JP6383337B2 - Conductive polymer composition, coated article, pattern forming method, and substrate - Google Patents
Conductive polymer composition, coated article, pattern forming method, and substrate Download PDFInfo
- Publication number
- JP6383337B2 JP6383337B2 JP2015169308A JP2015169308A JP6383337B2 JP 6383337 B2 JP6383337 B2 JP 6383337B2 JP 2015169308 A JP2015169308 A JP 2015169308A JP 2015169308 A JP2015169308 A JP 2015169308A JP 6383337 B2 JP6383337 B2 JP 6383337B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- polymer composition
- component
- group
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 C*C(*)(CC(C)(C)C)**C(*S(O)(=O)=O)C(F)(F)F Chemical compound C*C(*)(CC(C)(C)C)**C(*S(O)(=O)=O)C(F)(F)F 0.000 description 1
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Wood Science & Technology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electron Beam Exposure (AREA)
- Elimination Of Static Electricity (AREA)
- Materials For Photolithography (AREA)
Description
本発明は、ポリアニリン系導電性高分子を含む導電性高分子組成物、これを用いた被覆品、パターン形成方法、及び基板に関する。さらに詳しくは、本発明は、紫外線、電子線等を用いたリソグラフィーにおいて、レジストの帯電防止に好適に用いられる導電性高分子組成物、これを用いて形成される帯電防止膜を備えた物品、前記導電性高分子組成物を用いたパターン形成方法、及び前記パターン形成方法によって得られる基板に関する。 The present invention relates to a conductive polymer composition containing a polyaniline-based conductive polymer, a coated article using the same, a pattern forming method, and a substrate. More specifically, the present invention relates to a conductive polymer composition suitably used for resist antistatic in lithography using ultraviolet rays, electron beams, etc., and an article provided with an antistatic film formed using the same. The present invention relates to a pattern forming method using the conductive polymer composition, and a substrate obtained by the pattern forming method.
従来、ICやLSI等半導体素子の製造プロセスにおいては、フォトレジストを用いたリソグラフィー法による微細加工が行われている。これは、光照射により薄膜の架橋あるいは分解反応を誘起させることにより、その薄膜の溶解性を著しく変化させ、溶剤等による現像処理の結果得られるレジストパターンをマスクとして、基板をエッチングする方法である。近年、半導体素子の高集積化に伴い、短波長の光線を用いた高精度の微細加工が要求されるようになった。電子線によるリソグラフィーはその短い波長特性から次世代の技術として開発が進められている。 Conventionally, in a manufacturing process of a semiconductor element such as an IC or LSI, fine processing by a lithography method using a photoresist has been performed. This is a method of etching a substrate using a resist pattern obtained as a result of development processing with a solvent or the like as a mask by remarkably changing the solubility of the thin film by inducing a crosslinking or decomposition reaction of the thin film by light irradiation. . In recent years, with high integration of semiconductor elements, high-precision microfabrication using short-wavelength light has been required. Lithography using electron beams is being developed as a next generation technology because of its short wavelength characteristics.
電子線によるリソグラフィー特有の問題点として、露光時の帯電現象(チャージアップ)が挙げられる。これは電子線露光を行う基板が絶縁性のレジスト膜で被覆された場合、レジスト膜上、又は膜中に電荷が蓄積して帯電する現象である。この帯電により、入射した電子線の軌道が曲げられるため、描写精度を著しく低下させることになる。そのため電子線レジストの上に塗布する帯電防止膜が検討されている。 A problem peculiar to lithography using electron beams is a charging phenomenon (charge-up) during exposure. This is a phenomenon in which, when a substrate to be subjected to electron beam exposure is covered with an insulating resist film, charges are accumulated on the resist film or in the film. Due to this charging, the trajectory of the incident electron beam is bent, so that the drawing accuracy is significantly lowered. Therefore, an antistatic film applied on the electron beam resist has been studied.
このような描写精度の低下を軽減するため、特許文献1には、アニリン系導電性ポリマー及びポリアシッド、H2Oから成る複合体を含有する組成物が開示されており、アニリン系導電性ポリマー及びポリアシッドから成る複合体が5から10質量%で良好なスピンコート成膜で可能であり、かつ150nm膜厚で十分な帯電防止効果が認められ、H2Oによる剥離・洗浄が可能である帯電防止膜が形成されることが明示されている。 In order to alleviate such a reduction in drawing accuracy, Patent Document 1 discloses a composition containing a composite composed of an aniline-based conductive polymer, a polyacid, and H 2 O, and the aniline-based conductive polymer is disclosed. And a composite made of polyacid can be formed with a good spin coat film at 5 to 10% by mass, and a sufficient antistatic effect is recognized at a film thickness of 150 nm, and peeling and cleaning with H 2 O are possible. It is clearly shown that an antistatic film is formed.
しかし、化学増幅型レジスト上に帯電防止膜を設けた場合、露光によって生成した酸が帯電防止膜中の成分により中和され、ポジ型においてはレジスト露光部が現像時に不溶化し、ネガ型においてはレジスト露光部が現像時に一部溶解する、又は逆に帯電防止膜中の酸成分により、ポジ型においてはレジスト未露光部が現像時に一部溶解し、ネガ型においてはレジスト未露光部が現像時に不溶化する等、レジスト形状の変化や感度変動がみられる場合があった。 However, when an antistatic film is provided on a chemically amplified resist, the acid generated by exposure is neutralized by the components in the antistatic film, and in the positive type, the resist exposed portion is insolubilized during development, and in the negative type In the positive type, the resist unexposed part is partially dissolved during development, and in the negative type, the resist unexposed part is partially developed during development. There were cases where changes in resist shape and fluctuations in sensitivity were observed, such as insolubilization.
化学増幅型レジストはほとんどの有機溶媒に耐性がないため、レジスト上に設ける帯電防止剤は水系のものが多い。しかし化学増幅型レジストの表面は疎水性であり、水系の帯電防止剤は塗布が困難であるため、界面活性剤等を添加する必要があるが、界面活性剤の添加によってレジスト表面にミキシング層を形成するため、そのミキシング層内で前記描画後にレジスト中に発生する酸及び帯電防止膜中の酸成分の影響が助長されるため、レジスト形状の変化や感度変動等の問題があった。 Since chemically amplified resists are not resistant to most organic solvents, many antistatic agents are provided on the resist. However, the surface of the chemically amplified resist is hydrophobic, and it is difficult to apply the water-based antistatic agent. Therefore, it is necessary to add a surfactant or the like. However, by adding a surfactant, a mixing layer is formed on the resist surface. Therefore, the influence of the acid generated in the resist after the drawing and the acid component in the antistatic film in the mixing layer is promoted, which causes problems such as a change in resist shape and sensitivity fluctuation.
特許文献2では、酸性基置換ポリアニリン系導電性高分子から成る複合体及び塩基性化合物を含む導電性組成物が開示されており、電解コンデンサ等へ適用等、高温雰囲気下における耐熱性、導電性の向上効果について明示されている。 Patent Document 2 discloses a conductive composition containing a complex composed of an acidic group-substituted polyaniline-based conductive polymer and a basic compound, and is applicable to an electrolytic capacitor or the like. The improvement effect is clearly indicated.
特許文献1に記載の組成物では、ポリアニリン系導電性高分子及びポリアシッドから成る複合体内に存在する、ポリアシッドに由来する酸が存在することにより酸性度が高いため、帯電防止効果は有効ながらもレジスト形状の変化や感度変動がみられるなどリソグラフィーにおいて好ましくない影響があった。 In the composition described in Patent Document 1, since the acidity is high due to the presence of an acid derived from polyacid present in a complex composed of a polyaniline-based conductive polymer and polyacid, the antistatic effect is effective. However, there were unfavorable effects on lithography, such as changes in resist shape and sensitivity fluctuations.
特許文献2におけるポリアニリン系導電性高分子では、特許文献1に記載される様な他分子のポリアシッドを用いておらず、導電性高分子を形成するアニリンモノマーに酸性置換基を導入した自己ドープ型ポリアニリン系導電性高分子に限定されており、アニリン系導電性ポリマーとポリアシッドが複合体を形成していない。また、アニリンモノマー上の酸性置換基はアニリンのアミノ基と1:1の比率で存在している。これらのことから、用途・目的に順応させるためにポリアニリン系導電性高分子のアミノ基と酸性置換基による会合体の組成比率の変更が困難であり、また、当該高分子の親水性、H2Oへの高分散性に大きく寄与する複合体形成に関与していない酸性基の存在比が制限されるため、組成物中での当該高分子が再凝集しやすく、化学増幅型レジスト上に帯電防止膜として適用した場合、欠陥発生などの問題があった。 The polyaniline-based conductive polymer in Patent Document 2 does not use a polyacid of another molecule as described in Patent Document 1, and is self-doped by introducing an acidic substituent into the aniline monomer that forms the conductive polymer. Type polyaniline-based conductive polymer, and the aniline-based conductive polymer and polyacid do not form a complex. Also, the acidic substituent on the aniline monomer is present in a 1: 1 ratio with the amino group of aniline. For these reasons, it is difficult to change the composition ratio of the aggregate due to the amino group and acidic substituent of the polyaniline-based conductive polymer in order to adapt to the application and purpose, and the hydrophilicity of the polymer, H 2 Since the abundance ratio of acidic groups that are not involved in complex formation that greatly contributes to high dispersibility in O is limited, the polymer in the composition tends to re-aggregate and is charged on the chemically amplified resist. When applied as a protective film, there were problems such as the occurrence of defects.
本発明は上記事情に鑑みなされたもので、帯電防止能に優れ、また、レジストに悪影響を与えず、塗布性に優れ、特に電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, is excellent in antistatic ability, does not adversely affect the resist, has excellent coating properties, and can be preferably used particularly in lithography using an electron beam or the like. An object is to provide a molecular composition.
上記課題を解決するため、本発明は、
下記一般式(1)で表される繰り返し単位を有するポリアニリン系導電性高分子(A)とポリアニオン(B)と、ベタイン化合物(C)とを含有する導電性高分子組成物を提供する。
Provided is a conductive polymer composition containing a polyaniline-based conductive polymer (A) having a repeating unit represented by the following general formula (1), a polyanion (B), and a betaine compound (C).
このような導電性高分子組成物ならば、帯電防止能に優れ、また、レジストに悪影響を与えず、塗布性に優れているため、電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物となる。 Such a conductive polymer composition has excellent antistatic ability, does not adversely affect the resist, and has excellent coating properties. Therefore, the conductive polymer composition can be suitably used for lithography using an electron beam or the like. It becomes a conductive polymer composition.
このとき、前記(C)成分が、下記一般式(2)で表されるものであることが好ましい。
本発明の導電性高分子組成物が、(C)成分として前記一般式(2)で表されるベタイン化合物を含むものであれば、被加工体上に前記導電性高分子組成物を用いて帯電防止膜を形成した際に、前記被加工体と当該帯電防止膜間の酸の拡散が抑制され、酸による影響を緩和することができる。 If the conductive polymer composition of the present invention contains the betaine compound represented by the general formula (2) as the component (C), the conductive polymer composition is used on a workpiece. When the antistatic film is formed, acid diffusion between the workpiece and the antistatic film is suppressed, and the influence of the acid can be mitigated.
またこのとき、前記(C)成分が、下記一般式(3)で表されるものであることが好ましい。
本発明の導電性高分子組成物が、(C)成分として前記一般式(3)で表されるベタイン化合物を含むものであれば、被加工体上に前記導電性高分子組成物を用いて帯電防止膜を形成した際に、前記被加工体と当該帯電防止膜間の酸の拡散がさらに抑制され、酸による影響を一層緩和することができる。 If the conductive polymer composition of the present invention contains the betaine compound represented by the general formula (3) as the component (C), the conductive polymer composition is used on a workpiece. When the antistatic film is formed, acid diffusion between the workpiece and the antistatic film is further suppressed, and the influence of the acid can be further alleviated.
またこのとき、前記(B)成分が、下記一般式(4)で表されるものを含むことが好ましい。
本発明の導電性高分子組成物が、(B)成分として前記一般式(4)で表されるものを含むものであれば、本発明の効果をより一層向上させることができる。 If the conductive polymer composition of the present invention includes the component (B) represented by the general formula (4), the effects of the present invention can be further improved.
またこのとき、前記(C)成分の含有量が、前記(A)成分と前記(B)成分との複合体100質量部に対して1質量部から50質量部であることが好ましい。 Moreover, it is preferable at this time that content of the said (C) component is 1 mass part to 50 mass parts with respect to 100 mass parts of composite_body | complex of the said (A) component and the said (B) component.
(C)成分の含有量をこのようなものとすれば、前記導電性高分子組成物によって形成された帯電防止膜からレジスト層への酸拡散が低減され、電子線描画時における帯電防止効果を保持しつつも酸によるリソグラフィーへの影響が低減され、高解像性レジストパターンを得ることができる。また、同様の効果から成膜後からパターン現像までの経時に対しても感度変動の少ないレジスト被加工体を得ることができる。 If the content of the component (C) is such, acid diffusion from the antistatic film formed by the conductive polymer composition to the resist layer is reduced, and the antistatic effect at the time of electron beam drawing is reduced. While being held, the influence of lithography on the lithography is reduced, and a high-resolution resist pattern can be obtained. Further, from the same effect, it is possible to obtain a resist workpiece with little sensitivity variation over time from film formation to pattern development.
またこのとき、前記(C)成分の含有量が、前記(A)成分と前記(B)成分との複合体100質量部に対して3質量部から10質量部であることが好ましい。 Moreover, it is preferable at this time that content of the said (C) component is 3 mass parts to 10 mass parts with respect to 100 mass parts of composite_body | complex of the said (A) component and the said (B) component.
(C)成分の含有量をこのようなものとすれば、前記導電性高分子組成物によって形成された帯電防止膜からレジスト層への酸拡散がさらに低減され、電子線描画時における帯電防止効果を保持しつつも酸によるリソグラフィーへの影響がさらに低減され、より解像性の高いレジストパターンを得ることができる。また、同様の効果から成膜後からパターン現像までの経時に対しても感度変動の一層少ないレジスト被加工体を得ることができる。 If the content of the component (C) is such, acid diffusion from the antistatic film formed by the conductive polymer composition to the resist layer is further reduced, and an antistatic effect at the time of electron beam drawing. In this way, the influence of the acid on the lithography is further reduced, and a resist pattern with higher resolution can be obtained. Further, from the same effect, it is possible to obtain a resist workpiece with less sensitivity variation over time from film formation to pattern development.
またこのとき、前記導電性高分子組成物が、さらにノニオン系界面活性剤を含有するものであることが好ましい。 At this time, it is preferable that the conductive polymer composition further contains a nonionic surfactant.
このようなものであれば、基材等の被加工体への濡れ性を上げることができる。 If it is such, the wettability to workpieces, such as a base material, can be raised.
またこのとき、前記ノニオン系界面活性剤の含有量が、前記(A)成分と前記(B)成分との複合体100質量部に対して、1質量部から50質量部であることが好ましい。 Moreover, at this time, it is preferable that content of the said nonionic surfactant is 1 mass part to 50 mass parts with respect to 100 mass parts of composite_body | complex of the said (A) component and the said (B) component.
このようなものであれば、レジスト表面への濡れ性もより良好となり、帯電防止能も十分なものとなる。 In such a case, the wettability to the resist surface becomes better and the antistatic ability is sufficient.
また、前記導電性高分子組成物は、帯電防止膜の形成に用いられるものとすることができる。
また本発明は、被加工体上に前記導電性高分子組成物を用いて形成される帯電防止膜が設けられた被覆品を提供する。
The conductive polymer composition may be used for forming an antistatic film.
The present invention also provides a coated article provided with an antistatic film formed using the conductive polymer composition on a workpiece.
本発明の導電性高分子組成物から形成される帯電防止膜は、帯電防止能に優れており、このような帯電防止膜を様々な被加工体に被覆することにより、質の高い被覆品を得ることができる。 The antistatic film formed from the conductive polymer composition of the present invention is excellent in antistatic ability. By coating such an antistatic film on various workpieces, a high quality coated product can be obtained. Can be obtained.
またこのとき、前記被加工体は、化学増幅型レジスト膜を備える基板とすることができる。 At this time, the workpiece can be a substrate provided with a chemically amplified resist film.
本発明の導電性高分子組成物はレジストに悪影響を与えることがないため、本発明の導電性高分子組成物から形成される帯電防止膜を設ける被加工体として、従来適用が困難であった化学増幅型レジスト膜を備える基板を選択することも可能となる。 Since the conductive polymer composition of the present invention does not adversely affect the resist, it has been difficult to apply as a workpiece to be provided with an antistatic film formed from the conductive polymer composition of the present invention. It is also possible to select a substrate provided with a chemically amplified resist film.
またこのとき、前記被加工体は、電子線をパターン照射してレジストパターンを得るための基板とすることができる。 At this time, the workpiece can be a substrate for obtaining a resist pattern by pattern irradiation with an electron beam.
本発明の導電性高分子組成物であれば、特に電子線等を用いたリソグラフィーに好適に用いることができるため、高感度、高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。 Since the conductive polymer composition of the present invention can be suitably used particularly for lithography using an electron beam or the like, a resist pattern having high sensitivity, high resolution, and good pattern shape is obtained. be able to.
更に本発明は、化学増幅型レジスト膜を備える基板の該レジスト膜上に、前記導電性高分子組成物を用いて帯電防止膜を形成する工程、電子線をパターン照射する工程、及びアルカリ性現像液を用いて現像してレジストパターンを得る工程を含むパターン形成方法を提供する。 Furthermore, the present invention provides a step of forming an antistatic film on the resist film of a substrate provided with a chemically amplified resist film using the conductive polymer composition, a step of pattern irradiation with an electron beam, and an alkaline developer. And a pattern forming method including a step of developing a resist pattern to obtain a resist pattern.
このようなパターン形成方法によれば、露光時の帯電現象を防ぐことができ、高感度で高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。 According to such a pattern forming method, a charging phenomenon at the time of exposure can be prevented, and a resist pattern having high sensitivity, high resolution, and good pattern shape can be obtained.
また、本発明では、前記パターン形成方法により得られたレジストパターンを有する基板を提供する。 The present invention also provides a substrate having a resist pattern obtained by the pattern forming method.
本発明のパターン形成方法であれば、高感度、高解像性を有し、パターン形状も良好なレジストパターンを有する基板を得ることができる。 With the pattern forming method of the present invention, a substrate having a resist pattern having high sensitivity, high resolution, and good pattern shape can be obtained.
以上説明したように、本発明の導電性高分子組成物は、帯電防止能に優れるため、帯電防止用途に好適に用いることができる。また、本発明の導電性高分子組成物を用いて形成された帯電防止膜を様々な被加工体に被覆することにより、質の高い被覆品を得ることができる。
また、本発明の導電性高分子組成物を、フォトレジストを用いたリソグラフィー法に適用した場合でも、レジストの不溶化や感度変動等の悪影響を与えず、塗布性に優れているため、特に電子線等を用いたリソグラフィーに好適に用いることができ、高感度、高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。
As described above, since the conductive polymer composition of the present invention is excellent in antistatic ability, it can be suitably used for antistatic applications. Moreover, a high quality coated article can be obtained by coating various workpieces with an antistatic film formed using the conductive polymer composition of the present invention.
In addition, even when the conductive polymer composition of the present invention is applied to a lithography method using a photoresist, it does not adversely affect resist insolubility and sensitivity fluctuations, and is excellent in coating properties. It is possible to obtain a resist pattern that has high sensitivity, high resolution, and good pattern shape.
以下、本発明の実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。
上述のように、近年半導体素子の製造プロセスにおいても帯電防止膜を適用することが検討されているが、従来の導電性組成物等は組成物中に含まれる酸がレジストに悪影響を与える等の問題があった。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
As described above, in recent years, application of an antistatic film has also been studied in the manufacturing process of semiconductor elements. However, conventional conductive compositions and the like have a negative effect on the resist due to the acid contained in the composition. There was a problem.
そこで本発明者らが上記問題点を解決するため鋭意検討を行った結果、ベタイン化合物を用いることにより、帯電防止能に優れ、レジストに悪影響を与えず、塗布性に優れ、電子線等を用いたリソグラフィーに好適に用いることができる導電性高分子組成物を得ることができることを見出し、本発明を完成させた。 Therefore, as a result of intensive studies by the present inventors to solve the above problems, by using a betaine compound, the antistatic ability is excellent, the resist is not adversely affected, the coating property is excellent, and an electron beam is used. The present inventors have found that a conductive polymer composition that can be suitably used in conventional lithography can be obtained, and the present invention has been completed.
即ち、本発明の導電性高分子組成物は、ポリアニリン系導電性高分子と、ポリアニオンと、ベタイン化合物とを含有するものであることを特徴とする。 That is, the conductive polymer composition of the present invention is characterized by containing a polyaniline-based conductive polymer, a polyanion, and a betaine compound.
以下に、本発明について更に詳しく説明する。
[(A)ポリアニリン系導電性高分子]
本発明の導電性高分子組成物は、(A)成分として下記一般式(1)で表されるポリアニリン系導電性高分子を含む。
[(A) Polyaniline-based conductive polymer]
The conductive polymer composition of the present invention contains a polyaniline-based conductive polymer represented by the following general formula (1) as the component (A).
ポリアニリン系導電性高分子は、主鎖がアニリン、あるいはアニリンのpara−置換体以外の誘導体で構成されている有機高分子である。同様の機能を有する高分子には、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。
しかし、H2Oへの高い分散性、分散液の濾過性、成膜後のH2Oまたはアルカリ現像液に対する剥離性、リソグラフィーにおける低欠陥性、重合の容易さ、保存時の低再凝集性、空気中での安定性の点から、(A)成分としては、ポリアニリン系導電性高分子が選ばれる。
The polyaniline-based conductive polymer is an organic polymer whose main chain is composed of aniline or a derivative other than the para-substituted product of aniline. Examples of the polymer having the same function include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof.
However, high dispersibility in H 2 O, filterability of dispersion, peelability to H 2 O or alkali developer after film formation, low defect in lithography, ease of polymerization, low re-aggregation during storage From the viewpoint of stability in air, a polyaniline conductive polymer is selected as the component (A).
ポリアニリン系導電性高分子は無置換のままでも十分な導電性を得ることができるが、H2Oへの高い分散性、低再凝集性、分散液の濾過性、成膜後のH2Oまたはアルカリ現像液に対する剥離性の向上、リソグラフィーにおける欠陥低減については、置換基を導入することがより望ましい。置換基には、ハロゲン原子、アルキル基、カルボキシ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。 The polyaniline-based conductive polymer can obtain sufficient conductivity even if it is not substituted, but has high dispersibility in H 2 O, low re-aggregation, filterability of the dispersion, H 2 O after film formation Alternatively, it is more desirable to introduce a substituent for improving the peelability with respect to an alkali developer and reducing defects in lithography. A functional group such as a halogen atom, an alkyl group, a carboxy group, an alkoxy group, a hydroxy group, or a cyano group may be introduced into the substituent.
ポリアニリン系導電性高分子を得るために使用するアニリンモノマーの具体例としては、アニリン、2−メチルアニリン、3−メチルアニリン、2−エチルアニリン、3−エチルアニリン、2−イソプロピルアニリン、2−terブチルアニリン、2,3−ジメチルアニリン、2,5−ジメチルアニリン、2,6−ジメチルアニリン、3,5−ジメチルアニリン、2,6−ジエチルアニリン、2,6−ジイソプロピルアニリン、2,3,5,6−テトラメチルアニリン、2−メトキシアニリン、3−メトキシアニリン、2−エトキシアニリン、3−エトキシアニリン、3−イソプロポキシアニリン、3−ヒドロキシアニリン、2,5−ジメトキシアニリン、2,6−ジメトキシアニリン、3,5−ジメトキシアニリン、2,5−ジエトキシアニリン、2−メトキシ−5−メチルアニリン、5−terブチル−2−メトキシアニリン、2−クロロ−5−メチルアニリン、2−クロロ−6−メチルアニリン、3−クロロ−2−メチルアニリン、5−クロロ−2−メチルアニリン等が挙げられ、いずれか1種を単独で用いてもよく、2種類以上混合して用いてもよい。 Specific examples of the aniline monomer used to obtain the polyaniline-based conductive polymer include aniline, 2-methylaniline, 3-methylaniline, 2-ethylaniline, 3-ethylaniline, 2-isopropylaniline, 2-ter Butylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,5-dimethylaniline, 2,6-diethylaniline, 2,6-diisopropylaniline, 2,3,5 , 6-tetramethylaniline, 2-methoxyaniline, 3-methoxyaniline, 2-ethoxyaniline, 3-ethoxyaniline, 3-isopropoxyaniline, 3-hydroxyaniline, 2,5-dimethoxyaniline, 2,6-dimethoxy Aniline, 3,5-dimethoxyaniline, 2,5-diethoxya Phosphorus, 2-methoxy-5-methylaniline, 5-terbutyl-2-methoxyaniline, 2-chloro-5-methylaniline, 2-chloro-6-methylaniline, 3-chloro-2-methylaniline, 5- Examples thereof include chloro-2-methylaniline, and any one of them may be used alone, or two or more of them may be used in combination.
中でも、2−メチルアニリン、3−メチルアニリン、2−エチルアニリン、3−エチルアニリン、2−イソプロピルアニリン、2−メトキシアニリン、3−メトキシアニリン、2−エトキシアニリン、3−エトキシアニリン、3−イソプロポキシアニリン、3−ヒドロキシアニリンから選ばれる1種又は2種からなる(共)重合体が、ポリアニオンとの複合体を形成した際のH2O中の分散性、導電率、反応性、生成物熱的安定性の点から好適に用いられる。 Among them, 2-methylaniline, 3-methylaniline, 2-ethylaniline, 3-ethylaniline, 2-isopropylaniline, 2-methoxyaniline, 3-methoxyaniline, 2-ethoxyaniline, 3-ethoxyaniline, 3-iso Dispersibility, conductivity, reactivity, product in H 2 O when (co) polymer composed of one or two kinds selected from propoxyaniline and 3-hydroxyaniline forms a complex with polyanion It is preferably used from the viewpoint of thermal stability.
[(B)ポリアニオン]
本発明の導電性高分子組成物は、(B)成分としてポリアニオンを含む。本発明の導電性高分子組成物に用いるポリアニオンは、一分子中に複数のアニオン基を有する高分子であり、アニオン基を有する単量体を重合、又はアニオン基を有する単量体とアニオン基を有さない単量体を共重合する方法により得ることができる。これらの単量体は単独で、あるいは2種以上を組み合わせて用いることができる。また、アニオン基を有さない高分子を得た後、硫酸、発煙硫酸、スルファミン酸等のスルホン化剤によりスルホン化することにより得ることもできる。さらに、アニオン基を有する高分子をいったん得た後に、さらにスルホン化することにより、アニオン基含量のより多いポリアニオンを得ることもできる。
[(B) Polyanion]
The conductive polymer composition of the present invention contains a polyanion as the component (B). The polyanion used in the conductive polymer composition of the present invention is a polymer having a plurality of anion groups in one molecule, and a monomer having an anion group is polymerized, or a monomer having an anion group and an anion group It can obtain by the method of copolymerizing the monomer which does not have. These monomers can be used alone or in combination of two or more. It can also be obtained by obtaining a polymer having no anionic group and then sulfonating with a sulfonating agent such as sulfuric acid, fuming sulfuric acid, sulfamic acid and the like. Further, once a polymer having an anion group is obtained, the polyanion having a higher anion group content can be obtained by further sulfonation.
本発明に用いるポリアニオンを構成する単量体としては、例えば、スルホン酸基、α位がフッ素化されたスルホン酸基、リン酸基、あるいはカルボキシ基を含有する単量体等が挙げられ、より具体的には、−O−SO3 −H+、−SO3 −H+、−CH(CF3)−CF2−SO3 −H+、−CF2−SO3 −H+、−COO−H+、−O−PO4 −H+、−PO4 −H+等の強酸基を含有する単量体が挙げられる。これらの中でも、ポリアニリン系導電性高分子へのドーピング効果の点から、−SO3 −H+、−CH(CF3)−CF2−SO3 −H+、−CF2−SO3 −H+、−COO−H+が好ましい。また、このアニオン基は、隣接して又は一定間隔をあけてポリアニオンの主鎖に配置されていることが好ましい。 Examples of the monomer constituting the polyanion used in the present invention include a monomer containing a sulfonic acid group, a sulfonic acid group fluorinated at the α-position, a phosphoric acid group, or a carboxy group. Specifically, -O-SO 3 - H + , -SO 3 - H +, -CH (CF 3) -CF 2 -SO 3 - H +, -CF 2 -SO 3 - H +, -COO - H +, -O-PO 4 - H +, -PO 4 - monomers may be mentioned containing a strong acid group H +, and the like. Among these, from the viewpoint of doping effects on the polyaniline-based conductive polymer, -SO 3 - H +, -CH (CF 3) -CF 2 -SO 3 - H +, -CF 2 -SO 3 - H + , -COO - H + is preferred. Moreover, it is preferable that this anion group is arrange | positioned in the principal chain of a polyanion adjacently or at fixed intervals.
スルホン酸基を含有する単量体としては、例えば、スチレンスルホン酸、アリルオキシベンゼンスルホン酸、メタリルオキシベンゼンスルホン酸、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、2−(メタクリロキシ)エタンスルホン酸、4−(メタクリロキシ)ブタンスルホン酸、イソプレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、1,1,3,3,3−ペンタフルオロ−2−メタクリロイルオキシプロパン−1−スルホン酸、1,1−ジフルオロ−2−メタクリロイルオキシエタンスルホン酸、1,1,3,3,3−ペンタフルオロ−2−(4−ビニル−ベンゾイルオキシ)−プロパン−1−スルホン酸、1,1−ジフルオロ−2−(4−ビニル−ベンゾイルオキシ)−エタンスルホン酸、ベンジルトリメチルアンモニウム=ジフルオロスルホ酢酸2−メタクリロイルオキシエチルエステル等が挙げられる。これらの単量体は、単独で、又は2種以上を組み合わせて用いてもよい。 Examples of the monomer containing a sulfonic acid group include styrene sulfonic acid, allyloxybenzene sulfonic acid, methallyloxybenzene sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, and 2- (methacryloxy) ethane. Sulfonic acid, 4- (methacryloxy) butanesulfonic acid, isoprenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 1,1,3,3,3-pentafluoro-2-methacryloyloxypropane-1-sulfonic acid 1,1-difluoro-2-methacryloyloxyethanesulfonic acid, 1,1,3,3,3-pentafluoro-2- (4-vinyl-benzoyloxy) -propane-1-sulfonic acid, 1,1- Difluoro-2- (4-vinyl-benzoyloxy) -ethanesulfonic acid, Jill trimethylammonium = difluorosulfoacetate 2-methacryloyloxyethyl ester, and the like. These monomers may be used alone or in combination of two or more.
あるいは、ポリスチレン、ポリメチルスチレン等を重合した後、硫酸、発煙硫酸、スルファミン酸等のスルホン化剤によりスルホン化することにより本発明に用いるポリアニオンを得ることもできる。 Alternatively, after polymerizing polystyrene, polymethylstyrene or the like, the polyanion used in the present invention can be obtained by sulfonation with a sulfonating agent such as sulfuric acid, fuming sulfuric acid, sulfamic acid or the like.
また、特許文献3、特許文献4において、α位がフッ素化されたスルホン酸が発生するポリマー型のスルホニウム塩の酸発生剤が提案されている。ポリマー主鎖に結合したα位がフッ素化されたスルホン酸のスルホニウム塩は、スルホニウム塩の光分解で発生したスルホン酸の拡散が極めて小さい超強酸であり、当該繰り返し単位を単一重合または共重合することによって、前述のポリアニオンを得ることができる。また、当該ポリマー型のスルホニウム塩がアルカリ金属塩、アンモニウム塩又はアミン塩等の形態の場合には、あらかじめ硫酸、塩酸、硝酸、リン酸、過塩素酸等の無機酸や有機酸を加えるか陽イオン交換樹脂を用いて溶液を酸形態にすることが好ましい。 Patent Documents 3 and 4 propose polymer-type sulfonium salt acid generators that generate sulfonic acid having a fluorinated α-position. The sulfonium salt of sulfonic acid bonded to the main chain of the polymer and fluorinated at the α-position is a super strong acid with very little diffusion of sulfonic acid generated by photolysis of the sulfonium salt. By doing so, the aforementioned polyanion can be obtained. When the polymer type sulfonium salt is in the form of an alkali metal salt, ammonium salt or amine salt, an inorganic or organic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or perchloric acid is added beforehand or positively. It is preferable to make the solution into an acid form using an ion exchange resin.
カルボキシ基を含有する単量体としては、例えば、アクリル酸、メタクリル酸、4−ビニル安息香酸、クロトン酸等のエチレン性不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸等のエチレン性不飽和多価カルボン酸及びそれらの酸無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;等を挙げることができる。これらの単量体は、単独で、又は2種以上を組み合わせて用いてもよく、ポリアニリン系導電性高分子へのドーピング効果の点から、さらに前記スルホン酸モノマーと組み合わせて用いることが望ましい。 Examples of the monomer containing a carboxy group include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, 4-vinylbenzoic acid and crotonic acid; and ethylenically unsaturated monomers such as maleic acid, fumaric acid and itaconic acid. And saturated polyvalent carboxylic acids and acid anhydrides thereof; partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconate; and the like. These monomers may be used alone or in combination of two or more. It is desirable to use them in combination with the sulfonic acid monomer from the viewpoint of the doping effect on the polyaniline conductive polymer.
リン酸基を含有する単量体としては、例えば、3−クロロ−2−アシッドホスホキシプロピル(メタ)アクリレート、アシッドホスホキシポリオキシエチレングリコールモノ(メタ)アクリレート、モノ(2−ヒドロキシエチルアクリレート)アシッドホスフェート、モノ(2−ヒドロキシエチルメタクリレート)アシッドホスフェート、モノ(2−ヒドロキシプロピルアクリレート)アシッドホスフェート、モノ(2−ヒドロキシプロピルメタクリレート)アシッドホスフェート、モノ(3−ヒドロキシプロピルアクリレート)アシッドホスフェート、モノ(3−ヒドロキシプロピルメタクリレート)アシッドホスフェート、ジフェニル−2−アクリロイルオキシエチルホスフェート、ジフェニル−2−メタクリロイルオキシエチルホスフェート等が挙げられる。これらの単量体は、単独で、又は2種以上を組み合わせていてもよく、ポリアニリン系導電性高分子へのドーピング効果の点から、さらに前記スルホン酸モノマーと組み合わせて用いることが望ましい。 Examples of the monomer containing a phosphoric acid group include 3-chloro-2-acid phosphoxypropyl (meth) acrylate, acid phosphooxypolyoxyethylene glycol mono (meth) acrylate, and mono (2-hydroxyethyl acrylate). Acid phosphate, mono (2-hydroxyethyl methacrylate) acid phosphate, mono (2-hydroxypropyl acrylate) acid phosphate, mono (2-hydroxypropyl methacrylate) acid phosphate, mono (3-hydroxypropyl acrylate) acid phosphate, mono (3 -Hydroxypropyl methacrylate) acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate Over doors and the like. These monomers may be used singly or in combination of two or more, and are preferably used in combination with the sulfonic acid monomer from the viewpoint of the doping effect on the polyaniline conductive polymer.
アニオン基含有単量体と共重合可能な、アニオン基を含まない他の単量体としては、公知の化合物を何等制限なく使用することができる。例えば、1,3−ブタジエン、イソプレン、2−クロロ−1,3−ブタジエン、2−メチル−1,3−ブタジエン等の共役ジエン単量体;スチレン、α−メチルスチレン、p−メチルスチレン等の芳香族ビニル単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル等のエチレン性不飽和カルボン酸アルキルエステル単量体;アクリルアミド、メタクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド等のエチレン性不飽和カルボン酸アミド単量体;(メタ)アクリル酸ヒドロキシアルキル、グリセリンジ(メタ)アクリレート等のエチレン性不飽和カルボン酸ヒドロキシアルキルエステル単量体;酢酸ビニル等のカルボン酸ビニルエステル単量体;(メタ)アクリロニトリル、N−ビニルピロリドン、(メタ)アクリロイルモルホリン、シクロヘキシルマレイミド、イソプロピルマレイミド、(メタ)アクリル酸グリシジル等が挙げられる。 As other monomers not containing an anion group that can be copolymerized with an anion group-containing monomer, known compounds can be used without any limitation. For example, conjugated diene monomers such as 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene; styrene, α-methylstyrene, p-methylstyrene, etc. Aromatic vinyl monomers; ethylenically unsaturated carboxylic acid alkyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; Ethylenically unsaturated carboxylic acid amide monomers such as acrylamide, methacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide; ethylenically unsaturated carboxylic acids such as hydroxyalkyl (meth) acrylate and glycerin di (meth) acrylate Acid hydroxyalkyl ester monomer; vinyl carboxylate such as vinyl acetate Ester monomers; (meth) acrylonitrile, N- vinylpyrrolidone, (meth) acryloyl morpholine, cyclohexyl maleimide, isopropyl maleimide, and (meth) glycidyl acrylate.
上記単量体は、例えば開始剤を用いて重合することで本発明に用いるポリアニオンを得ることができる。 The said monomer can obtain the polyanion used for this invention, for example by superposing | polymerizing using an initiator.
さらに、ポリエーテルケトンのスルホン化(欧州特許出願公開第0041780(A1)号明細書)、ポリエーテルエーテルケトンのスルホン化(特開2008−108535号公報)、ポリエーテルスルホンのスルホン化(特開平10−309449号公報)、ポリフェニレン、ポリフルオレン、ポリビニルカルバゾールのスルホン化(特表2010−514161号公報)、ポリフェニレンオキシドのスルホン化、ポリフェニレンスルフィドのスルホン化等により本発明に用いるポリアニオンを得ることもできる。 Further, sulfonation of polyether ketone (European Patent Application Publication No. 0041780 (A1) specification), sulfonation of polyether ether ketone (Japanese Patent Laid-Open No. 2008-108535), sulfonation of polyether sulfone (Japanese Patent Laid-Open No. Hei 10). No. 309449), polyphenylene, polyfluorene, polyvinylcarbazole sulfonated (Japanese Patent Publication No. 2010-514161), polyphenylene oxide sulfonated, polyphenylene sulfide sulfonated, and the like.
上記ポリアニオンの中でも、導電性の点から、ポリイソプレンスルホン酸、ポリイソプレンスルホン酸を含む共重合体、ポリスルホエチルメタクリレート、ポリスルホエチルメタクリレートを含む共重合体、ポリ(4−スルホブチルメタクリレート)、ポリ(4−スルホブチルメタクリレート)を含む共重合体、ポリメタリルオキシベンゼンスルホン酸、ポリメタリルオキシベンゼンスルホン酸を含む共重合体、ポリスチレンスルホン酸、ポリスチレンスルホン酸を含む共重合体、ポリ1,1,3,3,3−ペンタフルオロ−2−メタクリロイルオキシプロパン−1−スルホン酸、ポリ1,1,3,3,3−ペンタフルオロ−2−メタクリロイルオキシプロパン−1−スルホン酸を含む共重合体、ポリ1,1−ジフルオロ−2−メタクリロイルオキシエタンスルホン酸を含む共重合体、ポリ1,1,3,3,3−ペンタフルオロ−2−(4−ビニル−ベンゾイルオキシ)−プロパン−1−スルホン酸を含む共重合体、ポリ1,1−ジフルオロ−2−(4−ビニル−ベンゾイルオキシ)−エタンスルホン酸を含む共重合体、ポリジフルオロスルホ酢酸2−メタクリロイルオキシエチルエステルを用いることが好ましい。
中でもポリスチレンスルホン酸、ポリ1,1,3,3,3−ペンタフルオロ−2−メタクリロイルオキシプロパン−1−スルホン酸、ポリ1,1−ジフルオロ−2−メタクリロイルオキシエタンスルホン酸を含む共重合体、ポリ1,1,3,3,3−ペンタフルオロ−2−(4−ビニル−ベンゾイルオキシ)−プロパン−1−スルホン酸を含む共重合体、ポリ1,1−ジフルオロ−2−(4−ビニル−ベンゾイルオキシ)−エタンスルホン酸を含む共重合体、ポリジフルオロスルホ酢酸2−メタクリロイルオキシエチルエステル、ポリスルホエチルメタクリレート、ポリ(4−スルホブチルメタクリレート)がより好ましい。
Among the polyanions, from the viewpoint of conductivity, polyisoprene sulfonic acid, a copolymer containing polyisoprene sulfonic acid, polysulfoethyl methacrylate, a copolymer containing polysulfoethyl methacrylate, poly (4-sulfobutyl methacrylate), Copolymer containing poly (4-sulfobutyl methacrylate), polymethallyloxybenzene sulfonic acid, copolymer containing polymethallyloxybenzene sulfonic acid, polystyrene sulfonic acid, copolymer containing polystyrene sulfonic acid, poly 1 , 1,3,3,3-pentafluoro-2-methacryloyloxypropane-1-sulfonic acid, poly 1,1,3,3,3-pentafluoro-2-methacryloyloxypropane-1-sulfonic acid Polymer, poly 1,1-difluoro-2-methacryloyl Copolymer containing oxyethane sulfonic acid, copolymer containing poly 1,1,3,3,3-pentafluoro-2- (4-vinyl-benzoyloxy) -propane-1-sulfonic acid, poly 1, It is preferable to use a copolymer containing 1-difluoro-2- (4-vinyl-benzoyloxy) -ethanesulfonic acid and polydifluorosulfoacetic acid 2-methacryloyloxyethyl ester.
Among them, a copolymer containing polystyrene sulfonic acid, poly 1,1,3,3,3-pentafluoro-2-methacryloyloxypropane-1-sulfonic acid, poly 1,1-difluoro-2-methacryloyloxyethane sulfonic acid, Copolymer comprising poly 1,1,3,3,3-pentafluoro-2- (4-vinyl-benzoyloxy) -propane-1-sulfonic acid, poly 1,1-difluoro-2- (4-vinyl More preferred are copolymers containing -benzoyloxy) -ethanesulfonic acid, polydifluorosulfoacetic acid 2-methacryloyloxyethyl ester, polysulfoethyl methacrylate, and poly (4-sulfobutyl methacrylate).
また、(B)成分としては、下記一般式(4)で表されるものも好適に用いることができる。
さらに、前記一般式(4)で示される繰り返し単位は、下記一般式(4−1)〜(4−4)で示されるa1〜a4から選ばれる1種以上を含むものであることが好ましい。
ポリアニオンの重合度は、モノマー単位が10〜100,000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50〜10,000個の範囲がより好ましい。また、ポリアニオンの分子量は5,000〜100万が好ましい。上記下限値以上であれば、ポリアニオンが均一な溶液になりやすく、上記上限値以下であれば、導電性もより良好となる。 The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity. The molecular weight of the polyanion is preferably 5,000 to 1,000,000. If it is more than the said lower limit, a polyanion will become a uniform solution easily, and if it is below the said upper limit, electroconductivity will become better.
本発明に係る導電性高分子組成物において、ポリアニオンは、ポリアニリン系導電性高分子に配位することで、ポリアニリン系導電性高分子とポリアニオンとの複合体を形成している。 In the conductive polymer composition according to the present invention, the polyanion is coordinated to the polyaniline conductive polymer to form a complex of the polyaniline conductive polymer and the polyanion.
(ポリアニリン系導電性高分子とポリアニオンとの複合体の製造方法)
ポリアニリン系導電性高分子とポリアニオンとの複合体は、例えば、ポリアニオンの水溶液又はポリアニオンの水・有機溶媒混合溶液中に、ポリアニリン系導電性高分子の原料となるモノマーを加え、酸化剤を添加し、酸化重合を行うことで得ることができる。ポリアニオンがアルカリ金属塩、アンモニウム塩又はアミン塩等の形態の場合には、あらかじめ硫酸、塩酸、硝酸、リン酸、過塩素酸等の無機酸や有機酸を加えるか陽イオン交換樹脂を用いて溶液を酸形態にすることが好ましい。
(Method for producing a composite of a polyaniline-based conductive polymer and a polyanion)
The complex of polyaniline-based conductive polymer and polyanion is prepared by, for example, adding a monomer that is a raw material of polyaniline-based conductive polymer to an aqueous solution of polyanion or a mixed solution of water and organic solvent of polyanion, and adding an oxidizing agent. It can be obtained by conducting oxidative polymerization. If the polyanion is in the form of an alkali metal salt, ammonium salt or amine salt, add an inorganic acid or organic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, perchloric acid in advance, or use a cation exchange resin. Is preferably in acid form.
酸化剤及び酸化触媒としては、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、塩化第二銅等の遷移金属化合物、酸化銀、酸化セシウム等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾイル等の有機過酸化物、酸素等が使用できる。 Examples of the oxidizing agent and oxidation catalyst include peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate, transition metal compounds such as ferric chloride, ferric sulfate, and cupric chloride, silver oxide Metal oxides such as cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, oxygen, and the like can be used.
酸化重合を行う際に用いる反応溶媒としては、水又は水と溶媒との混合溶媒を用いることができる。ここで用いられる溶媒は、水と混和可能であり、後述するポリアニオン又はポリアニリン系導電性高分子を溶解又は分散しうる溶媒が好ましい。例えば、N−メチル−2−ピロリドン、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド等の極性溶媒、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、D−グルコース、D−グルシトール、イソプレングリコール、ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール等の多価脂肪族アルコール類、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、テトラヒドロフラン等の環状エーテル化合物、ジアルキルエーテル、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3−メチル−2−オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよい。これら水と混和可能な溶媒の水に対する混合割合は、反応溶媒全体の50質量%以下が好ましい。 As a reaction solvent used when oxidative polymerization is performed, water or a mixed solvent of water and a solvent can be used. The solvent used here is miscible with water, and is preferably a solvent that can dissolve or disperse a polyanion or polyaniline-based conductive polymer described later. For example, polar solvents such as N-methyl-2-pyrrolidone, N, N′-dimethylformamide, N, N′-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphortriamide, and alcohols such as methanol, ethanol, propanol, and butanol , Ethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, D-glucose, D-glucitol, isoprene glycol, butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,9-nonanediol, polyvalent aliphatic alcohols such as neopentyl glycol, carbonate compounds such as ethylene carbonate and propylene carbonate, cyclic ethers such as dioxane and tetrahydrofuran Compounds, chain ethers such as dialkyl ether, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, 3-methyl-2- Examples include heterocyclic compounds such as oxazolidinone, and nitrile compounds such as acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, and benzonitrile. These solvents may be used alone or as a mixture of two or more. The mixing ratio of the water-miscible solvent to water is preferably 50% by mass or less of the total reaction solvent.
このようにして得たポリアニリン系導電性高分子とポリアニオンとの複合体は、必要によりホモジナイザやボールミル等で細粒化して用いることができる。
細粒化には、高い剪断力を付与できる混合分散機を用いることが好ましい。混合分散機としては、例えば、ホモジナイザ、高圧ホモジナイザ、ビーズミル等が挙げられ、中でも高圧ホモジナイザが好ましい。
The complex of the polyaniline conductive polymer and the polyanion thus obtained can be used after being finely divided by a homogenizer, a ball mill or the like, if necessary.
It is preferable to use a mixing and dispersing machine capable of applying a high shearing force for the fine graining. Examples of the mixing and dispersing machine include a homogenizer, a high-pressure homogenizer, and a bead mill. Among them, a high-pressure homogenizer is preferable.
高圧ホモジナイザの具体例としては、吉田機械興業製の商品名ナノマイザー、パウレック社製の商品名マイクロフルイダイザー、スギノマシン製のアルティマイザー等が挙げられる。
高圧ホモジナイザを用いた分散処理としては、例えば、分散処理を施す前の複合体溶液を高圧で対向衝突させる処理、オリフィスやスリットに高圧で通す処理等が挙げられる。
Specific examples of the high-pressure homogenizer include a nanomizer manufactured by Yoshida Kikai Kogyo, a microfluidizer manufactured by POWREC, and an optimizer manufactured by Sugino Machine.
Examples of the dispersion process using the high-pressure homogenizer include a process in which the complex solution before the dispersion process is subjected to a high-pressure opposing collision, a process in which the complex solution is passed through an orifice or a slit at a high pressure, and the like.
細粒化の前又は後に、ろ過、限外ろ過、透析等の手法により不純物を除去し、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂等で精製しても良い。 Before or after the fine granulation, impurities may be removed by a technique such as filtration, ultrafiltration, dialysis, etc., and purification may be performed with a cation exchange resin, an anion exchange resin, a chelate resin, or the like.
尚、導電性高分子組成物中のポリアニリン系導電性高分子とポリアニオンの合計の含有量は0.05〜10.0質量%であることが好ましい。ポリアニリン系導電性高分子とポリアニオンの合計含有量が0.05質量%以上であれば、十分な導電性が得られ、さらに5.0質量%以下であれば、均一な導電性塗膜が容易に得られる。 The total content of the polyaniline-based conductive polymer and the polyanion in the conductive polymer composition is preferably 0.05 to 10.0% by mass. If the total content of the polyaniline-based conductive polymer and the polyanion is 0.05% by mass or more, sufficient conductivity is obtained, and if it is 5.0% by mass or less, a uniform conductive coating film is easy. Is obtained.
また、ポリアニリン系導電性高分子とポリアニオンとの複合体は、H2O分散液の状態でpHを調整していなければ、通常pHは1から2.5となり強酸性を示すが、帯電防止膜として様々な被加工体に被覆する場合、隣接層への酸の影響を鑑みるとpHは4から8の範囲が好ましい。pH4以上pH8以下の範囲であれば、酸による腐食、隣接層への酸拡散が抑制され、被覆体がレジストの場合はレジストがダメージを受け難くなり、現像後のパターンがより良好なものとなる。 In addition, the complex of the polyaniline-based conductive polymer and the polyanion usually exhibits strong acidity with a pH of 1 to 2.5 unless the pH is adjusted in the H 2 O dispersion state. In the case of coating various workpieces, the pH is preferably in the range of 4 to 8 in view of the influence of the acid on the adjacent layer. If it is in the range of pH 4 or more and pH 8 or less, corrosion by acid and acid diffusion to the adjacent layer are suppressed, and when the covering is a resist, the resist is hardly damaged, and the pattern after development becomes better. .
ポリアニオンの含有量は、ポリアニリン系導電性高分子1モルに対して、ポリアニオン中のアニオン基が0.1〜10モルの範囲となる量であることが好ましく、1〜7モルの範囲であることがより好ましい。ポリアニオン中のアニオン基が0.1モル以上であれば、ポリアニリン系導電性高分子へのドーピング効果が高く、十分な導電性を確保することができる。また、ポリアニオン中のアニオン基が10モル以下であれば、ポリアニリン系導電性高分子の含有量も適度なものとなり、十分な導電性が得られる。 The content of the polyanion is preferably such that the anion group in the polyanion is in the range of 0.1 to 10 mol, and in the range of 1 to 7 mol, per mol of the polyaniline-based conductive polymer. Is more preferable. When the anion group in the polyanion is 0.1 mol or more, the doping effect on the polyaniline-based conductive polymer is high, and sufficient conductivity can be ensured. Moreover, if the anion group in a polyanion is 10 mol or less, content of a polyaniline type conductive polymer will also become moderate, and sufficient electroconductivity will be obtained.
[(C)ベタイン化合物]
本発明の導電性高分子組成物は、(C)成分としてベタイン化合物を含む。
本発明においては、公知のベタイン化合物のいずれも用いることができる。
また、ベタイン化合物は、1種類のみを用いても良いし、2種類以上を混合して用いても良い。
[(C) Betaine compound]
The conductive polymer composition of the present invention contains a betaine compound as the component (C).
In the present invention, any known betaine compound can be used.
Moreover, a betaine compound may use only 1 type and may mix and use 2 or more types.
本発明に用いられるベタイン化合物としては、下記一般式(2)で表されるものが好ましい。
一般式(2)中、A+はヘテロ原子であり、一価の陽イオンを示す。A+としては、例えばスルホニウムイオン、アンモニウムイオン等が挙げられる。
B−は一価のアニオン性官能基であり、カルボン酸イオン又はスルホン酸イオンを示す。B−は、同一分子内に存在するA+とインナーソルトを形成する、又は2分子間において隣接分子のA+と塩を形成する。
In the general formula (2), A + is a heteroatom and represents a monovalent cation. Examples of A + include sulfonium ions and ammonium ions.
B − is a monovalent anionic functional group and represents a carboxylate ion or a sulfonate ion. B − forms an inner salt with A + existing in the same molecule, or forms a salt with A + of an adjacent molecule between two molecules.
また、(C)成分としては、下記一般式(3)で表されるものがより好ましい。
上記一般式(2)で表されるベタイン化合物のうち、スルホン酸イオンをもつものの構造としては、具体的には下記のものを例示することができる。
また、上記一般式(3)で表されるベタイン化合物の構造としては、具体的には下記のものを例示することができる。 Specific examples of the structure of the betaine compound represented by the general formula (3) include the following.
また、ベタイン化合物の含有量は、前記ポリアニリン系導電性高分子と前記ポリアニオンとの複合体100質量部に対して1質量部から50質量部であることが好ましく、さらには3質量部から10質量部が好ましい。ベタイン化合物の含有量をこのようなものとすれば、本発明の導電性高分子組成物によって形成された帯電防止膜からレジスト層への酸拡散が低減され、電子線描画時における帯電防止効果を保持しつつも酸によるリソグラフィーへの影響が低減され、高解像性レジストパターンを得ることができる。また、同様の効果から成膜後からパターン現像までの経時に対しても感度変動の少ないレジスト被加工体を得ることができる。 Further, the content of the betaine compound is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the complex of the polyaniline conductive polymer and the polyanion, and further 3 parts by mass to 10 parts by mass. Part is preferred. If the content of the betaine compound is such, acid diffusion from the antistatic film formed by the conductive polymer composition of the present invention to the resist layer is reduced, and the antistatic effect at the time of electron beam drawing is reduced. While being held, the influence of lithography on the lithography is reduced, and a high-resolution resist pattern can be obtained. Further, from the same effect, it is possible to obtain a resist workpiece with little sensitivity variation over time from film formation to pattern development.
(界面活性剤)
本発明では、基材等の被加工体への濡れ性を上げるため、界面活性剤を添加してもよい。好ましい界面活性剤としては、ノニオン系界面活性剤が挙げられる。具体的には例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタンエステル、ポリオキシエチレンソルビタンエステル、アセチレングリコール等を挙げることができる。
(Surfactant)
In the present invention, a surfactant may be added in order to improve wettability to a workpiece such as a substrate. A preferable surfactant is a nonionic surfactant. Specific examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene carboxylic acid ester, sorbitan ester, polyoxyethylene sorbitan ester, and acetylene glycol.
ノニオン系界面活性剤の含有量は、前記ポリアニリン系導電性高分子と前記ポリアニオンとの複合体100質量部に対して1質量部から50質量部が好ましく、2質量部から20質量部がより好ましい。上記下限値以上であれば、レジスト表面への濡れ性もより良好となり、上記上限値以下であれば、帯電防止能も十分なものとなる。 The content of the nonionic surfactant is preferably 1 part by mass to 50 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the complex of the polyaniline conductive polymer and the polyanion. . If it is not less than the above lower limit, the wettability to the resist surface will be better, and if it is not more than the above upper limit, the antistatic ability will be sufficient.
本発明の導電性高分子組成物を得るためには、例えば、ポリアニリン系導電性高分子とポリアニオンとの複合体、溶剤、界面活性剤等を混合し、さらにベタイン化合物を添加し、必要によっては高圧ホモジナイザ等を適用し、さらにUPEフィルターろ過することにより得ることができる。 In order to obtain the conductive polymer composition of the present invention, for example, a complex of a polyaniline-based conductive polymer and a polyanion, a solvent, a surfactant, and the like are mixed, and a betaine compound is further added. It can be obtained by applying a high-pressure homogenizer or the like and further filtering by a UPE filter.
こうして得た導電性高分子組成物は、基材等の被加工体に塗布することにより帯電防止膜を形成できる。導電性高分子組成物の塗布方法としては、例えば、バーコーター等による塗布、回転塗布、浸漬、コンマコート、スプレーコート、ロールコート、グラビア印刷等が挙げられる。塗布後、熱風循環炉、ホットプレート等による加熱処理により帯電防止膜が形成される。 The conductive polymer composition thus obtained can be applied to a workpiece such as a base material to form an antistatic film. Examples of the method for applying the conductive polymer composition include application using a bar coater, spin coating, dipping, comma coating, spray coating, roll coating, gravure printing, and the like. After application, an antistatic film is formed by heat treatment using a hot air circulating furnace, a hot plate, or the like.
前記被加工体としては、ガラス基板、石英基板、フォトマスクブランク基板、樹脂基板、シリコンウエハー、ガリウム砒素ウエハー、インジウムリンウエハー等の化合物半導体ウエハー等が挙げられる。 Examples of the workpiece include a glass substrate, a quartz substrate, a photomask blank substrate, a resin substrate, a compound semiconductor wafer such as a silicon wafer, a gallium arsenide wafer, and an indium phosphide wafer.
本発明の導電性高分子組成物を用いて得られる帯電防止膜が被覆された被覆品としては、例えば、帯電防止膜が設けられたガラス基板、帯電防止膜が設けられた樹脂フィルム、帯電防止膜が設けられたレジスト基板等が挙げられる。 Examples of the coated article coated with the antistatic film obtained using the conductive polymer composition of the present invention include, for example, a glass substrate provided with an antistatic film, a resin film provided with an antistatic film, and an antistatic film. Examples thereof include a resist substrate provided with a film.
特に、本発明の導電性高分子組成物は、レジストに悪影響を与える事がないため、前記被加工体が化学増幅型レジスト膜を備える基板であれば好適に使用することができ、さらにそれが電子線をパターン照射してレジストパターンを得るための基板である場合、より好適な結果を得ることができる。 In particular, since the conductive polymer composition of the present invention does not adversely affect the resist, it can be suitably used as long as the workpiece is a substrate provided with a chemically amplified resist film. In the case of a substrate for obtaining a resist pattern by pattern irradiation with an electron beam, a more preferable result can be obtained.
また、本発明は、化学増幅型レジスト膜を備える基板の該レジスト膜上に、本発明の導電性高分子組成物を用いて帯電防止膜を形成する工程、電子線をパターン照射する工程、及びアルカリ性現像液を用いて現像してレジストパターンを得る工程を含むパターン形成方法を提供する。 The present invention also includes a step of forming an antistatic film using the conductive polymer composition of the present invention on the resist film of a substrate provided with a chemically amplified resist film, a step of pattern irradiation with an electron beam, and Provided is a pattern forming method including a step of developing with an alkaline developer to obtain a resist pattern.
上記パターン形成方法は、本発明の導電性高分子組成物を用いる以外は、常法に従って行うことができ、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種の工程が行われてももちろんよい。 The pattern forming method can be performed according to a conventional method except that the conductive polymer composition of the present invention is used, and may be developed after a post-exposure heat treatment, an etching step, a resist removal step, Of course, various other processes such as a cleaning process may be performed.
このようなパターン形成方法によれば、露光時の帯電現象を防ぐことができ、高感度で高解像性を有し、パターン形状も良好なレジストパターンを得ることができる。 According to such a pattern forming method, a charging phenomenon at the time of exposure can be prevented, and a resist pattern having high sensitivity, high resolution, and good pattern shape can be obtained.
また、本発明では、前記パターン形成方法により得られたレジストパターンを有する基板を提供する。 The present invention also provides a substrate having a resist pattern obtained by the pattern forming method.
尚、本発明は電子線等を用いたリソグラフィーに用いるためにデザインされたが、その優れた帯電防止能から、紫外線を用いたリソグラフィーやフィルム、ガラス等の帯電防止用途等にも好適に用いることができる。 Although the present invention is designed for use in lithography using an electron beam or the like, it is suitable for use in antistatic applications such as lithography, film, and glass using ultraviolet rays because of its excellent antistatic ability. Can do.
以下、製造例、実施例及び比較例を挙げて本発明を更に具体的に示すが、本発明はこれらの実施例により限定されるものではない。
尚、各物性の測定方法及び評価方法は以下の通りである。
EXAMPLES Hereinafter, although a manufacture example, an Example, and a comparative example are given and this invention is shown more concretely, this invention is not limited by these Examples.
In addition, the measuring method and evaluation method of each physical property are as follows.
下記実施例1〜10及び比較例1〜4における帯電防止膜、及び下層として用いたレジスト膜の回転塗布による作製には、スピンコーターMS−A200(ミカサ株式会社製)を用いた。なお、ポジ型化学増幅型レジストは、信越化学工業製ポジ型化学増幅電子線レジスト(a)を用いた。また、ネガ型化学増幅電子線レジストには信越化学工業製(b)を用いた。 A spin coater MS-A200 (manufactured by Mikasa Co., Ltd.) was used for producing the antistatic film in Examples 1 to 10 and Comparative Examples 1 to 4 and the resist film used as the lower layer by spin coating. The positive chemically amplified resist used was a positive chemically amplified electron beam resist (a) manufactured by Shin-Etsu Chemical. Moreover, Shin-Etsu Chemical Co., Ltd. (b) was used for the negative type chemically amplified electron beam resist.
ポジ型化学増幅系レジスト(a)及びネガ型化学増幅系レジスト(b)は精密恒温器にて110℃、240秒間ベークを行い溶媒を除去することにより成膜し、実施例1〜10及び比較例1〜4の帯電防止膜は精密恒温器にて90℃、90秒間ベークを行い溶媒を除去することにより成膜した。また、レジスト膜厚及び帯電防止膜厚は、入射角度可変の分光エリプソメーターVASE(J.A.ウーラム社製)で決定した。 The positive chemical amplification resist (a) and the negative chemical amplification resist (b) were formed by baking at 110 ° C. for 240 seconds with a precision incubator and removing the solvent. The antistatic films of Examples 1 to 4 were formed by baking at 90 ° C. for 90 seconds with a precision thermostat and removing the solvent. The resist film thickness and antistatic film thickness were determined with a spectroscopic ellipsometer VASE (manufactured by JA Woollam Co., Ltd.) having a variable incident angle.
(濾過性)
下記の実施例及び比較例の導電性高分子組成物の調製後、孔径0.5から0.050μmのUPEフィルター(Entegris社製)を用いて濾過を行い、フィルターが目詰まりを起さず濾過できるフィルターの孔径を調べた。下記実施例1〜10及び比較例1〜4において、導電性高分子組成物の濾過を行ったUPEフィルターの通液限界を表1に示す。
(Filterability)
After preparing the conductive polymer compositions of the following examples and comparative examples, filtration is performed using a UPE filter (manufactured by Entegris) having a pore size of 0.5 to 0.050 μm, and the filter is filtered without causing clogging. The pore size of the possible filter was examined. In Examples 1 to 10 and Comparative Examples 1 to 4 below, the permeation limit of the UPE filter on which the conductive polymer composition was filtered is shown in Table 1.
(pH測定)
実施例1〜10及び比較例1〜4の導電性高分子組成物のpHは、pHメーターD−52(堀場製作所製)を用いて測定した。その結果を表1に示す。
(PH measurement)
The pH of the conductive polymer compositions of Examples 1 to 10 and Comparative Examples 1 to 4 was measured using a pH meter D-52 (manufactured by Horiba, Ltd.). The results are shown in Table 1.
(成膜性)
均一膜を形成できたものを○、屈折率の測定はできたが膜にパーティクル由来の欠陥や部分的にストリエーションが発生したものを×とする基準で評価を行った。その評価結果を表1に示す。
(Film formability)
Evaluation was performed based on the criteria that a film that was able to form a uniform film was ◯, and the refractive index was measured, but a defect that originated from particles or a portion that was partially striationd on the film was evaluated as x. The evaluation results are shown in Table 1.
(水洗剥離性)
前記成膜法により得られたレジスト(a)、あるいはレジスト(b)の膜上に、導電性高分子組成物10μLを滴下し、精密恒温器にて90℃、90秒間加熱後、空気中常温下で2分放置した。形成された帯電防止膜を洗浄ビンに入ったイオン交換水で洗い流した。10秒以内に帯電防止膜が剥がれたものを○、10秒超20秒以内に剥がれたものを△、その他評価不能のものについてはその事由を記すという基準で評価を行った。その評価結果を表1に示す。
(Washing peelability)
10 μL of the conductive polymer composition is dropped onto the resist (a) or resist (b) film obtained by the film formation method, heated at 90 ° C. for 90 seconds with a precision incubator, and then at room temperature in air. Left under for 2 minutes. The formed antistatic film was washed away with ion exchange water contained in a washing bottle. Evaluation was made based on the criteria that the antistatic film was peeled off within 10 seconds, the case where it was peeled off within 10 seconds for more than 10 seconds, and the reason for others that could not be evaluated. The evaluation results are shown in Table 1.
(レジストダメージ)
水洗剥離性評価後の基板において、帯電防止膜が剥がれた下地のレジスト部分に色の変化が見られないものを○、一部に色の変化が見られるものを△、全体的に色の変化が見られるものを×とする基準で評価を行った。その評価結果を表1に示す。
(Resist damage)
In the substrate after the water washing peelability evaluation, the substrate where the antistatic film has been peeled off has no change in color on the base resist portion, the portion in which the color change is seen on some is Δ, and the overall color change Evaluation was performed based on the criteria of x being observed. The evaluation results are shown in Table 1.
(表面抵抗率)
帯電防止膜の表面抵抗率(Ω/□)は、Hiresta−UP MCP−HT450及び純正JボックスUタイププローブ MCP−JB03(三菱化学社製)を用いて測定した。その結果を表1に示す。
(Surface resistivity)
The surface resistivity (Ω / □) of the antistatic film was measured using a Hiresta-UP MCP-HT450 and a genuine J box U type probe MCP-JB03 (manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
(電子線リソグラフィー評価及びPCD(Post Coating Delay)評価)
照射前のレジスト膜の導電性高分子膜からの影響による経時変化を測定した。以下記載の方法で塗設されたレジスト膜及び導電性高分子膜の二層膜を電子線描画装置内で成膜直後から7日間、14日間、30日間放置した後、下記のような導電性高分子膜のPEB前剥離プロセスまたはPEB後剥離プロセスによりレジストパターンを得た。レジスト及び導電性高分子膜を成膜後直ちに描画した際の感度に対し、同感度におけるパターン線幅の変動を求めた。
(Electron beam lithography evaluation and PCD (Post Coating Delay) evaluation)
The time-dependent change by the influence from the conductive polymer film of the resist film before irradiation was measured. The two-layer film of resist film and conductive polymer film coated by the method described below is allowed to stand for 7 days, 14 days, and 30 days immediately after film formation in an electron beam lithography apparatus, and the following conductivity is obtained: A resist pattern was obtained by a pre-PEB peeling process or a post-PEB peeling process of the polymer film. With respect to the sensitivity when the resist and the conductive polymer film were drawn immediately after the film formation, the variation of the pattern line width at the same sensitivity was obtained.
・PEB前剥離プロセス評価
ポジ型化学増幅系レジストである(a)をMARK VIII(東京エレクトロン(株)製、コーターデベロッパークリーントラック)を用いて6インチシリコンウエハー上へスピンコーティングし、ホットプレート上で、110℃で240秒間プリベークして150nmのレジスト膜を調製した。得られたレジスト付きウエハー上に導電性高分子組成物を上記同様、MARK VIIIを用いてスピンコーティングし、ホットプレート上で、90℃で90秒間ベークして導電性高分子膜を調製した。レジスト膜及び導電性高分子膜の二層膜が塗設されたウエハーを、塗設直後、7日後、14日後、30日後にそれぞれ以下方法にてレジストパターンを得た。まず、塗設直後のウエハーについて電子線露光装置((株)日立ハイテクノロジーズ製、HL−800D 加速電圧50keV)を用いて露光し、その後、15秒間純水をかけ流して導電性高分子膜を剥離して、110℃で240秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行った。作製したパターン付きウエハーを上空SEM(走査型電子顕微鏡)で観察し、400nmのラインアンドスペースを1:1で解像する露光量を最適露光量(感度)(μC/cm2)とした。該最適露光量における、最小寸法を解像度とした。また、塗設後に7日、14日、30日経過したウエハーについても同様にレジストパターンを得て、塗設直後のウエハーにおいて400nmのラインアンドスペースを1:1で解像する露光量を最適露光量(感度)(μC/cm2)におけるパターン線幅の変動を測定した。結果を表2に示す。
-PEB pre-peeling process evaluation (a) which is a positive chemically amplified resist is spin-coated onto a 6-inch silicon wafer using MARK VIII (manufactured by Tokyo Electron Co., Ltd., coater developer clean track) on a hot plate A 150 nm resist film was prepared by pre-baking at 110 ° C. for 240 seconds. The conductive polymer composition was spin-coated using MARK VIII on the obtained resist-coated wafer as described above, and baked on a hot plate at 90 ° C. for 90 seconds to prepare a conductive polymer film. A resist pattern was obtained by the following method immediately after coating, 7 days, 14 days, and 30 days after coating the wafer on which the two-layer film of the resist film and the conductive polymer film was coated. First, the wafer immediately after coating is exposed using an electron beam exposure apparatus (manufactured by Hitachi High-Technologies Corporation, HL-800D acceleration voltage 50 keV), and then a pure polymer is applied for 15 seconds to form a conductive polymer film. After peeling, the substrate was baked at 110 ° C. for 240 seconds (PEB: post exposure bake), and developed with an aqueous solution of 2.38% by mass of tetramethylammonium hydroxide. The produced wafer with a pattern was observed with a sky SEM (scanning electron microscope), and the exposure amount for resolving 400 nm line and space at 1: 1 was defined as the optimum exposure amount (sensitivity) (μC / cm 2 ). The minimum dimension at the optimum exposure dose was taken as the resolution. Also, a resist pattern is obtained in the same manner for wafers that have passed 7 days, 14 days, and 30 days after coating, and the exposure amount that resolves the 400 nm line and space in 1: 1 on the wafer immediately after coating is optimally exposed. Variation in pattern line width in quantity (sensitivity) (μC / cm 2 ) was measured. The results are shown in Table 2.
・PEB後剥離プロセス評価
前記PEB前剥離プロセスと同様にレジスト膜及び導電性高分子膜の二層膜が塗設されたウエハーを作製し、塗設後に7日、14日、30日経過したウエハーそれぞれについて、電子線露光後に15秒間純水をかけ流して導電性高分子膜を剥離する工程を経ずに、110℃で240秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行うことでレジストパターンを得た。塗設直後のウエハーにおいて400nmのラインアンドスペースを1:1で解像する露光量を最適露光量(感度)(μC/cm2)におけるパターン線幅の変動を測定した。結果を表3に示す。
-Evaluation of post-PEB release process A wafer coated with a bilayer film of a resist film and a conductive polymer film was prepared in the same manner as in the pre-PEB exfoliation process. Each was subjected to a post exposure bake (PEB) for 240 seconds at 110 ° C. without passing through a step of peeling the conductive polymer film by pouring pure water for 15 seconds after the electron beam exposure, and 2.38% by mass. A resist pattern was obtained by developing with an aqueous solution of tetramethylammonium hydroxide. The variation of the pattern line width at the optimum exposure dose (sensitivity) (μC / cm 2 ) was measured as the exposure dose for resolving the 400 nm line and space at 1: 1 on the wafer immediately after coating. The results are shown in Table 3.
ネガ型レジストである(b)についても、PEB前剥離プロセス及びPEB後剥離プロセスについて、上記ポジ型レジスト(a)と同様の評価を行った。その結果を表4、表5に示す。 For the negative resist (b), the same evaluation as the positive resist (a) was performed for the pre-PEB stripping process and the post-PEB stripping process. The results are shown in Tables 4 and 5.
以下に製造例に用いたモノマーを示す。
(製造例1)ドーパントポリマー1の合成
1,000mlのイオン交換水に206gのモノマー1のナトリウム塩を溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を2時間攪拌した。
これにより得られたポリスチレンスルホン酸ナトリウム含有溶液に、10質量%に希釈した硫酸を1,000mlと10,000mlのイオン交換水とを添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約10,000ml溶液を除去し、残液に10,000mlのイオン交換水を加え、限外ろ過法を用いて約10,000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。
さらに、得られたろ液に約10,000mlのイオン交換水を添加し、限外ろ過法を用いて約10,000ml溶液を除去した。この限外ろ過操作を3回繰り返した。
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
(Production Example 1) Synthesis of dopant polymer 1 1.14 g of ammonium persulfate oxidized in advance by dissolving 206 g of sodium salt of monomer 1 in 1,000 ml of ion-exchanged water and stirring at 80 ° C. in advance in 10 ml of water The agent solution was added dropwise for 20 minutes, and the solution was stirred for 2 hours.
1,000 ml of sulfuric acid diluted to 10% by mass and 10,000 ml of ion-exchanged water were added to the sodium polystyrenesulfonate-containing solution thus obtained, and the polystyrenesulfonic acid-containing solution was added using an ultrafiltration method. About 10,000 ml of solution was removed, 10,000 ml of ion-exchanged water was added to the remaining solution, and about 10,000 ml of solution was removed using an ultrafiltration method. The above ultrafiltration operation was repeated three times.
Further, about 10,000 ml of ion-exchanged water was added to the obtained filtrate, and about 10,000 ml of solution was removed using an ultrafiltration method. This ultrafiltration operation was repeated three times.
Water in the obtained solution was removed under reduced pressure to obtain colorless solid polystyrene sulfonic acid.
尚、限外ろ過条件は下記の通りとした(他の例でも同様)。
・限外ろ過膜の分画分子量:30K
・クロスフロー式
・供給液流量:3,000ml/分
・膜分圧:0.12Pa
この高分子化合物を(ドーパントポリマー1)とする。
-Molecular weight cut off of ultrafiltration membrane: 30K
・ Cross flow type ・ Supply liquid flow rate: 3,000 ml / min ・ Membrane partial pressure: 0.12 Pa
This polymer compound is referred to as (dopant polymer 1).
(製造例2)ドーパントポリマー2の合成
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー2の37.5gとモノマー1のリチウム塩12.5gと2,2’−アゾビス(イソ酪酸)ジメチル3.04gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体47.1gを得た。
得られた白色重合体をメタノール424gに溶解し、イオン交換樹脂を用いてリチウム塩をスルホ基に変換した。得られた重合体を19F,1H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー1:モノマー2=1:1
重量平均分子量(Mw)=39,000
分子量分布(Mw/Mn)=1.81
この高分子化合物を(ドーパントポリマー2)とする。
The obtained white polymer was dissolved in 424 g of methanol, and the lithium salt was converted into a sulfo group using an ion exchange resin. When the obtained polymer was measured by 19 F, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymerization composition ratio (molar ratio) Monomer 1: Monomer 2 = 1: 1
Weight average molecular weight (Mw) = 39,000
Molecular weight distribution (Mw / Mn) = 1.81
This polymer compound is referred to as (dopant polymer 2).
(製造例3)ドーパントポリマー1を用いたポリアニリン系導電性高分子複合体の合成
27.5gの2−メトキシアニリンと、41.1gの製造例1で得たドーパントポリマー1を1,000mLの超純水に溶かした溶液とを25℃で混合した。
これにより得られた混合溶液を0℃に保ち、撹拌しながら、200mLの超純水に溶かした45.9gの過硫酸アンモニウムをゆっくり添加し、撹拌して反応させた。
得られた反応液を濃縮後にアセトン4,000mLに滴下し、緑色粉末を得た。この緑色粉末を再度1,000mLの超純水に分散させ、アセトン4,000mLに滴下することで緑色粉末を精製、再晶出させた。この操作を3回繰り返し、得られた緑色粉末を2,000mLの超純水に再分散させ、限外濾過法を用いて約1,000mLの水を除去した。この操作を10回繰り返し、再度アセトン4,000mLに滴下することで導電性高分子複合体の緑色粉末を得た。
この導電性高分子複合体を(ポリアニリン複合体1)とする。
(Production Example 3) Synthesis of polyaniline-based conductive polymer composite using dopant polymer 1 27.5 g of 2-methoxyaniline and 41.1 g of dopant polymer 1 obtained in Production Example 1 were added in excess of 1,000 mL. The solution dissolved in pure water was mixed at 25 ° C.
While maintaining the mixed solution thus obtained at 0 ° C. and stirring, 45.9 g of ammonium persulfate dissolved in 200 mL of ultrapure water was slowly added, and the mixture was stirred and reacted.
The obtained reaction solution was concentrated and then added dropwise to 4,000 mL of acetone to obtain a green powder. This green powder was again dispersed in 1,000 mL of ultrapure water and dropped into 4,000 mL of acetone to purify and recrystallize the green powder. This operation was repeated three times, and the obtained green powder was redispersed in 2,000 mL of ultrapure water, and about 1,000 mL of water was removed using an ultrafiltration method. This operation was repeated 10 times and again dropped into 4,000 mL of acetone to obtain a conductive polymer composite green powder.
This conductive polymer composite is referred to as (polyaniline composite 1).
(製造例4)ドーパントポリマー2を用いたポリアニリン系導電性高分子複合体の合成
27.5gの2−メトキシアニリンと、61.1gの製造例2で得たドーパントポリマー2を1,000mLの超純水に溶かした溶液とを25℃で混合した。
これにより得られた混合溶液を0℃に保ち、撹拌しながら、200mLの超純水に溶かした45.8gの過硫酸アンモニウムをゆっくり添加し、撹拌して反応させた。
得られた反応液を濃縮後にアセトン4,000mLに滴下し、緑色粉末を得た。この緑色粉末を再度1,000mLの超純水に分散させ、アセトン4,000mLに滴下することで緑色粉末を精製、再晶出させた。この操作を3回繰り返し、得られた緑色粉末を2,000mLの超純水に再分散させ、限外濾過法を用いて約1,000mLの水を除去した。この操作を10回繰り返し、再度アセトン4,000mLに滴下することで導電性高分子複合体の緑色粉末を得た。
この導電性高分子複合体を(ポリアニリン複合体2)とする。
(Production Example 4) Synthesis of polyaniline-based conductive polymer composite using dopant polymer 2 27.5 g of 2-methoxyaniline and 61.1 g of dopant polymer 2 obtained in Production Example 2 were added in excess of 1,000 mL. The solution dissolved in pure water was mixed at 25 ° C.
While maintaining the mixed solution thus obtained at 0 ° C. and stirring, 45.8 g of ammonium persulfate dissolved in 200 mL of ultrapure water was slowly added, and the mixture was stirred and reacted.
The obtained reaction solution was concentrated and then added dropwise to 4,000 mL of acetone to obtain a green powder. This green powder was again dispersed in 1,000 mL of ultrapure water and dropped into 4,000 mL of acetone to purify and recrystallize the green powder. This operation was repeated three times, and the obtained green powder was redispersed in 2,000 mL of ultrapure water, and about 1,000 mL of water was removed using an ultrafiltration method. This operation was repeated 10 times and again dropped into 4,000 mL of acetone to obtain a conductive polymer composite green powder.
This conductive polymer composite is referred to as (polyaniline composite 2).
(実施例1)
製造例3で得たポリアニリン複合体1を11.5g、イオン交換水354g、0.08質量%のβ−Alanine(東京化成工業製)、及び0.05質量%のSURFINOL465(日信化学工業製)を混合し、その後、親水処理をしたUPEフィルターを用いてろ過し、導電性高分子組成物を調製した。
Example 1
11.5 g of polyaniline complex 1 obtained in Production Example 3, 354 g of ion-exchanged water, 0.08% by mass of β-Alanine (manufactured by Tokyo Chemical Industry), and 0.05% by mass of SURFINOL 465 (manufactured by Nissin Chemical Industry) ) And then filtered using a UPE filter subjected to a hydrophilic treatment to prepare a conductive polymer composition.
(実施例2)
実施例1で用いたβ−Alanine(東京化成工業製)を0.04質量%に変更した他は、実施例1と同様に導電性高分子組成物を調製した。
(Example 2)
A conductive polymer composition was prepared in the same manner as in Example 1 except that β-Aline (manufactured by Tokyo Chemical Industry Co., Ltd.) used in Example 1 was changed to 0.04% by mass.
(実施例3)
実施例1で用いた0.08質量%β−Alanineを0.15質量%L−Carnitine(東京化成工業製)に変更し、実施例1と同様に導電性高分子組成物を調製した。
(Example 3)
The conductive polymer composition was prepared in the same manner as in Example 1, except that 0.08% by mass β-Aline used in Example 1 was changed to 0.15% by mass L-Carnitine (manufactured by Tokyo Chemical Industry Co., Ltd.).
(実施例4)
実施例3で用いたL−Carnitine(東京化成工業製)を0.08質量%に変更した他は、同様に導電性高分子組成物を調製した。
Example 4
A conductive polymer composition was prepared in the same manner except that L-Carnitine (manufactured by Tokyo Chemical Industry Co., Ltd.) used in Example 3 was changed to 0.08% by mass.
(実施例5)
製造例4で得たポリアニリン複合体2を11.5g、イオン交換水354g、0.08質量%のβ−Alanine(東京化成工業製)、及び0.05質量%のSURFINOL465(日信化学工業製)を混合し、その後、親水処理をしたUPEフィルターを用いてろ過し、導電性高分子組成物を調製した。
(Example 5)
11.5 g of the polyaniline complex 2 obtained in Production Example 4, 354 g of ion-exchanged water, 0.08% by mass of β-Alanine (manufactured by Tokyo Chemical Industry), and 0.05% by mass of SURFINOL 465 (manufactured by Nissin Chemical Industry) ) And then filtered using a UPE filter subjected to a hydrophilic treatment to prepare a conductive polymer composition.
(実施例6)
実施例5で用いたβ−Alanine(東京化成工業製)を0.04質量%に変更した他は、実施例5と同様に導電性高分子組成物を調製した。
(Example 6)
A conductive polymer composition was prepared in the same manner as in Example 5, except that β-Aline (manufactured by Tokyo Chemical Industry Co., Ltd.) used in Example 5 was changed to 0.04% by mass.
(実施例7)
実施例5で用いた0.08質量%のβ−Alanine(東京化成工業製)を0.15質量%のL−Carnitine(東京化成工業製)に変更した他は、実施例5と同様に導電性高分子組成物を調製した。
(Example 7)
Conductivity was the same as in Example 5, except that 0.08% by mass of β-Alane (produced by Tokyo Chemical Industry) used in Example 5 was changed to 0.15% by mass of L-Carnitine (produced by Tokyo Chemical Industry). A functional polymer composition was prepared.
(実施例8)
実施例5で用いた0.08質量%のβ−Alanine(東京化成工業製)を0.08質量%のL−Carnitine(東京化成工業製)に変更した他は、実施例5と同様に導電性高分子組成物を調製した。
(Example 8)
Conductivity was the same as in Example 5, except that 0.08% by mass of β-Alinene (manufactured by Tokyo Chemical Industry) used in Example 5 was changed to 0.08% by mass of L-Carnitine (manufactured by Tokyo Chemical Industry). A functional polymer composition was prepared.
(実施例9)
実施例5で用いた0.08質量%のβ−Alanine(東京化成工業製)を0.18質量%のDimethylethylammoniumpropanesulfonate(和光純薬製 製品名:NDSB−195)に変更した他は、実施例5と同様に導電性高分子組成物を調製した。
Example 9
Example 5 0.08% by weight of β-Alanine was used (manufactured by Tokyo Chemical Industry Co., Ltd.) of 0.18 mass% Dimethylethylammoniumpropanesulf o nate (produced by Wako Pure Chemical Industries, Ltd. Product name: NDSB-195) the other was changed to, the implementation A conductive polymer composition was prepared in the same manner as in Example 5.
(実施例10)
実施例5で用いた0.08質量%のβ−Alanine(東京化成工業製)を0.24質量%のDimethylbenzylammoniumpropanesulfonate(和光純薬製 製品名:NDSB−256)に変更した他は、実施例5と同様に導電性高分子組成物を調製した。
(Example 10)
Example 5 0.08% by weight of β-Alanine was used (manufactured by Tokyo Chemical Industry Co., Ltd.) of 0.24 mass% Dimethylbenzylammoniumpropanesulf o nate (produced by Wako Pure Chemical Industries, Ltd. Product name: NDSB-256) the other was changed to, the implementation A conductive polymer composition was prepared in the same manner as in Example 5.
(比較例1)
実施例1に対し、ベタイン化合物を使用しない他は、実施例1と同様に導電性高分子組成物を調製した。
(Comparative Example 1)
In contrast to Example 1, a conductive polymer composition was prepared in the same manner as Example 1 except that no betaine compound was used.
(比較例2)
実施例5に対し、ベタイン化合物を使用しない他は、実施例5と同様に導電性高分子組成物を調製した。
(Comparative Example 2)
A conductive polymer composition was prepared in the same manner as in Example 5, except that no betaine compound was used.
(比較例3)
実施例1〜4で用いたベタイン化合物をアンモニア水(関東化学製28%)に変更し、導電性高分子組成物のpHと表面抵抗率の変動を指標として導電性高分子組成物を調製した。アンモニア水の添加量を0.11質量%とした。
(Comparative Example 3)
The betaine compound used in Examples 1 to 4 was changed to ammonia water (28% manufactured by Kanto Chemical Co., Inc.), and a conductive polymer composition was prepared using the pH and surface resistivity fluctuations of the conductive polymer composition as indices. . The amount of ammonia water added was 0.11% by mass.
(比較例4)
実施例5〜10で用いたベタイン化合物をアンモニア水(関東化学製28%)に変更し、導電性高分子組成物のpHと表面抵抗率の変動を指標として導電性高分子組成物を調製した。アンモニア水の添加量を0.12質量%とした。
(Comparative Example 4)
The betaine compound used in Examples 5 to 10 was changed to ammonia water (28% manufactured by Kanto Chemical Co., Inc.), and a conductive polymer composition was prepared using the pH and surface resistivity fluctuations of the conductive polymer composition as indicators. . The amount of ammonia water added was 0.12% by mass.
表1〜5に、各実施例及び比較例で調製した導電性高分子組成物より得た帯電防止膜の濾過フィルター孔径、成膜性、水洗剥離性、レジストダメージ、pH、表面抵抗、及び電子線描画機におけるリソグラフィー評価を示した。 Tables 1 to 5 show the filtration filter pore size, film formability, water detachability, resist damage, pH, surface resistance, and electrons of the antistatic film obtained from the conductive polymer compositions prepared in Examples and Comparative Examples. Lithography evaluation in a line drawing machine is shown.
表1に示すように、本発明の導電性高分子組成物である実施例1〜10はベタイン化合物未添加の組成物である比較例1、2に対して、酸性度の緩和指標としてのpHを上昇させることができ、比較例3、4に対して膜の表面抵抗率の増大や膜質を損なうことなく、レジスト膜に対する酸の影響を抑制する組成物を得ることができた。
一方、ベタイン化合物未添加の組成物である比較例1、2は帯電防止効果は優れているものの、pHが低く、組成物中の酸がレジストへ容易に拡散してレジストパターンに悪影響を及ぼした。
また、比較例3、4は本来pH改善に関しては予想がされてはいたものの、導電性高分子組成物を変質させてしまう現象が確認され、変色または沈殿が発生し、また表面抵抗率も上昇したため、電子線レジストの帯電防止膜としてレジスト上に塗布する組成物として機能しなかった。
As shown in Table 1, Examples 1 to 10, which are the conductive polymer compositions of the present invention, have a pH as a relaxation index of acidity with respect to Comparative Examples 1 and 2, which are compositions to which no betaine compound was added. As compared with Comparative Examples 3 and 4, it was possible to obtain a composition that suppresses the influence of the acid on the resist film without increasing the surface resistivity of the film or impairing the film quality.
On the other hand, Comparative Examples 1 and 2, which are compositions without the addition of a betaine compound, have an excellent antistatic effect, but the pH is low, and the acid in the composition easily diffuses into the resist, adversely affecting the resist pattern. .
In Comparative Examples 3 and 4, although the pH improvement was originally expected, a phenomenon that the conductive polymer composition was denatured was confirmed, discoloration or precipitation occurred, and the surface resistivity also increased. Therefore, it did not function as a composition coated on the resist as an antistatic film for the electron beam resist.
また、表2〜5に示すように、電子線を用いたリソグラフィー評価においても、本発明の導電性高分子組成物より得た帯電防止膜を用いたもの(実施例1〜10)は、比較例1、2に対し感度の経時変化が制御され、解像性、パターン形状も改善した。PCD評価についてはpHが高いものほど良好で、表面抵抗率の値を考慮しつつレジスト及び導電性高分子膜(帯電防止膜)の被覆物の保存安定性を容易に調整できる。一方、ベタイン化合物未添加の組成物である比較例1及び2は、上述したように帯電防止効果は優れているものの、pHが低く、PCDについては、変動幅は非常に大きいためレジスト及び導電性高分子膜の被覆物の保存安定性に問題があった。また、比較例3、4については、添加したアンモニア水がpH制御に効果のある量を添加すると、導電性高分子を部分的に脱ドープし、表面抵抗率が上昇したため、帯電防止膜としての機能に劣化が生じた。 Moreover, as shown in Tables 2-5, also in the lithography evaluation using an electron beam, those using the antistatic film obtained from the conductive polymer composition of the present invention (Examples 1 to 10) were compared. With respect to Examples 1 and 2, the sensitivity change with time was controlled, and the resolution and pattern shape were also improved. Regarding the PCD evaluation, the higher the pH, the better, and the storage stability of the resist and the coating of the conductive polymer film (antistatic film) can be easily adjusted while considering the surface resistivity value. On the other hand, Comparative Examples 1 and 2, which are compositions not containing a betaine compound, have an excellent antistatic effect as described above, but have a low pH and a very large fluctuation range for PCD. There was a problem in the storage stability of the coating of the polymer membrane. In addition, in Comparative Examples 3 and 4, when the added aqueous ammonia was added in an amount effective for pH control, the conductive polymer was partially dedoped and the surface resistivity was increased. The function has deteriorated.
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Claims (13)
前記(B)成分が、下記一般式(4)で表されるものを含むことを特徴とする導電性高分子組成物。
The said (B) component contains what is represented by following General formula (4), The conductive polymer composition characterized by the above-mentioned .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/979,781 US9778570B2 (en) | 2015-01-30 | 2015-12-28 | Conductive polymer composition, coated article, patterning process and substrate |
EP15003691.1A EP3050932B1 (en) | 2015-01-30 | 2015-12-29 | Conductive polymer composition, coated article, patterning process, and substrate |
KR1020160009945A KR101948973B1 (en) | 2015-01-30 | 2016-01-27 | Conductive polymer composition, coated article, patterning process, and substrate |
TW105102708A TWI643919B (en) | 2015-01-30 | 2016-01-28 | Conductive polymer composition, coated article, patterning process, and substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015017233 | 2015-01-30 | ||
JP2015017233 | 2015-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016145319A JP2016145319A (en) | 2016-08-12 |
JP6383337B2 true JP6383337B2 (en) | 2018-08-29 |
Family
ID=56685402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015169308A Active JP6383337B2 (en) | 2015-01-30 | 2015-08-28 | Conductive polymer composition, coated article, pattern forming method, and substrate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6383337B2 (en) |
KR (1) | KR101948973B1 (en) |
TW (1) | TWI643919B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6937232B2 (en) * | 2017-12-07 | 2021-09-22 | 信越化学工業株式会社 | Conductive polymer compositions, coatings, and pattern forming methods |
CN112996856B (en) * | 2018-11-15 | 2024-04-09 | 三菱化学株式会社 | Conductive composition and method for producing same, and conductive body and method for producing same |
JP7108565B2 (en) * | 2019-03-11 | 2022-07-28 | 信越化学工業株式会社 | CONDUCTIVE POLYMER COMPOSITION, COATED ARTICLE AND PATTERN FORMATION METHOD |
JP7400237B2 (en) * | 2019-07-23 | 2023-12-19 | 三菱ケミカル株式会社 | Conductive composition and method for producing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804100A (en) * | 1995-01-09 | 1998-09-08 | International Business Machines Corporation | Deaggregated electrically conductive polymers and precursors thereof |
TWI345681B (en) * | 2006-02-08 | 2011-07-21 | Showa Denko Kk | Antistatic agent, antistatic film and articles coated with antistatic film |
US7886577B2 (en) * | 2006-03-30 | 2011-02-15 | Oakland University | Devices with surface bound ionic liquids and method of use thereof |
JP4893580B2 (en) | 2006-10-27 | 2012-03-07 | 信越化学工業株式会社 | Sulfonium salt and polymer compound having polymerizable anion, resist material and pattern forming method |
JP5201363B2 (en) | 2008-08-28 | 2013-06-05 | 信越化学工業株式会社 | Sulfonium salt and polymer compound having polymerizable anion, resist material and pattern forming method |
TWI509633B (en) | 2011-04-20 | 2015-11-21 | Mitsubishi Rayon Co | Conductive composition, conductive body and solid electrolytic capacitor using the same |
CN103958552B (en) * | 2011-11-16 | 2016-11-16 | 东曹有机化学株式会社 | The manufacture method of high-purity sodium p styrene sulfonate and the manufacture method of kayexalate |
JP5857771B2 (en) * | 2012-02-08 | 2016-02-10 | コニカミノルタ株式会社 | Conductive film and touch panel |
JP5830444B2 (en) | 2012-07-02 | 2015-12-09 | 信越ポリマー株式会社 | A conductive polymer composition, a coated article provided with an antistatic film obtained from the composition, and a pattern forming method using the composition. |
JP2014015550A (en) * | 2012-07-10 | 2014-01-30 | Mitsubishi Rayon Co Ltd | Conductive composition and conductor using the conductive composition |
DE202014011119U1 (en) * | 2013-02-15 | 2017-12-15 | Nissin Chemical Industry Co., Ltd | Conductive composition, antistatic resin composition and antistatic resin film |
-
2015
- 2015-08-28 JP JP2015169308A patent/JP6383337B2/en active Active
-
2016
- 2016-01-27 KR KR1020160009945A patent/KR101948973B1/en active IP Right Grant
- 2016-01-28 TW TW105102708A patent/TWI643919B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20160094301A (en) | 2016-08-09 |
TW201700639A (en) | 2017-01-01 |
KR101948973B1 (en) | 2019-02-15 |
JP2016145319A (en) | 2016-08-12 |
TWI643919B (en) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6382780B2 (en) | Conductive polymer composition, coated article, pattern forming method, and substrate. | |
US9778570B2 (en) | Conductive polymer composition, coated article, patterning process and substrate | |
KR101851583B1 (en) | Conductive polymer composition, coated article which is provided with antistatic film obtained from conductive polymer composition, and pattern forming method using conductive polymer composition | |
JP6383337B2 (en) | Conductive polymer composition, coated article, pattern forming method, and substrate | |
JP7352708B2 (en) | Conductive polymer composition, coated product, and pattern forming method | |
TWI816992B (en) | Conductive polymer composition, coating, and pattern forming method | |
JP2017061631A (en) | Conductive polymer composition, coated article, and pattern formation method | |
KR101927584B1 (en) | Conductive polymer composition, coated article, and patterning process | |
TWI846162B (en) | Conductive polymer composition, coated product, and pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6383337 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |