JP6387073B2 - HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER - Google Patents
HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER Download PDFInfo
- Publication number
- JP6387073B2 JP6387073B2 JP2016236761A JP2016236761A JP6387073B2 JP 6387073 B2 JP6387073 B2 JP 6387073B2 JP 2016236761 A JP2016236761 A JP 2016236761A JP 2016236761 A JP2016236761 A JP 2016236761A JP 6387073 B2 JP6387073 B2 JP 6387073B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat exchanger
- pipe
- heat transfer
- end portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004378 air conditioning Methods 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims description 42
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 22
- 229910052802 copper Inorganic materials 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 150000007524 organic acids Chemical class 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000013557 nattō Nutrition 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、空調設備用熱交換器及びその熱交換器の製造方法に関し、特に、有機酸やアンモニアを含む腐食環境下に晒される空調設備用熱交換器及びその熱交換器の製造方法に関する。 The present invention relates to a heat exchanger for an air conditioner and a method for manufacturing the heat exchanger, and more particularly to a heat exchanger for an air conditioner that is exposed to a corrosive environment containing an organic acid or ammonia and a method for manufacturing the heat exchanger.
一般に、空調設備に設けられる熱交換器の伝熱管には銅管が使用されているが、生薬の保管倉庫や納豆等の食品工場などでは、銅管が短期間で腐食して水や冷媒などの熱媒体が漏洩する事例が度々報告されている。実際にこれらの倉庫や工場などにおいて気中分析や空調機コイルのドレン水の分析を行うと、主成分として、生薬倉庫で酢酸、ギ酸、納豆製造工場で酢酸、硝酸、アンモニア、燻製品原料保管庫で酢酸、アンモニアが検出され、この種の銅管の腐食事例は、酢酸、カルボン酸、ギ酸などの有機酸やアンモニアの腐食性ガスが原因であることが確認されている。 Generally, copper tubes are used as heat transfer tubes for heat exchangers installed in air-conditioning equipment. However, in crude oil storage warehouses and food factories such as natto, copper tubes corrode in a short period of time, such as water and refrigerant. There have been many reports of leaks of heat media. In fact, if you analyze air in these warehouses or factories or drain water from air conditioner coils, the main ingredients are acetic acid, formic acid at the crude drug warehouse, acetic acid, nitric acid, ammonia, and raw materials for salmon products at the natto manufacturing plant. Acetic acid and ammonia are detected in the storage, and it has been confirmed that this type of corrosion of copper tubes is caused by corrosive gases of organic acids such as acetic acid, carboxylic acid and formic acid, and ammonia.
そのため、このような有機酸を含む環境下に設置される空調設備の熱交換器では、耐食性の高いステンレス管が伝熱管として採用されるケースが多い。しかしながら、ステンレス管を伝熱管に採用した場合、銅管と比較して熱伝導率が悪いため、熱交換器の伝熱面積を増加させないと、銅管を使用した熱交換器と同等の伝熱性能を達成することができず、熱交換器が大型化するという問題や、導入時のイニシャルコストが増大するという問題などが生じている。 Therefore, in heat exchangers for air conditioning equipment installed in an environment containing such organic acids, stainless steel tubes with high corrosion resistance are often used as heat transfer tubes. However, when stainless steel pipes are used for heat transfer tubes, the heat conductivity is poor compared to copper tubes, so if the heat transfer area of the heat exchanger is not increased, the heat transfer equivalent to heat exchangers using copper tubes is required. There is a problem that the performance cannot be achieved and the heat exchanger is enlarged, and the initial cost at the time of introduction is increased.
そこで、このような問題を解決するため、近年、銅製の内管にアルミニウム製の外管を被覆した二重管を伝熱管として採用する空調設備用熱交換器が提案されている。この空調設備用熱交換器では、伝熱管の内管の露出した端部と継手管(Uベント)の銅管同士がろう付け接合された後、継手管の外面及びその接合部分に、パワー防錆EP1000やチョイスコート等のエポキシ樹脂塗料や、粉体樹脂コーティング(ケン化EVA)等の特殊塗装によって耐食処理が施されている(特許文献1参照)。 Therefore, in order to solve such problems, in recent years, heat exchangers for air conditioning equipment have been proposed in which a double pipe in which an inner pipe made of copper is covered with an outer pipe made of aluminum is used as a heat transfer pipe. In this heat exchanger for air conditioning equipment, after the exposed end of the inner pipe of the heat transfer pipe and the copper pipe of the joint pipe (U vent) are brazed and joined together, Corrosion-resistant treatment is applied by epoxy resin paint such as rust EP1000 and choice coat, and special coating such as powder resin coating (saponified EVA) (see Patent Document 1).
しかしながら、上記した特許文献1に記載の空調設備用熱交換器では、稼働時に生じる伝熱管内の流体の温度差や熱交換器を通過する空気の温度によって、銅管自体に伸縮が生じることが予想されるが、この際に、特殊塗装の塗料が銅管の伸縮に追随し難く、剥離したり或いはヒビ割れを発生したりする可能性を完全には否定できない。また、継手管の外面や接合部分の特殊塗装による耐食処理に手間が掛かるため、施工性の向上を図り難いといった問題も生じている。 However, in the heat exchanger for air conditioning equipment described in Patent Document 1 described above, the copper tube itself may expand and contract due to the temperature difference of the fluid in the heat transfer tube generated during operation and the temperature of the air passing through the heat exchanger. Although it is expected, at this time, it is difficult for the paint with special coating to follow the expansion and contraction of the copper tube, and the possibility of peeling or cracking cannot be completely denied. In addition, since it takes time to perform corrosion resistance treatment by special coating on the outer surface of the joint pipe and the joint portion, there is a problem that it is difficult to improve workability.
本発明は、上記した課題を解決すべくなされたものであり、有機酸やアンモニアを含む環境下において、コイルの耐食性及び施工性を高めることのできる空調設備用熱交換器及びその熱交換器の製造方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and in an environment containing an organic acid or ammonia, the heat exchanger for an air conditioner and the heat exchanger of the heat exchanger capable of improving the corrosion resistance and workability of the coil are provided. The object is to provide a manufacturing method.
上記した目的を達成するため、本発明に係る空調設備用熱交換器は、銅製の内管にアルミニウム製の外管を被覆した二重管により構成された伝熱管と、前記伝熱管の内管の端部に接続される熱交換器用部材と、前記伝熱管の内管の露出した端部と前記熱交換器用部材との接続部分を被覆するシリコン製の被覆材と、前記被覆材の外周に設けられるアルミニウム製のさや管と、備えていることを特徴とする。 In order to achieve the above-described object, a heat exchanger for an air conditioner according to the present invention includes a heat transfer tube configured by a double tube in which a copper inner tube is covered with an aluminum outer tube, and the inner tube of the heat transfer tube. A heat exchanger member connected to the end of the heat exchanger, a silicon covering material covering a connection portion between the exposed end portion of the inner pipe of the heat transfer tube and the heat exchanger member, and an outer periphery of the covering material It is provided with an aluminum sheath pipe provided.
また、本発明に係る空調設備用熱交換器において、前記伝熱管は直管であり、前記熱交換器用部材は隣接する前記直管同士を接続する継手管であり、前記継手管は銅製の内管にアルミニウム製の外管を被覆した二重管により構成され、前記被覆材は前記直管の内管の露出した端部と前記継手管の内管の露出した端部との接続部分を被覆することを特徴とする。 Further, in the heat exchanger for air conditioning equipment according to the present invention, the heat transfer tube is a straight tube, the heat exchanger member is a joint tube connecting adjacent straight tubes, and the joint tube is made of copper. The pipe is constituted by a double pipe in which an outer pipe made of aluminum is covered, and the covering material covers a connection portion between an exposed end of the inner pipe of the straight pipe and an exposed end of the inner pipe of the joint pipe. It is characterized by doing.
また、本発明に係る空調設備用熱交換器において、前記伝熱管は直管であり、前記熱交換器用部材はヘッダに接続されるステンレス製のヘッダ管であり、前記被覆材は前記直管の内管の露出した端部と前記ヘッダ管の端部との接続部分を被覆することを特徴とする。 Moreover, in the heat exchanger for an air conditioner according to the present invention, the heat transfer tube is a straight tube, the heat exchanger member is a stainless steel header tube connected to a header, and the covering material is the straight tube. A connecting portion between the exposed end portion of the inner pipe and the end portion of the header pipe is covered.
また、本発明に係る空調設備用熱交換器において、前記伝熱管は直膨コイル用の直管であり、前記熱交換器用部材は直膨コイル用のステンレス製のキャピラリーチューブであり、前記被覆材は前記直管の内管の露出した端部と前記キャピラリーチューブの端部との接続部分を被覆することを特徴とする。 Further, in the heat exchanger for an air conditioner according to the present invention, the heat transfer tube is a straight tube for a direct expansion coil, the heat exchanger member is a stainless capillary tube for the direct expansion coil, and the covering material Is characterized in that it covers a connecting portion between the exposed end portion of the inner tube of the straight tube and the end portion of the capillary tube.
本発明は、銅製の内管にアルミニウム製の外管を被覆した伝熱管の該内管の露出した端部と熱交換器用部材とを接続する空調設備用熱交換器の製造方法であって、前記伝熱管と前記熱交換器用部材のいずれか一方側にアルミニウム製のさや管を遊嵌させた状態で前記伝熱管の内管の露出した端部と前記熱交換器用部材の端部とを接合させる工程と、前記伝熱管の内管と前記熱交換器用部材との接続部分をシリコン製の被覆材で被覆する工程と、前記さや管を前記伝熱管又は前記熱交換器用部材に沿ってスライドさせて前記被覆材の外周に移動させる工程と、備えていることを特徴とする。 The present invention is a method of manufacturing a heat exchanger for an air conditioner that connects an exposed end portion of a heat transfer tube in which an outer tube made of aluminum is coated on a copper inner tube and a member for a heat exchanger, The exposed end portion of the inner tube of the heat transfer tube and the end portion of the heat exchanger member are joined in a state in which an aluminum sheath tube is loosely fitted to either one of the heat transfer tube and the heat exchanger member. A step of covering the connecting portion between the inner tube of the heat transfer tube and the heat exchanger member with a coating material made of silicon, and sliding the sheath tube along the heat transfer tube or the heat exchanger member. And a step of moving to the outer periphery of the covering material.
また、本発明に係る空調設備用熱交換器の製造方法は、前記さや管を前記被覆材の外周に移動させた後、前記さや管の両端部をシールする工程をさらに備えていることを特徴とする。 The method for manufacturing a heat exchanger for an air conditioning equipment according to the present invention further includes a step of sealing both ends of the sheath tube after the sheath tube is moved to the outer periphery of the covering material. And
本発明によれば、有機酸やアンモニアを含む環境下において、コイルの耐食性及び施工性の向上を図ることができる等、種々の優れた効果を得ることができる。 According to the present invention, various excellent effects can be obtained, such as improvement of the corrosion resistance and workability of the coil in an environment containing an organic acid or ammonia.
以下、図面を参照しつつ、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、図1〜図6を参照しつつ、本発明の第1の実施の形態に係る空調設備用熱交換器10について説明する。ここで、図1は本発明の第1の実施の形態に係る空調設備用熱交換器10の全体構成を示す平面図、図2及び図3は本発明の第1の実施の形態に係る空調設備用熱交換器10の要部を示す断面図、図4〜図6は本発明の第1の実施の形態に係る空調設備用熱交換器10の製造方法を示す平面図である。なお、以下の説明において、上下左右の向きは、便宜上、図1に示す向きを基準として説明する。
First, an air
図1に示されているように、本発明の第1の実施の形態に係る空調設備用熱交換器10は、直線状に形成される多数の伝熱管11と、各伝熱管11の両端部に接続される熱交換器部材としての継手管12と、伝熱管11の外面に並設される多数のフィン13と、により構成される水コイル14と、水コイル14を支持するケーシング15と、水コイル14の各伝熱管11が接続されるヘッダ16と、を備えている。
As shown in FIG. 1, the
図2及び図3に良く示されているように、伝熱管11は、円筒形状の銅製の内管17に円筒形状のアルミニウム製の外管18を被覆した二重管(クラッド管)により構成されている。伝熱管11の管径及び肉厚は、管内通過流量や管内圧力等の条件を満たすように設定され、例えば、伝熱管11の内管17の管径は15.88mm、内管17の肉厚は0.45mm〜0.6mmの範囲、外管18の肉厚は0.5mm〜0.825mmの範囲にそれぞれ設定されている。
2 and 3, the
図2に良く示されているように、継手管12は、U字状に曲成されたUベントであり、円筒形状の銅製の内管19に円筒形状のアルミニウム製の外管20を被覆した二重管(クラッド管)により構成されている。本実施の形態の場合、継手管12の内管19の管径が15.88mm、内管19の肉厚が0.45mm〜0.6mmの範囲、外管20の肉厚が0.5mmにそれぞれ設定されている。継手管12の外管20の肉厚は、伝熱管11と比べて、熱交換性能に与える影響が小さいことから、耐食性に問題が生じない程度まで薄い厚み(0.5mm)に設定することで、加工性を高めると共に、継手管12の曲げ加工時に外管20の外面にシワやヒビ等が発生するのを抑制することができ、耐食性を高めることができる。
As shown well in FIG. 2, the
伝熱管11と継手管12との接続は、図2に示されているように、伝熱管11の内管17の端部17aに継手管12の内管19の端部19aの先端部分を挿入した状態で行われる。この接続部分21には、シリコン製の被覆材22が被覆され、被覆材22の外周にアルミニウム製で円筒短管形状のさや管23が設けられる。本実施の形態の場合、さや管23の管径は22.00mmであり、さや管23の長さL1は端部17aと端部19aとの合計長さL2の38mmより左右にそれぞれ10mmずつ長く形成され、58mmに設定されている。また、被覆材22は、900〜1500Pa・mの粘度を有し、さや管23内の被覆厚は0.71〜2.06mmに設定され、さや管23の両端部外側部分のシール材30(図6参照)の被覆厚は3.00mm以上に設定されている。
As shown in FIG. 2, the connection between the
フィン13は、アルミニウム製の細長矩形状の薄板により構成されており、フィン13には伝熱管11が貫通可能な多数の穴(図示省略)が穿設されている。
The
ケーシング15は、ステンレス(SUS)製で矩形枠状に形成されており、伝熱管11が貫通する左側板24及び右側板25と、左右側板24,25の上下端部を連結する天板26及び底板27と、を備えて構成されている。
The
ヘッダ16は、ステンレス(SUS)製で円筒形状を有しており、ケーシング15の外側において右側板25に対して平行を成すように配設されている。ヘッダ16の外周壁には、左方から、ステンレス(SUS)製で円筒短管形状のヘッダ管28が接続されており、伝熱管11はこのヘッダ管28を介してヘッダ16に接続されている。
The
伝熱管11とヘッダ管28との接続は、図3に示されているように、伝熱管11の内管17の端部17aの先端部分をヘッダ管28の内部に挿入させた状態で行われる。この接続部分29には、シリコン製の被覆材22が被覆され、被覆材22の外周にアルミニウム製で円筒短管形状のさや管23が設けられる。
As shown in FIG. 3, the
次に、本発明の第1の実施の形態に係る空調設備用熱交換器10を製造する方法について説明する。
Next, a method for manufacturing the
まず、従来の公知な拡管及び圧入方法により、フィン13の前記穴に伝熱管11を挿入し、伝熱管11の外面に多数のフィン13を並設させ、伝熱管11をケーシング15に支持させる。
First, the
次いで、伝熱管11と継手管12との接続作業を行う。この接続作業では、まず、図4に示すように、隣接する各伝熱管11の両端部の外管18を除去し、その先端部分を拡幅すると共に、継手管12の両端部の外管20を除去する。そして、図4中において矢印で示すように、さや管23を伝熱管11に挿入する。
Next, the connection work between the
次いで、図5に示すように、さや管23を伝熱管11に遊嵌させた状態で、伝熱管11の内管17の端部17aの先端部分に、継手管12の内管19の端部19aを挿入し、伝熱管11の内管17の先端部と継手管12の内管19の外周面とをろう付け接合する(図2参照)。その後、伝熱管11の内管17と継手管12の内管19との接続部分21を被覆材22で被覆する。
Next, as shown in FIG. 5, the end portion of the
さらに、図6中において矢印で示すように、さや管23を伝熱管11に沿ってスライドさせ、被覆材22の外周に移動させ、さや管23からはみ出た余分な被覆材22を除去する。その後、さや管23の両端部を被覆材22と同一のシリコン製のシール材30によってシールする。これにより、図2に示すように、伝熱管11と継手管12との接続作業が完了する。
Furthermore, as shown by the arrows in FIG. 6, the
次いで、伝熱管11とヘッダ管28との接続作業を行う。この接続作業では、まず、伝熱管11の両端部の外管18を除去すると共に、さや管23を伝熱管11に挿入し、伝熱管11に遊嵌させる。この状態で、伝熱管11の内管17の端部17aの先端部分をヘッダ管28の内部に挿入し、ヘッダ管28の先端部と伝熱管11の内管17の外周面とをろう付け接合する。その後、伝熱管11の内管17とヘッダ管28との接続部分29を被覆材22で被覆する。さらに、さや管23を伝熱管11に沿ってスライドさせ、被覆材22の外周に移動させ、さや管23からはみ出た余分な被覆材22を除去した後、さや管23の両端部を被覆材22と同一のシリコン製のシール材によってシールする。これにより、図3に示すように、伝熱管11とヘッダ管28との接続作業が完了する。
Next, connection work between the
次に、図7及び図8を参照しつつ、本発明の第2の実施の形態に係る空調設備用熱交換器20について説明する。ここで、図7は本発明の第2の実施の形態に係る空調設備用熱交換器40の全体構成を示す平面図、図8は本発明の第2の実施の形態に係る空調設備用熱交換器40の要部を示す断面図である。なお、以下の説明において、上下左右の向きは、便宜上、図7に示す向きを基準として説明する。
Next, a
図7に示されているように、本発明の第2の実施の形態に係る空調設備用熱交換器40は、直線状に形成された多数の伝熱管41と、各伝熱管41の両端部に接続される熱交換器部材としての継手管42と、伝熱管41の外面に並設される多数のフィン43と、により構成される直膨コイル44と、直膨コイル44を支持するケーシング45と、各伝熱管41が接続されるヘッダ46と、各伝熱管41がキャピラリーチューブ47を介して接続される分配器48と、を備えている。
As shown in FIG. 7, the
伝熱管41は、銅製の内管49にアルミニウム製の外管50を被覆した二重管(クラッド管)により構成されている。継手管42は、U字状に曲成されたUベントであり、銅製の内管(図示省略)にアルミニウム製の外管51を被覆した二重管(クラッド管)により構成されている。
The
なお、本実施の形態における伝熱管41、継手管42、フィン43、ケーシング45、及びヘッダ46は、上記した本発明の第1の実施の形態に係る空調設備用熱交換器10における伝熱管11、継手管12、フィン13、ケーシング15、及びヘッダ16と同等の構成を有しているため、詳細な説明は省略する。
In addition, the
キャピラリーチューブ47は、ステンレス(SUS)製で、伝熱管41の内管49より細い円筒形状を有している。また、分配器48はステンレス(SUS)製である。
The
図8に示されているように、キャピラリーチューブ47は、銅製のレジューサ管53を介して伝熱管41の内管49に接続され、この接続部分54には、シリコン製の被覆材55が被覆され、被覆材55の外周にアルミニウム製で円筒短管形状のさや管56が設けられる。
As shown in FIG. 8, the
次に、本発明の第2の実施の形態に係る空調設備用熱交換器40を製造する方法について説明する。
Next, a method for manufacturing the
まず、従来の公知な拡管及び圧入方法により、フィン43の前記穴に伝熱管41を挿入し、伝熱管41の外面に多数のフィン43を並設させ、伝熱管41をケーシング45に支持させる。
First, the
次いで、伝熱管41と継手管42との接続作業、及び伝熱管41とヘッダ46との接続作業を行うが、これらの接続作業は、上記した本発明の第1の実施の形態に係る空調設備用熱交換器10の場合と同様であるため、説明は省略する。
Next, the connection work between the
次いで、伝熱管41とキャピラリーチューブ47との接続作業を行う。この接続作業では、まず、伝熱管41の両端部の外管50を除去し、その先端部分を拡幅し、さや管56を伝熱管41に挿入する。
Next, connection work between the
次いで、さや管56を伝熱管41に遊嵌させた状態で、伝熱管41の内管49の端部49aの先端部分に、レジューサ管53の大径部53aを挿入すると共に、レジューサ管53の小径部53bにキャピラリーチューブ47の先端部分を挿入する。そして、伝熱管41の内管49の先端部とレジューサ管53の外周面、及びレジューサ管53の小径部53bの先端部とキャピラリーチューブ47の外周面を、それぞれ、ろう付け接合する。その後、伝熱管41の内管49とレジューサ管53及びレジューサ管53とキャピラリーチューブ47の接続部分54を被覆材55で被覆する。
Next, in a state where the
さらに、さや管56を伝熱管41に沿ってスライドさせ、被覆材55の外周に移動させ、さや管56からはみ出た余分な被覆材55を除去する。その後、さや管56の両端部を被覆材55と同一のシリコン製のシール材(図示省略)によってシールする。これにより、図8に示すように、伝熱管41とキャピラリーチューブ47との接続作業が完了する。
Further, the
上記したように本発明の第1及び第2の実施の形態に係る空調設備用熱交換器10,40によれば、継手管12,42(Uベント)にアルミニウム製の外管20,51を被覆した二重管(クラッド管)を使用することにより、継手管12,42の耐食性を向上させることができる。
As described above, according to the
また、伝熱管11,41の内管17,49と、継手管12、42の内管19やヘッダ管28やレジューサ管53等の熱交換器用部材と、の接続部分21,29,54をシリコン製の被覆材22,55で覆っているため、接続部分21,29,54の耐食性を向上させることができる。
Further, the connecting
さらに、被覆材22,55の外周にアルミニウム製のさや管23,56を設けることで、接続部分21,29,54が腐食環境に晒される可能性をさや管23,56の端部に限定することができるため、さや管23,56の両端部をシールすることにより、接続部分21,29,54の耐食性を確実に高めることができる。
Furthermore, by providing the
さらにまた、有機酸ガスはシリコン樹脂に対して数ミクロン程度浸透することが懸念されるが、図2に示すように、二重管(クラッド管)の外管18,20とさや管23との重複長さL3を10mm程度設けて被覆材22の厚みを確保することで、接続部分21の腐食リスクを確実に回避することができる。また、シリコン樹脂は伸縮性に優れており、水コイル14や直膨コイル44の耐用年数を15年以上に延ばすことができ、耐久性の向上を図ることもできる。
Furthermore, there is a concern that the organic acid gas permeates into the silicon resin by about several microns. As shown in FIG. 2, the double pipe (clad pipe)
さらに、例えば、表1に示すように、冷却能力が同じ直膨式コイル(風量:16,200m3/h、熱量:24.5kW)で比較した場合、本発明の第2の実施の形態に係る空調設備用熱交換器40は、銅製チューブとアルミニウム製フィンを採用した従来の熱交換器に対して、優れた耐有機酸性能を有し、コイル体積が5%程度増えるが、ほぼ同等の大きさでコイルを製作することができる。また、本発明の第2の実施の形態に係る空調設備用熱交換器40は、ステンレス(SUS304、SUS316)製チューブとアルミニウム製フィンを採用した従来の熱交換器に対して、同程度の耐有機酸性能を有しつつ、大幅なコイル体積及びコイル重量の減少を実現することができる。
Further, for example, as shown in Table 1, when compared with a directly expanded coil (air volume: 16,200 m 3 / h, heat amount: 24.5 kW) having the same cooling capacity, the second embodiment of the present invention is used. The air
また、シリコン製の被覆材22,55は流動性を有しているため、従来、施工して固定するまでの間に垂れてしまって均一な被覆厚を形成することが困難であったが、上記したように本発明の第1及び第2の実施の形態に係る空調設備用熱交換器10,40の製造方法によれば、さや管23,56を利用することで、簡単に均一な被覆厚を確保することができ、施工性を高めることができる。
Moreover, since the
なお、上記した第1及び第2の実施の形態では、本発明をプレートフィンコイルに適用した場合について説明したが、これは単なる例示に過ぎず、本発明はプレートフィンコイル以外の空調設備用熱交換器にも適用可能であることは言う迄もない。 In the first and second embodiments described above, the case where the present invention is applied to a plate fin coil has been described. However, this is merely an example, and the present invention is a heat for air conditioning equipment other than the plate fin coil. Needless to say, the present invention can also be applied to an exchange.
また、上記した空調設備用熱交換器10,40の製造方法では、伝熱管11,41と熱交換器用部材とを接合させる時に、さや管23,56を伝熱管11,41側に遊嵌させているが、これは単なる例示に過ぎず、この時にさや管23,56を熱交換器用部材側に遊嵌させても良い。
Moreover, in the manufacturing method of the
また、上記した本発明の実施の形態の説明は、本発明に係る空調設備用熱交換器における好適な実施の形態を説明しているため、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。すなわち、上記した本発明の実施の形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組合せを含む様々なバリエーションが可能であり、上記した本発明の実施の形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。 Moreover, since description of embodiment of this invention mentioned above has demonstrated the preferred embodiment in the heat exchanger for air-conditioning equipment which concerns on this invention, when the technically preferable various restrictions are attached | subjected However, the technical scope of the present invention is not limited to these embodiments unless specifically described to limit the present invention. That is, the above-described components in the embodiment of the present invention can be appropriately replaced with existing components and the like, and various variations including combinations with other existing components are possible. The description of the embodiment of the present invention described above does not limit the contents of the invention described in the claims.
10 空調設備用熱交換器
11 伝熱管
12 継手管(熱交換器用部材)
16 ヘッダ
17 (伝熱管の)内管
18 (伝熱管の)外管
19 (継手管の)内管
20 (継手管の)外管
21 接続部分
22 被覆材
23 さや管
28 ヘッダ管(熱交換器用部材)
29 接続部分
40 空調設備用熱交換器
41 伝熱管
42 継手管(熱交換器用部材)
47 キャピラリーチューブ(熱交換器用部材)
49 (伝熱管の)内管
50 (伝熱管の)外管
51 (継手管の)外管
54 接続部分
55 被覆材
56 さや管
10 Heat Exchanger for
16
29
47 Capillary tube (heat exchanger component)
49 Inner pipe (of the heat transfer pipe) 50 Outer pipe (of the heat transfer pipe) 51 Outer pipe (of the joint pipe) 54
Claims (5)
前記伝熱管の内管の端部に接続される熱交換器用部材と、
前記伝熱管の内管の露出した端部と前記熱交換器用部材との接続部分を被覆するシリコン製の被覆材と、
前記被覆材の外周に設けられるアルミニウム製のさや管と、
備え、
前記伝熱管は直管であり、
前記熱交換器用部材は隣接する前記直管同士を接続する継手管であり、
前記継手管は銅製の内管にアルミニウム製の外管を被覆した二重管により構成され、
前記被覆材は前記直管の内管の露出した端部と前記継手管の内管の露出した端部との接続部分を被覆することを特徴とする空調設備用熱交換器。 A heat transfer pipe constituted by a double pipe in which an inner pipe made of copper is coated with an outer pipe made of aluminum;
A heat exchanger member connected to an end of the inner tube of the heat transfer tube;
A coating material made of silicon that covers a connection portion between the exposed end portion of the inner tube of the heat transfer tube and the heat exchanger member;
An aluminum sheath tube provided on the outer periphery of the covering material;
Prepared ,
The heat transfer tube is a straight tube,
The heat exchanger member is a joint pipe connecting adjacent straight pipes,
The joint pipe is constituted by a double pipe in which an inner pipe made of copper is coated with an outer pipe made of aluminum,
The coating material exposed end and air conditioning heat exchanger, characterized that you cover the connection portion between the exposed end of the inner tube of the joint pipe of the inner tube of the straight pipe.
前記被覆材は前記直管の内管の露出した端部と前記ヘッダ管の端部との接続部分を被覆することを特徴とする請求項1に記載の空調設備用熱交換器。 Before Stories heat exchanger member further comprises a stainless steel header pipe connected to the header,
The air conditioner heat exchanger according to claim 1, wherein the covering material covers a connection portion between the exposed end portion of the inner pipe of the straight pipe and the end portion of the header pipe.
前記伝熱管の内管の端部に接続される熱交換器用部材と、
前記伝熱管の内管の露出した端部と前記熱交換器用部材との接続部分を被覆するシリコン製の被覆材と、
前記被覆材の外周に設けられるアルミニウム製のさや管と、
備え、
前記伝熱管は直膨コイル用の直管であり、
前記熱交換器用部材は直膨コイル用のステンレス製のキャピラリーチューブであり、
前記被覆材は前記直管の内管の露出した端部と前記キャピラリーチューブの端部との接続部分を被覆することを特徴とする空調設備用熱交換器。 A heat transfer pipe constituted by a double pipe in which an inner pipe made of copper is coated with an outer pipe made of aluminum;
A heat exchanger member connected to an end of the inner tube of the heat transfer tube;
A coating material made of silicon that covers a connection portion between the exposed end portion of the inner tube of the heat transfer tube and the heat exchanger member;
An aluminum sheath tube provided on the outer periphery of the covering material;
Prepared,
The heat transfer tube is a straight tube for a direct expansion coil,
The heat exchanger member is a stainless steel capillary tube for a direct expansion coil,
The dressing air conditioning heat exchanger equipment you characterized by covering the connecting portion between the end portion of the capillary tube and the end portion exposed in the inner tube of the straight pipe.
前記伝熱管と前記熱交換器用部材のいずれか一方側にアルミニウム製のさや管を遊嵌させた状態で前記伝熱管の内管の露出した端部と前記熱交換器用部材の端部とを接合させる工程と、
前記伝熱管の内管と前記熱交換器用部材との接続部分をシリコン製の被覆材で被覆する工程と、
前記さや管を前記伝熱管又は前記熱交換器用部材に沿ってスライドさせて前記被覆材の外周に移動させる工程と、
備えていることを特徴とする空調設備用熱交換器の製造方法。 A method of manufacturing a heat exchanger for an air conditioner that connects an exposed end portion of a heat transfer tube in which an outer tube made of aluminum is covered with a copper inner tube and a member for a heat exchanger,
The exposed end portion of the inner tube of the heat transfer tube and the end portion of the heat exchanger member are joined in a state in which an aluminum sheath tube is loosely fitted to either one of the heat transfer tube and the heat exchanger member. A process of
Coating the connecting portion between the inner tube of the heat transfer tube and the heat exchanger member with a coating material made of silicon;
Sliding the sheath tube along the heat transfer tube or the heat exchanger member and moving it to the outer periphery of the covering material;
The manufacturing method of the heat exchanger for air-conditioning equipment characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016236761A JP6387073B2 (en) | 2016-12-06 | 2016-12-06 | HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016236761A JP6387073B2 (en) | 2016-12-06 | 2016-12-06 | HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018091575A JP2018091575A (en) | 2018-06-14 |
JP6387073B2 true JP6387073B2 (en) | 2018-09-05 |
Family
ID=62565483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016236761A Active JP6387073B2 (en) | 2016-12-06 | 2016-12-06 | HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6387073B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55127969U (en) * | 1979-03-07 | 1980-09-10 | ||
US4296804A (en) * | 1979-06-28 | 1981-10-27 | Resistoflex Corporation | Corrosion resistant heat exchanger element and method of manufacture |
JPS5929591U (en) * | 1982-08-19 | 1984-02-23 | 古河電気工業株式会社 | Terminal structure of heat exchanger tubes |
FR2746892B1 (en) * | 1996-03-28 | 1998-05-22 | Valeo Climatisation | CONNECTING DEVICE FOR A PLATE HEAT EXCHANGER, PARTICULARLY FOR A MOTOR VEHICLE |
JP2000146305A (en) * | 1998-11-11 | 2000-05-26 | Gastar Corp | Waste heat recovering heat exchanger for hot-water supplier |
JP5509972B2 (en) * | 2010-03-25 | 2014-06-04 | パナソニック株式会社 | Aluminum tube connection structure and heat exchanger equipped with the same |
JP6005612B2 (en) * | 2013-09-04 | 2016-10-12 | 新菱冷熱工業株式会社 | Heat exchanger for air conditioning equipment |
JP2015087074A (en) * | 2013-10-31 | 2015-05-07 | ダイキン工業株式会社 | Outdoor unit of air conditioning device |
US10591192B2 (en) * | 2015-02-27 | 2020-03-17 | Hitachi-Johnson Controls Air Conditioning, Inc. | Heat exchange apparatus and air conditioner using same |
-
2016
- 2016-12-06 JP JP2016236761A patent/JP6387073B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018091575A (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2377627A1 (en) | A bimetallic tube, apparatus comprising such a tube and method of manufacturing an apparatus comprising a bimetallic tube | |
US2735698A (en) | Header plate-tube joint for heat- | |
CN104019544A (en) | Water heater and method for forming water heater | |
AU596145B2 (en) | Heat exchanger & method to produce same | |
JP2004020174A (en) | Flat radiating fin, heat exchanger using it, and its manufacturing method | |
JP2009047394A (en) | Manufacturing method of twisted tube-type heat exchanger | |
JP6074648B2 (en) | Tube member assembly and heat exchanger of refrigeration cycle apparatus | |
CN102607300B (en) | Spiral baffle double-pipe heat exchanger | |
JP6387073B2 (en) | HEAT EXCHANGER FOR AIR CONDITIONING EQUIPMENT AND METHOD FOR PRODUCING THE HEAT EXCHANGER | |
US10473411B2 (en) | Aluminum alloy finned heat exchanger | |
JP2012137251A (en) | Multitubular heat exchanger | |
KR20160020313A (en) | Heat exchanger | |
CN202501778U (en) | Spiral baffling plate type sleeve heat exchanger | |
JP6005612B2 (en) | Heat exchanger for air conditioning equipment | |
JP2006242553A (en) | Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater | |
JP2005069620A (en) | Heat exchanger | |
JP2010091202A (en) | Refrigerant piping joint structure | |
JP2011163649A (en) | Heat exchanger, environmental testing device and method of manufacturing the heat exchanger | |
JP2008175450A (en) | Heat exchanger | |
JP2016044847A (en) | Heat exchanger | |
JP2009241145A (en) | Method of manufacturing double pipe having bent part and double pipe having bent part | |
CN103776293A (en) | Multifunctional fin tube type horizontal supporting mechanism | |
CN207379327U (en) | A kind of heat exchanger for improving service life | |
Hayase | Development of micro channel heat exchanger for residential air-conditioners | |
JP2011099620A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6387073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |