JP6382742B2 - Natural flow sewer pipe - Google Patents

Natural flow sewer pipe Download PDF

Info

Publication number
JP6382742B2
JP6382742B2 JP2015032500A JP2015032500A JP6382742B2 JP 6382742 B2 JP6382742 B2 JP 6382742B2 JP 2015032500 A JP2015032500 A JP 2015032500A JP 2015032500 A JP2015032500 A JP 2015032500A JP 6382742 B2 JP6382742 B2 JP 6382742B2
Authority
JP
Japan
Prior art keywords
sewage
overflow weir
pipe
guide portion
sewer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015032500A
Other languages
Japanese (ja)
Other versions
JP2016156128A (en
Inventor
愛弓 石川
愛弓 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015032500A priority Critical patent/JP6382742B2/en
Publication of JP2016156128A publication Critical patent/JP2016156128A/en
Application granted granted Critical
Publication of JP6382742B2 publication Critical patent/JP6382742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明の実施形態は、自然流下式下水管に関する。   Embodiments described herein relate generally to a natural flow sewer pipe.

下水管の管路内を流れる下水中では、好気性微生物の働きによる溶存酸素の消費と、気中から下水中への酸素溶解による溶存酸素の増加と、の2つの現象が発生する。上述した2つの現象のうち、溶存酸素の消費速度が増加速度を上回ると、下水中の溶存酸素量が減少する(いわゆる、嫌気化が進行する)。   In the sewage flowing through the pipe of the sewage pipe, two phenomena occur: consumption of dissolved oxygen due to the action of aerobic microorganisms and increase in dissolved oxygen due to dissolution of oxygen from the air into the sewage. Of the two phenomena described above, when the consumption rate of dissolved oxygen exceeds the increase rate, the amount of dissolved oxygen in the sewage decreases (so-called anaerobic progress).

管路内での嫌気化は、例えば以下の問題を引き起こす。
第1に、下水中に存在する硫酸塩還元菌が、有機物を水素供与体として硫酸イオンを還元し、下水中に硫化水素ガスを生成する。硫化水素ガスは、空気中に放出されることで、悪臭等の原因となる。また、空気中に放出された硫化水素ガスが、硫黄酸化細菌の働きにより硫酸に酸化されると、コンクリート等の腐食を引き起こす原因にもなる。
第2に、下水中に存在するメタン生成菌の働きにより、下水中にメタンガスが発生する。メタンガスは、下水中に溶存した状態で下水処理場に送られた後、最初沈殿池や反応槽で大気中に放出される。メタンガスは、二酸化炭素の約21倍の温室効果を有しているため、大気中に放出されることで、地球温暖化の要因になる。
Anaerobic in the pipeline causes, for example, the following problems.
First, sulfate-reducing bacteria present in sewage reduce sulfate ions using organic matter as a hydrogen donor to produce hydrogen sulfide gas in the sewage. When hydrogen sulfide gas is released into the air, it causes a bad odor and the like. Further, when the hydrogen sulfide gas released into the air is oxidized into sulfuric acid by the action of sulfur-oxidizing bacteria, it may cause corrosion of concrete or the like.
Secondly, methane gas is generated in the sewage by the action of the methanogen present in the sewage. Methane gas is sent to a sewage treatment plant in a state dissolved in sewage, and then released to the atmosphere in a sedimentation basin or reaction tank. Since methane gas has a greenhouse effect about 21 times that of carbon dioxide, it is released into the atmosphere, which causes global warming.

ところで、上述した下水管は、圧送ポンプにより管路内の下水を流通させる圧送式下水管と、管路内の下水を自重によって流通させる自然流下式下水管と、に大別される。このうち、自然流下式下水管では、空気等の気体が存在する気相部を管路内に有しているため、圧送式下水管に比べて上述した嫌気化が起こり難いとされている。
しかしながら、自然流下式下水管においても、下水処理場までの管路長が長い場合等には、溶存酸素の消費速度が増加速度を上回り、嫌気化が進行する可能性があった。
By the way, the above-described sewage pipes are roughly classified into a pressure-feed sewage pipe that circulates sewage in the pipe line by a pressure-feed pump and a natural-flow sewage pipe that circulates sewage in the pipe line by its own weight. Among these, the natural flow-down sewage pipe has a gas phase portion in which a gas such as air is present in the pipe line, so that the above-described anaerobic generation is less likely to occur compared to the pressure-feed sewage pipe.
However, even in a natural flow-down sewage pipe, when the length of the pipe to the sewage treatment plant is long, the consumption rate of dissolved oxygen exceeds the increase speed, and anaerobization may progress.

特開2013−119717号公報JP 2013-119717 A 特開平9−268636号公報Japanese Patent Laid-Open No. 9-268636 特開平9−268637号公報Japanese Patent Laid-Open No. 9-268637

本発明が解決しようとする課題は、嫌気化を抑制できる自然流下式下水管を提供することである。   The problem to be solved by the present invention is to provide a natural flow-down sewage pipe that can suppress anaerobic formation.

実施形態の自然流下式下水管は、管路と、越流堰と、を持つ。管路は、下水が流通する。越流堰は、管路の内周面から上方に向けて突設され、下水を下流側に越流させる。越流堰の上流側を向く面は、下流側に向かうに従い上方に向けて延びるガイド部を有している。ガイド部には、凹凸が形成されている。 The natural flow type sewer pipe of the embodiment has a pipe line and an overflow dam. Sewage flows through the pipeline. The overflow dam protrudes upward from the inner peripheral surface of the pipe, and causes the sewage to overflow downstream. The surface facing the upstream side of the overflow weir has a guide portion that extends upward as it goes downstream. Concavities and convexities are formed in the guide portion.

実施形態における下水管の断面図。Sectional drawing of the sewer pipe in embodiment. 図1のII矢視図。II arrow line view of FIG. 実施形態の他の構成における下水管の断面図。Sectional drawing of the sewer pipe in the other structure of embodiment.

以下、実施形態の自然流下式下水管(以下、単に下水管という)を、図面を参照して説明する。
図1に示すように、下水管1は、地中等に埋設され、例えば隣り合う中継ポンプ場間や、中継ポンプ場と下水処理場との間を接続する下水管網10の一部を構成する。本実施形態の下水管1は、下水管網10のうち、下水Wの流通方向における上流側から下流側に向かうに従い下方に向けて延びる下り勾配部分に設置され、下水Wを自重によって流通させる。
Hereinafter, a natural flow type sewer pipe (hereinafter, simply referred to as a sewer pipe) of an embodiment will be described with reference to the drawings.
As shown in FIG. 1, the sewage pipe 1 is embedded in the ground or the like and constitutes a part of a sewage pipe network 10 that connects, for example, between adjacent relay pump stations or between a relay pump station and a sewage treatment plant. . The sewage pipe 1 of this embodiment is installed in the downward slope part extended toward the downstream from the upstream in the distribution direction of the sewage W among the sewage pipe networks 10, and distribute | circulates the sewage W with dead weight.

図1、図2に示すように、下水管1は、例えば雨水や汚水等の下水Wが流通する管路11を備えている。管路11は、コンクリートや硬質塩化ビニル等からなる円筒状とされ、その軸方向に沿って下水Wが流通する。管路11は、図示しない継手を介して複数接続されることで、上述した下水管網10を構成している。   As shown in FIGS. 1 and 2, the sewage pipe 1 includes a pipeline 11 through which sewage W such as rainwater and sewage flows. The pipe line 11 has a cylindrical shape made of concrete, hard vinyl chloride, or the like, and sewage W flows along the axial direction thereof. A plurality of pipe lines 11 are connected via unillustrated joints to constitute the above-described sewer network 10.

管路11の直径は、最大汚水流量を満管で流せるように設計されている。そのため、平常時において、管路11内における下水Wの液面よりも上方に位置する空間は、空気等の気体が存在する気相部12となる。なお、管路11は、例えばコンクリート製の場合には直径が1000mm〜3000mm程度、長さが2.4m程度とされ、硬質塩化ビニル製の場合には直径が100mm〜1000mm程度、長さが4.0m程度とされている。   The diameter of the pipe line 11 is designed so that the maximum sewage flow rate can flow in a full pipe. Therefore, in a normal state, the space located above the liquid level of the sewage W in the pipe line 11 becomes the gas phase part 12 where a gas such as air exists. For example, the pipe 11 has a diameter of about 1000 mm to 3000 mm and a length of about 2.4 m when made of concrete, and has a diameter of about 100 mm to 1000 mm and a length of 4 when made of hard vinyl chloride. About 0.0m.

管路11の内周面には、下水Wを下流側に向けて越流させる越流堰21が上方に向けて突設されている。越流堰21は、流通方向から見た正面視で管路11内の下半部を覆う半円状を呈し、管路11に一体形成されている。また、図1に示すように、越流堰21は、流通方向に沿う縦断面視で三角形状を呈している。具体的に、越流堰21は、下流側を向く下流側端面22と、上流側を向く上流側端面23と、これら下流側端面22及び上流側端面23の上端部同士を接続する頂部24と、を有している。   On the inner peripheral surface of the pipeline 11, an overflow weir 21 is provided projecting upward so that the sewage W overflows toward the downstream side. The overflow weir 21 has a semicircular shape covering the lower half of the pipeline 11 in a front view as viewed from the flow direction, and is integrally formed with the pipeline 11. Further, as shown in FIG. 1, the overflow weir 21 has a triangular shape in a longitudinal sectional view along the flow direction. Specifically, the overflow weir 21 includes a downstream end surface 22 facing the downstream side, an upstream end surface 23 facing the upstream side, and a top portion 24 connecting the upper end portions of the downstream end surface 22 and the upstream end surface 23. ,have.

下流側端面22は、管路11の内周面から越流堰21の頂部24に向けて管路11の内周面に対して垂直に立ち上がっている。すなわち、下流側端面22は、下水Wの流通方向に対して直交して延在している。   The downstream end surface 22 rises perpendicularly from the inner peripheral surface of the conduit 11 toward the top 24 of the overflow weir 21 with respect to the inner peripheral surface of the conduit 11. That is, the downstream end face 22 extends perpendicular to the flow direction of the sewage W.

上流側端面23は、下流側に向かうに従い上方に向けて延びるガイド部31と、ガイド部31と越流堰21の頂部24とを接続する接続部32と、を有している。
ガイド部31は、管路11の内周面に対して傾斜して延びる傾斜面とされている。図示の例において、ガイド部31の下流側端部における高さは、越流堰21(頂部24)の高さの半分程度とされている。なお、ガイド部31の勾配は、適宜設計変更が可能である。
接続部32は、ガイド部31の下流側端部から頂部24に向けて管路11の内周面に対して垂直に延設されている。
The upstream end surface 23 includes a guide portion 31 that extends upward as it goes downstream, and a connection portion 32 that connects the guide portion 31 and the top portion 24 of the overflow weir 21.
The guide portion 31 is an inclined surface that extends with an inclination to the inner peripheral surface of the pipe line 11. In the illustrated example, the height at the downstream end of the guide portion 31 is about half of the height of the overflow weir 21 (top 24). Note that the design of the gradient of the guide portion 31 can be changed as appropriate.
The connecting portion 32 extends perpendicularly to the inner peripheral surface of the pipe line 11 from the downstream end portion of the guide portion 31 toward the top portion 24.

上述した下水管1において、下水Wは自重によって管路11内を下流側に向けて流通し、越流堰21に差し掛かる。そして、下水Wは、水位が越流堰21の高さ(管路11の内周面から頂部24までの距離)より低い場合には塞き止められ、水位が越流堰21の高さに達した場合に、越流堰21を乗り越えて管路11内を下流側に向けて流通する。
ここで、下水Wが越流堰21を乗り越える過程において、気相部12の空気を巻き込むことで、下水Wと空気が撹拌され、下水Wが曝気される。これにより、気相部12から下水W中への酸素溶解が促進され、嫌気化が抑制される。その結果、硫化水素ガスの発生やメタンガスの発生を抑制できる。
In the sewage pipe 1 described above, the sewage W circulates in the pipe line 11 toward the downstream side by its own weight and reaches the overflow weir 21. The sewage W is blocked when the water level is lower than the height of the overflow weir 21 (the distance from the inner peripheral surface of the conduit 11 to the top 24), and the water level is set to the height of the overflow weir 21. When it reaches, it passes over the overflow weir 21 and circulates in the pipeline 11 toward the downstream side.
Here, in the process in which the sewage W gets over the overflow weir 21, the sewage W and the air are agitated and the sewage W is aerated by entraining the air in the gas phase portion 12. Thereby, the oxygen melt | dissolution from the gaseous-phase part 12 in the sewage W is accelerated | stimulated, and anaerobic is suppressed. As a result, generation of hydrogen sulfide gas and generation of methane gas can be suppressed.

上述したように、本実施形態では、管路11内に越流堰21を設けることで、下水Wが越流堰21を乗り越える際に下水Wを曝気することができる。この場合、下水管網10の一部を本実施形態の下水管1に置き換えることで、嫌気化を抑制できるので、曝気ポンプ等の動力を用いる場合に比べて低コスト化及び省エネルギー化を図ることができる。
特に、本実施形態では、越流堰21の上流側端面23にガイド部31を形成したため、下水Wを越流堰21の頂部24に向けて案内し易くなる。そのため、越流堰21の上流側に固体(例えば、落葉や木片等)が滞留するのを抑制できる。一方、越流堰21の下流側端面22を管路11の内周面に対して垂直に形成したため、下水Wが越流堰21を乗り越える際の高低差を確保でき、下水Wを効果的に曝気できる。
As described above, in the present embodiment, by providing the overflow weir 21 in the pipe line 11, the sewage W can be aerated when the sewage W gets over the overflow weir 21. In this case, since a part of the sewage pipe network 10 is replaced with the sewage pipe 1 of the present embodiment, anaerobic generation can be suppressed, so that cost reduction and energy saving can be achieved as compared with the case where power such as an aeration pump is used. Can do.
In particular, in this embodiment, since the guide portion 31 is formed on the upstream end face 23 of the overflow weir 21, it becomes easy to guide the sewage W toward the top 24 of the overflow weir 21. Therefore, it can suppress that solid (for example, a fallen leaf, a piece of wood, etc.) stays in the upstream of overflow overflow weir 21. On the other hand, since the downstream end face 22 of the overflow weir 21 is formed perpendicular to the inner peripheral surface of the pipe line 11, it is possible to ensure a difference in height when the sewage W crosses the overflow weir 21, effectively Aeration is possible.

なお、上述した実施形態では、越流堰21の上流側端面23において、頂部24とガイド部31との間を接続部32により接続する構成について説明したが、これに限られない。例えば、図3に示すように、ガイド部31が越流堰21の頂部24に連なるように形成しても構わない。この場合には、越流堰21の上流側端面23全体が傾斜面により構成されるので、越流堰21の頂部24とガイド部31との間に段差が形成されない。そのため、越流堰21の上流側に固体が滞留するのを確実に抑制できる。   In the above-described embodiment, the configuration in which the top portion 24 and the guide portion 31 are connected by the connection portion 32 on the upstream end surface 23 of the overflow weir 21 has been described, but the configuration is not limited thereto. For example, as shown in FIG. 3, the guide portion 31 may be formed so as to be continuous with the top portion 24 of the overflow weir 21. In this case, since the entire upstream end surface 23 of the overflow weir 21 is configured by an inclined surface, no step is formed between the top 24 of the overflow weir 21 and the guide portion 31. Therefore, it is possible to reliably suppress the retention of the solid on the upstream side of the overflow weir 21.

上述した実施形態では、ガイド部31を傾斜面に形成した構成について説明したが、これに限られない。例えば、下流側に向かうに従い上方に向けて段々と立ち上がる階段状等に形成しても構わない。
上述した実施形態では、管路11内に越流堰21を一つ形成した場合について説明したが、これに限らず、流通方向に間隔をあけて複数の越流堰21を形成しても構わない。
上述した実施形態では、管路11と越流堰21とを一体形成した構成について説明したが、これに限らず、管路11と越流堰21とをそれぞれ別体で形成しても構わない。
In the above-described embodiment, the configuration in which the guide portion 31 is formed on the inclined surface has been described, but the configuration is not limited thereto. For example, it may be formed in a staircase shape or the like that gradually rises upward as it goes downstream.
In the embodiment described above, the case where one overflow dam 21 is formed in the pipe line 11 is described. However, the present invention is not limited to this, and a plurality of overflow dams 21 may be formed at intervals in the flow direction. Absent.
In the above-described embodiment, the configuration in which the pipe line 11 and the overflow weir 21 are integrally formed has been described. However, the present invention is not limited thereto, and the pipe line 11 and the overflow weir 21 may be formed separately. .

また、ガイド部31上に凹凸(ディンプル)を形成する構成にしても構わない。この場合には、下水Wがガイド部31上を流通する過程において、下水Wの流れが乱れることで、下水Wが曝気されることになるので、嫌気化をより確実に抑制できる。   In addition, a configuration in which unevenness (dimple) is formed on the guide portion 31 may be adopted. In this case, in the process in which the sewage W circulates on the guide portion 31, the sewage W is aerated by disturbing the flow of the sewage W, so that anaerobic generation can be more reliably suppressed.

さらに、上述した実施形態では、管路11が下流側に向かうに従い下方に向けて延びる構成について説明したが、これに限られない。下水Wが自重で流通する構成であれば、管路11の延在方向は適宜設計変更が可能である。
また、上述した実施形態では、下流側に向かうに従い下方に向けて延びる管路11において、越流堰21(下流側端面22や接続部32)が管路11の内周面に対して垂直に延びる構成について説明したが、これに限られない。例えば、下流側に向かうに従い下方に向けて延びる管路11において、越流堰21が重力方向に沿って延びる構成であってもよい。すなわち、越流堰21は、管路11の延在方向に関わらず、上方に向けて延びる構成であれば構わない。
Further, in the above-described embodiment, the configuration in which the pipe line 11 extends downward as it goes downstream is not limited to this. If the sewage W is configured to flow by its own weight, the extending direction of the pipe line 11 can be appropriately changed in design.
Further, in the above-described embodiment, the overflow weir 21 (downstream end face 22 and connecting portion 32) is perpendicular to the inner peripheral surface of the pipe line 11 in the pipe line 11 that extends downward toward the downstream side. Although the extended structure was demonstrated, it is not restricted to this. For example, in the pipe line 11 that extends downward as it goes downstream, the overflow weir 21 may extend along the direction of gravity. In other words, the overflow weir 21 may be configured to extend upward regardless of the extending direction of the pipeline 11.

以上説明した少なくともひとつの実施形態によれば、管路の内周面から上方に向けて突設された越流堰を備え、越流堰のうち、上流側を向く面が、下流側に向かうに従い上方に向けて延びるガイド部を有しているため、下水が越流堰を乗り越える際に下水を曝気することができる。この場合、下水管網の一部を本実施形態の下水管に置き換えることで、嫌気化を抑制できるので、曝気ポンプ等の動力を用いる場合に比べて低コスト化及び省エネルギー化を図ることができる。
特に、越流堰の上流側端面にガイド部を形成したため、下水を越流堰の頂部に向けて案内し易くなる。そのため、越流堰の上流側に固体(例えば、落葉や木片等)が滞留するのを抑制できる。
According to at least one embodiment described above, the overflow weir is provided so as to project upward from the inner peripheral surface of the pipe, and the surface facing the upstream side of the overflow weir faces the downstream side. Accordingly, the sewage can be aerated when the sewage passes over the overflow weir. In this case, anaerobicization can be suppressed by replacing a part of the sewer network with the sewer pipe of this embodiment, so that cost and energy saving can be achieved as compared with the case where power such as an aeration pump is used. .
In particular, since the guide portion is formed on the upstream end face of the overflow weir, it becomes easy to guide the sewage toward the top of the overflow weir. Therefore, it can suppress that solid (for example, a fallen leaf, a piece of wood, etc.) stays in the upstream of an overflow dam.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…下水管、11…管路、21…越流堰、31…ガイド部 DESCRIPTION OF SYMBOLS 1 ... Sewage pipe, 11 ... Pipe line, 21 ... Overflow weir, 31 ... Guide part

Claims (2)

下水が流通する管路と、
前記管路の内周面から上方に向けて突設され、下水を下流側に越流させる越流堰と、を備え、
前記越流堰の上流側を向く面は、下流側に向かうに従い上方に向けて延びるガイド部を有し
前記ガイド部には、凹凸が形成されている、
自然流下式下水管。
A pipeline through which sewage flows,
An overflow weir that protrudes upward from the inner peripheral surface of the pipe and overflows the sewage downstream,
The surface facing the upstream side of the overflow weir has a guide portion that extends upward as it goes downstream ,
The guide part is formed with irregularities,
Natural downflow sewer pipe.
前記ガイド部は、前記越流堰の頂部に連なっている、
請求項1記載の自然流下式下水管。
The guide portion is connected to the top of the overflow weir,
The natural flow type sewer pipe according to claim 1.
JP2015032500A 2015-02-23 2015-02-23 Natural flow sewer pipe Active JP6382742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032500A JP6382742B2 (en) 2015-02-23 2015-02-23 Natural flow sewer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032500A JP6382742B2 (en) 2015-02-23 2015-02-23 Natural flow sewer pipe

Publications (2)

Publication Number Publication Date
JP2016156128A JP2016156128A (en) 2016-09-01
JP6382742B2 true JP6382742B2 (en) 2018-08-29

Family

ID=56825316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032500A Active JP6382742B2 (en) 2015-02-23 2015-02-23 Natural flow sewer pipe

Country Status (1)

Country Link
JP (1) JP6382742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301498A (en) * 2018-01-23 2018-07-20 武汉圣禹排水系统有限公司 Dross auto-collection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820710Y2 (en) * 1979-05-01 1983-04-30 旭コンクリ−ト工業株式会社 Sewage box culvert
IT1184572B (en) * 1985-06-05 1987-10-28 Simplast Spa SEWER COLLECTOR FOR THE CONVEYMENT OF WASTEWATER THROUGH SLOPE OVENS
JPH08165699A (en) * 1994-12-13 1996-06-25 Kubota Corp Waste water force feed duct

Also Published As

Publication number Publication date
JP2016156128A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP2017506580A (en) Sewage treatment apparatus using artificial wetland and sewage treatment method using the same
KR20100044505A (en) Waterway structure for prevention of foam formation at the discharge channel of the power plant
JP6382742B2 (en) Natural flow sewer pipe
CN206052932U (en) Backward flowing preventing device and the sedimentation tank containing the device
JP2013136920A (en) Backflow prevention basin and septic tank drainage structure using the same
CN202187327U (en) Water level controller for siphon drainage pipe
CN103951037A (en) Integrated denitrification method and device by using multi-environment biomembrane-activated sludge system
CN110593220A (en) Air supply ridge structure for drainage energy dissipation hole
GB2128175A (en) Method and apparatus for treating sewage
CN201217829Y (en) Siphon trap
CN203821547U (en) Sewage blocking purification trough
CN204238342U (en) A kind of rainwater collection pool anti-backflow device
JP5926663B2 (en) In-pipe purification equipment
CN202011775U (en) Contact oxidation pond of suspended fillers
CN207016654U (en) New explosion-proof septic tank
CN207176611U (en) A kind of abrupt slope water transport structure
CN202658059U (en) Efficient denitrification environmental protection system
CN205269133U (en) System for prevent sewage factory discharge port spurging
JP2009011949A (en) Sewage purifying apparatus
JP2008221181A (en) Anaerobic treatment device and treatment method
CN219327046U (en) Pump station goes out water pond structure
RU209231U1 (en) VACUUM-FREE DRAIN-AERATOR
CN204723989U (en) A kind of for preventing the overflow mechanism of absorption tower siphon
CN203754487U (en) Polymer-tube-type and tray-type integrated aerator
CN211898237U (en) Energy dissipation spillway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150