JP6383615B2 - Vulcanization can and tire manufacturing method - Google Patents
Vulcanization can and tire manufacturing method Download PDFInfo
- Publication number
- JP6383615B2 JP6383615B2 JP2014184579A JP2014184579A JP6383615B2 JP 6383615 B2 JP6383615 B2 JP 6383615B2 JP 2014184579 A JP2014184579 A JP 2014184579A JP 2014184579 A JP2014184579 A JP 2014184579A JP 6383615 B2 JP6383615 B2 JP 6383615B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure vessel
- air
- duct
- end side
- discharge port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Description
本発明は、タイヤを加硫成形する際に好適に用いられる加硫缶に関し、特に内部の温度分布を均一化することが可能な加硫缶、及び、当該加硫缶によるタイヤの製造方法に関する。 The present invention relates to a vulcanization can suitably used for vulcanization molding of a tire, and more particularly to a vulcanization can capable of uniforming an internal temperature distribution and a method of manufacturing a tire using the vulcanization can. .
近年、リトレッドタイヤと呼ばれるタイヤの製造方法の一工程として、加硫缶を用いた工程が知られている。当該工程は、タイヤの基礎となる台タイヤと、当該台タイヤの円周方向に貼着されるトレッドゴムとをエンベロープ内に収容し、エンベロープ内の圧力を減圧した状態で加硫缶内に投入することにより、台タイヤとトレッドゴムとの間に介在する接着層としてのクッションゴムを加硫し、両者を強固に一体化する工程である。特許文献に示すように、加硫缶は概略、エンベロープに収容された複数組のタイヤ(台タイヤ及びトレッドゴム)を格納可能な筒状の圧力容器と、当該圧力容器の延長方向の一方に設けられ、圧力容器内の空気を加熱する熱源と、当該熱源の近傍に配設され、熱源によって加熱された空気を循環させるファンと、圧力容器の延長方向の他端側に開閉自在に設けられた気密扉とを備える。また、圧力容器の内壁面には、圧力容器の延長方向に沿って延長する送風ダクトが配設され、熱源によって加熱された空気は、ファンにより送風ダクト内に供給され、送風ダクト内を通る空気がファンとは反対側に設けられた気密扉側において排出される。気密室側において排出された空気は、気密扉に形成された鏡板によって進行方向が反転し、圧力容器の一方側に向けて進行する。そして、上記加硫缶においては、送風ダクトから排出される空気が圧力容器内に滞留することによって生じる圧力容器の上下方向の温度分布のバラツキを防止することを目的として、送風ダクトの排出部にフィンを配設し、当該送風ダクトから排出される空気を圧力容器の周方向に沿って旋回する旋回流とすることにより、空気の滞留を防止し、以って温度分布のバラツキを緩和する構成が開示されている。 2. Description of the Related Art In recent years, a process using a vulcanized can is known as one process for manufacturing a tire called a retread tire. In this process, the base tire that is the basis of the tire and the tread rubber that is stuck in the circumferential direction of the base tire are accommodated in the envelope, and the pressure in the envelope is reduced, and then placed in the vulcanization can This is a step of vulcanizing the cushion rubber as an adhesive layer interposed between the base tire and the tread rubber, and firmly integrating the two. As shown in the patent document, a vulcanizing can is roughly provided in a cylindrical pressure vessel capable of storing a plurality of sets of tires (base tires and tread rubber) accommodated in an envelope, and one of the pressure vessels in the extending direction. A heat source that heats the air in the pressure vessel, a fan that is disposed in the vicinity of the heat source and circulates the air heated by the heat source, and that can be opened and closed on the other end side in the extending direction of the pressure vessel. It has an airtight door. Further, a blower duct extending along the extension direction of the pressure vessel is disposed on the inner wall surface of the pressure vessel, and the air heated by the heat source is supplied into the blower duct by a fan and passes through the blower duct. Is discharged on the side of the airtight door provided on the side opposite to the fan. The direction of travel of the air discharged on the side of the hermetic chamber is reversed by the end plate formed on the hermetic door, and proceeds toward one side of the pressure vessel. And in the said vulcanizing can, in order to prevent the variation in the temperature distribution of the pressure vessel in the vertical direction caused by the air discharged from the blower duct staying in the pressure vessel, The structure which arrange | positions a fin and makes the air discharged | emitted from the said ventilation duct turn into the swirl flow swirling along the circumferential direction of a pressure vessel, and prevents the residence of air and thereby eases variation in temperature distribution Is disclosed.
しかし、図7に示すように、上記構成からなる加硫缶において、圧力容器内を進行する旋回流の圧力容器の延長方向における風速を検証したところ、圧力容器の延長方向の一方側と他方側とでは、その風速に大きな差が生じており、当該風速の差は、圧力容器の延長方向の一方側及び他方側における温度分布のバラツキとして現れることが判明した。
そして、上記風速差の原因についてさらに検証したところ、第1の要因として、旋回流を生み出す構成として配設されたフィンが送風ダクトから排出される空気の抵抗となり、初期の風速を低下させる要因となっていること。第2の要因として、圧力容器の一方側に進行する旋回流が圧力領域内に格納されたタイヤによって阻害され、旋回流の風速が圧力容器の延長方向中央付近において、急激に失速することを見出した。
本発明は、上記課題を解決すべくなされたものであり、圧力容器の延長方向において生じる旋回流の風速差を緩和することにより、温度分布のバラツキを防止し、圧力容器全体の温度を均一化することが可能な加硫缶、及び、当該加硫缶を用いたタイヤの製造方法を提供する。
However, as shown in FIG. 7, in the vulcanizing can having the above-described configuration, when the wind speed in the extending direction of the pressure vessel of the swirling flow traveling in the pressure vessel was verified, one side and the other side in the extending direction of the pressure vessel Thus, it has been found that there is a large difference in the wind speed, and the difference in the wind speed appears as a variation in temperature distribution on one side and the other side in the extending direction of the pressure vessel.
And when the cause of the above wind speed difference was further verified, as a first factor, the fins arranged as a configuration generating a swirl flow become the resistance of the air discharged from the air duct, and the factor that lowers the initial wind speed It has become. As a second factor, the swirl flow traveling to one side of the pressure vessel is obstructed by the tire stored in the pressure region, and the wind speed of the swirl flow suddenly stalls near the center in the extension direction of the pressure vessel. It was.
The present invention has been made to solve the above-mentioned problems, and by reducing the difference in the wind speed of the swirling flow generated in the extension direction of the pressure vessel, the temperature distribution is prevented from being varied and the temperature of the entire pressure vessel is made uniform. The present invention provides a vulcanizing can that can be used and a method for manufacturing a tire using the vulcanizing can.
上記課題を解決するための加硫缶に係る構成として、筒状の圧力容器の一端側に設置される空気送出手段と、空気送出手段により送出される空気を加熱する熱源と、圧力容器の内壁面上において当該圧力容器の延長方向に沿って延長し、空気送出手段によって送出される空気を圧力容器内部の他端側の排出口から排出する送風ダクトと、排出口に設けられ、排出される空気の向きを圧力容器の円周方向に沿う方向とするフィンと、圧力容器の他端側に設けられ、排出口から排出された空気の流れを圧力容器の一端側へ向かう流れに変換する鏡板とを備えた加硫缶であって、排出口から鏡板に向かうに従って縮径する縮径部を有し、圧力容器の他端側において送風ダクトよりも径方向内側、かつ、送風ダクトに対して空隙を有して設けられた集風ダクトを備えた構成とした。
本構成によれば、鏡板によって圧力容器の一端側へ向かう流れに変換された旋回流が、排出口から鏡板に向かうに従って縮径する縮径部を有し、圧力容器の他端側において送風ダクトよりも径方向内側、かつ、送風ダクトに対して空隙を有して設けられた集風ダクトと、送風ダクトとの間から圧力容器の一端側へ進行するため、鏡板方向から見た場合の縮径部と送風ダクトとの断面積の減少により、旋回流の風速を増大させることができ、圧力容器内部の温度分布の均一化を図ることができる。
また、加硫缶に係る他の構成として、集風ダクト内に、圧力容器の一端側及び他端側において開口し、一端側から他端側にかけて断面積が減少する通気路を設けた構成とした。
本構成によれば、通気路を介して圧力容器の一端側から旋回流が発生する圧力容器の他端側へ向けて空気が流入するため、旋回流の流量が増大される。また、通気路の断面積が一端側から他端側にかけて減少するため、入流する空気の風速が増大し、旋回流の風速が増大する。
また、加硫缶に係る他の構成として、集風ダクトは、他端側において縮径部と連接し、送風ダクトの一部と圧力容器の径方向において対向して延長する平坦部を有し、当該平坦部において前記送風ダクトの一部と圧力容器の径方向において対向する重複領域における送風ダクトとの間及び内壁面との間の断面積が、平坦部において内壁面と圧力容器の径方向において対向する非重複領域における送風ダクトとの間の断面積、及び縮径部と内壁面との間の断面積よりも小さい構成とした。
本構成によれば、旋回流の風速を、平坦部において送風ダクトの一部と圧力容器の径方向で対向する重複領域において最大とすることができる。
また、上記加硫缶の構造を前提としてタイヤを製造すれば、圧力容器内部の温度分布の均一化により、圧力容器内における位置に拘わらず、均一な品質のタイヤを得ることができる。
As a configuration related to the vulcanizing can for solving the above-mentioned problems, an air delivery means installed on one end side of a cylindrical pressure vessel, a heat source for heating the air delivered by the air delivery means, and the inside of the pressure vessel A blower duct that extends along the extending direction of the pressure vessel on the wall surface and discharges the air sent out by the air sending means from the discharge port on the other end side inside the pressure vessel, is provided at the discharge port, and is discharged. Fins that make the direction of the air along the circumferential direction of the pressure vessel, and an end plate that is provided on the other end side of the pressure vessel and converts the flow of air discharged from the discharge port to the flow toward one end side of the pressure vessel And having a reduced diameter portion that decreases in diameter as it goes from the discharge port toward the end plate, on the other end side of the pressure vessel, radially inward of the air duct, and with respect to the air duct A collection provided with a gap It was configured to include the duct.
According to this configuration, the swirl flow converted into the flow toward the one end side of the pressure vessel by the end plate has the reduced diameter portion that decreases in diameter toward the end plate from the discharge port, and the blower duct on the other end side of the pressure vessel Since it proceeds from one side of the pressure vessel to the one end side of the pressure vessel from the inside of the air duct and between the air duct and the air duct that is provided with a gap with respect to the air duct, By reducing the cross-sectional area of the diameter portion and the air duct, the wind speed of the swirling flow can be increased, and the temperature distribution inside the pressure vessel can be made uniform.
Further, as another configuration relating to the vulcanization can, a configuration in which an air passage that opens at one end side and the other end side of the pressure vessel and whose cross-sectional area decreases from the one end side to the other end side is provided in the air collecting duct. did.
According to this configuration, the air flows from the one end side of the pressure vessel to the other end side of the pressure vessel where the swirling flow is generated via the ventilation path, so that the flow rate of the swirling flow is increased. Moreover, since the cross-sectional area of the air passage decreases from one end side to the other end side, the wind speed of the incoming air increases and the wind speed of the swirl flow increases.
Further, as another configuration relating to the vulcanizing can, the air collecting duct has a flat portion that is connected to the reduced diameter portion on the other end side and extends in a radial direction of a part of the air duct and the pressure vessel. In the flat part, the cross-sectional area between the air duct and the inner wall surface in the overlapping region facing part of the air duct in the radial direction of the pressure vessel is the radial direction of the inner wall surface and the pressure vessel in the flat part. The cross-sectional area between the air ducts in the non-overlapping regions facing each other and the cross-sectional area between the reduced diameter portion and the inner wall surface are smaller.
According to this configuration, the wind speed of the swirling flow can be maximized in the overlapping region facing the part of the air duct in the flat portion and the radial direction of the pressure vessel.
Further, if a tire is manufactured on the premise of the structure of the vulcanizing can, a uniform quality tire can be obtained regardless of the position in the pressure vessel by making the temperature distribution inside the pressure vessel uniform.
[加硫缶の概要について]
以下、図1乃至図4を参照して、実施形態に係る加硫缶1の構成について説明する。図1において加硫缶1は、一端が閉塞した円筒状に形成され、内部に複数のタイヤ10を格納可能な円筒状の圧力容器2と、圧力容器2の他端部において開閉自在に設けられた気密扉3とを備える。圧力容器2を構成する周壁部には、延長方向(軸方向)及び円周方向に沿って隙間なく図外の断熱材等によるライニングが施されている。圧力容器2の内部には、複数のタイヤ10を格納,加硫可能な加硫領域R1が形成される。気密扉3は、圧力容器2の開口した他端部において開閉自在に設けられる扉であって、円筒状の圧力容器2と同軸上に配設される。気密扉3は、周囲に配設された図外のシール材等を介して圧力容器2の他端側の開口部を閉塞し、圧力容器2内に供給される空気が外部に漏洩することを防止する。つまり、一端側が閉塞した圧力容器2は、他端側の気密扉3が閉じられることにより密閉空間として維持される。気密扉3における加硫領域R1側に対向する壁面3Aは、いわゆる鏡板として形成されており、所定の曲率で球面状に窪む。なお、鏡板として形成された壁面3Aの中心は、圧力容器2及び後述の集風ダクト30の中心と同軸上に位置する。円筒状の圧力容器2の下側半部よりも下方には、圧力容器2の延長方向に沿って延長する不図示の床板が敷設されており、圧力容器2内への複数のタイヤ10の搬入に際しては、床板上を走行可能な台車等を用いて複数のタイヤを気密扉3が設けられた開閉端側から閉塞端側へと搬入し、圧力容器2内に設けられたフック11に順に吊下げ、複数のタイヤ10を圧力容器2の延長方向に沿って並べて格納する。
[About the outline of vulcanized cans]
Hereinafter, the configuration of the vulcanizing can 1 according to the embodiment will be described with reference to FIGS. 1 to 4. In FIG. 1, a vulcanizing can 1 is formed in a cylindrical shape with one end closed, and is provided in a cylindrical pressure vessel 2 in which a plurality of tires 10 can be stored, and at the other end of the pressure vessel 2 so as to be openable and closable. The airtight door 3 is provided. The peripheral wall portion constituting the pressure vessel 2 is lined with a heat insulating material or the like outside the figure without any gap along the extending direction (axial direction) and the circumferential direction. Inside the pressure vessel 2 is formed a vulcanization region R1 in which a plurality of tires 10 can be stored and vulcanized. The hermetic door 3 is a door that can be freely opened and closed at the other open end of the pressure vessel 2, and is arranged coaxially with the cylindrical pressure vessel 2. The hermetic door 3 closes the opening on the other end side of the pressure vessel 2 through a sealing material (not shown) disposed around the air door 3 so that the air supplied into the pressure vessel 2 leaks to the outside. To prevent. That is, the pressure vessel 2 whose one end is closed is maintained as a sealed space by closing the airtight door 3 on the other end. A wall surface 3A facing the vulcanization region R1 side of the airtight door 3 is formed as a so-called end plate, and is recessed into a spherical shape with a predetermined curvature. Note that the center of the wall surface 3A formed as the end plate is located coaxially with the center of the pressure vessel 2 and the air collecting duct 30 described later. Below the lower half of the cylindrical pressure vessel 2, a floor plate (not shown) extending along the extending direction of the pressure vessel 2 is laid, and a plurality of tires 10 are carried into the pressure vessel 2. At this time, a plurality of tires are carried from the open / close end side where the airtight door 3 is provided to the closed end side using a cart or the like that can travel on the floor plate, and are sequentially suspended from the hooks 11 provided in the pressure vessel 2. The plurality of tires 10 are stored side by side along the extending direction of the pressure vessel 2.
[タイヤの構成について]
ここで、加硫缶1内に格納されるタイヤ10について概説する。図6は、加硫缶1によって加硫されるタイヤ10の一例としての未加硫のリトレッドタイヤを分解して示す斜視図及び幅方向断面図である。同図に示すように、タイヤ10は、土台となる台タイヤTbと、台タイヤTbの円周方向表面に貼着されるクッションゴム12、及び、クッションゴム12を介して台タイヤTbの円周方向表面に巻き付けられるトレッドゴム13とから構成される。図6(b)に示すように、台タイヤTbは、環状のスチールコード等の部材からなる一対のビード部11Aと、一対のビード部11Aを跨ぐようにトロイダル状に延長するサイド部11B及びクラウン部11Cを有する。クラウン部11Cの内部には、複数のベルトが径方向に沿って積層される。台タイヤTbは、例えば使用済みタイヤのトレッド部を切削(バフ掛け)することや、表面にトレッドパターンに対応する凹凸を有さない金型を備えるモールドによって加硫がなされることにより製造される。また、台タイヤTbの加硫度は、製品タイヤに要求される加硫度以下の状態であってもよい。
[Tire composition]
Here, the tire 10 stored in the vulcanizing can 1 will be outlined. FIG. 6 is an exploded perspective view and a cross-sectional view in the width direction showing an unvulcanized retread tire as an example of the tire 10 vulcanized by the vulcanizing can 1. As shown in the figure, the tire 10 includes a base tire Tb as a base, a cushion rubber 12 attached to a circumferential surface of the base tire Tb, and a circumference of the base tire Tb via the cushion rubber 12. The tread rubber 13 is wound around the directional surface. As shown in FIG. 6B, the base tire Tb includes a pair of bead portions 11A made of a member such as an annular steel cord, a side portion 11B and a crown extending in a toroidal shape so as to straddle the pair of bead portions 11A. Part 11C. A plurality of belts are stacked along the radial direction inside the crown portion 11C. The base tire Tb is manufactured, for example, by cutting (buffing) a tread portion of a used tire, or by vulcanization by a mold having a mold that does not have unevenness corresponding to the tread pattern on the surface. . Moreover, the vulcanization degree of the base tire Tb may be in a state equal to or lower than the vulcanization degree required for the product tire.
クッションゴム12は、台タイヤTb及びトレッドゴム13と略同様の組成からなる未加硫のゴムであって、加硫缶1によって加硫されることにより、台タイヤTbとトレッドゴム13とを一体化させる接着層として機能する。トレッドゴム13は、台タイヤTbの周長に対応する長さを有する帯状であって、台タイヤTbのクラウン部11C上に巻き付けられた状態で加硫されることにより、製品タイヤのトレッド部となる部材である。帯状のトレッドゴム13は、例えば一方の金型に所望のトレッドパターンに対応する凹凸が形成されたプレス型の加硫装置にて加硫することにより製造される。また、プレス型の加硫装置によって得られた帯状のトレッドゴム13は、台タイヤTbのクッションゴム12が貼着された円周方向表面に沿って巻き付けられ、端部同士が接合されることにより台タイヤTbと予備的に一体化される。 The cushion rubber 12 is an unvulcanized rubber having substantially the same composition as the base tire Tb and the tread rubber 13, and is vulcanized by the vulcanizing can 1 so that the base tire Tb and the tread rubber 13 are integrated. Functions as an adhesive layer. The tread rubber 13 is a belt having a length corresponding to the circumferential length of the base tire Tb, and is vulcanized in a state of being wound around the crown portion 11C of the base tire Tb. It is a member. The belt-like tread rubber 13 is produced, for example, by vulcanizing with a press-type vulcanizing device in which unevenness corresponding to a desired tread pattern is formed on one mold. Further, the belt-shaped tread rubber 13 obtained by the press-type vulcanizer is wound along the circumferential surface of the base tire Tb on which the cushion rubber 12 is adhered, and the ends are joined together. It is preliminarily integrated with the base tire Tb.
上述の構成を備えるタイヤ10は、エンベロープと呼ばれる図外の袋体に収容され、圧力容器2内においてフック11を介して吊り下げられる。エンベロープ内の圧力は大気圧以下に減圧されており、エンベロープの内表面はトレッドゴム13の外表面に密着する。つまり、タイヤ10がエンベロープ内に収容されると、トレッドゴム13は、台タイヤTbの円周方向表面に対して押し付けられた状態に維持される。なお、圧力容器2内に格納されるタイヤ10の一例として、加硫済みの台タイヤTb、及び、加硫済みのトレッドゴム13とを備えるリトレッドタイヤについて説明したが、加硫缶1に格納されるタイヤ10は、上記構成に限られるものではなく、製造過程に加硫工程を含むものであれば如何なるタイヤであってもよい。 The tire 10 having the above-described configuration is accommodated in an unillustrated bag called an envelope, and is suspended in the pressure vessel 2 via a hook 11. The pressure in the envelope is reduced to atmospheric pressure or less, and the inner surface of the envelope is in close contact with the outer surface of the tread rubber 13. That is, when the tire 10 is accommodated in the envelope, the tread rubber 13 is maintained in a state of being pressed against the circumferential surface of the base tire Tb. Note that, as an example of the tire 10 stored in the pressure vessel 2, the retread tire including the vulcanized base tire Tb and the vulcanized tread rubber 13 has been described. The tire 10 is not limited to the above-described configuration, and may be any tire as long as the manufacturing process includes a vulcanization step.
[空気送出領域について]
図1に戻り、再び圧力容器2の構造について説明する。圧力容器2内の一端側である閉塞端側には、空気送出領域R2が形成される。空気送出領域R2は、加硫領域R1を仕切る隔壁7によって区画された領域である。当該空気送出領域R2内には、加硫領域R1内を循環する空気を送出する送出手段としてのファン6が設置される。ファン6は、モーター6Aの駆動により回転する回転翼6Bを備えており、隔壁7に形成された吸気口を介して、加硫領域R1内の空気を空気送出領域R2内に取込み、当該取り込んだ空気を圧縮して後述の送風ダクト8の取り込み口9A側に送出する。
[Air delivery area]
Returning to FIG. 1, the structure of the pressure vessel 2 will be described again. An air delivery region R2 is formed on the closed end side, which is one end side in the pressure vessel 2. Air delivery area | region R2 is an area | region divided by the partition 7 which partitions off the vulcanization | cure area | region R1. In the air delivery region R2, a fan 6 is installed as delivery means for delivering air circulating in the vulcanization region R1. The fan 6 includes a rotating blade 6B that rotates by driving of the motor 6A. The air in the vulcanization region R1 is taken into the air delivery region R2 through the air inlet formed in the partition wall 7, and the air is taken in. The air is compressed and sent out to the intake port 9A side of the air duct 8 described later.
[送風ダクトについて]
図1に示すように、送風ダクト8(8A;8B;8C;8D)は、圧力容器2の内周壁面2Aの延長方向に沿って空気送出領域R2から加硫領域R1を経て、気密扉3側へと延長する。図2に示すように、各送風ダクト8A;8B;8C;8Dは、圧力容器2の内周壁面2Aに対して周方向に所定の間隔を有して配設される。より具体的には、圧力容器2の内周壁面2Aの上部側に送風ダクト8A;8Bからなる組が配設され、圧力容器2の内周壁面2Aの下部側に、送風ダクト8C;8Dからなる組が配設される。各組において、送風ダクト8Aと送風ダクト8B、及び送風ダクト8Cと送風ダクト8Dは、円筒状の圧力容器2を正面から見て左右対称の位置に配設される。また、内周壁面2A内において、送風ダクト8Aと送風ダクト8C、送風ダクト8Bと送風ダクト8Dとは互いに対向して配設される。図2にも示すとおり、送風ダクト8A;8B;8C;8Dは、圧力容器2の内周壁面2Aから径方向内側に相対峙して立ち上がる一対の板片28;28と、当該板片28;28の径方向内側端部同士を接続し、圧力容器2の内周壁面2Aと対向するように湾曲する底板29により構成される管体である。なお、送風ダクト8の数及び内周壁面2Aに対する位置関係等については図示のものに限られない。
[Blower duct]
As shown in FIG. 1, the air duct 8 (8A; 8B; 8C; 8D) passes through the vulcanization region R1 from the air delivery region R2 along the extending direction of the inner peripheral wall surface 2A of the pressure vessel 2, and the hermetic door 3 Extend to the side. As shown in FIG. 2, the air ducts 8 </ b>A; 8 </ b>B; 8 </ b>C; 8 </ b> D are disposed with a predetermined interval in the circumferential direction with respect to the inner peripheral wall surface 2 </ b> A of the pressure vessel 2. More specifically, a set of air ducts 8A; 8B is disposed on the upper side of the inner peripheral wall surface 2A of the pressure vessel 2, and the air ducts 8C; 8D are disposed on the lower side of the inner peripheral wall surface 2A of the pressure vessel 2. A set is arranged. In each set, the air duct 8A and the air duct 8B, and the air duct 8C and the air duct 8D are disposed at symmetrical positions when the cylindrical pressure vessel 2 is viewed from the front. Further, in the inner peripheral wall surface 2A, the air duct 8A and the air duct 8C, and the air duct 8B and the air duct 8D are disposed to face each other. As shown also in FIG. 2, the air ducts 8A; 8B; 8C; 8D are a pair of plate pieces 28; 28 that rise from the inner peripheral wall surface 2A of the pressure vessel 2 relative to the inner side in the radial direction, and the plate pieces 28; 28 is a tubular body composed of a bottom plate 29 that connects the radially inner ends of 28 and curves so as to face the inner peripheral wall surface 2A of the pressure vessel 2. The number of the air ducts 8 and the positional relationship with respect to the inner peripheral wall surface 2A are not limited to those shown in the drawing.
図1に示すとおり、上記構成からなる送風ダクト8A;8B;8C;8Dの延長方向の一端部に形成された取り込み口9Aは、空気送出領域R2と連通している。また、送風ダクト8A;8B;8C;8Dの延長方向の他端部には、気密扉3の壁面3Aの直前において開口する排出口9Bが設けられており、取り込み口9Aより取り込まれた空気は、気密扉3の壁面3Aの直前において開口する排出口9Bより壁面3Aに向けて排出される。 As shown in FIG. 1, the intake port 9A formed at one end in the extending direction of the air ducts 8A; 8B; 8C; 8D having the above-described configuration communicates with the air delivery region R2. In addition, a discharge port 9B that opens immediately before the wall surface 3A of the hermetic door 3 is provided at the other end in the extending direction of the air ducts 8A; 8B; 8C; 8D. The air is discharged toward the wall surface 3 </ b> A from the discharge port 9 </ b> B opened immediately before the wall surface 3 </ b> A of the hermetic door 3.
図1に示すように、送風ダクト8内には、例えば電気ヒーターからなる熱源5が配設されている。従って、各送風ダクト8の取り込み口9Aから取り込まれた空気は、排出口9Bに至る流路内において熱源5によって加熱され、排出口9Bから排出されることとなる。 As shown in FIG. 1, a heat source 5 made of, for example, an electric heater is disposed in the air duct 8. Therefore, the air taken in from the intake port 9A of each air duct 8 is heated by the heat source 5 in the flow path leading to the exhaust port 9B, and is discharged from the exhaust port 9B.
[フィンの構成について]
図2,図3に示すように、送風ダクト8の延長方向他端側に形成された排出口9B内には、空気の排出方向を規制する複数のフィン21乃至25が設けられる。図3に特に示すように、フィン21乃至25は、送風ダクト8の延長方向に沿って延長する板体であって、排出口9B付近において、圧力容器2の円周方向の一方(矢印X1)側に湾曲する。より詳細にはフィン21からフィン25の順に、湾曲の曲率が大きくなるように形成されている。なお、フィン21乃至25の形状はこれに限られるものではなく、例えば全てのフィンの曲率を同一とすることや、直線上の板体を同一方向に傾斜させた構成としてもよい。
[Fin configuration]
As shown in FIGS. 2 and 3, a plurality of fins 21 to 25 for restricting the air discharge direction are provided in the discharge port 9 </ b> B formed on the other end side in the extending direction of the air duct 8. As specifically shown in FIG. 3, the fins 21 to 25 are plate bodies extending along the extending direction of the air duct 8, and in the vicinity of the discharge port 9B, one of the circumferential directions of the pressure vessel 2 (arrow X1). Curve to the side. More specifically, the curvature is increased in the order from the fin 21 to the fin 25. Note that the shapes of the fins 21 to 25 are not limited to this, and for example, all the fins may have the same curvature, or a straight plate may be inclined in the same direction.
図2,図3に示すように、各送風ダクト8A;8B;8C;8Dにおける排出口9Bに形成された全てのフィン21乃至25の向きは、円筒状の圧力容器2の円周方向の一方側となるように統一されている。従って、各排出口9Bから気密扉3の壁面3A側に排出される空気は、圧力容器2の内周壁面2Aに沿って円周方向に回転する空気の流れ、即ち旋回流を生じさせる。そして、各排出口9Bから気密扉3側に向かう旋回流は、鏡板として形成された壁面3Aによってその方向が反転し、圧力容器2の一端側、即ち、隔壁7に向かう流れとなって、圧力容器2の加硫領域R1内を進行する。加硫領域R1内に格納されたタイヤ10は、加硫領域R1を進行する旋回流による対流伝熱により徐々に加熱され、加硫が進行する。 As shown in FIGS. 2 and 3, the direction of all the fins 21 to 25 formed in the discharge port 9 </ b> B in each of the air ducts 8 </ b> A; 8 </ b> B; 8 </ b> C; 8 </ b> D is one of the circumferential directions of the cylindrical pressure vessel 2. It is unified to become the side. Therefore, the air discharged from each discharge port 9B to the wall surface 3A side of the hermetic door 3 generates a flow of air rotating in the circumferential direction along the inner peripheral wall surface 2A of the pressure vessel 2, that is, a swirling flow. The direction of the swirling flow from each discharge port 9B toward the hermetic door 3 is reversed by the wall surface 3A formed as an end plate, and becomes a flow toward one end of the pressure vessel 2, that is, toward the partition wall 7, It proceeds in the vulcanization region R1 of the container 2. The tire 10 stored in the vulcanization region R1 is gradually heated by convection heat transfer due to the swirling flow traveling through the vulcanization region R1, and vulcanization proceeds.
以上のとおり、圧力容器2の一端側の空気送出領域R2において圧縮された空気は、送風ダクト8内に配設された熱源5によって加熱され、圧力容器2の他端側に設けられた排出口9Bより気密扉3側に排出される。そして、当該排出口9Bより排出される空気は、複数のフィン21乃至25によってその排出方向が規制されることにより、圧力容器2の円周方向に沿う空気の流れである旋回流を発生させる。以上を前提として、圧力容器2内に設けられる集風ダクト30について詳説する。 As described above, the air compressed in the air delivery region R <b> 2 on one end side of the pressure vessel 2 is heated by the heat source 5 disposed in the blower duct 8, and the discharge port provided on the other end side of the pressure vessel 2. It is discharged to the airtight door 3 side from 9B. The discharge direction of the air discharged from the discharge port 9 </ b> B is restricted by the plurality of fins 21 to 25, thereby generating a swirl flow that is a flow of air along the circumferential direction of the pressure vessel 2. Based on the above, the air collection duct 30 provided in the pressure vessel 2 will be described in detail.
[集風ダクトについて]
図1,図4に示すように、集風ダクト30は、圧力容器2の他端側において、圧力容器2の内周壁面2A上に配設された複数の送風ダクト8よりも径方向内側に設けられる両端開口の円筒体である。集風ダクト30は、圧力容器2の一端側から他端側に向けて直線的に延長する平坦部32と、当該平坦部32から圧力容器2の他端側、換言すれば気密扉3側に向かって漸次縮径する縮径部34とを有し、その内周側には上記平坦部32及び縮径部34の断面形状と対応する空間である通気路Kが形成される。平坦部32は、その延長方向に見た場合、径方向外側に位置する送風ダクト8の底板29の一部と重複する重複領域P1と、底板29と重複することなく圧力容器2の内周壁面2Aと対向する非重複領域P2とを有する。図2に示すように、集風ダクト30を周方向に見た場合、平坦部32の重複領域P1と底板29との間、或いは、平坦部32と内周壁面2Aとの間にはそれぞれ、気密扉3側で発生した旋回流の加硫領域R1側への進入口となるノズル領域R4;R5が形成される。同図に示すように、本実施形態においては、送風ダクト8が圧力容器2の円周方向に沿って上下に隔てて2カ所ずつ設けられているため、ノズル領域R4;R5も円周方向に沿って交互に形成される。なお、ノズル領域R4;R5の機能については後述する。
[About air collection duct]
As shown in FIGS. 1 and 4, the air collecting duct 30 is located on the other end side of the pressure vessel 2 radially inward from the plurality of air ducts 8 disposed on the inner peripheral wall surface 2 </ b> A of the pressure vessel 2. It is the cylindrical body of the both ends opening provided. The air collecting duct 30 includes a flat portion 32 extending linearly from one end side to the other end side of the pressure vessel 2, and the other end side of the pressure vessel 2 from the flat portion 32, in other words, the airtight door 3 side. A diameter-reducing portion 34 that gradually decreases in diameter is formed, and an air passage K that is a space corresponding to the cross-sectional shape of the flat portion 32 and the reduced-diameter portion 34 is formed on the inner peripheral side thereof. When viewed in the extending direction, the flat portion 32 has an overlapping region P1 that overlaps with a part of the bottom plate 29 of the air duct 8 that is located radially outward, and an inner peripheral wall surface of the pressure vessel 2 without overlapping the bottom plate 29. 2A and a non-overlapping region P2 facing the 2A. As shown in FIG. 2, when the air collecting duct 30 is viewed in the circumferential direction, between the overlapping region P1 of the flat portion 32 and the bottom plate 29, or between the flat portion 32 and the inner peripheral wall surface 2A, respectively. Nozzle regions R4 and R5 are formed which serve as entrances of the swirl flow generated on the airtight door 3 side to the vulcanization region R1 side. As shown in the figure, in the present embodiment, since the air duct 8 is provided at two locations vertically apart along the circumferential direction of the pressure vessel 2, the nozzle regions R4; R5 are also circumferentially arranged. Are formed alternately. The function of the nozzle region R4; R5 will be described later.
縮径部34は、圧力容器2の内周壁面2Aと対向しつつ、圧力容器2の一端側から他端側に向かうに従って漸次径方向内側に傾斜する領域である。当該縮径部34の形状により、通気路Kの一部である縮径領域K1の流路断面積は、一端側から他端側にかけて減少し、縮径部34の他端部に開設された吹き出し口38において最も狭くなる。 The reduced diameter portion 34 is a region that gradually inwards in the radial direction as it goes from one end side to the other end side of the pressure vessel 2 while facing the inner peripheral wall surface 2 </ b> A of the pressure vessel 2. Due to the shape of the diameter-reduced portion 34, the cross-sectional area of the reduced-diameter region K <b> 1 that is a part of the air passage K decreases from one end side to the other end side, and is established at the other end portion of the reduced-diameter portion 34. It becomes the narrowest at the outlet 38.
次に、図2,図4を参照して、上記構成からなる集風ダクト30によって生じる作用について説明する。なお、以下の説明においては、上記集風ダクト30の一端部よりも圧力容器2の他端側の範囲を旋回流発生領域R3として説明する。上述のとおり、送風ダクト8から排出される空気によって旋回流発生領域R3にて継続的に旋回流が発生し、加硫領域R1側に進行した場合、圧力容器2の中心(軸心)付近の空気、換言すれば、加硫領域R1の中心付近の空気には、矢印Y1乃至Y3で示すように、集風ダクト30の一端部に形成された取込み口36から取り込まれ、集風ダクト30の他端部に形成された吹き出し口38から排出される流れが生じる。また、集風ダクト30の縮径領域K1の流路断面積は、吹き出し口38を最小として漸次減少するため、集風ダクト30内を通過する空気の風速は、吹き出し口38において最大となり、気密扉3側に吹き出すこととなる。
そして、旋回流発生領域R3において発生する旋回流は、加硫領域R1側から取り込まれた空気によって、その流量及び風速が増大した状態で圧力容器2の一端側、即ち、ノズル領域R4;R5方向に進行する。
Next, with reference to FIG. 2, FIG. 4, the effect | action produced by the air collection duct 30 which consists of the said structure is demonstrated. In the following description, the range on the other end side of the pressure vessel 2 from the one end portion of the air collecting duct 30 will be described as the swirl flow generation region R3. As described above, when the swirling flow is continuously generated in the swirling flow generation region R3 by the air discharged from the blower duct 8 and proceeds toward the vulcanization region R1, the vicinity of the center (axial center) of the pressure vessel 2 is reached. Air, in other words, air near the center of the vulcanization region R1 is taken in from the intake 36 formed at one end of the air collecting duct 30 as indicated by arrows Y1 to Y3. The flow discharged from the blowout port 38 formed at the other end portion is generated. Further, since the flow path cross-sectional area of the reduced diameter region K1 of the air collecting duct 30 gradually decreases with the air outlet 38 as a minimum, the air velocity of the air passing through the air collecting duct 30 becomes maximum at the air outlet 38, and the airtightness is increased. It will blow out to the door 3 side.
The swirl flow generated in the swirl flow generation region R3 is one end side of the pressure vessel 2, that is, in the nozzle region R4; R5 direction, with the flow rate and the wind speed increased by the air taken in from the vulcanization region R1 side. Proceed to.
このように、集風ダクト30の内周側に形成される通気路Kを介して、加硫領域R1側の空気が流速を増大しながら旋回流発生領域R3側に取り込まれることにより、旋回流発生領域R3には、高圧かつ高速の旋回流が生じることになる。 In this way, the air on the vulcanization region R1 side is taken into the swirl flow generation region R3 side while increasing the flow velocity via the air passage K formed on the inner peripheral side of the air collecting duct 30, and thereby the swirl flow A high-pressure and high-speed swirling flow is generated in the generation region R3.
さらに、上記旋回流発生領域R3内の旋回流は、集風ダクト30の外周側に形成される複数のノズル領域R4;R5を経由して、加硫領域R1側に進行する。ここで、図2,図4に示すように旋回流発生領域R3における流路断面を旋回流の進行方向に沿ってみた場合、集風ダクト30の縮径部34が気密扉3からノズル領域R4;R5方向に向かうに従って拡径しているため、縮径部34の外周面と内周壁面2Aとの間の流路断面積は徐々に減少し、平坦部32の重複領域P1の範囲に係る外周面と底板29との間において最小となる。つまり、旋回流発生領域R3を旋回流の進行方向に沿ってみた場合、旋回流が通る流路断面積は、ノズル領域R4;R5方向に向かうに従って減少する。
より詳細には、旋回流発生領域R3の流路断面積は、ノズル領域R4;R5を形成する平坦部32の重複領域P1の範囲で最小となり、次いで平坦部32の非重複領域P2の範囲、縮径部34と内周壁面2Aとが対向する範囲の順で大きくなる。
Further, the swirl flow in the swirl flow generation region R3 proceeds to the vulcanization region R1 side via a plurality of nozzle regions R4; R5 formed on the outer peripheral side of the air collecting duct 30. Here, as shown in FIGS. 2 and 4, when the cross section of the flow path in the swirl flow generation region R3 is viewed along the direction of travel of the swirl flow, the reduced diameter portion 34 of the air collecting duct 30 extends from the airtight door 3 to the nozzle region R4. ; Since the diameter is increased toward the R5 direction, the cross-sectional area of the flow path between the outer peripheral surface of the reduced diameter portion 34 and the inner peripheral wall surface 2A gradually decreases, and relates to the range of the overlapping region P1 of the flat portion 32 It is the minimum between the outer peripheral surface and the bottom plate 29. That is, when the swirl flow generation region R3 is viewed along the traveling direction of the swirl flow, the flow path cross-sectional area through which the swirl flow passes decreases in the nozzle region R4; R5 direction.
More specifically, the flow path cross-sectional area of the swirl flow generation region R3 is minimized in the range of the overlapping region P1 of the flat portion 32 forming the nozzle region R4; R5, and then the range of the non-overlapping region P2 of the flat portion 32, The reduced diameter portion 34 and the inner peripheral wall surface 2 </ b> A increase in the order in which they face each other.
従って、旋回流発生領域R3内において発生した旋回流の圧力容器2の延長方向に沿った風速は、ノズル領域R4;R5方向に進行するに従って増大し、ノズル領域R4;R5への進入時に最大となる。よって、ノズル領域R4;R5の端部、換言すれば集風ダクト30の外周面の一端部から加硫領域R1内に進行する旋回流は、高い初期風速を維持したまま加硫領域R1内を吹き抜け、隔壁7方向に進行することとなる。
さらに、集風ダクト30の最大径L1、即ち、平坦部32の直径は、加硫領域R1内に格納されるタイヤ10の直径よりも大径に設定されているため、ノズル領域R4;R5を経由して加硫領域R1側に進行する旋回流は、タイヤ10自体によってその流れを阻害されることなく隔壁7の方向に進行する。
このように、集風ダクト30の外周側に形成され、流路断面積が徐々に減少する旋回流発生領域R3を介して旋回流が加硫領域R1側に勢いよく流れ込み、さらに集風ダクト30の最大径が加硫領域R1内に格納されるタイヤ10の直径よりも大径に設定され、ノズル領域R4;R5の位置が、タイヤ10の周面よりも径方向外側に位置していることにより、ノズル領域R4;R5から隔壁7側に向かう旋回流がタイヤ10によって阻害されることがないため、圧力容器2の一端部、換言すれば隔壁7に達するまでの旋回流の流速が殆ど減衰することなく延長方向に渡って概ね均一化され、圧力容器2、換言すれば加硫領域R1の延長方向において生じる温度のバラツキを効果的に抑制でき、加硫領域R1内に格納されたタイヤ10に付与される熱量を均一化することが可能となる。
そして、タイヤ10に付与される熱量が加硫領域R1の延長方向位置によらず均一化されることにより、加硫缶1による加硫完了時に、均一な品質のタイヤを一回の加硫工程により得ることが可能となる。
Therefore, the wind speed along the extension direction of the pressure vessel 2 of the swirl flow generated in the swirl flow generation region R3 increases as it advances in the nozzle region R4; R5 direction, and reaches the maximum when entering the nozzle region R4; R5. Become. Therefore, the swirl flow that travels from the end of the nozzle region R4; R5, in other words, from one end of the outer peripheral surface of the air collecting duct 30 into the vulcanization region R1, passes through the vulcanization region R1 while maintaining a high initial wind speed. It blows through and proceeds in the direction of the partition wall 7.
Further, since the maximum diameter L1 of the air collecting duct 30, that is, the diameter of the flat portion 32 is set larger than the diameter of the tire 10 stored in the vulcanization region R1, the nozzle region R4; The swirl flow that travels toward the vulcanization region R1 via the travel proceeds in the direction of the partition wall 7 without being blocked by the tire 10 itself.
As described above, the swirl flow is vigorously flowed into the vulcanization region R1 through the swirl flow generation region R3 formed on the outer peripheral side of the wind collection duct 30 and the flow passage cross-sectional area gradually decreases. Is set to be larger than the diameter of the tire 10 stored in the vulcanized region R1, and the positions of the nozzle regions R4; R5 are positioned radially outside the peripheral surface of the tire 10. Therefore, the swirling flow from the nozzle region R4; R5 toward the partition wall 7 is not obstructed by the tire 10, so that the flow velocity of the swirling flow until reaching one end of the pressure vessel 2, in other words, the partition wall 7, is almost attenuated. Accordingly, the tire 10 stored in the vulcanization region R1 can be effectively suppressed in the extension direction of the pressure vessel 2, in other words, the variation in temperature generated in the extension direction of the vulcanization region R1 can be effectively suppressed. Granted to Heat it is possible to equalize the that.
Then, the amount of heat applied to the tire 10 is made uniform regardless of the position in the extending direction of the vulcanizing region R1, so that when the vulcanization by the vulcanizing can 1 is completed, a uniform quality tire is vulcanized once. Can be obtained.
図5は、本実施形態に係る加硫缶1の延長方向における風速分布のシミュレーション結果を示す図である。図7との比較において、本実施形態に係る加硫缶1では、加硫領域R1内において旋回流がその形状(軌跡)を保ったまま、かつ、旋回流が進行する加硫缶1の他端部から一端部側にかけてその風速が殆ど低下していないことが分かる。つまり、上記シミュレーション結果によれば、本実施形態に係る加硫缶1では、ノズル領域R4;R5から隔壁7側に向かって進行する旋回流の流速が延長方向に渡って失速することなく維持されることが確認された。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に限定されるものではない。上記実施の形態に多様な変更、改良を加え得ることは当業者にとって明らかであり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
例えば図4に示すように、ノズル領域R4;R5内に流路断面積をさらに減少させる整流板40を設けた構成としてもよい。整流板40は、送風ダクト8の底板29及び圧力容器2の内周壁面2Aから径方向内側に向けて延長する板体であって、加硫領域R1方向に傾斜又は湾曲する。当該整流板40を設けることにより、ノズル領域R4;R5内の流路断面積がさらに減少するため、旋回流の風速をより増大させることができる。また、ノズル領域R5内の整流板40の延長寸法をノズル領域R4内に設けられる整流板40の延長寸法よりも長く設定し、その間隔を互いに同一とすれば、圧力容器2の円周方向に沿って流路断面積が同一のノズル領域R4;R5を形成でき、旋回流の風速をより一層高めることができる。
FIG. 5 is a diagram showing a simulation result of the wind speed distribution in the extending direction of the vulcanizing can 1 according to the present embodiment. In comparison with FIG. 7, in the vulcanizing can 1 according to the present embodiment, in addition to the vulcanizing can 1 in which the swirling flow keeps its shape (trajectory) in the vulcanizing region R <b> 1 and the swirling flow proceeds. It can be seen that the wind speed hardly decreases from the end to the one end. That is, according to the simulation result, in the vulcanizing can 1 according to this embodiment, the flow velocity of the swirling flow that proceeds from the nozzle region R4; R5 toward the partition wall 7 side is maintained without stalling in the extension direction. It was confirmed that
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the said embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made to the above-described embodiment, and it is obvious that such changes and modifications can be included in the technical scope of the present invention. It is clear from the description.
For example, as shown in FIG. 4, it is good also as a structure which provided the baffle plate 40 which further reduces a flow-path cross-sectional area in nozzle area | region R4; R5. The rectifying plate 40 is a plate body that extends radially inward from the bottom plate 29 of the air duct 8 and the inner peripheral wall surface 2A of the pressure vessel 2, and is inclined or curved in the direction of the vulcanization region R1. By providing the rectifying plate 40, the cross-sectional area of the flow path in the nozzle region R4; R5 is further reduced, so that the wind speed of the swirling flow can be further increased. Further, if the extension dimension of the rectifying plate 40 in the nozzle region R5 is set longer than the extension dimension of the rectifying plate 40 provided in the nozzle region R4 and the distance between them is the same, the circumferential direction of the pressure vessel 2 is increased. Nozzle regions R4 and R5 having the same flow path cross-sectional area can be formed along this, and the wind speed of the swirling flow can be further increased.
1 加硫缶,2 圧力容器,2A 内周壁面,3 気密扉,3A 壁面,5 熱源,
6 ファン,7 隔壁,8(8A〜8D) 送風ダクト,9A 取り込み口,
9B 排出口,10 タイヤ,21〜25 フィン,28 板片,29 底板,
30 集風ダクト,32 平坦部,34 縮径部,40 整流板
1 vulcanized can, 2 pressure vessel, 2A inner wall surface, 3 airtight door, 3A wall surface, 5 heat source,
6 Fan, 7 Bulkhead, 8 (8A-8D) Air duct, 9A Intake port,
9B discharge port, 10 tires, 21-25 fins, 28 plate pieces, 29 bottom plate,
30 air collecting duct, 32 flat part, 34 reduced diameter part, 40 current plate
Claims (4)
前記空気送出手段により送出される空気を加熱する熱源と、
前記圧力容器の内壁面上において当該圧力容器の延長方向に沿って延長し、前記空気送出手段によって送出される空気を前記圧力容器内部の他端側の排出口から排出する送風ダクトと、
前記排出口に設けられ、前記排出される空気の向きを前記圧力容器の円周方向に沿う方向とするフィンと、
圧力容器の他端側に設けられ、前記排出口から排出された空気の流れを前記圧力容器の一端側へ向かう流れに変換する鏡板と、
を備えた加硫缶であって、
前記排出口から鏡板に向かうに従って縮径する縮径部を有し、前記圧力容器の他端側において前記送風ダクトよりも径方向内側、かつ、前記送風ダクトに対して空隙を有して設けられた集風ダクトを備えたことを特徴とする加硫缶。 An air delivery means installed at one end of the cylindrical pressure vessel;
A heat source for heating the air delivered by the air delivery means;
An air duct extending along the extending direction of the pressure vessel on the inner wall surface of the pressure vessel, and discharging the air sent out by the air sending means from a discharge port on the other end side inside the pressure vessel;
A fin provided at the discharge port and having a direction of the discharged air along a circumferential direction of the pressure vessel;
An end plate that is provided on the other end of the pressure vessel and converts the flow of air discharged from the discharge port into a flow toward one end of the pressure vessel;
A vulcanizing can with
It has a reduced diameter portion that decreases in diameter as it goes from the discharge port toward the end plate, and is provided on the other end side of the pressure vessel in the radial direction from the air duct and with a gap with respect to the air duct. A vulcanizing can characterized by having a wind collecting duct.
当該送出される空気を前記圧力容器の内壁面上において当該圧力容器の延長方向に沿って延長する送風ダクトの前記圧力容器の他端側の排出口から排出し、
前記圧力容器の他端側に設けられた鏡板により前記排出口から排出された空気の流れを前記圧力容器の一端側へ向かう流れに変換し、
前記圧力容器内に格納されたタイヤを加硫するタイヤ製造方法であって、
前記排出口にフィンを設け、当該排出口から排出される空気の向きを前記圧力容器の円周方向に沿う方向として旋回流を発生させ、
前記旋回流を、前記排出口から鏡板に向かうに従って縮径する縮径部を有し、前記圧力容器の他端側において前記送風ダクトよりも径方向内側に配置された集風ダクトと、前記送風ダクトとの空隙から進行させることを特徴とするタイヤ製造方法。
The air heated by the heat source is sent out by the air sending means installed on one end side of the cylindrical pressure vessel,
The discharged air is discharged from the outlet on the other end side of the pressure vessel of the air duct extending along the extending direction of the pressure vessel on the inner wall surface of the pressure vessel,
The flow of air discharged from the discharge port by the end plate provided on the other end side of the pressure vessel is converted into a flow toward the one end side of the pressure vessel,
A tire manufacturing method for vulcanizing a tire stored in the pressure vessel,
A fin is provided at the discharge port, and a swirling flow is generated with the direction of the air discharged from the discharge port as a direction along the circumferential direction of the pressure vessel,
A wind collecting duct having a reduced diameter portion that reduces the swirling flow diameter toward the end plate from the discharge port, and disposed on the radially inner side of the air blowing duct on the other end side of the pressure vessel; A tire manufacturing method, which proceeds from a gap with a duct.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014184579A JP6383615B2 (en) | 2014-09-10 | 2014-09-10 | Vulcanization can and tire manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014184579A JP6383615B2 (en) | 2014-09-10 | 2014-09-10 | Vulcanization can and tire manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016055552A JP2016055552A (en) | 2016-04-21 |
JP6383615B2 true JP6383615B2 (en) | 2018-08-29 |
Family
ID=55756962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014184579A Expired - Fee Related JP6383615B2 (en) | 2014-09-10 | 2014-09-10 | Vulcanization can and tire manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6383615B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6049927U (en) * | 1983-09-16 | 1985-04-08 | 日本板硝子株式会社 | autoclave |
JPH0661449B2 (en) * | 1988-06-30 | 1994-08-17 | 株式会社芦田製作所 | Method and apparatus for circulating gas in autoclave |
JPH0578513U (en) * | 1992-03-30 | 1993-10-26 | 株式会社芦田製作所 | Vertical autoclave |
JP2008500898A (en) * | 2004-05-28 | 2008-01-17 | タリコ,タリ | Autoclave with complex airflow |
JP4805230B2 (en) * | 2007-08-27 | 2011-11-02 | 川崎重工業株式会社 | Large-size molding equipment for composite materials |
JP2011012945A (en) * | 2009-07-04 | 2011-01-20 | Ashida Mfg Co Ltd | Hot air circulation method and device for autoclave |
JP5702261B2 (en) * | 2011-10-25 | 2015-04-15 | 株式会社ブリヂストン | Vulcanization can |
WO2013011934A1 (en) * | 2011-07-15 | 2013-01-24 | 株式会社ブリヂストン | Vulcanizer and method for manufacturing tires |
-
2014
- 2014-09-10 JP JP2014184579A patent/JP6383615B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016055552A (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013011934A1 (en) | Vulcanizer and method for manufacturing tires | |
US7938639B2 (en) | Installation for the manufacture of containers comprising a secure enclosure provided with a system for the insufflation of filtered air | |
JP5702261B2 (en) | Vulcanization can | |
JP6383615B2 (en) | Vulcanization can and tire manufacturing method | |
KR102044811B1 (en) | Method and apparatus for vulcanizing a tyre | |
US2213028A (en) | Rubber tire and method of making the same | |
JPH11513324A (en) | Injection molding of tire components | |
CN105835654B (en) | HVAC component | |
JP6696979B2 (en) | Method of cooling the finish and applying counter pressure when forming the container | |
JP2021041704A5 (en) | ||
JP5702241B2 (en) | Vulcanization can and tire manufacturing method | |
JP4901512B2 (en) | Tire cooling device after vulcanization | |
JP4787531B2 (en) | Raw tire heating device | |
CN117999163A (en) | Tire vulcanization chamber | |
CN1772455B (en) | Post cure inflator and vulcanized tire cooling method | |
JP2015205502A (en) | Vulcanization can | |
JPS6225017A (en) | Vulcanizer for rubber molding product | |
CN107866928B (en) | Tire vulcanizing device | |
JP6914802B2 (en) | Tire mold | |
KR101655266B1 (en) | Tire With Cooling Sipe And Sipe Blade forming Cooling Sipe | |
US9802377B2 (en) | Autoclave | |
US1387381A (en) | Tire-vulcanizing method and apparatus | |
JP2023098192A (en) | Bladder for tire vulcanization and pneumatic tire | |
US1114280A (en) | Mold for pneumatic tires. | |
JP3844001B2 (en) | Joint boot manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6383615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |