphere and that can provide a coating of lithium-nickel composite oxide particles that does not adversely affect battery characteristics. It is an object to provide product particles and a method for producing the same.
本発明者らは、上述した従来技術における問題点を解決するために鋭利研究を重ねた結果、ニッケル系リチウム−ニッケル複合酸化物粒子との親和性の高い有機硫黄化合物を被覆することで、自己集積化単分子膜を形成することを見出した。このような有機硫黄化合物により自己集積化単分子膜を形成した被覆リチウム−ニッケル複合酸化物は、コーティング層と強い密着性を有しながら、且つ当該粒子が水分、炭酸ガスの透過を抑制できる優れたリチウム−ニッケル複合酸化物粒子であることを見出し、本発明を完成するに至った。 As a result of intensive research in order to solve the above-described problems in the prior art, the present inventors have coated an organic sulfur compound having a high affinity with the nickel-based lithium-nickel composite oxide particles. It has been found that an integrated monomolecular film is formed. The coated lithium-nickel composite oxide in which a self-assembled monomolecular film is formed of such an organic sulfur compound is excellent in that the particles can suppress the permeation of moisture and carbon dioxide gas while having strong adhesion to the coating layer. As a result, the present invention was completed.
具体的には、本発明は以下のようなものを提供する。 Specifically, the present invention provides the following.
すなわち、第一の発明は、ニッケル系リチウム−ニッケル複合酸化物粒子の表面に、有機硫黄化合物を被覆され、前記有機硫黄化合物の被覆量が、リチウム−ニッケル複合酸化物粒子の比表面積に対して4.05×10−6mol/m2以上1.62×10−5mol/m2以下であるリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子である。 That is, in the first invention, the surface of the nickel-based lithium-nickel composite oxide particles is coated with an organic sulfur compound, and the coating amount of the organic sulfur compound is relative to the specific surface area of the lithium-nickel composite oxide particles. This is a coated lithium-nickel composite oxide particle for a positive electrode active material for a lithium ion battery that is 4.05 × 10 −6 mol / m 2 or more and 1.62 × 10 −5 mol / m 2 or less.
第二の発明は、前記有機硫黄化合物が、芳香環若しくは複素環である環状骨格を有するチオール基含有分子又は芳香環若しくは複素環である環状骨格を有するジスルフィド基含有分子である第一の発明に記載のリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子である。
第三の発明は、前記有機硫黄化合物の最高被占軌道の分子軌道エネルギーが−9.0eV未満である第一又は第二の発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
According to a second invention, the organic sulfur compound is a thiol group-containing molecule having a cyclic skeleton that is an aromatic ring or a heterocyclic ring, or a disulfide group-containing molecule having a cyclic skeleton that is an aromatic ring or a heterocyclic ring. The coated lithium-nickel composite oxide particles for the lithium ion battery positive electrode active material described.
A third invention is the coated lithium-nickel composite oxide particle according to the first or second invention, wherein the molecular orbital energy of the highest occupied orbit of the organic sulfur compound is less than -9.0 eV.
第四の発明は、ジフェニルジスルフィド骨格を有するジスルフィド基含有分子又はトリアジンジチオール骨格を有するチオール基含有分子である第一から第三のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。 A fourth invention is a coated lithium-nickel composite oxide particle according to any one of the first to third inventions, which is a disulfide group-containing molecule having a diphenyl disulfide skeleton or a thiol group-containing molecule having a triazine dithiol skeleton. .
第五の発明は、前記有機硫黄化合物が、ジフェニルジスルフィド、2−ナフタレンチオール、6−(ジブチルアミノ)−1,3,5−トリアジン−2,4−ジチオール及び6−(アニリノ)−1,3,5−トリアジン−2,4−ジチオールより選ばれた少なくとも一種以上の化合物である第一から第四のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。 According to a fifth invention, the organic sulfur compound is diphenyl disulfide, 2-naphthalenethiol, 6- (dibutylamino) -1,3,5-triazine-2,4-dithiol and 6- (anilino) -1,3. , 5-triazine-2,4-dithiol. The coated lithium-nickel composite oxide particle according to any one of the first to fourth inventions, which is at least one compound selected from the group consisting of
第六の発明は、前記有機硫黄化合物が下記一般式(1)で表される第一から第五のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
LixNi(1−y−z)MyNzO2 ・・・(1)
(式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnから選ばれる少なくとも一種類の元素を示し、NはAl、InまたはSnから選ばれる少なくとも一種類の元素を示す。)
A sixth invention is the coated lithium-nickel composite oxide particle according to any one of the first to fifth inventions, wherein the organic sulfur compound is represented by the following general formula (1).
Li x Ni (1-y- z) M y N z O 2 ··· (1)
(Wherein x is 0.80 to 1.10, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.65, M represents at least one element selected from Co or Mn, and N represents at least one element selected from Al, In, or Sn.)
第七の発明は、5〜20μmの平均粒径を有する球状粒子である第一から第六のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。 A seventh invention is the coated lithium-nickel composite oxide particle according to any one of the first to sixth inventions, which is a spherical particle having an average particle diameter of 5 to 20 μm.
第八の発明は、前記被覆リチウム−ニッケル複合酸化物粒子に形成されている有機硫黄化合物含有層が単分子膜である第一から第七のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。 The eighth invention is the coated lithium-nickel composite oxide according to any one of the first to seventh inventions, wherein the organic sulfur compound-containing layer formed on the coated lithium-nickel composite oxide particles is a monomolecular film. It is a physical particle.
第九の発明は、前記有機硫黄化合物と前記リチウム−ニッケル複合酸化物粒子を極性溶媒に室温から該分子の分解温度の直前までの温度の範囲内で混合する工程を含む、第一から第八のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。 A ninth invention includes the steps of mixing the organic sulfur compound and the lithium-nickel composite oxide particles with a polar solvent within a temperature range from room temperature to immediately before the decomposition temperature of the molecule. The method for producing coated lithium-nickel composite oxide particles according to any one of the inventions.
本発明によれば、ニッケル系リチウム−ニッケル複合酸化物粒子の表面に、有機硫黄化合物を被覆させた被覆リチウム−ニッケル複合酸化物粒子は、その環境安定性の高さから水分、炭酸ガスを吸収することによる不純物の発生を抑えることができ、かつ密着性が高く容易にコーティング層が離脱することがなく且つ、電気化学的にも安定した優れたリチウム−ニッケル複合酸化物粒子及びその製造方法である。 According to the present invention, coated lithium-nickel composite oxide particles in which the surface of nickel-based lithium-nickel composite oxide particles is coated with an organic sulfur compound absorbs moisture and carbon dioxide gas because of its high environmental stability. With the excellent lithium-nickel composite oxide particles that can suppress the generation of impurities due to the process, do not easily leave the coating layer, and are stable electrochemically, and a method for producing the same is there.
以下に本発明の被覆リチウム−ニッケル複合酸化物粒子とその製造方法について詳細に説明する。尚、本発明は、以下の詳細な説明によって限定的に解釈されるものではない。本発明において、一次粒子が凝集した二次粒子をリチウム−ニッケル複合酸化物粒子と呼ぶ場合がある。 The coated lithium-nickel composite oxide particles of the present invention and the production method thereof will be described in detail below. In addition, this invention is not limitedly interpreted by the following detailed description. In the present invention, secondary particles in which primary particles are aggregated may be referred to as lithium-nickel composite oxide particles.
[ニッケル系リチウム−ニッケル複合酸化物粒子]
ニッケル系リチウム−ニッケル複合酸化物は、球状粒子であって、その平均粒径は、5〜20μmであることが好ましい。このような範囲とすることで、ニッケル系リチウム−ニッケル複合酸化物粒子として良好な電池性能を有するとともに、且つ良好な電池の繰り返し寿命(サイクル特性)を両立ができるため好ましい。
[Nickel-based lithium-nickel composite oxide particles]
The nickel-based lithium-nickel composite oxide is spherical and preferably has an average particle size of 5 to 20 μm. By setting it as such a range, while having favorable battery performance as nickel-type lithium-nickel composite oxide particle, and being able to make compatible the lifetime (cycle characteristic) of a favorable battery, it is preferable.
また、ニッケル系リチウム−ニッケル複合酸化物は、下記一般式(1)で表される酸化物粒子であることが好ましい。 The nickel-based lithium-nickel composite oxide is preferably oxide particles represented by the following general formula (1).
LixNi(1−y−z)MyNzO2・・・(1)
式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnから選ばれる少なくとも一種類の元素を示し、NはAl、InまたはSnから選ばれる少なくとも一種類の元素を示す。
Li x Ni (1-y- z) M y N z O 2 ··· (1)
In the formula, x is 0.80 to 1.10, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.65, and M is Represents at least one element selected from Co or Mn, and N represents at least one element selected from Al, In, or Sn.
なお、1−y−zの値(ニッケル含有量)は、容量の観点から、好ましくは0.70を超える値であり、さらに好ましくは0.80を超える値である。 Note that the value of 1-yz (nickel content) is preferably a value exceeding 0.70, and more preferably a value exceeding 0.80, from the viewpoint of capacity.
コバルト系(LCO)、三元系(NCM)、ニッケル系(NCA)の電極エネルギー密度(Wh/L)は、それぞれ2160Wh/L(LiCoO2)、2018.6Wh/L(LiNi0.33Co0.33Mn0.33Co0.33O2)、2376Wh/L(LiNi0.8Co0.15Al0.05O2)となる。そのため、当該ニッケル系リチウム−ニッケル複合酸化物粒子をリチウムイオン電池の正極活物質として用いることで、高容量の電池を作製することができる。 The electrode energy densities (Wh / L) of cobalt-based (LCO), ternary (NCM), and nickel-based (NCA) are 2160 Wh / L (LiCoO 2) and 2018.6 Wh / L (LiNi 0.33 Co 0.33 Mn 0.33 Co 0, respectively. .33O2), 2376 Wh / L (LiNi0.8Co0.15Al0.05O2). Therefore, a high-capacity battery can be manufactured by using the nickel-based lithium-nickel composite oxide particles as a positive electrode active material of a lithium ion battery.
[有機硫黄化合物]
本発明はリチウム−ニッケル複合酸化物粒子を有機硫黄化合物によって被覆されていることを特徴とする。有機硫黄化合物とは、例えば、芳香環若しくは複素環である環状骨格を有するチオール基含有分子又は芳香環若しくは複素環である環状骨格を有するジスルフィド基含有分子であり、例えば、チオール基は、酸性を示す吸着官能基の一つであるため、塩基性であるリチウム−ニッケル複合酸化物粒子に好ましく被覆することができる。また、チオール基やジスルフィド基中の硫黄分子は遷移金属との親和性が高く、リチウム−ニッケル複合酸化物粒子に強固に化学吸着するため、好ましく用いることができる。
[Organic sulfur compounds]
The present invention is characterized in that lithium-nickel composite oxide particles are coated with an organic sulfur compound. The organic sulfur compound is, for example, a thiol group-containing molecule having a cyclic skeleton that is an aromatic ring or a heterocyclic ring or a disulfide group-containing molecule having a cyclic skeleton that is an aromatic ring or a heterocyclic ring. Since it is one of the adsorptive functional groups shown, it can be preferably coated on basic lithium-nickel composite oxide particles. Further, sulfur molecules in thiol groups and disulfide groups have high affinity with transition metals and can be preferably used because they are chemically adsorbed to lithium-nickel composite oxide particles.
所定の有機硫黄化合物とは、芳香環若しくは複素環である環状骨格を有するチオール基含有分子(R−SH)分子又は芳香環若しくは複素環である環状骨格を有するジスルフィド基含有分子(RS−SR)である。金属(M)と有機硫黄化合物との反応機構は、式(2)、式(3)で表すことができる。 The predetermined organic sulfur compound is a thiol group-containing molecule (R-SH) molecule having a cyclic skeleton that is an aromatic ring or a heterocyclic ring, or a disulfide group-containing molecule (RS-SR) having a cyclic skeleton that is an aromatic ring or a heterocyclic ring. It is. The reaction mechanism between the metal (M) and the organic sulfur compound can be represented by the formulas (2) and (3).
RS−H + Mn 0 →RS−M +・Mn―1 0+ 1/2H2 ・・・式(2) RS-H + M n 0 → RS-M + · M n-1 0 + 1 / 2H 2 ··· formula (2)
RS−SR + Mn 0 →2(RS−M +)・Mn―2 0 ・・・式(3) RS-SR + M n 0 → 2 (RS-M +) · M n-2 0 ··· formula (3)
その配列は、下地の金属表面の原子の配列と、吸着した有機硫黄化合物の分子間の相互作用で決まる規則的な性質を持つ。したがって、選択する有機硫黄化合物が疎水基を含有すれば、これら化合物でコーティングされた正極材料表面は疎水性となり、水分の吸収が妨げられる。さらに選択した有機硫黄化合物が電池駆動電位範囲で電気化学的に安定であれば電池特性への影響がない。 The arrangement has regular properties determined by the arrangement of atoms on the underlying metal surface and the interaction between the molecules of the adsorbed organic sulfur compound. Therefore, if the organic sulfur compound to be selected contains a hydrophobic group, the surface of the positive electrode material coated with these compounds becomes hydrophobic, preventing moisture absorption. Further, if the selected organic sulfur compound is electrochemically stable in the battery driving potential range, there is no influence on the battery characteristics.
有機硫黄化合物は、HOMO(最高被占軌道 Highest Occupied Molecular Orbital)における分子軌道エネルギー値が−9.0eV未満、より好ましくは−9.3eV未満であり、かつ疎水基を含有するものであることが好ましい。HOMOにおける分子軌道エネルギー値が−9.0eV未満、より好ましくは−9.3eV未満であることで、後述するように電池特性に悪影響がでることがなく良好である。また、有機硫黄化合物に疎水基を含有することで、リチウム−ニッケル複合酸化物粒子の水分の吸収をより妨げることができるようになるため、より良好である。
The organic sulfur compound has a molecular orbital energy value of HOMO (highest occupied orbital molecular orbital ) of less than −9.0 eV, more preferably less than −9.3 eV, and contains a hydrophobic group. preferable. When the molecular orbital energy value in HOMO is less than −9.0 eV, more preferably less than −9.3 eV, the battery characteristics are not adversely affected as described later. In addition, the inclusion of a hydrophobic group in the organic sulfur compound is more favorable because it can further prevent moisture absorption of the lithium-nickel composite oxide particles.
このような有機硫黄化合物として、例えば、ジフェニルジスルフィドを基本骨格とするジフェニルジスルフィド、ジ−p−トリルジスルフィド、ビス(4−メトキシフェニル)ジスルフィドや2−ナフタレンチオール、ベンゼンチオール、ベンジルメルカプタン、トリアジン骨格を有する6−(ジブチルアミノ)1,3,5−トリアジン−2,4−ジチオール、2−アニリノ−4,6ジメルカプト−1,3,5−トリアジン、6−(アリニノ)1,3,5−トリアジン−2,4−ジチオール等の有機硫黄化合物が好ましく挙げることができる。
Examples of such organic sulfur compounds include diphenyl disulfide having diphenyl disulfide as a basic skeleton, di-p-tolyl disulfide, bis (4-methoxyphenyl) disulfide, 2-naphthalenethiol, benzenethiol, benzyl mercaptan, and triazine skeleton. 6- (dibutylamino) 1,3,5-triazine-2,4-dithiol, 2-anilino-4,6 dimercapto-1,3,5-triazine, 6- (arinino) 1,3,5-triazine Preferred examples include organic sulfur compounds such as -2,4-dithiol .
<酸化還元電位>
分子種は固有の酸化還元電位(redox potential)を有しており、酸化体と還元体の濃度比の対数と酸化還元電位の間にはネルンスト式として知られる相関関係を有する。すなわち、分子種のHOMOの分子軌道エネルギー準位が低いほど電子を取り出しにくくなるため酸化電位は正(貴に)に高くなり、LUMO(最低空軌道 Lowest Unoccupied Molecular Orbital)の分子軌道エネルギー準位が高いものほど電子を与えにくくなり還元電位は負(卑)方向に大きくなる。図1には、文献から抽出した分子種の酸化電位とMO法(Molecular Orbital method)により算出したHOMOにおける分子軌道エネルギーの値の相関図を示している。図1に示すように、分子種の酸化電位とHOMOにおける分子軌道エネルギーの値には直線関係があり分子種のHOMOにおける分子軌道エネルギーの値から電気化学的に酸化する電位を概算することができる。ここで、リチウム−ニッケル複合酸化物系のリチウムイオン電池駆動は4.0〜4.3Vが上限電圧となるため、これに対応するHOMOのエネルギー準位は、図1により換算すると−9.0〜−9.3eVに相当する。したがって、HOMOの分子軌道エネルギーの値がそれより低い−9.0eV未満、より好ましくは−9.3eV未満である分子を本発明の有機硫黄化合物として選択すればリチウムイオン電池の駆動電圧範囲内において有機硫黄化合物が電極上で酸化反応が起ることがなくなり良好となる。そのため、HOMOの分子軌道エネルギーの値が−9.0eV未満、より好ましくは−9.3eV未満の有機硫黄化合物を被覆することで、より好ましい被覆リチウム−ニッケル複合酸化物粒子とすることができる。
<Redox potential>
The molecular species has a specific redox potential, and there is a correlation known as the Nernst equation between the logarithm of the concentration ratio of the oxidant and the reductant and the redox potential. That is, the lower the molecular orbital energy level of the molecular species HOMO, the more difficult it is to extract electrons, so the oxidation potential becomes higher (noble), and the molecular orbital energy level of LUMO (Lowest Unoccupied Molecular Orbital) is higher. The higher the value, the harder it is to give electrons, and the reduction potential increases in the negative (base) direction. FIG. 1 shows a correlation diagram between the oxidation potential of molecular species extracted from literature and the value of molecular orbital energy in HOMO calculated by MO method (Molecular Orbital method). As shown in FIG. 1, there is a linear relationship between the oxidation potential of molecular species and the value of molecular orbital energy in HOMO, and the potential for electrochemical oxidation can be estimated from the value of molecular orbital energy in HOMO of molecular species. . Here, since the lithium-nickel composite oxide-based lithium ion battery drive has an upper limit voltage of 4.0 to 4.3 V, the energy level of HOMO corresponding to this is −9.0 in terms of FIG. It corresponds to -9.3 eV. Therefore, if a molecule having a molecular orbital energy value of HOMO of less than −9.0 eV, more preferably less than −9.3 eV is selected as the organic sulfur compound of the present invention, within the driving voltage range of the lithium ion battery. The organic sulfur compound does not cause an oxidation reaction on the electrode, which is favorable. Therefore, more preferable coated lithium-nickel composite oxide particles can be obtained by coating an organic sulfur compound having a molecular orbital energy value of HOMO of less than −9.0 eV, more preferably less than −9.3 eV.
<SAM(自己集積化単分子膜)>
本発明の被覆リチウム−ニッケル複合酸化物粒子における有機硫黄化合物は、SAM(自己集積化単分子膜、Self−Assemble Monolayer)を形成し、被膜される。後述するようにSAMは、超薄膜を形成し、細孔の内壁や凹凸形状のある表面などにも、被覆対象の立体形状に与える変化は極めて小さい。
<SAM (Self-Integrated Monolayer)>
The organic sulfur compound in the coated lithium-nickel composite oxide particles of the present invention forms a SAM (self-assembled monolayer, Self-Assembly Monolayer) and is coated. As will be described later, the SAM forms an ultra-thin film, and the change given to the three-dimensional shape to be coated is extremely small even on the inner wall of the pores and the surface having the uneven shape.
一般に、原子、分子、微粒子、クラスターなどの微小要素が自発的に集合し、規則的な配列を形成することがある。この自己集積化を利用する材料プロセスのひとつに、有機分子の自己集積化による単層膜/多層膜形成がある。このような自己集積化膜の定義として、1)有機分子が固体表面に化学吸着する際に形成される分子会合体であり、2)前駆体分子が液相ないし気相中にある時の分子配列状態と比較すると、会合体となり薄膜を形成したときに分子配向性や配列規則性が著しく向上している分子膜となる。 In general, microelements such as atoms, molecules, fine particles, and clusters may spontaneously assemble to form a regular arrangement. One of material processes using this self-assembly is the formation of a single layer film / multilayer film by self-assembly of organic molecules. The definition of such a self-assembled film is as follows: 1) a molecular aggregate formed when an organic molecule is chemisorbed on a solid surface, and 2) a molecule when the precursor molecule is in a liquid phase or gas phase. Compared with the aligned state, when it becomes an aggregate and forms a thin film, it becomes a molecular film in which molecular orientation and alignment regularity are remarkably improved.
特定の物質に対して親和性を有する化合物の溶液に、その化合物からなる基材を浸漬すると、化合物の分子が材料表面に化学吸着し薄膜が形成される。この場合、吸着の過程で吸着分子同士の相互作用によって、自発的に集合体を形成し、吸着分子が緻密に集合し、且つ配向が揃った分子膜が形成される場合がある。特に吸着分子層が一層の場合、すなわち単分子膜が形成される場合には、SAMと呼ばれる。 When a substrate made of a compound is immersed in a solution of a compound having affinity for a specific substance, the compound molecules are chemisorbed on the material surface to form a thin film. In this case, an aggregate is spontaneously formed by the interaction between adsorbed molecules during the adsorption process, and a molecular film in which the adsorbed molecules are densely aggregated and aligned is formed in some cases. In particular, when the adsorption molecular layer is a single layer, that is, when a monomolecular film is formed, it is called SAM.
SAMの形成過程は、基材と分子との反応が吸着の必要条件であるため、反応性官能基が基材表面を向いた方向で吸着する。時間が経過するにつれて吸着分子数は増加する。自己集積化する分子の多くは、長鎖アルキル基やベンゼン核を有している。隣接する吸着分子間には、アルキル基鎖同士にはファンデルワールス力や疎水性相互作用が、ベンゼン核同士にはπ電子相互作用が働く。その結果、吸着分子が集合した方が熱力学的に安定になるため、分子が密に集積化した単分子膜が形成される。 In the SAM formation process, since the reaction between the substrate and the molecule is a necessary condition for adsorption, the reactive functional group is adsorbed in the direction facing the substrate surface. The number of adsorbed molecules increases with time. Many molecules that self-assemble have long-chain alkyl groups and benzene nuclei. Between adjacent adsorbed molecules, van der Waals force and hydrophobic interaction occur between alkyl groups, and π-electron interaction acts between benzene nuclei. As a result, the aggregate of adsorbed molecules becomes thermodynamically stable, so that a monomolecular film in which molecules are densely integrated is formed.
SAMの形成は、単分子膜が完成した時点で膜成長が自動的に止まる、自己停止型のプロセスである。膜厚は1〜2nmという分子レベルの超薄膜を形成するのに、精密なプロセス管理による膜厚制御を必要としない。吸着分子が侵入できる隙間があれば、どこにでも被覆が可能であり、細孔の内壁や凹凸形状のある表面などにも、被覆対象の立体形状に与える変化は無視できる程小さい。 The formation of SAM is a self-stopping process in which film growth automatically stops when a monomolecular film is completed. In order to form a molecular level ultrathin film having a film thickness of 1 to 2 nm, film thickness control by precise process management is not required. If there is a gap through which the adsorbed molecules can enter, coating can be performed anywhere, and the change given to the three-dimensional shape of the coating target is so small that it can be ignored even on the inner wall of the pores or the surface with the uneven shape.
SAMの成長は、基材と有機分子の特異的な化学反応に依存し、SAMを形成するには、基材と分子の特定の組み合わせが必要となる。ニッケル系リチウム−ニッケル複合酸化物粒子の表面は、塩基性となるため、例えば、チオール基含有分子のような酸性を示す吸着官能基を選択することが有効である。 The growth of SAM depends on the specific chemical reaction between the substrate and organic molecules, and a specific combination of substrate and molecules is required to form a SAM. Since the surface of the nickel-based lithium-nickel composite oxide particle is basic, it is effective to select an adsorption functional group that exhibits acidity, such as a thiol group-containing molecule.
[被覆リチウム−ニッケル複合酸化物粒子の製造方法]
被覆リチウム−ニッケル複合酸化物粒子を製造する方法、すなわちリチウム−ニッケル複合酸化物粒子に有機硫黄化合物で被覆する方法としては、例えば、有機硫黄化合物を、室温から該分子の分解温度の直前までの温度の範囲内で、溶液中でリチウム−ニッケル複合酸化物粒子と直接混合されることで被膜することができる。特に、加熱することにより、当該分子は軟化または融解し、コーティングの均一性を向上させることができるため特に好ましい。
[Method for producing coated lithium-nickel composite oxide particles]
Examples of a method for producing coated lithium-nickel composite oxide particles, that is, a method of coating lithium-nickel composite oxide particles with an organic sulfur compound include, for example, an organic sulfur compound from room temperature to immediately before the decomposition temperature of the molecule. The film can be coated by being directly mixed with the lithium-nickel composite oxide particles in a solution within a temperature range. In particular, heating is particularly preferred because the molecule can soften or melt and improve the uniformity of the coating.
当該混合時間は、溶液内の温度に従って決定するのが望ましい。これは溶液内で分子の拡散が温度に伴って増すためで、温度が低いと混合時間を長くする必要がある。混合時間の範囲は、30秒から10時間までの範囲で行うことで有機硫黄化合物を被覆することができる。混合に用いられる溶媒は、高極性溶媒であれば特に限定されるものではないが、水を用いることがコスト面、特性面で優れるため特に好ましい。 The mixing time is desirably determined according to the temperature in the solution. This is because the diffusion of molecules in the solution increases with temperature, and if the temperature is low, it is necessary to lengthen the mixing time. The mixing time range is 30 seconds to 10 hours, so that the organic sulfur compound can be coated. The solvent used for mixing is not particularly limited as long as it is a highly polar solvent, but it is particularly preferable to use water because it is excellent in cost and characteristics.
本発明に係る方法に使用される有機硫黄化合物の量は、リチウム−ニッケル複合酸化物粒子の比表面積あたり4.05×10−6mol/m2から1.62×10−5mol/m2であることが好ましい。更に好ましくは8.10×10−6mol/m2から1.62×10−5mol/m2である。1.62×10−5mol/m2を超えると、過剰分の有機硫黄化合物は負極に悪影響を与えサイクル時の充電容量/放電容量の低下を招く可能性がある。また4.05×10−6mol/m2未満である場合には、粒子上の被覆量が少なく効果が得にくくなる傾向がある。 The amount of the organic sulfur compound used in the method according to the present invention is 4.05 × 10 −6 mol / m 2 to 1.62 × 10 −5 mol / m 2 per specific surface area of the lithium-nickel composite oxide particles. It is preferable that More preferably, it is from 8.10 × 10 −6 mol / m 2 to 1.62 × 10 −5 mol / m 2 . If it exceeds 1.62 × 10 −5 mol / m 2 , the excess organic sulfur compound may adversely affect the negative electrode, leading to a decrease in charge capacity / discharge capacity during cycling. Moreover, when it is less than 4.05 × 10 −6 mol / m 2 , the coating amount on the particles is small, and the effect tends to be difficult to obtain.
以下、本発明について実施例について比較例を挙げて具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to comparative examples. However, the present invention is not limited to the following examples.
[実施例1]
ニッケル系リチウム−ニッケル複合酸化物粒子として遷移金属組成がLi1.03Ni0.82Co0.15Al0.03で表される複合酸化物粒子15gを20mlの水とジフェニルジスルフィド0.0668g(1.62×10 −5 mol/m2s相当)を常温で混合した。この混合は、周速10.5m/s、撹拌時間1分でホモジナイザーを用いて行われた。混合後、吸引濾過により水を分離し、減圧下100℃で2時間乾燥させことで被覆リチウム−ニッケル複合酸化物粒子を作成し、下記の評価を行った。
[Example 1]
As nickel-based lithium-nickel composite oxide particles, 15 g of composite oxide particles having a transition metal composition represented by Li 1.03 Ni 0.82 Co 0.15 Al 0.03 are mixed with 20 ml of water and 0.0668 g of diphenyl disulfide ( 1.62 × 10 −5 mol / m 2 s) was mixed at room temperature. This mixing was performed using a homogenizer at a peripheral speed of 10.5 m / s and a stirring time of 1 minute. After mixing, water was separated by suction filtration and dried at 100 ° C. under reduced pressure for 2 hours to prepare coated lithium-nickel composite oxide particles, and the following evaluation was performed.
[実施例2]
実施例1のコーティング材料のジフェニルジスルフィド添加量を0.0334g(8.10×10−6mol/m2s相当)に変更した以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 2]
The coated lithium-nickel composite oxide particles were similarly prepared except that the amount of diphenyl disulfide added to the coating material of Example 1 was changed to 0.0334 g (equivalent to 8.10 × 10 −6 mol / m 2 s), The following evaluation was performed.
[実施例3]
実施例1のコーティング材料のジフェニルジスルフィド添加量を0.0167g(4.05×10−6mol/m2s相当)に変更した以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 3]
The coated lithium-nickel composite oxide particles were similarly prepared except that the amount of diphenyl disulfide added to the coating material of Example 1 was changed to 0.0167 g (equivalent to 4.05 × 10 −6 mol / m 2 s), The following evaluation was performed.
[実施例4]
実施例1のコーティング材料を2−ナフタレンチオール0.0490g(1.62×10−5mol/m2s相当)を用いた以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 4]
The coated lithium-nickel composite oxide particles were prepared in the same manner except that 0.0490 g of 2-naphthalenethiol (equivalent to 1.62 × 10 −5 mol / m 2 s) was used as the coating material of Example 1, and the following: Was evaluated.
[実施例5]
実施例1のコーティング材料を2−ナフタレンチオール0.0245g(8.10×10−6mol/m2s相当)を用いた以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 5]
The coated lithium-nickel composite oxide particles were prepared in the same manner except that 0.0245 g of 2-naphthalenethiol (equivalent to 8.10 × 10 −6 mol / m 2 s) was used as the coating material of Example 1. Was evaluated.
[実施例6]
実施例1のコーティング材料を2−ナフタレンチオール0.0123g(4.05×10−6mol/m2s相当)を用いた以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 6]
The coated lithium-nickel composite oxide particles were prepared in the same manner except that 0.0123 g of 2-naphthalenethiol (equivalent to 4.05 × 10 −6 mol / m 2 s) was used as the coating material of Example 1. Was evaluated.
[実施例7]
実施例1のコーティング材料を6−(ジブチルアミノ)−1,3,5トリアジン−2,4−ジチオール0.0833g(1.62×10−5mol/m2s相当)を用いた以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 7]
Except for using 0.0833 g (corresponding to 1.62 × 10 −5 mol / m 2 s) of 6- (dibutylamino) -1,3,5 triazine-2,4-dithiol as the coating material of Example 1, the same Then, coated lithium-nickel composite oxide particles were prepared, and the following evaluation was performed.
[実施例8]
実施例1のコーティング材料を6−(アリニノ)1,3,5−トリアジン−2,4−ジチオール0.0723g(1.62×10−5mol/m2s相当)を用いた以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Example 8]
The same applies except that 0.0723 g of 6- (Alinino) 1,3,5-triazine-2,4-dithiol (equivalent to 1.62 × 10 −5 mol / m 2 s) was used as the coating material of Example 1. The coated lithium-nickel composite oxide particles were prepared and evaluated as follows.
[比較例1]
実施例1のコーティング処理を行わずリチウム−ニッケル複合酸化物粒子として評価を行った。
[Comparative Example 1]
Evaluation was carried out as lithium-nickel composite oxide particles without performing the coating treatment of Example 1.
[比較例2]
実施例1のコーティング材料のジフェニルジスルフィドを0.0083g(2.03×10−6mol/m2s相当)に変更した以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Comparative Example 2]
The coated lithium-nickel composite oxide particles were prepared in the same manner except that the coating material of Example 1 was changed to 0.0083 g (corresponding to 2.03 × 10 −6 mol / m 2 s) of diphenyl disulfide. Evaluation was performed.
[比較例3]
実施例1のコーティング材料の2−ナフタレンチオールを0.0061g(2.03×10−6mol/m2s相当)に変更した以外、同様に被覆リチウム−ニッケル複合酸化物粒子の作成をし、下記の評価を行った。
[Comparative Example 3]
The coated lithium-nickel composite oxide particles were similarly prepared except that 2-naphthalenethiol of the coating material of Example 1 was changed to 0.0061 g (equivalent to 2.03 × 10 −6 mol / m 2 s), The following evaluation was performed.
<環境安定性試験>
各実施例、比較例の環境安定性について、温度30℃、湿度70%RH雰囲気中に1週間曝露した際の重量変化率を行うことによって評価をした。各実施例、比較例の粒子約2.0gの初期質量に対する質量増加を質量%で表1に表記した。
<Environmental stability test>
The environmental stability of each example and comparative example was evaluated by performing the weight change rate when exposed to a temperature of 30 ° C. and a humidity of 70% RH for one week. The increase in mass with respect to the initial mass of about 2.0 g of the particles of each Example and Comparative Example is shown in Table 1 in mass%.
表1により、本発明に係る実施例1〜8の被覆リチウム−ニッケル複合酸化物粒子は、質量変化も1.60%未満となっており、環境安定性の高いリチウム−ニッケル複合酸化物粒子であることが分かる。一方、比較例1〜3のリチウム−ニッケル複合酸化物粒子は、実施例1〜8と比較すると質量変化が大きく、環境安定性の悪いリチウム−ニッケル複合酸化物粒子であることが確認された。 According to Table 1, the coated lithium-nickel composite oxide particles of Examples 1 to 8 according to the present invention have a mass change of less than 1.60%, and are lithium-nickel composite oxide particles with high environmental stability. I understand that there is. On the other hand, the lithium-nickel composite oxide particles of Comparative Examples 1 to 3 were confirmed to be lithium-nickel composite oxide particles having a large mass change as compared with Examples 1 to 8 and poor environmental stability.
<正極合剤スラリーの安定性試験>
各実施例及び比較例のリチウム−ニッケル複合酸化物粒子を重量比が粒子:アセチレンブラック:PVdF:N−メチルピロリドン(NMP)のそれぞれの重量比が、45:2.5:2.5:50となるように秤量し、さらに1.5重量%の水を添加後、自転・公転ミキサーで撹拌して正極合剤スラリーを得た。得られたスラリーを25℃のインキュベーター内で保管し、24時間の経時変化をスパチュラでかき混ぜ粘度増加、ゲル化度合いを、実施例及び比較例についてそれぞれ評価し、表1に表記した。なお、24時間放置しても正極合剤スラリーに流動性のあるものを“○”とし、ゼリー状になりゲル化したものを“×”とした。
<Stability test of positive electrode mixture slurry>
The weight ratio of the lithium-nickel composite oxide particles of each Example and Comparative Example was 45: 2.5: 2.5: 50 in a weight ratio of particles: acetylene black: PVdF: N-methylpyrrolidone (NMP). Then, 1.5% by weight of water was added, and the mixture was stirred with a rotation / revolution mixer to obtain a positive electrode mixture slurry. The obtained slurry was stored in an incubator at 25 ° C., and the change with time of 24 hours was stirred with a spatula to evaluate the viscosity increase and the degree of gelation for each of Examples and Comparative Examples, and are shown in Table 1. In addition, even if it left to stand for 24 hours, what was fluid in the positive mix slurry was set to "(circle)", and what gelatinized and gelatinized was set to "x".
表1により、本発明に係る実施例1〜8の被覆リチウム−ニッケル複合酸化物粒子は、いずれもゲル化を引き起こしておらず、スラリー化した場合においてもコーティング膜が剥がれることなく良好な被覆リチウム−ニッケル複合酸化物粒子を形成していることが分かる。一方、比較例1のリチウム−ニッケル複合酸化物粒子は、いずれもスラリー化した場合においてゲル化が“×”評価であったことから、被覆が十分でなく、本発明の目的である不純物の発生を抑えることができていないリチウム−ニッケル複合酸化物粒子であることが確認された。 According to Table 1, none of the coated lithium-nickel composite oxide particles of Examples 1 to 8 according to the present invention caused gelation, and even when slurried, the coated lithium was good without peeling off the coating film. -It turns out that the nickel complex oxide particle is formed. On the other hand, since the lithium-nickel composite oxide particles of Comparative Example 1 were all evaluated as “x” when gelled, the coating was not sufficient, and the generation of impurities which is the object of the present invention It was confirmed that the lithium-nickel composite oxide particles could not be suppressed.
また、フッ素化合物によってリチウム−ニッケル複合酸化物粒子を被覆させた場合には、フッ素化合物は一般的にN−メチル−2−ピロリドン(NMP)に溶解するため、フッ素系化合物が被膜しても被膜が溶解すると考えられる。そのため、実施例に係る被覆リチウム−ニッケル複合酸化物粒子とは異なり、製造された正極を保管する際、不純物生成を抑制することが困難と考えられる。したがって、正極保管時に生成した不純物が原因となる電池駆動時のガス発生を伴う電解液との反応の抑制が難しく、高額な保管設備が必要となる。 Further, when the lithium-nickel composite oxide particles are coated with a fluorine compound, the fluorine compound is generally dissolved in N-methyl-2-pyrrolidone (NMP). Is believed to dissolve. Therefore, unlike the coated lithium-nickel composite oxide particles according to the examples, it is considered difficult to suppress the generation of impurities when the manufactured positive electrode is stored. Therefore, it is difficult to suppress the reaction with the electrolyte accompanying gas generation when the battery is driven due to impurities generated during positive electrode storage, and expensive storage equipment is required.
また、実施例1〜3及び実施例7,8の被覆された有機硫黄化合物のHOMOのエネルギー準位の値は−9.0eVを下回っている。そのため、実施例1〜3及び実施例7,8の被覆リチウム−ニッケル複合酸化物粒子をリチウムイオン電池の正極活物質として用いても、有機硫黄化合物が電極上で酸化反応が起ることがなくなるため、より良好なリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子であることが推認される。 Moreover, the value of the energy level of the HOMO of the coated organic sulfur compounds of Examples 1 to 3 and Examples 7 and 8 is less than -9.0 eV. Therefore, even when the coated lithium-nickel composite oxide particles of Examples 1 to 3 and Examples 7 and 8 are used as the positive electrode active material of the lithium ion battery, the organic sulfur compound does not cause an oxidation reaction on the electrode. Therefore, it is presumed that the coated lithium-nickel composite oxide particles are better for the positive electrode active material of the lithium ion battery.
Claims (9)
前記有機硫黄化合物の被覆量が、リチウム−ニッケル複合酸化物粒子の比表面積に対して4.05×10−6mol/m2以上1.62×10−5mol/m2以下であり、
前記有機硫黄化合物は、ジフェニルジスルフィド、ジ−p−トリルジスルフィド、ビス(4−メトキシフェニル)ジスルフィド、2−ナフタレンチオール、ベンゼンチオール、ベンジルメルカプタン、6−(ジブチルアミノ)1,3,5−トリアジン−2,4−ジチオール、2−アニリノ−4,6ジメルカプト−1,3,5−トリアジン及び6−(アリニノ)1,3,5−トリアジン−2,4−ジチオールからなる群より選択される少なくとも1以上の有機硫黄化合物であるリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子。 The surface of nickel-based lithium-nickel composite oxide particles having a nickel content exceeding 0.65 mol is coated with an organic sulfur compound,
The coating amount of the organic sulfur compound, a lithium - Ri 1.62 × 10 -5 mol / m 2 or less der 4.05 × 10 -6 mol / m 2 or more with respect to the specific surface area of the nickel composite oxide particles,
The organic sulfur compound is diphenyl disulfide, di-p-tolyl disulfide, bis (4-methoxyphenyl) disulfide, 2-naphthalenethiol, benzenethiol, benzyl mercaptan, 6- (dibutylamino) 1,3,5-triazine- At least one selected from the group consisting of 2,4-dithiol, 2-anilino-4,6 dimercapto-1,3,5-triazine and 6- (arinino) 1,3,5-triazine-2,4-dithiol Coated lithium-nickel composite oxide particles for a lithium ion battery positive electrode active material , which are the above organic sulfur compounds .
LixNi(1−y−z)MyNzO2 ・・・(1)
(式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnから選ばれる少なくとも一種類の元素を示し、NはAl、InまたはSnから選ばれる少なくとも一種類の元素を示す。) The coated lithium-nickel composite oxide particle according to any one of claims 1 to 5, wherein the organic sulfur compound is represented by the following general formula (1).
Li x Ni (1-y- z) M y N z O 2 ··· (1)
(Wherein x is 0.80 to 1.10, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.65, M represents at least one element selected from Co or Mn, and N represents at least one element selected from Al, In, or Sn.)
9. The method according to claim 1, comprising a step of mixing the organic sulfur compound and the lithium-nickel composite oxide particles with a polar solvent within a temperature range from room temperature to immediately before the decomposition temperature of the molecule. A method for producing coated lithium-nickel composite oxide particles.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014144513A JP6390230B2 (en) | 2014-07-14 | 2014-07-14 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
PCT/JP2015/069726 WO2016009931A1 (en) | 2014-07-14 | 2015-07-09 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
US15/325,596 US10439214B2 (en) | 2014-07-14 | 2015-07-09 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
CN201580034614.4A CN106537666B (en) | 2014-07-14 | 2015-07-09 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
EP19212302.4A EP3641033B1 (en) | 2014-07-14 | 2015-07-09 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
EP15822794.2A EP3171433B1 (en) | 2014-07-14 | 2015-07-09 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014144513A JP6390230B2 (en) | 2014-07-14 | 2014-07-14 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016021323A JP2016021323A (en) | 2016-02-04 |
JP2016021323A5 JP2016021323A5 (en) | 2017-06-08 |
JP6390230B2 true JP6390230B2 (en) | 2018-09-19 |
Family
ID=55266065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014144513A Active JP6390230B2 (en) | 2014-07-14 | 2014-07-14 | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6390230B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3896058B2 (en) * | 2001-09-05 | 2007-03-22 | 三星エスディアイ株式会社 | Battery active material and method for producing the same |
JPWO2011105126A1 (en) * | 2010-02-24 | 2013-06-20 | 日立マクセル株式会社 | Positive electrode material, manufacturing method thereof, positive electrode for non-aqueous secondary battery and non-aqueous secondary battery |
WO2012165422A1 (en) * | 2011-05-31 | 2012-12-06 | 日本ゼオン株式会社 | Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
JP6204472B2 (en) * | 2013-07-08 | 2017-09-27 | 三洋化成工業株式会社 | Coated active material particles for lithium ion batteries |
-
2014
- 2014-07-14 JP JP2014144513A patent/JP6390230B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016021323A (en) | 2016-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects | |
US8999574B2 (en) | Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes | |
EP2966711B1 (en) | Cathode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same | |
JP6367414B2 (en) | Electrolyte suitable for high energy cathode material and method of using the same | |
US10658670B2 (en) | Anode including functionalized metal oxide nanoparticles, a method for manufacturing the anode, a secondary battery including the anode, and a device including the secondary battery | |
Kaisar et al. | A lithium passivated MoO 3 nanobelt decorated polypropylene separator for fast-charging long-life Li–S batteries | |
JP4742517B2 (en) | LAMINATE AND METHOD FOR PRODUCING LAMINATE | |
US9478801B2 (en) | Lithium metal oxide composite for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same | |
JP2018503937A (en) | Anode material for sodium ion battery and method for producing the same | |
TW201328000A (en) | Negative electrode paste, negative electrode and method for manufacturing negative electrode, and non-aqueous electrolyte secondary battery | |
JP2020514970A (en) | Positive electrode active material, method for producing the same, and lithium secondary battery including the same | |
EP3171433B1 (en) | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles | |
JP2018049819A (en) | Aqueous electrolyte solution including ether, and battery using the same | |
JP6390229B2 (en) | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles | |
Ye et al. | Architecting robust interphase on high voltage cathodes via aromatic polyamide | |
Fu et al. | Regulating Li ions transportation and deposition with polydopamine/polyethyleneimine functional separator for superior Li metal battery | |
JP2021150278A (en) | Layer to protect lithium metal negative electrode for lithium secondary battery containing poly(arylene ether sulfone)-poly(ethylene glycol) graft copolymer, production method thereof, and lithium secondary battery including the same | |
JP6390230B2 (en) | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles | |
JP6388026B2 (en) | Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles | |
KR20190078156A (en) | Positive active material for lithium secondary battery with copper-manganese coating thereon, lithium secondary battery having the same, and method for manufacturing thereof | |
Nan et al. | Use the Functional Electrolyte Containing 2-Propynemethanesulfonate or 2-Propynebenzenesulfonate Additives to Improve the Long-Cycle Performance of LiNi0. 8Co0. 1Mn0. 1O2/Graphite Batteries | |
Li et al. | A bifunctional nitrile additive for high-performance lithiumoxygen batteries | |
CN117766857A (en) | Electrolyte and battery suitable for lithium-rich manganese-based oxide cathode | |
KR20200044355A (en) | Cathode materials for lithium ion battery coated lithium trimethylsiloxide and preparing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170407 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6390230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |