JP6385639B2 - Method for producing polishing composition - Google Patents

Method for producing polishing composition Download PDF

Info

Publication number
JP6385639B2
JP6385639B2 JP2012244678A JP2012244678A JP6385639B2 JP 6385639 B2 JP6385639 B2 JP 6385639B2 JP 2012244678 A JP2012244678 A JP 2012244678A JP 2012244678 A JP2012244678 A JP 2012244678A JP 6385639 B2 JP6385639 B2 JP 6385639B2
Authority
JP
Japan
Prior art keywords
water
raw material
polishing composition
aqueous solution
side container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012244678A
Other languages
Japanese (ja)
Other versions
JP2014091203A (en
Inventor
真司 日野沢
真司 日野沢
修平 ▲高▼橋
修平 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2012244678A priority Critical patent/JP6385639B2/en
Publication of JP2014091203A publication Critical patent/JP2014091203A/en
Application granted granted Critical
Publication of JP6385639B2 publication Critical patent/JP6385639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨用組成物の製造方法に関する。   The present invention relates to a method for producing a polishing composition.

研磨用組成物は、例えば、砥粒、塩基性化合物、有機化合物及び水を混合することで製造される。得られた研磨用組成物は、例えばシリコン基板を研磨対象物とした研磨に用いられる。研磨用組成物に含有する粗大粒子は、ろ過工程により削減することが可能である(例えば、特許文献1参照)。   The polishing composition is produced, for example, by mixing abrasive grains, a basic compound, an organic compound, and water. The obtained polishing composition is used for polishing using, for example, a silicon substrate as an object to be polished. Coarse particles contained in the polishing composition can be reduced by a filtration process (see, for example, Patent Document 1).

特開2006−136996号公報JP 2006-136996 A

研磨用組成物の原料を混合する原料混合工程では、液状の原料を輸送する配管を備える製造設備が用いられる。配管内に気相部が存在するとともに配管の内壁に原料が付着した状態で維持されると、その内壁には原料が固着し易く、そうした原料は水又は水溶液に再度接触させても分散又は溶解が困難となる。その結果として、分散又は溶解の不十分な原料が研磨用組成物中に粗大粒子として混入し、製品の品質を悪化させる虞がある。   In the raw material mixing step of mixing the raw material of the polishing composition, a production facility including a pipe for transporting the liquid raw material is used. If the gas phase is present in the pipe and the raw material is kept attached to the inner wall of the pipe, the raw material is likely to adhere to the inner wall, and such raw material is dispersed or dissolved even if it is brought into contact with water or an aqueous solution again. It becomes difficult. As a result, raw materials that are insufficiently dispersed or dissolved may be mixed as coarse particles in the polishing composition, which may deteriorate the quality of the product.

なお、粗大粒子は、例えば、特許文献1に記載されるろ過工程により削減することは可能であるものの、その粒子は濾過工程後でも完全に除去することは不可能であり、本質的には粗大粒子自体の発生を抑制することが好ましい。   Although coarse particles can be reduced, for example, by the filtration step described in Patent Document 1, the particles cannot be completely removed even after the filtration step, and are essentially coarse. It is preferable to suppress the generation of the particles themselves.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、粗大粒子の混入を抑制することの容易な研磨用組成物の製造方法を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the manufacturing method of the polishing composition which can suppress mixing of a coarse particle easily.

上記課題を解決する研磨用組成物の製造方法は、送り側容器と、受け側容器と、前記送り側容器から前記受け側容器へ少なくとも水溶性高分子を含む液状の原料を輸送する配管とを備える製造設備を用いて砥粒、水溶性高分子、及び塩基性化合物を含む原料を混合する原料混合工程を有する研磨用組成物の製造方法であって、前記配管は、洗浄後において、前記輸送の開始まで水又は水溶性高分子及び砥粒を含まない水溶液が満たされ、前記原料混合工程の後に、研磨用組成物の充填工程が実施される。
A method for producing a polishing composition that solves the above problems includes a sending side container, a receiving side container, and a pipe that transports a liquid raw material containing at least a water-soluble polymer from the sending side container to the receiving side container. A manufacturing method of a polishing composition having a raw material mixing step of mixing raw materials containing abrasive grains, a water-soluble polymer, and a basic compound using a manufacturing facility provided, wherein the pipe is transported after cleaning water, or an aqueous solution containing no water-soluble polymer and abrasive grains filled to the start of, after the raw material mixing step, the filling step of the polishing composition is performed.

上記研磨用組成物の製造方法では、前記水溶液として、塩基性化合物、酸化剤及び防かび剤の少なくとも一種を含有する水溶液を用いることが好ましい。
上記研磨用組成物の製造方法では、前記送り側容器は、少なくとも水溶性高分子、塩基性化合物及び水を収容し、前記受け側容器は、少なくとも砥粒及び水を収容することが好ましい。
In the said manufacturing method of polishing composition, it is preferable to use the aqueous solution containing at least 1 type of a basic compound, an oxidizing agent, and a fungicide as said aqueous solution.
In the method for producing a polishing composition, it is preferable that the feeding container contains at least a water-soluble polymer, a basic compound, and water, and the receiving container contains at least abrasive grains and water.

本発明によれば、粗大粒子の混入を抑制することが容易となる。   According to the present invention, it becomes easy to suppress the mixing of coarse particles.

以下、本発明の一実施形態を説明する。
研磨用組成物の製造方法は、原料を混合する原料混合工程を有する。原料混合工程では、送り側容器と、受け側容器と、送り側容器から受け側容器へ液状の原料を輸送する配管とを備える製造設備を用いる。
Hereinafter, an embodiment of the present invention will be described.
The manufacturing method of polishing composition has a raw material mixing process which mixes a raw material. In the raw material mixing step, a production facility including a sending side container, a receiving side container, and a pipe for transporting a liquid raw material from the sending side container to the receiving side container is used.

その一例として、配管における送り側及び受け側容器の端部には、それぞれ流入及び流出開閉弁が設けられたものが挙げられる。その流出側開閉弁と主混合容器との間の配管は、切替弁を有するT字管により構成されている。流入側開閉弁の下流側、かつ流出側開閉弁の上流側となる配管には、送り側容器内の原料を受け側容器内に輸送するポンプが設けられている。   As an example, there may be mentioned one in which an inflow and an outflow on-off valve are provided at the ends of the sending side and receiving side containers in the pipe, respectively. The piping between the outflow side on-off valve and the main mixing container is constituted by a T-shaped tube having a switching valve. A pump for receiving the raw material in the feed side container and transporting it into the side container is provided on the pipe downstream of the inflow side on / off valve and upstream of the outflow side on / off valve.

配管等から構成される流路の内周面は、非金属材料から形成されることが好ましい。非金属材料としては、例えば、樹脂材料及びセラミックスが挙げられる。樹脂材料としては、例えば、オレフィン系樹脂、塩化ビニル系樹脂、フッ素系樹脂、アクリル系樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、及びポリイソブチレン樹脂が挙げられる。   It is preferable that the inner peripheral surface of the flow path constituted by piping or the like is formed from a non-metallic material. Examples of non-metallic materials include resin materials and ceramics. Examples of the resin material include olefin resin, vinyl chloride resin, fluorine resin, acrylic resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), and polyisobutylene resin.

オレフィン系樹脂としては、例えば、ポリプロピレン系樹脂、及びポリエチレン系樹脂が挙げられる。塩化ビニル系樹脂としては、例えば、ポリ塩化ビニル系樹脂、及びポリ塩化ビニリデン系樹脂が挙げられる。フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリビニリデンフルオライド(PVDF)、及びエチレン-クロロトリフルオロエチレンコポリマー(ECTFE)が挙げられる。セラミックスとしては、例えば、六方晶窒化ホウ素が挙げられる。   Examples of the olefin resin include a polypropylene resin and a polyethylene resin. Examples of the vinyl chloride resin include polyvinyl chloride resins and polyvinylidene chloride resins. Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / ethylene copolymer (ETFE), and tetrafluoroethylene / hexafluoropropylene. Copolymer (FEP), polyvinylidene fluoride (PVDF), and ethylene-chlorotrifluoroethylene copolymer (ECTFE). An example of the ceramic is hexagonal boron nitride.

非金属材料の中でも、耐食性に優れるという観点から、フッ素系樹脂が好ましい。
送り側容器は、原料を収容する容器と、撹拌機又は分散機とを備えている。撹拌機又は分散機としては、例えば、翼式撹拌機、超音波分散機、及びホモミキサーが挙げられる。受け側容器についても、原料を収容する容器と、撹拌機又は分散機とを備えている。
Among non-metallic materials, a fluororesin is preferable from the viewpoint of excellent corrosion resistance.
The feeding side container includes a container for storing the raw material and a stirrer or a disperser. Examples of the stirrer or disperser include a wing stirrer, an ultrasonic disperser, and a homomixer. The receiving side container also includes a container for storing the raw material and a stirrer or a disperser.

配管には、原料の輸送の開始まで水又は水溶液が満たされる。配管に水又は水溶液を満たすには、例えば、流入側開閉弁及び流出側開閉弁を開状態とし、ポンプを作動させる。これにより、送り側容器から配管に水又は水溶液を供給する。次に、流入側開閉弁及び流出側開閉弁を閉状態とし、ポンプを停止させる。これにより、流入側開閉弁と流出側開閉弁との間に位置する流路の全体に水又は水溶液が満たされた状態となる。   The pipe is filled with water or an aqueous solution until the start of transportation of the raw material. In order to fill the pipe with water or an aqueous solution, for example, the inflow side on-off valve and the outflow side on-off valve are opened, and the pump is operated. Thereby, water or aqueous solution is supplied to piping from a sending side container. Next, the inflow side on-off valve and the outflow side on-off valve are closed, and the pump is stopped. Thereby, the whole flow path located between the inflow side on-off valve and the outflow side on-off valve is filled with water or an aqueous solution.

配管に水又は水溶液が満たされるのは、バッチ式生産工程において、その直前の製造(以下、「直前のロット」という。)の原料混合工程が完了し、配管等から構成される流路が洗浄された後が好ましい。前記洗浄された後の配管は、乾燥される前に水又は水溶液で満たされることが好ましい。なお、ロットとは製造等の業務で発生する製品単位のことを表す。   When a pipe is filled with water or an aqueous solution, in the batch production process, the raw material mixing process of the immediately preceding production (hereinafter referred to as “immediate lot”) is completed, and the flow path composed of the pipe and the like is washed. Is preferred. It is preferable that the cleaned pipe is filled with water or an aqueous solution before being dried. A lot represents a product unit generated in a business such as manufacturing.

水又は水溶液は、配管の有する流路全体の容量を100としたとき、50容量%以上となるように満たされることが好ましく、より好ましくは60容量%以上であり、更に好ましくは70容量%以上である。   The water or aqueous solution is preferably filled so as to be 50% by volume or more, more preferably 60% by volume or more, and further preferably 70% by volume or more when the capacity of the entire flow path of the pipe is 100. It is.

水は、例えば、遷移金属イオンの合計含有量が100ppb以下とされることが好ましい。例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルターによる異物の除去、蒸留等の操作によって水の純度を高めることができる。具体的には、例えば、イオン交換水、純水、超純水、又は蒸留水を用いることが好ましく、超純水を用いることが更に好ましい。   For example, the water preferably has a total content of transition metal ions of 100 ppb or less. For example, the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, and distillation. Specifically, for example, ion exchange water, pure water, ultrapure water, or distilled water is preferably used, and ultrapure water is more preferably used.

水溶液中の水溶性成分としては、例えば、塩基性化合物、酸化剤、防かび剤、キレート剤、及び界面活性剤が挙げられる。
塩基性化合物としては、例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウム又はその塩、アンモニア、及びアミンが挙げられる。アルカリ金属の水酸化物としては、例えば、水酸化カリウム、及び水酸化ナトリウムが挙げられる。水酸化第四級アンモニウム又はその塩としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、及び水酸化テトラブチルアンモニウムが挙げられる。アミンとしては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N−(β−アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、及びグアニジンが挙げられる。
Examples of the water-soluble component in the aqueous solution include basic compounds, oxidizing agents, fungicides, chelating agents, and surfactants.
Examples of the basic compound include an alkali metal hydroxide, quaternary ammonium hydroxide or a salt thereof, ammonia, and an amine. Examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Examples of the quaternary ammonium hydroxide or a salt thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide. Examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine, Examples include piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, and guanidine.

酸化剤としては、例えば、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸、過塩素酸塩、過硫酸塩、過ヨウ素酸塩、及び過マンガン酸塩が挙げられる。
防かび剤としては、例えば、フェノール系化合物、ヨウ素系化合物、チアゾリン系化合物、イソチアゾリン系化合物、第四級アンモニウム塩系化合物、及び有機アミン系化合物が挙げられる。
Examples of the oxidizing agent include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid, perchlorate, persulfate, periodate, and permanganate.
Examples of fungicides include phenolic compounds, iodine compounds, thiazoline compounds, isothiazoline compounds, quaternary ammonium salt compounds, and organic amine compounds.

キレート剤としては、例えば、アミノカルボン酸系キレート剤、及び有機ホスホン酸系キレート剤が挙げられる。
界面活性剤としては、ノニオン性、アニオン性、カチオン性又は両性の界面活性剤が挙げられる。
Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
Examples of the surfactant include nonionic, anionic, cationic or amphoteric surfactants.

水溶液には、塩基性化合物、酸化剤及び防かび剤の少なくとも一種が含有されることが好ましい。
水溶液中の水溶性の成分の含有量は、例えば、0.0001質量%以上、10質量%以下の範囲であることが好ましい。
The aqueous solution preferably contains at least one of a basic compound, an oxidizing agent, and a fungicide.
The content of the water-soluble component in the aqueous solution is preferably in the range of 0.0001% by mass or more and 10% by mass or less, for example.

原料混合工程では、送り側容器から受け側容器へ液状の原料を輸送する。配管に満たされていた水又は水溶液は、配管に液状の原料が供給されることで配管から押し出される。配管に満たされていた水又は水溶液は、液状の原料とともに受け側容器に供給されてもよいし、製造設備外へ排出されてもよい。水又は水溶液が液状の原料とともに受け側容器に供給される場合には、原料に水又は水溶液の混合されることを想定して、送り側容器内における液状の原料の濃度や、受け側容器内の液状の原料の濃度を調整しておくことが好ましい。なお、水又は水溶液を製造設備外へ排出させる場合、例えば上記の切替弁を利用することができる。   In the raw material mixing step, the liquid raw material is transported from the sending container to the receiving container. The water or aqueous solution filled in the pipe is pushed out of the pipe by supplying a liquid raw material to the pipe. The water or the aqueous solution filled in the pipe may be supplied to the receiving container together with the liquid raw material, or may be discharged out of the production facility. When water or an aqueous solution is supplied to the receiving container together with the liquid raw material, the concentration of the liquid raw material in the sending container or the inside of the receiving container is assumed assuming that the raw material is mixed with water or an aqueous solution. It is preferable to adjust the concentration of the liquid raw material. In addition, when discharging water or aqueous solution out of a manufacturing facility, said switching valve can be utilized, for example.

送り側容器に収容される液状の原料としては、例えば、砥粒、水溶性高分子、塩基性化合物及び水の混合物が挙げられる。受け側容器に収容される液状の原料としては、例えば、砥粒、塩基性化合物及び水の混合物が挙げられる。   As a liquid raw material accommodated in a sending side container, the mixture of an abrasive grain, a water-soluble polymer, a basic compound, and water is mentioned, for example. As a liquid raw material accommodated in a receiving side container, the mixture of an abrasive grain, a basic compound, and water is mentioned, for example.

砥粒の材料としては、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、及び酸化チタンが挙げられる。砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。   Examples of the abrasive material include silicon oxide, aluminum oxide, zirconium oxide, cerium oxide, and titanium oxide. An abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.

水溶性高分子としては、分子中に、カチオン基、アニオン基及びノニオン基から選ばれる少なくとも一種の官能基(親水性基)を有するものを使用することができる。水溶性高分子としては、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第四級窒素構造、複素環構造、ビニル構造、及びポリオキシアルキレン構造を含むものが挙げられる。   As the water-soluble polymer, those having at least one functional group (hydrophilic group) selected from a cationic group, an anionic group and a nonionic group in the molecule can be used. Examples of the water-soluble polymer include those containing a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a quaternary nitrogen structure, a heterocyclic structure, a vinyl structure, and a polyoxyalkylene structure in the molecule.

水溶性高分子としては、例えば、セルロース誘導体、ポリ(N−アシルアルキレンイミン)等のイミン誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドンを構造の一部に含む共重合体、ポリビニルカプロラクタム、ポリビニルカプロラクタムを構造の一部に含む共重合体、ポリオキシエチレン、ポリオキシアルキレン構造を有する重合体、これらのジブロック型やトリブロック型、ランダム型、交互型といった複数種の構造を有する共重合体、及びポリエーテル変性シリコーンが挙げられる。セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、及びカルボキシメチルセルロースが挙げられる。水溶性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。   Examples of the water-soluble polymer include cellulose derivatives, imine derivatives such as poly (N-acylalkyleneimine), polyvinyl alcohol, polyvinyl pyrrolidone, copolymers containing polyvinyl pyrrolidone as part of the structure, polyvinyl caprolactam, and polyvinyl caprolactam. A copolymer having a part of the structure, a polyoxyethylene, a polymer having a polyoxyalkylene structure, a copolymer having a plurality of types such as a diblock type, a triblock type, a random type, and an alternating type; and Examples include polyether-modified silicone. Examples of the cellulose derivative include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose. A water-soluble polymer may be used individually by 1 type, and may be used in combination of 2 or more type.

水及び塩基性化合物は、上記配管に満たされる水又は水溶液に含有される塩基性化合物として説明したものと同様のものが用いられる。
研磨用組成物の製造方法では、上記原料混合工程の後に、例えば、ろ過工程、及び充填工程が実施される。
As the water and the basic compound, those described as the basic compound contained in the water or the aqueous solution filled in the pipe are used.
In the manufacturing method of polishing composition, a filtration process and a filling process are implemented after the said raw material mixing process, for example.

原料混合工程を通じて得られる研磨用組成物は、例えば、シリコン基板、ステンレス等の金属、酸化シリコン基板、プラスチック基板、ガラス基板、及び石英基板を研磨対象物とした研磨に用いられる。   The polishing composition obtained through the raw material mixing step is used for polishing using, for example, a silicon substrate, a metal such as stainless steel, a silicon oxide substrate, a plastic substrate, a glass substrate, and a quartz substrate.

次に、研磨用組成物の製造方法の作用について説明する。
原料混合工程では、配管を有する製造設備が用いられる。配管は、送り側容器から受け側容器へ液状の原料を輸送する。配管には、輸送の開始まで水又は水溶液が満たされる。これにより、配管の有する流路の乾燥が抑制されるため、粗大粒子の要因となる物質が流路の内周面に密着することが抑制されると推測される。
Next, the effect | action of the manufacturing method of polishing composition is demonstrated.
In the raw material mixing step, a manufacturing facility having piping is used. The piping transports the liquid raw material from the sending container to the receiving container. The pipe is filled with water or an aqueous solution until the start of transportation. Thereby, since the drying of the flow path which piping has is suppressed, it is estimated that it is suppressed that the substance which becomes a cause of a coarse particle adheres to the internal peripheral surface of a flow path.

以上詳述した本実施形態によれば、次のような効果が発揮される。
(1)原料混合工程では、送り側容器と、受け側容器と、送り側容器から受け側容器へ液状の原料を輸送する配管とを備える製造設備が用いられる。配管には、原料の輸送の開始まで水又は水溶液が満たされている。この研磨用組成物の製造方法によれば、粗大粒子の混入を抑制することが容易となる。
According to the embodiment described in detail above, the following effects are exhibited.
(1) In the raw material mixing step, a production facility including a sending side container, a receiving side container, and a pipe for transporting a liquid raw material from the sending side container to the receiving side container is used. The pipe is filled with water or an aqueous solution until the start of transportation of the raw material. According to this method for producing a polishing composition, it becomes easy to suppress the incorporation of coarse particles.

(2)配管に満たされる水溶液として、塩基性化合物、酸化剤及び防かび剤の少なくとも一種を含有する水溶液を用いることが好ましい。この場合、粗大粒子の混入を抑制することが更に容易となる。   (2) It is preferable to use an aqueous solution containing at least one of a basic compound, an oxidizing agent and an antifungal agent as the aqueous solution filled in the pipe. In this case, it becomes easier to suppress the mixing of coarse particles.

(変更例)
前記実施形態は、次のように変更されてもよい。
・前記実施形態の製造設備は、一つの送り側容器を有しているが、複数の送り側容器を備える製造設備に変更されてもよい。この場合、液状の原料は、各送り側容器から別々の配管を通じて受け側容器に輸送される。この変更例では、複数の配管の少なくとも一つにおいて、輸送の開始まで水又は水溶液が満たされていればよい。また、この変更例の受け側容器は、予め原料が収容されずに空の状態とされ、各送り側容器から輸送される原料を混合する容器として用いてもよい。
(Example of change)
The embodiment may be modified as follows.
-Although the manufacturing equipment of the above-mentioned embodiment has one sending side container, it may be changed into the manufacturing equipment provided with a plurality of sending side containers. In this case, the liquid raw material is transported from each sending side container to a receiving side container through a separate pipe. In this modified example, it is sufficient that at least one of the plurality of pipes is filled with water or an aqueous solution until the start of transportation. In addition, the receiving-side container of this modified example may be used as a container for mixing raw materials transported from the respective feeding-side containers, in which the raw materials are not stored in advance and are empty.

・前記実施形態の原料混合工程の前工程や後工程として、更に別の原料混合工程を含んでもよい。
・送り側容器及び受け側容器の少なくとも一方には、前記配管と同様に、輸送の開始まで水又は水溶液が満たされていてもよい。この場合、水又は水溶液は、送り側容器及び受け側容器の一部に満たされていてもよいし、全体に満たされていてもよい。
-Another raw material mixing process may be included as a pre-process or a post-process of the raw material mixing process of the embodiment.
-At least one of the sending side container and the receiving side container may be filled with water or an aqueous solution until the start of transportation in the same manner as the pipe. In this case, the water or the aqueous solution may be filled in a part of the sending side container and the receiving side container, or may be filled as a whole.

次に、実施例及び比較例を挙げて前記実施形態を具体的に説明する。
(実施例1)
直前のロットとなる原料を配管から排出した後に送り側容器、受け側容器及び配管を水で洗浄した。なお、直前のロットでは、ヒドロキシエチルセルロース、アンモニア、及び水の混合物を液状の原料として送り側容器から受け側容器に輸送した。次に、洗浄直後の配管における流入側開閉弁と流出側開閉弁との間の流路に水を満たし、その状態で24時間放置した。
Next, the embodiment will be specifically described with reference to examples and comparative examples.
Example 1
After the raw material used as the previous lot was discharged from the piping, the sending side container, the receiving side container and the piping were washed with water. In the previous lot, a mixture of hydroxyethyl cellulose, ammonia, and water was transported from the sending container to the receiving container as a liquid raw material. Next, water was filled in the flow path between the inflow-side on-off valve and the outflow-side on-off valve in the pipe immediately after cleaning, and left in that state for 24 hours.

前記24時間放置後の製造(以下、「今回のロット」という。)では、送り側容器にヒドロキシエチルセルロース、アンモニア、及び水の混合物を収容するとともに、受け側容器にコロイダルシリカ、アンモニア、及び水の混合物を収容した。次に、配管に満たされた水を製造設備外へ排出するとともに、送り側容器内の混合物を受け側容器に輸送した。続いて、輸送された混合物を受け側容器内の混合物と混合することで組成物を得た。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を粒度分布測定器(Particle Sizing Systems社製、商品名:Accusizer MODEL 780)によって測定した結果、約3000個/mLであった。   In the production after leaving for 24 hours (hereinafter referred to as “this lot”), a feeding-side container contains a mixture of hydroxyethylcellulose, ammonia, and water, and a receiving-side container contains colloidal silica, ammonia, and water. The mixture was accommodated. Next, the water filled in the piping was discharged out of the production facility, and the mixture in the sending side container was transported to the receiving side container. Subsequently, a composition was obtained by mixing the transported mixture with the mixture in the receiving container. The number of coarse particles of 0.56 μm or more contained in the obtained composition was measured by a particle size distribution analyzer (trade name: Accusizer MODEL 780, manufactured by Particle Sizing Systems). As a result, it was about 3000 particles / mL. It was.

(実施例2)
実施例2では、pH10.0のアンモニア水が満たされた配管を用いた以外は、実施例1と同様にして組成物を調製した。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を上記粒度分布測定器によって測定した結果、約2000個/mLであった。
(Example 2)
In Example 2, a composition was prepared in the same manner as in Example 1 except that a pipe filled with ammonia water having a pH of 10.0 was used. As a result of measuring the number of coarse particles of 0.56 μm or more contained in the obtained composition with the particle size distribution analyzer, it was about 2000 particles / mL.

(実施例3)
実施例3では、1質量%の過酸化水素水が満たされた配管を用いた以外は、実施例1と同様にして組成物を調製した。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を上記粒度分布測定器によって測定した結果、約1800個/mLであった。
(Example 3)
In Example 3, a composition was prepared in the same manner as in Example 1 except that a pipe filled with 1% by mass of hydrogen peroxide was used. The number of coarse particles of 0.56 μm or more contained in the obtained composition was measured by the particle size distribution measuring instrument, and found to be about 1800 particles / mL.

(実施例4)
実施例4では、1質量%の防かび剤水溶液(商品名:バイオバンCS−1135、理研グリーン社製)が満たされた配管を用いた以外は、実施例1と同様にして組成物を調製した。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を上記粒度分布測定器によって測定した結果、約1800個/mLであった。
Example 4
In Example 4, a composition was prepared in the same manner as in Example 1 except that a pipe filled with 1% by mass of a fungicide aqueous solution (trade name: Biovan CS-1135, manufactured by Riken Green Co., Ltd.) was used. . The number of coarse particles of 0.56 μm or more contained in the obtained composition was measured by the particle size distribution measuring instrument, and found to be about 1800 particles / mL.

(実施例5)
実施例5では、配管に満たされる水の量を流路の容積の約50%となるように変更した以外は、実施例1と同様にして組成物を調製した。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を上記粒度分布測定器によって測定した結果、約25000個/mLであった。
(Example 5)
In Example 5, a composition was prepared in the same manner as in Example 1 except that the amount of water filled in the piping was changed to about 50% of the volume of the flow path. As a result of measuring the number of coarse particles of 0.56 μm or more contained in the obtained composition with the particle size distribution analyzer, it was about 25000 particles / mL.

(比較例1)
比較例1では、配管に水を満たさずに今回のロットの原料混合工程を実施した以外は、実施例1と同様にして組成物を調製した。得られた組成物中に含まれる、0.56μm以上の粗大粒子の数を上記粒度分布測定器によって測定した結果、約80000個/mLであった。
(Comparative Example 1)
In Comparative Example 1, a composition was prepared in the same manner as in Example 1 except that the raw material mixing step of the current lot was performed without filling the pipe with water. The number of coarse particles of 0.56 μm or more contained in the obtained composition was measured by the particle size distribution measuring instrument, and found to be about 80000 particles / mL.

Claims (3)

送り側容器と、受け側容器と、前記送り側容器から前記受け側容器へ少なくとも水溶性高分子を含む液状の原料を輸送する配管とを備える製造設備を用いて砥粒、水溶性高分子、及び塩基性化合物を含む原料を混合する原料混合工程を有する研磨用組成物の製造方法であって、
前記配管は、洗浄後において、前記輸送の開始まで水又は水溶性高分子及び砥粒を含まない水溶液が満たされ、前記原料混合工程の後に、研磨用組成物の充填工程が実施されることを特徴とする研磨用組成物の製造方法。
Abrasive grains, water-soluble polymer using a production facility comprising a feeding-side container, a receiving-side container, and a pipe for transporting a liquid raw material containing at least a water-soluble polymer from the sending-side container to the receiving-side container, And the manufacturing method of the polishing composition which has the raw material mixing process of mixing the raw material containing a basic compound,
The pipe, after washing, the until the start of transport of water, or an aqueous solution containing no water-soluble polymer and abrasive grains is filled, after the raw material mixing step, the filling process of the polishing composition is carried A method for producing a polishing composition comprising:
前記水溶液として、塩基性化合物、酸化剤及び防かび剤の少なくとも一種を含有する水溶液を用いる請求項1に記載の研磨用組成物の製造方法。   The manufacturing method of the polishing composition of Claim 1 using the aqueous solution containing at least 1 type of a basic compound, an oxidizing agent, and a fungicide as said aqueous solution. 前記送り側容器は、少なくとも水溶性高分子、塩基性化合物及び水を収容し、
前記受け側容器は、少なくとも砥粒及び水を収容する請求項1又は2に記載の研磨用組成物の製造方法。
The sending side container contains at least a water-soluble polymer, a basic compound and water,
The method for producing a polishing composition according to claim 1, wherein the receiving container contains at least abrasive grains and water.
JP2012244678A 2012-11-06 2012-11-06 Method for producing polishing composition Active JP6385639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244678A JP6385639B2 (en) 2012-11-06 2012-11-06 Method for producing polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244678A JP6385639B2 (en) 2012-11-06 2012-11-06 Method for producing polishing composition

Publications (2)

Publication Number Publication Date
JP2014091203A JP2014091203A (en) 2014-05-19
JP6385639B2 true JP6385639B2 (en) 2018-09-05

Family

ID=50935659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244678A Active JP6385639B2 (en) 2012-11-06 2012-11-06 Method for producing polishing composition

Country Status (1)

Country Link
JP (1) JP6385639B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957609A (en) * 1995-08-28 1997-03-04 Speedfam Co Ltd Abrasive fluid supplying device for mechanochemical polishing
JP2003179012A (en) * 2001-12-13 2003-06-27 Mitsubishi Electric Corp Slurry supply method and apparatus therefor

Also Published As

Publication number Publication date
JP2014091203A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2016063505A1 (en) Composition for polishing
JP6090362B2 (en) Washing liquid and washing method for polyamide-based reverse osmosis membrane
CN101636465A (en) The stabilization that is used for the polymer-silica dispersions of chemical mechanical polishing slurry application
JP6459512B2 (en) Permeation membrane cleaning method
JP5910696B1 (en) Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP6829191B2 (en) Polishing method
TW201615796A (en) Composition for polishing silicon wafer
JP6929239B2 (en) Polishing composition and polishing method
JP2015191966A (en) Composition for polishing silicon material
TWI758249B (en) Grinding method and composition modifier
JP6533439B2 (en) Polishing composition
JPWO2020137359A1 (en) Cleaning agent kit and cleaning agent preparation method
JP6385639B2 (en) Method for producing polishing composition
TW202140752A (en) Treatment solution and treatment solution container
JP2017204519A (en) Composition for semiconductor cleaning and cleaning method
JP7509883B2 (en) Semiconductor substrate cleaning solution
TWI510605B (en) Chemical mechanical polishing solution
JP7103823B2 (en) Silicon wafer polishing method and polishing composition
WO2021176913A1 (en) Processing solution and processing solution container
TW202140759A (en) Cleaning liquid for semiconductor substrate
JP7026043B2 (en) A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.
JP6530881B2 (en) Method for producing polishing composition
JP6348927B2 (en) Silicon wafer polishing composition
TW201706373A (en) Polishing composition
TW202012606A (en) Chemical solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161124

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250