JP6382058B2 - Method for producing sugar condensate - Google Patents

Method for producing sugar condensate Download PDF

Info

Publication number
JP6382058B2
JP6382058B2 JP2014209996A JP2014209996A JP6382058B2 JP 6382058 B2 JP6382058 B2 JP 6382058B2 JP 2014209996 A JP2014209996 A JP 2014209996A JP 2014209996 A JP2014209996 A JP 2014209996A JP 6382058 B2 JP6382058 B2 JP 6382058B2
Authority
JP
Japan
Prior art keywords
sugar
low molecular
molecular fraction
condensation reaction
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014209996A
Other languages
Japanese (ja)
Other versions
JP2015045011A5 (en
JP2015045011A (en
Inventor
徳寿 濱口
徳寿 濱口
宏和 平井
宏和 平井
健太 相沢
健太 相沢
高橋 良輔
良輔 高橋
正保 高田
正保 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Shokuhin Kako Co Ltd
Original Assignee
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shokuhin Kako Co Ltd filed Critical Nihon Shokuhin Kako Co Ltd
Priority to JP2014209996A priority Critical patent/JP6382058B2/en
Publication of JP2015045011A publication Critical patent/JP2015045011A/en
Publication of JP2015045011A5 publication Critical patent/JP2015045011A5/ja
Application granted granted Critical
Publication of JP6382058B2 publication Critical patent/JP6382058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は糖縮合物の製造法に関し、詳しくは、糖縮合反応で得られた糖縮合物中または当該糖縮合物の酵素分解物中の低分子画分を分離し、前記低分子画分をそのままで、あるいは、糖縮合反応の原料に混合して、再度糖縮合反応させる糖縮合物の製造方法に関する。   The present invention relates to a method for producing a sugar condensate. Specifically, a low molecular fraction in a sugar condensate obtained by a sugar condensation reaction or an enzymatic degradation product of the sugar condensate is separated, and the low molecular fraction is obtained. The present invention relates to a method for producing a sugar condensate as it is or mixed with a raw material for a sugar condensation reaction and subjected to a sugar condensation reaction again.

糖質を無触媒下または各種触媒存在下で加熱処理し、縮合反応させることで糖縮合物を製造できることが知られており、様々な糖縮合物の製造方法が報告されている(特許文献1〜6)。前記糖縮合物は、難消化性糖質及び水溶性食物繊維としての機能を有しており、機能性食品素材として広く利用されている。しかしながら、糖縮合物は、その反応過程でゲンチオビオースなどの苦味や甘味等の異味を持つ低分子の糖質が生成することが確認されている。また、糖縮合反応物の低分子画分に含まれる非発酵性の二糖類は、下痢を誘発し易いことも知られており、上記問題点により食品としての用量や用途が限定されていた。   It is known that sugar condensates can be produced by heat-treating saccharides in the absence of a catalyst or in the presence of various catalysts to cause a condensation reaction, and various methods for producing sugar condensates have been reported (Patent Document 1). ~ 6). The sugar condensate has a function as an indigestible saccharide and a water-soluble dietary fiber, and is widely used as a functional food material. However, it has been confirmed that the sugar condensate produces a low-molecular-weight carbohydrate having a bitter taste such as gentiobiose and a different taste such as sweetness in the reaction process. In addition, it is known that non-fermentable disaccharides contained in the low molecular fraction of the sugar condensation reaction product are likely to induce diarrhea. Due to the above problems, the dosage and use as food are limited.

さらに、酵素−HPLC法等の食物繊維測定法では、重合度3以上の成分を食物繊維として測定するため、二糖以下の糖質が含まれることにより食物繊維含量が低下し、機能性食品素材の価値も低下することが知られている。   Furthermore, in the dietary fiber measurement method such as enzyme-HPLC method, since a component having a polymerization degree of 3 or more is measured as dietary fiber, the content of dietary fiber is reduced due to the inclusion of a saccharide of disaccharide or less, and a functional food material. It is known that the value of will also decline.

即ち、糖縮合物の苦味・甘味・異味を低減し、食品としての用途を広げ価値を向上させるためにも、また糖縮合物の食物繊維含量を高めて機能性食品素材としての価値を向上させるためにも、単糖類および二糖類を含む低分子画分を除去又は低減させる必要がある。   In other words, to reduce the bitterness, sweetness, and off-flavor of sugar condensates, broaden their use as foods and improve their value, and increase the dietary fiber content of sugar condensates to improve their value as functional food materials Therefore, it is necessary to remove or reduce the low molecular fraction containing monosaccharides and disaccharides.

上記課題を解決する方法として、例えば、クロマトグラフィー処理や膜処理により低分子画分を分画除去する方法が知られている(特許文献7及び8)。しかし、これら製法で除去された低分子画分は、全て廃棄若しくは付加価値の低い糖質として処理されており、原料糖質より得られる食物繊維は歩留りが非常に悪いものであり、製造効率、製造コスト、環境負荷などの点で大きな問題を有していた。   As a method for solving the above problems, for example, a method of fractionating and removing a low molecular fraction by chromatography or membrane treatment is known (Patent Documents 7 and 8). However, the low-molecular fractions removed by these production methods are all processed as waste or low added-value carbohydrates, and the dietary fiber obtained from the raw material carbohydrates has a very poor yield, production efficiency, There were major problems in terms of manufacturing cost and environmental impact.

特開2003−231694号公報JP 2003-231694 A 特表2005−510581号公報JP 2005-510581 A 特表2006−502103号公報JP-T-2006-502103 特表2009−540068号公報Special table 2009-540068 gazette 特表2009−524439号公報Special table 2009-524439 特許第4966429号公報Japanese Patent No. 4966429 特開平04−183372号公報Japanese Patent Laid-Open No. 04-183372 特開平06−032802号公報Japanese Patent Application Laid-Open No. 06-032802

本発明は、苦味等が低減し、水溶性食物繊維含量が高く、飲食品への利用価値の高い糖縮合物を、高い歩留りで製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a sugar condensate having a low bitterness, a high water-soluble dietary fiber content, and a high utility value for food and drink with a high yield.

本発明者らは、糖質を加熱縮合して製造される糖縮合物組成物から低分子画分を分離し、この低分子画分中の糖縮合反応生成物をそのままで、あるいは、前記糖質加熱縮合反応の原料である糖質に混合して再度糖縮合反応させることで高い歩留りで糖縮合物を製造可能であることを見出した。本発明はこの知見に基づくものである。   The present inventors separated a low molecular fraction from a sugar condensate composition produced by heat condensation of a saccharide, and left the sugar condensation reaction product in the low molecular fraction as it was or the sugar It was found that a sugar condensate can be produced with a high yield by mixing with a saccharide, which is a raw material for the heat-condensation reaction, and again performing a sugar condensation reaction. The present invention is based on this finding.

すなわち、本発明は、以下の通りである。
(1)糖縮合物またはその還元物を製造する方法であって、
(A)1種または2種以上の糖質またはその誘導体を糖縮合反応させて得られた糖縮合物組成物またはその酵素分解組成物を、重合度9以下の糖質を固形分換算で50%以上含む分画(低分子画分)とそれ以外の分画に分け、次いで、
(B)下記工程(B−1)および(B−2):
(B−1)低分子画分を単独で糖縮合反応させるか、あるいは、低分子画分を1種または2種以上の糖質またはその誘導体と一緒に糖縮合反応させて糖縮合物組成物またはその酵素分解組成物を得る工程、および
(B−2)工程(B−1)で得られた糖縮合物組成物またはその酵素分解組成物を、低分子画分とそれ以外の画分に分ける工程
を1回または2回以上行う(但し、工程(B−2)が最終工程に当たる場合には工程(B−2)を省略してもよい)
ことを特徴とする、製造方法。
(2)糖縮合反応が、無機酸、有機酸、鉱物性物質および活性炭から選択される1種または2種以上の触媒存在下で行われる、前記(1)に記載の製造方法。
(3)糖縮合物中の水溶性食物繊維含量が70%以上である、前記(1)または(2)に記載の製造方法。
(4)糖縮合反応が100℃〜300℃の温度条件下で行われる、前記(1)〜(3)のいずれかに記載の製造方法。
(5)工程(B)において、工程(B−1)(但し、低分子画分は1種または2種以上の糖質またはその誘導体と一緒に糖縮合反応させる)および工程(B−2)を2回以上繰り返すことを特徴とする、前記(1)〜(4)のいずれかに記載の製造方法。
(6)製造された糖縮合物を還元処理する工程をさらに含んでなる、前記(1)〜(5)のいずれかに記載の製造方法。
(7)前記(1)〜(6)のいずれかに記載の製造方法により製造された糖縮合物またはその還元物。
(8)前記(7)に記載の糖縮合物またはその還元物を含有させてなる、飲食品。
(9)前記(1)〜(6)のいずれかに記載の製造方法により糖縮合物またはその還元物を製造し、次いで、該糖縮合物またはその還元物を飲食品またはその原料に添加することを特徴とする、飲食品の製造方法。
That is, the present invention is as follows.
(1) A method for producing a sugar condensate or a reduced product thereof,
(A) A saccharide condensate composition obtained by subjecting one or more saccharides or derivatives thereof to a saccharide condensation reaction or an enzyme-decomposable composition thereof, and a saccharide having a polymerization degree of 9 or less in terms of solid content as 50 % Fraction (low molecular fraction) and other fractions,
(B) The following steps (B-1) and (B-2):
(B-1) A sugar condensate composition in which a low molecular fraction is subjected to a saccharide condensation reaction alone, or a low molecular fraction is subjected to a saccharide condensation reaction together with one or more saccharides or derivatives thereof. Alternatively, the step of obtaining the enzyme-decomposable composition, and the sugar condensate composition or the enzyme-decomposed composition obtained in step (B-2) (B-2) into a low-molecular fraction and other fractions. The dividing step is performed once or twice or more (however, when the step (B-2) is the final step, the step (B-2) may be omitted)
The manufacturing method characterized by the above-mentioned.
(2) The production method according to (1), wherein the sugar condensation reaction is performed in the presence of one or more catalysts selected from inorganic acids, organic acids, mineral substances, and activated carbon.
(3) The production method according to (1) or (2), wherein the content of water-soluble dietary fiber in the sugar condensate is 70% or more.
(4) The production method according to any one of (1) to (3), wherein the sugar condensation reaction is performed under a temperature condition of 100 ° C to 300 ° C.
(5) In step (B), step (B-1) (however, the low molecular fraction is subjected to a sugar condensation reaction together with one or more saccharides or derivatives thereof) and step (B-2) Is repeated two or more times, The manufacturing method in any one of said (1)-(4) characterized by the above-mentioned.
(6) The production method according to any one of (1) to (5), further comprising a step of reducing the produced sugar condensate.
(7) A sugar condensate produced by the production method according to any one of (1) to (6) or a reduced product thereof.
(8) A food or drink comprising the sugar condensate or the reduced product thereof according to (7).
(9) A sugar condensate or a reduced product thereof is produced by the production method according to any one of (1) to (6), and then the sugar condensate or the reduced product thereof is added to a food or drink or a raw material thereof. The manufacturing method of the food-drinks characterized by the above-mentioned.

本発明の製造方法によれば飲食品への利用価値の高い糖縮合物を、高い歩留りで製造することができることから、製造効率や製造コストの面で有利である。また、従来、糖縮合反応物から分離・除去された低分子画分はその多くが産業廃棄物として処理されていたが、本発明の製造方法によればこのような低分子画分を糖縮合反応の原料としてリサイクルできることから、本発明は省資源や環境負荷低減に資する発明であり、環境面でも有利である。   According to the production method of the present invention, a sugar condensate having a high utility value for food and drink can be produced with a high yield, which is advantageous in terms of production efficiency and production cost. Conventionally, most of the low molecular fraction separated and removed from the sugar condensation reaction product has been treated as industrial waste. However, according to the production method of the present invention, such a low molecular fraction is subjected to sugar condensation. Since it can be recycled as a raw material for the reaction, the present invention is an invention that contributes to resource saving and environmental load reduction, and is also advantageous in terms of the environment.

発明の具体的説明Detailed description of the invention

本発明の製造方法では、まず、工程(A)において、糖縮合反応により得られた糖縮合組成物やその酵素分解組成物を低分子画分と高分子画分に分け、次いで、得られた低分子画分を用いて工程(B−1)と工程(B−2)から構成されるリサイクル工程(B)を実施する。以下、工程(A)と工程(B−1)における糖縮合反応と、工程(A)と工程(B−2)における糖縮合組成物からの低分子画分の分離について説明する。   In the production method of the present invention, first, in step (A), the saccharide condensation composition obtained by the saccharide condensation reaction and the enzymatic degradation composition thereof were divided into a low molecular fraction and a high molecular fraction, and then obtained. The recycling process (B) comprised from a process (B-1) and a process (B-2) is implemented using a low molecular fraction. Hereinafter, the sugar condensation reaction in the step (A) and the step (B-1) and the separation of the low molecular fraction from the sugar condensation composition in the step (A) and the step (B-2) will be described.

糖縮合反応
本発明の製造方法では糖質またはその誘導体を糖縮合反応させて糖縮合物を製造する。
ここで、「糖縮合反応」とは、糖質同士を縮合重合させて糖縮合物を得る反応をいい、典型的には、2分子の糖質から水分子が離脱して糖質が重合するような反応をいう。
Sugar Condensation Reaction In the production method of the present invention, a saccharide or a derivative thereof is subjected to a sugar condensation reaction to produce a sugar condensate.
Here, the “sugar condensation reaction” refers to a reaction in which sugars are condensed and polymerized to obtain a sugar condensate. Typically, water molecules are released from two sugars and the sugars are polymerized. Such a reaction.

本発明では、1種または2種以上の糖質を基質に糖縮合反応を実施することができる。
糖縮合反応に付すことができる糖質には特に制限はなく、単糖、オリゴ糖、および多糖、並びにこれらの還元物のいずれをも用いることができるが、製造された糖縮合物を飲食品に利用することを意図している場合には飲食品として利用可能な糖質を用いることができる。また、加熱(糖縮合反応)時におけるケトース(フラクトース等)の著しい着色を考慮すると、糖縮合反応させる糖質は、グルコース、ガラクトース、マンノース、リボース、アラビノース、キシロース等のアルドースを構成糖とするものが好ましい。
In the present invention, a sugar condensation reaction can be carried out using one or more carbohydrates as a substrate.
There are no particular limitations on the carbohydrates that can be subjected to the sugar condensation reaction, and any of monosaccharides, oligosaccharides, and polysaccharides, and their reduced products can be used. When it is intended to be used for food, carbohydrates that can be used as food and drink can be used. In addition, considering the remarkable coloring of ketose (fructose, etc.) during heating (sugar condensation reaction), the sugar to be subjected to the sugar condensation reaction is composed of aldoses such as glucose, galactose, mannose, ribose, arabinose, xylose, etc. Is preferred.

本発明では、また、糖質の誘導体を糖縮合反応の基質に利用することができる。糖質の誘導体としては、糖酸などの酸化物、糖アルコールなどの還元物、アミノ糖、エーテル化糖、ハロゲン化糖、リン酸化糖などの修飾物が挙げられるが、製造された糖縮合物を飲食品に利用することを意図している場合には飲食品として利用可能な誘導体を用いることができる。例えば、ソルビトール、ガラクチトール、マンニトール、キシリトール、エリスリトール、マルチトール、ラクチトール、グルコサミン、グルコース−6−リン酸等が挙げられるが、飲食品として利用可能な糖質誘導体であれば特段制限は無い。   In the present invention, a carbohydrate derivative can also be used as a substrate for a sugar condensation reaction. Examples of carbohydrate derivatives include oxides such as sugar acids, reduced products such as sugar alcohols, and modified products such as amino sugars, etherified sugars, halogenated sugars, and phosphorylated sugars. When it is intended to be used for food and drink, derivatives that can be used as food and drink can be used. Examples include sorbitol, galactitol, mannitol, xylitol, erythritol, maltitol, lactitol, glucosamine, glucose-6-phosphate, and the like, but there is no particular limitation as long as it is a carbohydrate derivative that can be used as a food or drink.

本発明において「単糖」とはオリゴ糖や多糖の構成単位となる糖をいい、例えば、グルコース、ガラクトース、マンノース、リボース、アラビノース、キシロース、リキソース、エリトロース、フラクトース、プシコース等が挙げられるが、飲食品として利用可能な単糖であれば特段制限は無い。糖縮合反応時の着色を考慮すると、グルコース、ガラクトース、マンノース、リボース、アラビノース、キシロース等のアルドースが好ましい。   In the present invention, “monosaccharide” refers to a sugar that is a constituent unit of an oligosaccharide or polysaccharide, and examples thereof include glucose, galactose, mannose, ribose, arabinose, xylose, lyxose, erythrose, fructose, psicose, etc. There is no particular limitation as long as it is a monosaccharide that can be used as a product. In consideration of coloring during the sugar condensation reaction, aldoses such as glucose, galactose, mannose, ribose, arabinose and xylose are preferred.

本発明において「オリゴ糖」とは、2〜10個の単糖が結合した糖質をいい、例えば、マルトース、セロビオース、トレハロース、ゲンチオビオース、イソマルトース、ニゲロース、ソホロース、コージビオース、スクロース、ツラノース、ラクトース、キシロビオース、マルトオリゴ糖、イソマルトオリゴ糖、ニゲロオリゴ糖、キシロオリゴ糖、ゲンチオオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、マンノオリゴ糖、シクロデキストリン等が挙げられるが、飲食品として利用可能な糖質であれば特段制限は無い。   In the present invention, the “oligosaccharide” refers to a saccharide having 2 to 10 monosaccharides bound thereto, for example, maltose, cellobiose, trehalose, gentiobiose, isomaltose, nigerose, sophorose, cordobiose, sucrose, turanose, lactose, Examples include xylobiose, maltooligosaccharide, isomaltooligosaccharide, nigerooligosaccharide, xylooligosaccharide, gentiooligosaccharide, fructooligosaccharide, galactooligosaccharide, mannooligosaccharide, cyclodextrin, etc. .

本発明において「多糖」とは、単糖が11個以上結合した糖質をいい、例えば、澱粉、デキストリン、プルラン、デキストラン、アラビノキシラン、ペクチン、イヌリン、ガラクタン、マンナン、難消化性デキストリン、ポリデキストロース、等が挙げられるが、飲食品として利用可能な糖質であれば特段制限は無い。   In the present invention, “polysaccharide” refers to a saccharide having 11 or more monosaccharides bound thereto, such as starch, dextrin, pullulan, dextran, arabinoxylan, pectin, inulin, galactan, mannan, indigestible dextrin, polydextrose, However, there is no particular limitation as long as it is a carbohydrate that can be used as a food or drink.

本発明の製造方法では糖質全般が糖縮合反応の基質となりうるが、縮合基質として利用できる糖質を例示すると、グルコースや、グルコースとグルコース以外の単糖、グルコースの還元物、オリゴ糖、およびデキストリンからなる群から選択される1種または2種以上との組合せが挙げられ、これ以外にも、グルコース以外の単糖、オリゴ糖、および多糖を1種または2種以上組み合わせて糖縮合反応の基質としてもよい。また、澱粉分解物を糖縮合反応の基質として利用することもできる。   In the production method of the present invention, saccharides in general can serve as a substrate for a saccharide condensation reaction. Examples of saccharides that can be used as a condensation substrate include glucose, monosaccharides other than glucose and glucose, reduced products of glucose, oligosaccharides, and Examples thereof include combinations with one or more selected from the group consisting of dextrins, and in addition to these, one or two or more monosaccharides other than glucose, oligosaccharides, and polysaccharides are combined to perform the sugar condensation reaction. It may be a substrate. In addition, a starch degradation product can be used as a substrate for a sugar condensation reaction.

また、本発明の製造方法では、糖縮合反応の基質は結晶化した糖質および/または非結晶性の糖質粉末であっても、シロップ状の糖質であってもよい。本発明の製造方法で糖縮合反応の基質として利用できるシロップ状の糖質としては、糖質の水溶液であれば特に制限はないが、縮合反応においては低水分量である事が好ましい。   In the production method of the present invention, the substrate for the sugar condensation reaction may be a crystallized saccharide and / or a non-crystalline saccharide powder, or a syrup-like saccharide. The syrup-like saccharide that can be used as a substrate for the saccharide condensation reaction in the production method of the present invention is not particularly limited as long as it is an aqueous solution of saccharide, but preferably has a low water content in the condensation reaction.

本発明の製造方法において、糖縮合反応は無触媒下で行っても、触媒存在下で行ってもよいが、その反応効率の点から触媒存在下で行うのが好ましい。糖縮合反応用触媒としては、特に制限は無いが、無機酸、有機酸、鉱物性物質、活性炭等が挙げられ、製造された糖縮合物を食品に利用することを考慮すると、厚生労働省による食品添加物リストに記載された素材が好ましい。また、各種触媒を組み合わせて使用してもよい。   In the production method of the present invention, the sugar condensation reaction may be performed in the absence of a catalyst or in the presence of a catalyst, but it is preferably performed in the presence of a catalyst from the viewpoint of the reaction efficiency. The catalyst for the sugar condensation reaction is not particularly limited, and examples thereof include inorganic acids, organic acids, mineral substances, activated carbon, and the like. Materials listed in the additive list are preferred. Further, various catalysts may be used in combination.

触媒として使用できる無機酸としては、塩酸、リン酸、硫酸、硝酸等が挙げられる。また、触媒として使用できる有機酸としては、クエン酸、フマル酸、酒石酸、コハク酸、酢酸等が挙げられる。触媒として使用できる鉱物性物質としては、珪藻土、活性白土、酸性白土、ベントナイト、カオリナイト、タルク等が挙げられる。触媒として使用できる活性炭としては、水蒸気炭、塩化亜鉛炭、スルホン化活性炭、酸化活性炭等が挙げられ、その形状も粒状、粉末状、繊維状、板状、ハニカム状等特に制限は無い。   Examples of inorganic acids that can be used as the catalyst include hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid and the like. Examples of the organic acid that can be used as the catalyst include citric acid, fumaric acid, tartaric acid, succinic acid, and acetic acid. Examples of the mineral substance that can be used as the catalyst include diatomaceous earth, activated clay, acidic clay, bentonite, kaolinite, talc and the like. Examples of the activated carbon that can be used as the catalyst include steam charcoal, zinc chloride charcoal, sulfonated activated carbon, oxidized activated carbon, and the like, and the shape thereof is not particularly limited, such as granular, powdery, fibrous, plate-like, and honeycomb-like.

本発明の製造方法において、活性炭を糖縮合反応の触媒として用いる場合には、糖縮合反応を100℃以上、好ましくは、基質となる糖質の融点以上の温度で実施することができるが、反応効率の観点から100℃〜300℃、好ましくは、100℃〜280℃、より好ましくは、170℃〜280℃の温度範囲で実施することができる。反応時間は縮合反応の進行度合いに従って調整できるが、反応産物中の難消化性画分の割合が75%以上となるように調整した場合には、例えば、反応温度180℃で5〜180分、反応温度190℃で1〜180分、反応温度200℃で1〜180分とすることができる。反応機器の構造は常圧方式または減圧方式によりことなるが、100℃から300℃の加熱条件を満たす機械であれば特に制限はない。例えば、棚式熱風乾燥機、薄膜式蒸発器、フラッシュエバポレーター、減圧乾燥機、熱風乾燥機、スチームジャケットスクリューコンベヤー、ドラムドライヤー、エクストルーダー、ウォームシャフト反応機、ニーダーなどが挙げられる。また、反応機器は連続化も可能である。   In the production method of the present invention, when activated carbon is used as a catalyst for the sugar condensation reaction, the sugar condensation reaction can be carried out at 100 ° C. or higher, preferably at a temperature higher than the melting point of the saccharide serving as a substrate. From the viewpoint of efficiency, it can be carried out in a temperature range of 100 ° C. to 300 ° C., preferably 100 ° C. to 280 ° C., more preferably 170 ° C. to 280 ° C. The reaction time can be adjusted according to the degree of progress of the condensation reaction. When the ratio of the indigestible fraction in the reaction product is adjusted to 75% or more, for example, the reaction temperature is 180 ° C. for 5 to 180 minutes, The reaction temperature can be 190 ° C for 1 to 180 minutes, and the reaction temperature 200 ° C for 1 to 180 minutes. The structure of the reaction equipment varies depending on the atmospheric pressure method or the reduced pressure method, but there is no particular limitation as long as it is a machine that satisfies the heating condition of 100 ° C. to 300 ° C. Examples thereof include a shelf hot air dryer, a thin film evaporator, a flash evaporator, a vacuum dryer, a hot air dryer, a steam jacket screw conveyor, a drum dryer, an extruder, a worm shaft reactor, and a kneader. Also, the reaction equipment can be continuous.

本発明の製造方法では糖縮合反応を常圧条件下あるいは減圧条件下で実施することができる。糖縮合反応を減圧条件下で実施した場合には反応生成物の着色度が低下するため有利である。   In the production method of the present invention, the sugar condensation reaction can be carried out under normal pressure conditions or under reduced pressure conditions. When the sugar condensation reaction is carried out under reduced pressure, it is advantageous because the coloring degree of the reaction product is lowered.

本発明により製造される「糖縮合物」は、糖質を無触媒下または各種触媒存在下で加熱処理し、縮合反応させることで得られる糖の重合体をいい、二以上の重合度のものであればその構造や構成糖は特に限定されない。縮合反応により得られる前記糖縮合物は、その糖残基の結合様式がランダムであるため、消化酵素による加水分解を受けにくく、食物繊維としての機能を有する。本発明により製造される「糖縮合物」としては、塩酸存在下で澱粉を加水分解・縮合反応させて得られる「焙焼デキストリン」、前記焙焼デキストリンを酵素処理することで得られる「難消化性デキストリン」、グルコースおよびソルビトールをクエン酸存在下で縮合させて得られる「ポリデキストロース」等が挙げられる。   The “sugar condensate” produced by the present invention refers to a sugar polymer obtained by subjecting a sugar to a heat treatment in the absence of a catalyst or in the presence of various catalysts to cause a condensation reaction, and has a degree of polymerization of two or more. If so, the structure and constituent sugars are not particularly limited. Since the sugar condensate obtained by the condensation reaction has a random linkage mode of sugar residues, it is not easily hydrolyzed by digestive enzymes and has a function as dietary fiber. The “sugar condensate” produced according to the present invention includes “roasted dextrin” obtained by hydrolyzing and condensing starch in the presence of hydrochloric acid, and “hard digestion” obtained by enzymatic treatment of the roasted dextrin. And “polydextrose” obtained by condensing glucose and sorbitol in the presence of citric acid.

本発明の製造方法では、糖縮合反応により得られた糖縮合物組成物をそのまま低分子画分の分離手順に付してもよいが、食物繊維含量を増加させる観点から糖縮合組成物を糖質分解酵素で処理して酵素分解物組成物を得、その酵素分解物組成物から低分子画分を分離してもよい。   In the production method of the present invention, the sugar condensate composition obtained by the sugar condensation reaction may be subjected to the procedure for separating the low molecular fraction as it is, but from the viewpoint of increasing the dietary fiber content, An enzyme degradation product composition may be obtained by treatment with a degrading enzyme, and a low molecular fraction may be separated from the enzyme degradation product composition.

使用する糖質分解酵素としては特に制限は無いが、例えば、α−アミラーゼ、β−アミラーゼ、グルコアミラーゼ、イソアミラーゼ、プルラナーゼ、アミログルコシダーゼ、α−グルコシダーゼ、シクロデキストリングルカノトランスフェラーゼ、β−グルコシダーゼ、β−ガラクトシダーゼ、β−マンノシダーゼ、β−フルクトシダーゼ、セロビアーゼ、ゲンチオビアーゼ等を挙げることができ食品として利用可能な酵素であれば特段制限は無い。食物繊維含量を高めるという点から、α−アミラーゼ、アミログルコシダーゼを用いることが好ましく、また、ゲンチオビオース等の苦味物質を分解して味質を改善するという点から、β−グルコシダーゼを用いるのが好ましく、さらに好ましくは、これら酵素の市販品が挙げられる。酵素処理時の基質濃度、反応温度、反応時間等は使用する酵素の特性に合わせて適宜調整すればよい。上記酵素処理により、糖縮合物中の易消化性部位を除去することができるので、糖縮合物の食物繊維含量を高めることができる。また、上記酵素分解により生じた低分子画分は以下に説明する低分子画分の分離手順により取り除くことができる。   The saccharide-degrading enzyme to be used is not particularly limited. For example, α-amylase, β-amylase, glucoamylase, isoamylase, pullulanase, amyloglucosidase, α-glucosidase, cyclodextrin glucanotransferase, β-glucosidase, β -Galactosidase, β-mannosidase, β-fructosidase, cellobiase, gentiobiase and the like can be mentioned, and there is no particular limitation as long as it is an enzyme that can be used as a food. From the viewpoint of increasing the dietary fiber content, α-amylase and amyloglucosidase are preferably used, and from the viewpoint of improving taste quality by degrading bitter substances such as gentiobiose, β-glucosidase is preferably used. More preferably, the commercial item of these enzymes is mentioned. The substrate concentration, reaction temperature, reaction time, etc. during the enzyme treatment may be appropriately adjusted according to the characteristics of the enzyme used. Since the digestible site in the sugar condensate can be removed by the enzyme treatment, the dietary fiber content of the sugar condensate can be increased. Moreover, the low molecular fraction produced by the above enzymatic degradation can be removed by the separation procedure of the low molecular fraction described below.

本発明の製造方法で得られた糖縮合物は糖アルコールのような還元物に変換してもよい。本発明において糖アルコールとは、糖の還元末端のグルコシル基のアルデヒド基が還元され、水酸基となっているものを言う。糖縮合物を糖アルコールに変換するタイミングは、糖縮合反応後(低分子画分の分離前)でも良く、低分子画分の分離後でも良い。   The sugar condensate obtained by the production method of the present invention may be converted into a reduced product such as a sugar alcohol. In the present invention, the sugar alcohol is a sugar alcohol in which the aldehyde group of the glucosyl group at the reducing end of the sugar is reduced to form a hydroxyl group. The timing for converting the sugar condensate into the sugar alcohol may be after the sugar condensation reaction (before separation of the low molecular fraction) or after separation of the low molecular fraction.

糖アルコールを得る方法は当業者に周知であり、使用可能な還元方法を例示すれば、ヒドリド還元剤を用いる方法、プロトン性溶媒中の金属を用いる方法、電解還元方法、接触水素化反応方法等が挙げられる。本発明においては、少量の糖アルコールを調製する場合にはヒドリド還元剤を用いる方法が簡便且つ特殊な装置を必要とせず便利であり、一方で、工業的に大規模に実施する場合には、経済性に優れ、副生成物も少ないという点から、接触水素化反応を用いる方法が好ましい。   Methods for obtaining sugar alcohols are well known to those skilled in the art, and examples of usable reduction methods include a method using a hydride reducing agent, a method using a metal in a protic solvent, an electrolytic reduction method, a catalytic hydrogenation reaction method, etc. Is mentioned. In the present invention, when preparing a small amount of sugar alcohol, the method using a hydride reducing agent is convenient and convenient without requiring a special device, while on the other hand, when carried out industrially on a large scale, A method using a catalytic hydrogenation reaction is preferable because it is economical and has few by-products.

接触水素化反応とは、触媒の存在下、不飽和有機化合物の二重結合部に水素を添加する反応であり、一般に水添反応とも言われている。本発明による糖アルコールの製造方法を具体的に説明すると、本発明において用いる糖縮合物を水に溶解し、そこにラネーニッケル触媒を適量加え、水素ガスを添加し、高温条件下で還元する。次に、脱色・脱イオン処理して、糖縮合物還元糖組成物を得る。   The catalytic hydrogenation reaction is a reaction in which hydrogen is added to a double bond portion of an unsaturated organic compound in the presence of a catalyst, and is generally also referred to as a hydrogenation reaction. The sugar alcohol production method according to the present invention will be described in detail. The sugar condensate used in the present invention is dissolved in water, an appropriate amount of Raney nickel catalyst is added thereto, hydrogen gas is added, and reduction is performed under high temperature conditions. Next, decolorization / deionization treatment is performed to obtain a sugar condensate-reducing sugar composition.

本発明の製造方法では、得られた糖縮合物を必要に応じて活性炭により脱色させたもの、適当なイオン交換樹脂によりイオン性成分を除去したものを濃縮してもよい。保存性やその後の用途においては、脱色、イオン除去したものを微生物の繁殖が問題とならない程度の水分活性となるまで濃縮することが好適である。あるいは、用途によっては利用しやすいように、乾燥させて、粉末とすることもできる。乾燥は、通常、凍結乾燥あるいは噴霧乾燥やドラム乾燥などの方法が利用できる。乾燥物は、必要により粉砕することが望ましい。   In the production method of the present invention, the obtained sugar condensate may be concentrated by decolorizing with activated carbon as necessary, or by removing an ionic component with an appropriate ion exchange resin. In the storage and subsequent use, it is preferable to concentrate the decolorized and ion-removed product until the water activity is such that the propagation of microorganisms does not become a problem. Or it can also be dried and made into a powder so that it may be easy to utilize depending on a use. For drying, a method such as freeze drying, spray drying or drum drying can be used. The dried product is desirably pulverized as necessary.

低分子画分の分離
本発明の製造方法では、糖縮合物組成物やその酵素分解組成物から低分子画分を分離するが、その分離方法は当業者に周知の手段を利用すればよく、膜分離、ゲルろ過クロマトグラフィー、カーボン−セライトカラムクロマトグラフィー、強酸性陽イオン交換カラムクロマトグラフィー、エタノール沈殿、溶媒沈殿など当業者に周知の糖質の精製方法を使用できる。
Separation of low molecular fraction In the production method of the present invention, a low molecular fraction is separated from a sugar condensate composition or an enzymatic degradation composition thereof, and the separation method may use means well known to those skilled in the art. Methods for purifying carbohydrates well known to those skilled in the art such as membrane separation, gel filtration chromatography, carbon-celite column chromatography, strong acid cation exchange column chromatography, ethanol precipitation, and solvent precipitation can be used.

本発明の製造方法で得られる低分子画分は、糖縮合物組成物に含まれる重合度9以下の糖質を固形分換算で50%以上含んでなるものである。重合度9以下の糖質としては、単糖類、二糖〜九糖を含むオリゴ糖類および無水糖が挙げられ、更には糖加熱分解物が含まれる。上記無水糖とは、ヘキソースまたはフラノースが分子内脱水した糖質であり、1,6−アンハイドロ−β−D−グルコピラノース(無水ピラノース)、1,6−アンハイドロ−β−D−グルコフラノース(無水フラノース)が例示される。上記低分子画分には、また、未反応の糖縮合反応の原料糖質、縮合反応により生じたオリゴ糖・無水糖(糖縮合反応生成物)、原料糖質の分解物さらに前記酵素分解処理により生じた単糖・オリゴ糖等が含まれている。なお、上記低分子画分は、酵素−HPLC法による食物繊維量の算出方法を考慮すると、重合度2以下の糖質(すなわち、単糖、二糖、無水糖および糖加熱分解物)を含むものとすることが望ましく、この場合、糖縮合物組成物やその酵素分解組成物から得られた低分子画分に重合度2以下の糖質が固形分換算で30%以上含まれるように調整することが好ましく、より好ましくは、固形分換算で50%以上、より一層好ましくは、固形分換算で70%以上、特に好ましくは、固形分換算で80%以上、最も好ましくは固形分換算で90%以上含まれるように調整することができる。   The low molecular fraction obtained by the production method of the present invention comprises 50% or more of a saccharide having a polymerization degree of 9 or less contained in the sugar condensate composition in terms of solid content. Examples of the saccharide having a polymerization degree of 9 or less include monosaccharides, oligosaccharides including disaccharides to nine sugars, and anhydrous sugars, and further include sugar-hydrolyzed decomposition products. The above-mentioned anhydrous sugar is a saccharide obtained by intramolecular dehydration of hexose or furanose, and 1,6-anhydro-β-D-glucopyranose (anhydropyranose), 1,6-anhydro-β-D-glucofuranose. (Anhydrofuranose) is exemplified. The low-molecular-weight fraction includes an unreacted raw material sugar of the sugar condensation reaction, an oligosaccharide / anhydrosugar (sugar condensation reaction product) generated by the condensation reaction, a decomposition product of the raw sugar, and the enzyme decomposition treatment. Monosaccharides and oligosaccharides produced by The above low molecular fraction contains carbohydrates having a degree of polymerization of 2 or less (that is, monosaccharides, disaccharides, anhydrous sugars, and sugar thermal decomposition products) in consideration of the method for calculating the amount of dietary fiber by the enzyme-HPLC method. In this case, the low molecular fraction obtained from the sugar condensate composition or its enzymatic degradation composition should be adjusted so that a saccharide having a polymerization degree of 2 or less is contained in an amount of 30% or more in terms of solid content. More preferably, 50% or more in terms of solid content, still more preferably 70% or more in terms of solid content, particularly preferably 80% or more in terms of solid content, most preferably 90% or more in terms of solid content Can be adjusted to be included.

本発明の製造方法により得られる糖縮合物は、非食物繊維画分を多く含む低分子画分を分離除去し再度縮合させる工程を経るため、水溶性食物繊維含量が高いという特徴を有する。水溶性食物繊維含量は後記実施例に示される高速液体クロマトグラフ法(酵素−HPLC法)により測定することができる。本発明の製造方法により得られる糖縮合物の食物繊維含量に特に制限は無いが、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上である。   The sugar condensate obtained by the production method of the present invention is characterized by having a high water-soluble dietary fiber content because it undergoes a step of separating and removing a low molecular fraction containing a large amount of non-dietary fiber fractions and condensing again. The water-soluble dietary fiber content can be measured by a high performance liquid chromatographic method (enzyme-HPLC method) shown in the examples described later. Although there is no restriction | limiting in particular in the dietary fiber content of the sugar condensate obtained by the manufacturing method of this invention, Preferably it is 70% or more, More preferably, it is 80% or more, Most preferably, it is 90% or more.

以下、本発明の製造方法の各工程についてより具体的に説明する。   Hereinafter, each process of the manufacturing method of this invention is demonstrated more concretely.

工程(A)
本発明の製造方法では、まず、工程(A)を行って糖縮合物組成物またはその酵素分解組成物を、低分子画分とそれ以外の画分、すなわち、高分子画分に分ける。得られた低分子画分は工程(B)の工程(B−1)において糖縮合反応の原料として用いられる。一方で、糖縮合物組成物またはその酵素分解組成物から低分子画分が分離された後の残りの画分は、食物繊維が豊富な高分子画分であり、工程(B)の工程(B−2)で得られた高分子画分とともに、最終生産物である糖縮合物またはその還元物を含む。
Step (A)
In the production method of the present invention, first, the step (A) is performed to divide the sugar condensate composition or the enzymatic degradation composition thereof into a low molecular fraction and other fractions, that is, a high molecular fraction. The obtained low molecular weight fraction is used as a raw material for the sugar condensation reaction in the step (B-1) of the step (B). On the other hand, the remaining fraction after the low-molecular-weight fraction is separated from the sugar condensate composition or the enzymatic degradation composition thereof is a high-molecular fraction rich in dietary fiber, and the step (B) ( In addition to the polymer fraction obtained in B-2), the final product is a sugar condensate or a reduced product thereof.

糖縮合物組成物を得るために実施した工程(A)の糖縮合反応は、工程(B−1)で実施する糖縮合反応と同じであっても、異なっていてもよい。工程(A)と工程(B−1)の糖縮合反応が異なる例としては、例えば、両工程の原料が異なる場合や、両工程の反応触媒が異なる場合が挙げられる。また、工程(A)では、糖縮合反応により得られた糖縮合物組成物を入手し、低分子画分と高分子画分に分画しても良く、具体的には、難消化性デキストリン(例えば、パインファイバー、ファイバーソル2(いずれも松谷化学工業社製))やポリデキストロース(例えば、ライテス、ライテスII(いずれもダニスコジャパン社製))等の市販の糖縮合物組成物を入手して低分子画分と高分子画分に分画しても良い。   The sugar condensation reaction in the step (A) carried out to obtain the sugar condensate composition may be the same as or different from the sugar condensation reaction carried out in the step (B-1). Examples of the difference in the sugar condensation reaction between the step (A) and the step (B-1) include, for example, a case where the raw materials in both steps are different and a case where the reaction catalysts in both steps are different. In step (A), a sugar condensate composition obtained by a sugar condensation reaction may be obtained and fractionated into a low molecular fraction and a high molecular fraction. (For example, pine fiber, fiber sol 2 (both manufactured by Matsutani Chemical Co., Ltd.)) and polydextrose (for example, lites, lites II (both manufactured by Danisco Japan)) and other commercially available sugar condensate compositions are obtained. And may be fractionated into a low molecular fraction and a high molecular fraction.

工程(B−1)
本発明の製造方法の工程(B)はリサイクル工程であり、工程(B−1)と工程(B−2)から構成されている。工程(B−1)では、低分子画分を再度、糖縮合反応に付して糖縮合物を得る。具体的には、低分子画分は単独で糖縮合反応に付すか、あるいは、糖縮合反応効率の観点から、糖縮合反応の原料である1種または2種以上の糖質またはその誘導体と一緒に糖縮合反応させる。後者の場合、低分子画分と1種または2種以上の糖質またはその誘導体とを混合して糖縮合反応させることができる。工程(A)で得られた低分子画分を再度、糖縮合反応に付すプロセスフローは図1に示される通りである。また、原料糖質が多糖である場合には原料糖質を加水分解反応に付してから糖縮合反応を行ってもよい。原料糖質を加水分解反応に付して糖縮合反応を行う場合のプロセスフローは図2に示される通りである。
Step (B-1)
The process (B) of the production method of the present invention is a recycling process, and includes a process (B-1) and a process (B-2). In the step (B-1), the low molecular fraction is again subjected to a sugar condensation reaction to obtain a sugar condensate. Specifically, the low molecular weight fraction is subjected to a sugar condensation reaction alone, or together with one or more saccharides or derivatives thereof, which are raw materials for the sugar condensation reaction, from the viewpoint of the efficiency of the sugar condensation reaction. To sugar condensation reaction. In the latter case, the low molecular fraction can be mixed with one or more saccharides or derivatives thereof to cause a saccharide condensation reaction. The process flow for subjecting the low molecular fraction obtained in step (A) to the sugar condensation reaction again is as shown in FIG. In addition, when the raw sugar is a polysaccharide, the sugar condensation reaction may be performed after subjecting the raw sugar to a hydrolysis reaction. The process flow in the case of performing the sugar condensation reaction by subjecting the raw sugar to the hydrolysis reaction is as shown in FIG.

工程(B−1)で低分子画分を糖縮合反応に付する場合には、低分子画分をそのまま糖縮合反応させるか、あるいは、そのまま原料糖質に添加して糖縮合反応させてもよいが、その後の糖縮合反応効率や着色抑制の観点から、低分子画分を固形分濃度15〜99%とした後に用いることが好ましく、固形分濃度50〜99%とした後に用いることがより好ましい。低分子画分の固形分濃度調整方法には特に制限は無く、濃縮処理により固形分濃度を上昇させてもよく、シラップ、糖質懸濁液、水飴、粉飴、結晶糖質、粉末糖質と混合することで固形分濃度を上昇させても良い。   When the low molecular fraction is subjected to a sugar condensation reaction in the step (B-1), the low molecular fraction may be subjected to a sugar condensation reaction as it is, or may be added to a raw material sugar as it is and subjected to a sugar condensation reaction. However, from the viewpoint of subsequent sugar condensation reaction efficiency and suppression of coloration, the low molecular fraction is preferably used after the solid content concentration of 15 to 99%, more preferably after the solid content concentration of 50 to 99%. preferable. There is no particular limitation on the method for adjusting the solid content concentration of the low molecular weight fraction, and the solid content concentration may be increased by concentration treatment. Syrup, sugar suspension, starch syrup, powdered rice cake, crystalline sugar, powdered sugar You may raise solid content concentration by mixing with.

工程(B−1)の糖縮合反応は、工程(A)の糖縮合反応と同じであっても、異なっていてもよい。工程(A)で得られた低分子画分を、工程(A)とは異なる糖縮合反応に付すプロセスフローは図3に示される通りである。また、本発明の製造方法では後述のように工程(B−1)および工程(B−2)を2回以上繰り返してもよいが、その場合に、それぞれの工程(B−1)の糖縮合反応は同一であっても異なっていてもよい。糖縮合反応が異なる例としては、例えば、両工程の原料が異なる場合や、両工程の反応触媒が異なる場合が挙げられる。   The sugar condensation reaction in the step (B-1) may be the same as or different from the sugar condensation reaction in the step (A). A process flow in which the low molecular fraction obtained in the step (A) is subjected to a sugar condensation reaction different from that in the step (A) is as shown in FIG. In the production method of the present invention, the step (B-1) and the step (B-2) may be repeated twice or more as described later. In that case, the sugar condensation in each step (B-1) is performed. The reactions may be the same or different. Examples of different sugar condensation reactions include the case where the raw materials in both steps are different and the case where the reaction catalysts in both steps are different.

工程(B−2)
本発明の製造方法の工程(B)を構成する工程(B−2)では、工程(B−1)で得られた糖縮合物組成物やその酵素分解組成物から低分子画分を分離する。工程(B−1)および工程(B−2)を2回以上繰り返す場合には、工程(B−2)で得られた低分子画分は工程(B−1)において糖縮合反応の原料として用いられる。一方で、糖縮合物組成物またはその酵素分解組成物から低分子画分が分離された後の残りの画分は食物繊維が豊富な高分子画分であり、最終生産物である糖縮合物またはその還元物を含む。従って、工程(B−2)で得られた高分子画分を工程(A)で得られた糖縮合物等と一緒にして最終生産物である糖縮合物またはその還元物とすることができる。
Step (B-2)
In the step (B-2) constituting the step (B) of the production method of the present invention, the low molecular fraction is separated from the sugar condensate composition obtained in the step (B-1) and the enzymatic decomposition composition thereof. . When the step (B-1) and the step (B-2) are repeated twice or more, the low molecular fraction obtained in the step (B-2) is used as a raw material for the sugar condensation reaction in the step (B-1). Used. On the other hand, the remaining fraction after the low molecular fraction is separated from the sugar condensate composition or its enzymatic degradation composition is a high molecular fraction rich in dietary fiber, and the sugar condensate that is the final product Or a reduced product thereof. Therefore, the polymer fraction obtained in the step (B-2) can be combined with the sugar condensate obtained in the step (A) to obtain a sugar condensate as a final product or a reduced product thereof. .

工程(B−2)の低分子画分の分離手順は、工程(A)の手順と同じであっても、異なっていてもよい。また、本発明の製造方法では後述のように工程(B−1)および工程(B−2)を2回以上繰り返してもよいが、その場合に、それぞれの工程(B−2)の低分子画分の分離手順は同一であっても異なっていてもよい。   The separation procedure of the low molecular fraction in the step (B-2) may be the same as or different from the procedure in the step (A). Further, in the production method of the present invention, the step (B-1) and the step (B-2) may be repeated twice or more as described later. In that case, the low molecule of each step (B-2) The separation procedure of the fractions may be the same or different.

本発明の製造方法では、工程(B−2)が最終工程に当たる場合には、工程(B−2)を省略してもよい。すなわち、工程(B)を1回行う場合には、工程(B−2)を行わず、工程(B−1)のみを行って工程(B)を終了させてもよい。また、後述のように、工程(B)を2回以上繰り返す場合には、工程(B−1)および工程(B−2)の繰り返しの最終段階で、工程(B−2)を行わず、工程(B−1)のみを行って工程(B)を終了させてもよい。これらの場合には、工程(B−1)で得られた反応産物を工程(A)や工程(B−2)で得られた糖縮合物等と一緒にして最終生産物である糖縮合物またはその還元物とすることができる。   In the production method of the present invention, when the step (B-2) corresponds to the final step, the step (B-2) may be omitted. That is, when the step (B) is performed once, the step (B-2) may be completed by performing only the step (B-1) without performing the step (B-2). As will be described later, when the step (B) is repeated twice or more, the step (B-2) is not performed at the final stage of the repetition of the step (B-1) and the step (B-2). Only the step (B-1) may be performed to end the step (B). In these cases, the reaction product obtained in step (B-1) is combined with the sugar condensate obtained in step (A) or step (B-2), etc., and the sugar condensate that is the final product. Or it can be set as the reduced product.

工程(B−1)および工程(B−2)の繰り返し
本発明の製造方法では、工程(B−1)および工程(B−2)を2回以上繰り返し実施することができる。工程(B−1)および工程(B−2)を2回以上繰り返し実施することにより高い歩留りで糖縮合物を製造することができる。繰り返し数は特に限定されないが、高い歩留り率を達成するとともに、低コストと低環境負荷を目指す場合には、工程(A)を実施した後に工程(B)を5回以上実施することが好ましく、より好ましくは10回以上である。
Repeating Step (B-1) and Step (B-2) In the production method of the present invention, the step (B-1) and the step (B-2) can be repeated twice or more. By repeating step (B-1) and step (B-2) two or more times, a sugar condensate can be produced with a high yield. The number of repetitions is not particularly limited, but when achieving a high yield rate and aiming for low cost and low environmental load, it is preferable to perform step (B) five times or more after performing step (A), More preferably, it is 10 times or more.

工程(B−1)および工程(B−2)の2回以上の繰り返しは具体的には以下のように実施することができる。まず、糖縮合反応により得られた糖縮合組成物から低分子画分を分離するとともに高分子画分を得る(工程(A))。次に、該低分子画分を原料糖質に加えて糖縮合反応(1サイクル目の工程(B−1))を実施し、得られた糖縮合組成物から低分子画分を分離するとともに高分子画分を得る(1サイクル目の工程(B−2))。次に、1サイクル目の工程(B−2)で得られた低分子画分を原料糖質に加えて糖縮合反応(2サイクル目の工程(B−1))を実施し、得られた糖縮合組成物から低分子画分を分離するとともに高分子画分を得る(2サイクル目の工程(B−2))。3サイクル目以降は2サイクル目と同様に実施することができる。なお、前述の通り、工程(B−1)および工程(B−2)の繰り返しの最終段階で、工程(B−2)を行わず、工程(B−1)のみを行って工程(B)を終了させてもよい。上記で説明した工程(B−1)および工程(B−2)の2回以上の繰り返し工程では、工程(A)で得られた低分子画分及び工程(B−2)で得られた低分子画分の一部または全部を工程(B−1)において単独で糖縮合反応させてもよい。   Specifically, the step (B-1) and the step (B-2) can be repeated two or more times as follows. First, a low molecular fraction is separated from a sugar condensation composition obtained by a sugar condensation reaction, and a polymer fraction is obtained (step (A)). Next, the low molecular fraction is added to the raw sugar, and a sugar condensation reaction (step (B-1) in the first cycle) is performed, and the low molecular fraction is separated from the obtained sugar condensation composition. A polymer fraction is obtained (first cycle step (B-2)). Next, the low molecular fraction obtained in the process (B-2) in the first cycle was added to the raw material carbohydrate, and the sugar condensation reaction (the process (B-1) in the second cycle) was performed. A low molecular fraction is separated from the sugar condensation composition and a high molecular fraction is obtained (step (B-2) in the second cycle). The third and subsequent cycles can be performed in the same manner as the second cycle. As described above, in the final stage of the repetition of the step (B-1) and the step (B-2), the step (B-1) is not performed, the step (B-1) is performed, and the step (B) is performed. May be terminated. In the two or more repeated steps of the step (B-1) and the step (B-2) described above, the low molecular fraction obtained in the step (A) and the low molecular fraction obtained in the step (B-2) are obtained. A part or all of the molecular fraction may be subjected to a sugar condensation reaction alone in the step (B-1).

糖縮合物の用途
本発明の製造方法で得られた糖縮合物および/またはその還元物は、水溶性食物繊維であり、機能性素材や賦形剤・増量剤として種々の飲食品に添加することができる。従って、本発明によれば、本発明の製造方法で得られた糖縮合物またはその還元物を含有させてなる、飲食品が提供される。本発明によれば、また、本発明の製造方法により糖縮合物またはその還元物を製造し、次いで、該糖縮合物またはその還元物を飲食品またはその原料に添加することを特徴とする、飲食品の製造方法が提供される。
Use of sugar condensate The sugar condensate obtained by the production method of the present invention and / or its reduced product is a water-soluble dietary fiber, and is added to various foods and drinks as a functional material, excipient, and bulking agent. be able to. Therefore, according to this invention, the food / beverage products which contain the sugar condensate obtained by the manufacturing method of this invention, or its reduced product are provided. According to the present invention, a sugar condensate or a reduced product thereof is produced by the production method of the present invention, and then the sugar condensate or a reduced product thereof is added to a food or drink or a raw material thereof. A method for producing a food or drink is provided.

本発明の製造方法で得られた糖縮合物等を添加することができる飲食品としては、具体的には、各種調味料類(醤油、味噌、もろみ、塩麹、ひしお、フリカケ、マヨネーズ、ドレッシング、食酢、三杯酢、粉末すし酢、中華の素、天つゆ、麺つゆ、ダシつゆ、ソース、ケチャップ、焼き肉のタレ、浅漬け用調味液、カレールウ、シチューの素、スープの素、ダシの素、うま味調味料、複合調味料、みりん、みりん風調味料、水飴、粉飴、テーブルシュガー)、各種和菓子類(せんべい、あられ、おこし、求肥、餅類、まんじゅう、どら焼き、ういろう、餡類、羊羹、水羊羹、錦玉、カステラ、飴玉)、各種洋菓子類(パン、ビスケット、クラッカー、クッキー、パイ、ドーナツ、蒸しケーキ、プリン、ゼリー、バタークリーム、カスタードクリーム、シュークリーム、ワッフル、スポンジケーキ、チョコレート、チューインガム、キャラメル、ヌガー、キャンディー、シロップ類)、各種氷菓(アイスクリーム、シャーベット、ジェラート、かき氷)、各種ペースト状食品(フラワーペースト、ピーナッツペースト、マーガリン、フルーツペースト)、果物・野菜加工品(ジャム、マーマレード、シロップ漬、糖果、漬物)、食肉加工品(ハム、ソーセージ、サラミ、魚肉ハム、魚肉ソーセージ、カマボコ、チクワ、塩辛、さきイカ、干物)、各種乳製品(チーズ、ヨーグルト、バター)、各種惣菜食品、各種瓶詰・缶詰類、各種ミックス粉類(ホットケーキミックス、バッターミックス)、各種炭水化物類(パン、麺、米飯、餅)、各種飲料(果汁含有飲料、果汁ジュース、野菜ジュース、サイダー、ジンジャーエール、アイソトニック飲料、アミノ酸飲料、コーヒー飲料、緑茶、紅茶、ウーロン茶、麦茶、乳酸飲料、ココア、ビール、発泡酒、第三のビール、ノンアルコール飲料、ビール風味飲料、リキュール、チューハイ、清酒、果実酒、蒸留酒、栄養ドリンク、健康飲料、粉末飲料)が挙げられる。さらに、その水溶性食物繊維としての機能を利用して健康食品(例えば、特定保健用食品、栄養機能食品、栄養補助食品)、機能性食品、病者用食品等として利用することもできる。その形態としては、錠剤、液剤、カプセル(軟カプセル、硬カプセル)、粉末、顆粒、スティック、ゼリーなどが例示される。   Specific examples of foods and drinks to which the sugar condensate obtained by the production method of the present invention can be added include various seasonings (soy sauce, miso, moromi, salted salmon, hashio, flicker, mayonnaise, Dressing, vinegar, three cups of vinegar, powdered sushi vinegar, Chinese soup, tsutsuyu, noodle soup, dashi soup, sauce, ketchup, grilled meat sauce, seasoning solution for pickles, curry roux, stew soup, soup stock, dashi soup, umami Seasoning, compound seasoning, mirin, mirin-style seasoning, syrup, powdered rice cake, table sugar), various Japanese confectionery (senbei, arabe, okoshi, fertilizer, rice cake, manju, dorayaki, seaweed, rice cake, Water sheep, brocade, castella, jasper), various pastries (bread, biscuits, crackers, cookies, pie, donuts, steamed cake, pudding, jelly, butter cream, custard Cream, waffle, sponge cake, chocolate, chewing gum, caramel, nougat, candy, syrup), various ice confectionery (ice cream, sorbet, gelato, shaved ice), various pasty foods (flower paste, peanut paste, margarine, Fruit paste), processed fruits / vegetables (jam, marmalade, syrup pickles, sugar cane, pickles), processed meat products (ham, sausage, salami, fish ham, fish sausage, seaweed, chikuwa, salty, squid, dried fish), Various dairy products (cheese, yogurt, butter), various prepared foods, various bottled / canned products, various mixed powders (hot cake mix, batter mix), various carbohydrates (bread, noodles, cooked rice, rice cake), various beverages ( Fruit juice-containing beverages, fruit juice juice, vegetables Juice, cider, ginger ale, isotonic beverage, amino acid beverage, coffee beverage, green tea, tea, oolong tea, barley tea, lactic acid beverage, cocoa, beer, sparkling liquor, third beer, non-alcoholic beverage, beer flavored beverage, liqueur, Chuhai , Refined sake, fruit liquor, distilled liquor, energy drink, health drink, powdered drink). Furthermore, it can also be used as a health food (for example, a food for specified health use, a nutritional functional food, a nutritional supplement), a functional food, a food for the sick, etc. by utilizing its function as a water-soluble dietary fiber. Examples of the form include tablets, liquids, capsules (soft capsules, hard capsules), powders, granules, sticks, jelly, and the like.

以下の例に基づいて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、本明細書において「固形分」当たりの割合や「固形分」の含有割合に言及した場合には、固形成分の質量に基づいて定められた割合を意味するものとする。   The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples. In the present specification, when the ratio per “solid content” or the content ratio of “solid content” is mentioned, it means the ratio determined based on the mass of the solid component.

実施例中に示される各種測定方法および分析方法は以下の通り行った。   Various measurement methods and analysis methods shown in the examples were performed as follows.

食物繊維含量の測定
平成11年4月26日衛新第13号(栄養表示基準における栄養成分等の分析方法等について)に記載されている高速液体クロマトグラフ法(酵素−HPLC法)により測定する。具体的には以下のように行った。
Measurement of dietary fiber content Measured by the high performance liquid chromatographic method (enzyme-HPLC method) described in April 26, 1999, on Shin-Shin No. 13 (Analysis method for nutritional components, etc. in the nutrition labeling standards) . Specifically, it was performed as follows.

まず、サンプル1gを精密に測り、0.08mol/lリン酸緩衝液50mlを加え、pH6.0±0.5であることを確認する。これに熱安定性α-アミラーゼ(Sigma社:EC3.2.1.1 Bacillus licheniformis由来)溶液0.1mlを加え、沸騰水中に入れ、5分ごとに撹拌しながら30分間放置する。冷却後、水酸化ナトリウム溶液(1.1→100)を加えてpHを7.5±0.1に調整する。プロテアーゼ(Sigma社:EC3.4.21.62 Bacillus licheniformis由来)溶液0.1mlを加えて、60±2℃の水浴中で振とうしながら30分間反応させる。冷却後、0.325mol/l塩酸を加え、pHを4.3±0.3に調整する。アミログルコシダーゼ(Sigma社:EC3.2.13 Aspergillus niger由来)溶液0.1mlを加え、60±2℃の水浴中で振とうしながら30分間反応させる。以上の酵素処理終了後、直ちに沸騰水浴中で10分間加熱した後、冷却し、グリセリン(10→100)を内部標準物質として5ml加え、水で100mlとし酵素処理液とする。酵素処理液50mlをイオン交換樹脂(OH型:H型=1:1)50mlを充填したカラム(ガラス管20mm×300mm)に通液速度50ml/時で通液し、さらに水を通して流出液の全量を200mlとする。この溶液をロータリー・エバポレーターで濃縮し、全量を水で20mlとする。孔径0.45μmのメンブレンフィルターでろ過し、検液とする。 First, 1 g of a sample is accurately measured, 50 ml of 0.08 mol / l phosphate buffer is added, and it is confirmed that the pH is 6.0 ± 0.5. To this, 0.1 ml of a thermostable α-amylase (Sigma: EC 3.2.1.1 Bacillus licheniformis derived) solution is added, placed in boiling water, and allowed to stand for 30 minutes with stirring every 5 minutes. After cooling, sodium hydroxide solution (1.1 → 100) is added to adjust the pH to 7.5 ± 0.1. Add 0.1 ml of protease (from Sigma: EC 3.4.21.62 Bacillus licheniformis ) solution and react for 30 minutes while shaking in a water bath at 60 ± 2 ° C. After cooling, 0.325 mol / l hydrochloric acid is added to adjust the pH to 4.3 ± 0.3. Add 0.1 ml of amyloglucosidase (Sigma: EC 3.2.13 Aspergillus niger ) solution, and allow to react for 30 minutes while shaking in a 60 ± 2 ° C. water bath. Immediately after the above enzyme treatment is completed, the mixture is heated in a boiling water bath for 10 minutes, then cooled, and 5 ml of glycerin (10 → 100) is added as an internal standard substance to make 100 ml with water to obtain an enzyme treatment solution. 50 ml of the enzyme-treated solution was passed through a column (glass tube 20 mm × 300 mm) packed with 50 ml of ion exchange resin (OH type: H type = 1: 1) at a flow rate of 50 ml / hour, and further the total amount of the effluent through water. To 200 ml. The solution is concentrated on a rotary evaporator and the total volume is made up to 20 ml with water. Filter through a membrane filter with a pore size of 0.45 μm to make a test solution.

次に、検液20μlにつき、液体クロマトグラフィーを行い、検液のグリセリンおよび食物繊維画分のピーク面積値を測定する。   Next, liquid chromatography is performed on 20 μl of the test solution, and the peak area values of glycerin and dietary fiber fraction of the test solution are measured.

液体クロマトグラフィーの分析条件は以下の通りであった。
検出器:示差屈折計
カラム:ULTRON PS−80N(φ8.0×300mm、島津ジーエルシー)を二本連結
カラム温度:80℃
移動相:純水
流速:0.5ml/分
The analysis conditions for liquid chromatography were as follows.
Detector: differential refractometer column: ULTRON PS-80N (φ8.0 × 300 mm, Shimadzu GL), connecting column temperature: 80 ° C.
Mobile phase: Pure water flow rate: 0.5 ml / min

食物繊維成分含量は以下の式から算出した。
食物繊維成分含量(%)=[食物繊維成分のピーク面積/グリセリンのピーク面積]×f1×[内部標準グリセリン重量(mg)/秤取資料重量(mg)]×100
(上記式中、f1はグリセリンとブドウ糖のピーク面積の感度比(0.82)である。)
The dietary fiber component content was calculated from the following formula.
Dietary fiber component content (%) = [peak area of dietary fiber component / peak area of glycerin] × f1 × [weight of internal standard glycerin (mg) / weight of weighing material (mg)] × 100
(In the above formula, f1 is the sensitivity ratio (0.82) of the peak areas of glycerin and glucose.)

例1:糖縮合反応と通常分画
(1)糖縮合反応
固形分当り100gの水あめ(DE87、日本食品化工社製)に2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、加熱反応機(ADVANTEC社製)に投入し、180℃で10分間加熱して糖縮合物組成物サンプルを得た。反応後のサンプルは室温まで冷却し、このサンプルを固形分当たり20%水溶液とした後、活性炭を濾過で完全に除去し、可溶性糖質を得た。得られた糖質画分を活性炭による脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。
Example 1: Sugar condensation reaction and normal fractionation (1) Sugar condensation reaction Add 100% syrup (DE87, manufactured by Nippon Shokuhin Kako Co., Ltd.) with 2% (per solid content) activated carbon (Futamura Chemical Co.) Thereafter, the mixture was put into a heating reactor (manufactured by ADVANTEC) and heated at 180 ° C. for 10 minutes to obtain a sugar condensate composition sample. The sample after the reaction was cooled to room temperature, and this sample was made into a 20% aqueous solution per solid content, and then the activated carbon was completely removed by filtration to obtain a soluble carbohydrate. The obtained carbohydrate fraction was decolorized and filtered with activated carbon and decolorized with an ion exchange resin, and then concentrated with an evaporator.

(2)低分子画分の分離
その後、樹脂分画装置(日本錬水社製)を用いて、二糖以下の低分子画分を除去した。
得られた水溶性食物繊維は76.5gであり、食物繊維含量は92%であった。よって、原料100gからの歩留りは76.5%であった。
(2) Separation of low molecular fraction Thereafter, a low molecular fraction of disaccharides or less was removed using a resin fractionator (manufactured by Nippon Nensui).
The water-soluble dietary fiber obtained was 76.5 g and the dietary fiber content was 92%. Therefore, the yield from 100 g of the raw material was 76.5%.

なお、糖縮合反応の原料として使用した水あめおよび(2)で分画除去した低分子画分を下記HPLC条件にて分析した結果を表1に示した。(表中、G3は重合度3の糖質を、G2は重合度2の糖質を、G1は重合度1の糖質を表す。)   Table 1 shows the results of analyzing the candy candy used as a raw material for the sugar condensation reaction and the low molecular fraction fraction-removed in (2) under the following HPLC conditions. (In the table, G3 represents a saccharide having a polymerization degree of 3, G2 represents a saccharide having a polymerization degree of 2, and G1 represents a saccharide having a polymerization degree of 1.)

<HPLC条件>
検出器:示差屈折計
カラム:Ultron PS−80N・L(φ8.0mm×500mm)
カラム温度:80℃
移動相:純水
流速:0.5ml/分
<HPLC conditions>
Detector: differential refractometer column: Ultron PS-80N · L (φ8.0 mm × 500 mm)
Column temperature: 80 ° C
Mobile phase: Pure water flow rate: 0.5 ml / min

Figure 0006382058
Figure 0006382058

表1から明らかなように、(2)で除去した低分子画分と原料水あめはその組成が大きく異なっており、前記低分子画分中には糖縮合反応生成物が多数含まれていることが確認された。すなわち、原料水あめ中の三糖以上(G3以上)の画分および二糖(G2)画分にはそれぞれマルトオリゴ糖およびマルトースのピークしか検出されなかったのに対し、低分子画分中のG3以上画分およびG2画分にはαアノマー及びβアノマーを含む1,2結合、1,3結合、1,4結合、1,6結合から構成される種々のオリゴ糖(例えばイソマルトース、セロビオース、ゲンチオビオース)と予想される多数のピークが検出されており(詳細な組成は不明)、更に低分子画分中には無水糖(無水フラノースおよび無水ピラノース)を主とするその他成分のピークも検出された。   As is clear from Table 1, the composition of the low molecular fraction removed in (2) and the raw starch syrup are greatly different, and the low molecular fraction contains a large number of sugar condensation reaction products. Was confirmed. That is, only the maltooligosaccharide and maltose peaks were detected in the fraction of trisaccharide or higher (G3 or higher) and disaccharide (G2) fraction in the raw syrup, whereas G3 or higher in the low molecular fraction was detected. The fraction and G2 fraction include various oligosaccharides composed of 1,2 bonds, 1,3 bonds, 1,4 bonds, and 1,6 bonds including α and β anomers (eg, isomaltose, cellobiose, gentiobiose). ) Was predicted (detail composition is unknown), and peaks of other components mainly consisting of anhydrous sugar (anhydrofuranose and anhydrous pyranose) were also detected in the low molecular fraction. .

例2:低分子画分の再縮合反応による糖縮合物の製造
(1)糖縮合反応
例1(1)と同様の作業を行った。
Example 2: Production of sugar condensate by recondensation of low molecular fraction (1) Sugar condensation reaction The same operation as in Example 1 (1) was performed.

(2)低分子画分の分離
例1(2)と同様の作業を行った。
(2) Separation of low molecular fraction The same operation as in Example 1 (2) was performed.

(3)低分子画分の再縮合反応
さらに上記(2)で分離した低分子画分(固形分13.5g)を固形分濃度70%に濃縮し、2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、同様に加熱処理及び、活性炭濾過、脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で84.6%含む画分)を除去した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は78.2gであり、食物繊維含量は92%であった。よって、原料100gからの歩留りは78.2%であった。
(3) Recondensation reaction of low molecular fraction Further, the low molecular fraction (solid content: 13.5 g) separated in (2) above was concentrated to a solid content concentration of 70%, and 2% (per solid content) of activated carbon ( Futamura Chemical Co., Ltd.) was added and mixed, followed by heat treatment, activated carbon filtration, decolorization filtration, and decolorization with an ion exchange resin, and then concentrated with an evaporator. Thereafter, using a resin fractionator, a low-molecular fraction having a disaccharide or less (a fraction containing 84.6% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (3) was 78.2 g, and the dietary fiber content was 92%. Therefore, the yield from 100 g of the raw material was 78.2%.

例3:低分子画分の原資への再利用による糖縮合物の製造
(1)糖縮合反応
例1(1)と同様の作業を行った。
Example 3: Production of a sugar condensate by reusing a low molecular fraction as a raw material (1) Sugar condensation reaction The same operation as in Example 1 (1) was performed.

(2)低分子画分の分離
例1(2)と同様の作業を行った。
(2) Separation of low molecular fraction The same operation as in Example 1 (2) was performed.

(3)低分子画分の原資への再利用
さらに上記(2)で分離した低分子画分(固形分13.5g)を固形分濃度70%に濃縮し、固形分当り86.5gの水あめ(DE87、日本食品化工社製)とブレンドし、固形分濃度70%となるように糖縮合用原料として再利用した。2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、同様に加熱処理及び、活性炭濾過、脱色濾過、イオン交換樹脂による脱色を行い、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で94.3%含む画分)を除去した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は153gであり、食物繊維含量は92%であった。よって原料186.5gからの歩留りは82.0%であった。
(3) Reuse of low molecular fraction as raw material Furthermore, the low molecular fraction (solid content: 13.5 g) separated in (2) above is concentrated to a solid content of 70%, and 86.5 g of candy candy per solid content. (DE87, manufactured by Nippon Shokuhin Kako Co., Ltd.) and reused as a raw material for sugar condensation so as to have a solid concentration of 70%. After adding and mixing 2% (per solid content) activated carbon (manufactured by Futamura Chemical Co., Ltd.), heat treatment, activated carbon filtration, decolorization filtration, and decolorization with an ion exchange resin were similarly performed, and the mixture was concentrated with an evaporator. Thereafter, using a resin fractionator, a low molecular fraction having a disaccharide or less (a fraction containing 94.3% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (3) was 153 g, and the dietary fiber content was 92%. Therefore, the yield from 186.5 g of the raw material was 82.0%.

例4:低分子画分の原資への再利用10サイクルによる糖縮合物の製造
(1)糖縮合反応
例1(1)と同様の作業を行った。
Example 4: Production of sugar condensate by 10 cycles of reuse of low molecular fractions as raw material (1) Sugar condensation reaction The same operation as in Example 1 (1) was performed.

(2)低分子画分の分離
例1(2)と同様の作業を行った。
(2) Separation of low molecular fraction The same operation as in Example 1 (2) was performed.

(3)低分子画分の原資への再利用10サイクル
例3と同様に上記(2)で得られた低分子画分を糖縮合反応の原料である水あめにブレンドし糖縮合反応させた後、上記(2)の方法で再度低分子画分を分離する作業を1サイクルとし、前記サイクルを10サイクル繰り返した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は841gであり、食物繊維含量は92%であった。よって原料965gからの歩留りは87.2%であった。
(3) 10 cycles of reuse of low molecular fractions as raw material After blending the low molecular fraction obtained in (2) above with candy, which is the raw material for the sugar condensation reaction, and subjecting it to a sugar condensation reaction, as in Example 3. The operation of separating the low-molecular fraction again by the method (2) was defined as one cycle, and the cycle was repeated 10 cycles. The total amount of water-soluble dietary fiber obtained by combining the sugar condensate obtained in (2) and the sugar condensate obtained in (3) was 841 g, and the dietary fiber content was 92%. Therefore, the yield from 965 g of the raw material was 87.2%.

例1から例4で得られた水溶性食物繊維の歩留り(%)を表2に纏めた。糖縮合物組成物から分画した低分子画分を原料糖質に混合し再度糖縮合反応に利用することで食物繊維含量が豊富な糖縮合物を極めて高い歩留りで製造できることが判明した(例3および4)。また、低分子画分を廃棄しないことで環境負荷の低減も可能であった。例2から明らかなように糖縮合物組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合は、再度縮合反応を行わなかった場合(例1)と比べると歩留りが向上する。また、低分子画分を原料糖質に混合し再度糖縮合反応した場合(例3および4)には、糖縮合物組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合(例2)に比べて歩留りがさらに向上した。以下の理論に拘束される訳ではないが、糖縮合物組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合に歩留り率が若干低いのは、低分子画分中の無水糖が糖縮合反応を阻害したためと考えられる。   The yield (%) of the water-soluble dietary fiber obtained in Examples 1 to 4 is summarized in Table 2. It was found that a sugar condensate rich in dietary fiber can be produced with a very high yield by mixing the low molecular fraction fractionated from the sugar condensate composition with the raw sugar and using it again in the sugar condensation reaction (example) 3 and 4). In addition, it was possible to reduce the environmental load by not discarding the low molecular fraction. As is clear from Example 2, when the low molecular fraction fractionated from the sugar condensate composition is used again for the sugar condensation reaction, the yield is improved compared to the case where the condensation reaction is not performed again (Example 1). To do. In addition, when the low molecular fraction was mixed with the raw sugar and subjected to the sugar condensation reaction again (Examples 3 and 4), the low molecular fraction fractionated from the sugar condensate composition was directly used for the sugar condensation reaction again. The yield was further improved compared to the case (Example 2). Although not limited by the following theory, when the low molecular fraction fractionated from the sugar condensate composition is used again in the sugar condensation reaction as it is, the yield rate is slightly lower. This is probably because anhydrosugar inhibited the sugar condensation reaction.

Figure 0006382058
Figure 0006382058

例5:糖縮合反応と酵素処理及び通常分画
(1)糖縮合反応
固形分当り100gの水あめ(DE87、日本食品化工社製)に2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、加熱反応機(ADVANTEC社製)に投入し、180℃で10分間加熱してサンプルを得た。反応後のサンプルは室温まで冷却し、終濃度1mM酢酸緩衝液(pH5.0)となるよう固形分当たり20%水溶液を調製した。このサンプルを酵素濃度が各々1.0U/gになるようにα−アミラーゼ(クライスターゼL−1、天野エンザイム社製)およびアミログルコシダーゼ(デキストロザイムDXJ、ノボザイム社製)を添加し、60℃で24時間反応させた。その後、活性炭は濾過で完全に除去して可溶性糖質(酵素分解組成物)を得た。得られた酵素分解組成物を活性炭による脱色濾過、イオン交換樹脂による脱色、エバポレーター濃縮を行った。
Example 5: Sugar condensation reaction, enzyme treatment and normal fractionation (1) Sugar condensation reaction 100 g of water candy (DE87, manufactured by Nippon Shokuhin Kako Co., Ltd.) per solid content 2% (per solid content) of activated carbon (Futamura Chemical Co., Ltd.) After adding and mixing, the sample was put into a heating reactor (ADVANTEC) and heated at 180 ° C. for 10 minutes to obtain a sample. The sample after the reaction was cooled to room temperature, and a 20% aqueous solution per solid content was prepared so that the final concentration was 1 mM acetate buffer (pH 5.0). To this sample, α-amylase (Chrytase L-1, Amano Enzyme) and amyloglucosidase (Dextrozyme DXJ, Novozyme) were added at an enzyme concentration of 1.0 U / g, respectively. For 24 hours. Thereafter, the activated carbon was completely removed by filtration to obtain a soluble carbohydrate (enzymatic degradation composition). The resulting enzyme-decomposed composition was subjected to decolorization filtration using activated carbon, decolorization using an ion exchange resin, and evaporator concentration.

(2)低分子画分の分離
その後、樹脂分画装置を用いて、二糖以下の低分子画分を分離した。得られた水溶性食物繊維は72.0gであり、食物繊維含量は99%以上であった。よって原料100gからの歩留りは72.0%であった。
(2) Separation of low molecular fraction Thereafter, a low molecular fraction of disaccharide or less was separated using a resin fractionator. The obtained water-soluble dietary fiber was 72.0 g, and the dietary fiber content was 99% or more. Therefore, the yield from 100 g of the raw material was 72.0%.

なお、糖縮合反応の原料として使用した水あめおよび(2)で分画除去した低分子画分を表1のHPLC条件と同条件にて分析した結果を表3に示した。   Table 3 shows the results obtained by analyzing the starch candy used as a raw material for the sugar condensation reaction and the low molecular fraction fraction-removed in (2) under the same conditions as the HPLC conditions in Table 1.

Figure 0006382058
Figure 0006382058

表3から明らかなように、(2)で除去した低分子画分と原料水あめはその組成が大きく異なっており、前記低分子画分中には糖縮合反応生成物が多数含まれていることが確認された。すなわち、原料水あめ中の三糖以上(G3以上)の画分および二糖(G2)画分にはそれぞれマルトオリゴ糖およびマルトースのピークしか検出されなかったのに対し、低分子画分中のG3以上の画分およびG2画分には例1と同様にαアノマー及びβアノマーを含む1,2結合、1,3結合、1,4結合、1,6結合から構成される種々のオリゴ糖(例えばイソマルトース、セロビオース、ゲンチオビオース)と予想される多数のピークが検出されており、更に低分子画分中には無水糖(無水フラノースおよび無水ピラノース)を主とするその他成分のピークも検出された。   As is clear from Table 3, the composition of the low molecular fraction removed in (2) and the raw starch syrup are greatly different, and the low molecular fraction contains a large number of sugar condensation reaction products. Was confirmed. That is, only the maltooligosaccharide and maltose peaks were detected in the fraction of trisaccharide or higher (G3 or higher) and disaccharide (G2) fraction in the raw syrup, whereas G3 or higher in the low molecular fraction was detected. In the same manner as in Example 1, the G2 fraction contains various oligosaccharides composed of 1,2 bonds, 1,3 bonds, 1,4 bonds and 1,6 bonds, including α and β anomers (for example, Many peaks expected to be isomaltose, cellobiose, and gentiobiose) were detected, and peaks of other components mainly consisting of anhydrous sugar (anhydrofuranose and anhydrous pyranose) were also detected in the low molecular fraction.

例6:酵素処理した低分子画分の再縮合反応による糖縮合物の製造
(1)糖縮合反応
例5(1)と同様の作業を行った。
Example 6: Production of sugar condensate by recondensation reaction of enzyme-treated low molecular fraction (1) Sugar condensation reaction The same operation as in Example 5 (1) was performed.

(2)低分子画分の分離
例5(2)と同様の作業を行った。
(2) Separation of low-molecular fraction The same operation as in Example 5 (2) was performed.

(3)低分子画分の再縮合反応
さらに上記(2)で分離した低分子画分(固形分18g)を固形分濃度70%に濃縮し、2%の活性炭(フタムラ化学社製)を添加混合後、上記(1)と同様に加熱処理と、酵素処理、活性炭濾過、脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で94.9%含む画分)を除去した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は75.4gであり、食物繊維含量は99%以上であった。よって、原料100gからの歩留りは75.4%であった。
(3) Recondensation reaction of low-molecular fraction Further, the low-molecular fraction (solid content: 18 g) separated in (2) above is concentrated to a solid content concentration of 70%, and 2% activated carbon (manufactured by Phutamura Chemical Co., Ltd.) is added. After mixing, the mixture was subjected to heat treatment, enzyme treatment, activated carbon filtration, decolorization filtration, and decolorization with an ion exchange resin in the same manner as (1) above, and then concentrated with an evaporator. Thereafter, using a resin fractionator, a low molecular fraction having a disaccharide or less (a fraction containing 94.9% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber obtained by combining the sugar condensate obtained in (2) and the sugar condensate obtained in (3) was 75.4 g, and the dietary fiber content was 99% or more. Therefore, the yield from 100 g of the raw material was 75.4%.

例7:酵素処理した低分子画分の原資への再利用による糖縮合物の製造
(1)糖縮合反応
例5(1)と同様の作業を行った。
Example 7: Production of a sugar condensate by reusing an enzyme-treated low molecular fraction as a raw material (1) Sugar condensation reaction The same operation as in Example 5 (1) was performed.

(2)低分子画分の分離
例5(2)と同様の作業を行った。
(2) Separation of low-molecular fraction The same operation as in Example 5 (2) was performed.

(3)低分子画分の原資への再利用
さらに上記(2)で分離した低分子画分(固形分18g)を固形分濃度70%に濃縮し、固形分当り82gの水あめ(DE87、日本食品化工社製)とブレンドし、固形分濃度70%となるように糖縮合用原料として再利用した。2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、上記(1)と同様に加熱処理と、酵素処理、活性炭濾過、脱色濾過、イオン交換樹脂による脱色を行い、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で94.9%含む画分)を除去した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は144gであり、食物繊維含量は99%以上であった。よって原料182gからの歩留りは79.1%であった。
(3) Reuse of low molecular fractions as raw materials Further, the low molecular fraction (solid content 18 g) separated in (2) above was concentrated to a solid content concentration of 70%, and 82 g of syrup (DE87, Japan) per solid content. And re-used as a raw material for sugar condensation so as to have a solid concentration of 70%. After adding and mixing 2% (per solid content) activated carbon (Futamura Chemical Co., Ltd.), heat treatment, enzyme treatment, activated carbon filtration, decolorization filtration, and decolorization with ion exchange resin are performed in the same manner as in (1) above. Concentrated. Thereafter, using a resin fractionator, a low molecular fraction having a disaccharide or less (a fraction containing 94.9% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber obtained by combining the sugar condensate obtained in (2) and the sugar condensate obtained in (3) was 144 g, and the dietary fiber content was 99% or more. Therefore, the yield from 182 g of the raw material was 79.1%.

例8:酵素処理した低分子画分の原資への再利用10サイクルによる糖縮合物の製造(1)糖縮合反応
例5(1)と同様の作業を行った。
Example 8: Production of sugar condensate by 10 cycles of reuse of enzyme-treated low molecular fractions as raw material (1) Sugar condensation reaction The same operation as in Example 5 (1) was performed.

(2)低分子画分の分離
例5(2)と同様の作業を行った。
(2) Separation of low-molecular fraction The same operation as in Example 5 (2) was performed.

(3)低分子画分の原資への再利用10サイクル
例7と同様に上記(2)で得られた低分子画分を糖縮合反応の原料である水あめにブレンドし糖縮合反応させた後、上記(2)の方法で再度低分子画分を分離する作業を1サイクルとし、前記サイクルを10サイクル繰り返した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は792gであり、食物繊維含量は99%以上であった。よって原料920gからの歩留りは86.1%であった。
(3) 10 cycles of reuse of low molecular fractions as raw material After blending the low molecular fraction obtained in (2) above with candy, which is the raw material for the sugar condensation reaction, and subjecting it to a sugar condensation reaction as in Example 7. The operation of separating the low-molecular fraction again by the method (2) was defined as one cycle, and the cycle was repeated 10 cycles. The total amount of water-soluble dietary fiber combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (3) was 792 g, and the dietary fiber content was 99% or more. Therefore, the yield from 920 g of raw material was 86.1%.

例5から例8で得られた水溶性食物繊維の歩留り(%)を表4に纏めた。食物繊維含量を高めることを目的に糖縮合物組成物を酵素処理した場合も、例1〜4と同様に酵素分解組成物から分画した低分子画分を原料糖質に混合し再度糖縮合反応に利用することで食物繊維含量が豊富な糖縮合物を極めて高い歩留りで製造できることが判明した。例7および例8より、水溶性食物繊維含量が99%以上の糖縮合物を極めて高い歩留りで製造できることが示された。更に、低分子画分の再利用(リサイクル)回数を増やすことでより歩留りを向上できることが示された。また、低分子画分を廃棄しないことで環境負荷の低減も可能であった。例2と同様に酵素分解組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合(例6)は、再度縮合反応を行わなかった場合(例5)と比べると歩留りが向上する。また、低分子画分を原料糖質に混合し再度糖縮合反応した場合(例7および8)には、酵素分解組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合(例6)に比べて歩留りがさらに向上した。以下の理論に拘束される訳ではないが、酵素分解組成物から分画した低分子画分をそのまま再度糖縮合反応に利用した場合に歩留り率が若干低いのは、低分子画分中の無水糖が糖縮合反応を阻害したためと考えられる。   The yield (%) of the water-soluble dietary fiber obtained in Examples 5 to 8 is summarized in Table 4. Even when the sugar condensate composition is enzymatically treated for the purpose of increasing the dietary fiber content, the low-molecular fraction fractionated from the enzyme-decomposable composition is mixed with the raw sugar and the sugar condensation is performed again in the same manner as in Examples 1-4. It was found that a sugar condensate rich in dietary fiber can be produced with a very high yield by using it in the reaction. From Examples 7 and 8, it was shown that a sugar condensate having a water-soluble dietary fiber content of 99% or more can be produced with a very high yield. Furthermore, it was shown that the yield can be improved by increasing the number of times the low molecular fraction is reused (recycled). In addition, it was possible to reduce the environmental load by not discarding the low molecular fraction. When the low molecular fraction fractionated from the enzymatic decomposition composition was used again for the sugar condensation reaction as in Example 2 (Example 6), the yield was higher than when the condensation reaction was not performed again (Example 5). improves. In addition, when the low molecular fraction is mixed with the raw sugar and subjected to the sugar condensation reaction again (Examples 7 and 8), the low molecular fraction fractionated from the enzymatic decomposition composition is directly used again for the sugar condensation reaction. The yield was further improved as compared with (Example 6). Although not bound by the following theory, the yield rate is slightly lower when the low molecular fraction fractionated from the enzymatic degradation composition is used again for the sugar condensation reaction. This is probably because the sugar inhibited the sugar condensation reaction.

Figure 0006382058
Figure 0006382058

官能評価試験
各種糖縮合物(水溶性食物繊維)を比較することを目的として、それぞれの10質量%水溶液を作成し、味質を比較した。10人のパネラーにて、作製した水溶液の官能評価を行い、味質について評価を行った。味質については、非常に良い(◎)、良い(○)、普通(△)、悪い(×)の評価で示し、風味については、非常に良い(◎)、良い(○)、普通(△)、悪い(×)の評価で示した。 比較例として市販水溶性食物繊維のポリデキストロースである「ライテス」(ダニスコジャパン社製)および「ライテスII」(ダニスコジャパン社製)を、また、難消化性デキストリンである「パインファイバー」(松谷化学工業社製)および「ファイバーソル2」(松谷化学工業社製)をそれぞれ用いた。評価結果は表5に示される通りであった。
Sensory evaluation test For the purpose of comparing various sugar condensates (water-soluble dietary fiber), respective 10 mass% aqueous solutions were prepared and the tastes were compared. Sensory evaluation of the prepared aqueous solution was performed by 10 panelists, and the taste quality was evaluated. The taste quality is indicated by an evaluation of very good (◎), good (◯), normal (△), and bad (×), and the flavor is very good (◎), good (○), normal (△) ), Bad (×) evaluation. As comparative examples, “Lites” (manufactured by Danisco Japan) and “Lites II” (manufactured by Danisco Japan), which are polydextroses of commercially available water-soluble dietary fibers, and “Pine Fiber” (Matsutani Chemical), which is an indigestible dextrin, are used. Kogyo Co., Ltd.) and “Fiber Sol 2” (Matsuya Chemical Co., Ltd.) were used. The evaluation results were as shown in Table 5.

Figure 0006382058
Figure 0006382058

このように本発明の製造方法により得られた糖縮合物は従来の食物繊維と同様にほぼ無味・無臭であることが確認された。すなわち、本発明の製造方法により得られた糖縮合物は食品の賦形剤や増量剤として種々の飲食品に問題なく利用可能であることが示された。   Thus, it was confirmed that the sugar condensate obtained by the production method of the present invention is almost tasteless and odorless like conventional dietary fibers. That is, it was shown that the sugar condensate obtained by the production method of the present invention can be used as a food excipient or a bulking agent without any problem in various foods and drinks.

例9:低分子画分(9糖以下)の原資への再利用による糖縮合物の製造
(1)糖縮合反応
例1(1)と同様の作業を行った。
Example 9: Production of a sugar condensate by reusing a low molecular fraction (9 sugars or less) as a raw material (1) Sugar condensation reaction The same operation as in Example 1 (1) was performed.

(2)低分子画分の分離
その後、樹脂分画装置(日本錬水社製)を用いて、9糖以下の低分子画分(9糖以下の糖質を固形分換算で100%含む画分)を分離した。得られた水溶性食物繊維は28.8gであり、食物繊維含量は92%であった。よって、原料100gからの歩留りは28.8%であった。
(2) Separation of low-molecular fraction Subsequently, using a resin fractionator (manufactured by Nippon Nissui Co., Ltd.), a low-molecular fraction containing 9 sugars or less (a fraction containing 9% or less sugars in terms of solid content) Minutes). The obtained water-soluble dietary fiber was 28.8 g, and the dietary fiber content was 92%. Therefore, the yield from 100 g of the raw material was 28.8%.

(3)低分子画分の原資への再利用
さらに上記(2)で分離した低分子画分(固形分20g)を固形分濃度70%に濃縮し、固形分当り80gの水あめ(DE87、日本食品化工社製)とブレンドし、固形分濃度70%となるように糖縮合用原料として再利用した。2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、同様に加熱処理及び、活性炭濾過、脱色濾過、イオン交換樹脂による脱色を行い、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、9糖以下の低分子画分(9糖以下の糖質を固形分換算で100%含む画分)を除去した。
上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は57.6gであり、食物繊維含量は95%であった。よって原料180gからの歩留りは32.0%であった。
(3) Reuse of low molecular fraction as raw material Further, the low molecular fraction (20 g of solid content) separated in (2) above is concentrated to a solid content of 70%, and 80 g of water candy (DE87, Japan) And re-used as a raw material for sugar condensation so as to have a solid concentration of 70%. After adding and mixing 2% (per solid content) activated carbon (manufactured by Futamura Chemical Co., Ltd.), heat treatment, activated carbon filtration, decolorization filtration, and decolorization with an ion exchange resin were similarly performed, and the mixture was concentrated with an evaporator. Thereafter, a low molecular fraction of 9 sugars or less (a fraction containing 100% sugar of 9 sugars or less in terms of solid content) was removed using a resin fractionator.
The total amount of water-soluble dietary fiber obtained by combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (3) was 57.6 g, and the dietary fiber content was 95%. Therefore, the yield from 180 g of raw material was 32.0%.

例10:低分子画分の糖化原資(澱粉)への再利用による糖縮合物の製造
(1)糖縮合反応
例1(1)と同様の作業を行った。
Example 10: Production of a sugar condensate by reusing low molecular fractions as saccharification resources (starch) (1) Sugar condensation reaction The same operation as in Example 1 (1) was performed.

(2)低分子画分の分離
例1(2)と同様の作業を行った。
(2) Separation of low molecular fraction The same operation as in Example 1 (2) was performed.

(3)低分子画分の糖化原資(澱粉)への再利用
さらに上記(2)で分離した低分子画分(固形分13.5g)を固形分当り54gのコーンスターチ(日本食品化工社製)とブレンドし、固形分濃度20%となるように糖化原料として再利用した。20%水酸化ナトリウム溶液でpH6.2に調製し、α−アミラーゼ(クライスターゼT−5、大和化成社製)を0.1重量%添加して105℃2時間液化した。液化液を5%塩酸溶液でpH4.7に調製し、アミログルコシダーゼ(デキストロザイムDXJ、ノボザイム社製)を0.35重量%添加し48時間糖化した。酵素処理後、煮沸により酵素失活させアミログルコシダーゼの作用を停止した。この液を活性炭による脱色濾過、イオン交換樹脂による脱塩などの精製を行った後、エバポレーターで固形分濃度70%まで濃縮した。
(3) Reuse of low molecular fraction to saccharification raw material (starch) Further, 54 g of corn starch (manufactured by Nippon Food Chemical Co., Ltd.) per solid content of the low molecular fraction (solid content 13.5 g) separated in (2) above. And recycled as a saccharification raw material so that the solid content concentration becomes 20%. The pH was adjusted to 6.2 with a 20% sodium hydroxide solution, and 0.1% by weight of α-amylase (Chrytase T-5, manufactured by Daiwa Kasei Co., Ltd.) was added and liquefied at 105 ° C. for 2 hours. The liquefied solution was adjusted to pH 4.7 with a 5% hydrochloric acid solution, and amyloglucosidase (dextrozyme DXJ, manufactured by Novozyme) was added at 0.35% by weight for saccharification for 48 hours. After the enzyme treatment, the enzyme was inactivated by boiling to stop the action of amyloglucosidase. This solution was purified by decolorization filtration using activated carbon, desalting using an ion exchange resin, and the like, and then concentrated to a solid concentration of 70% with an evaporator.

(4)糖縮合反応
上記(3)で得られた低分子画分を用いた糖化液に2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、加熱反応機(ADVANTEC社製)に投入し、180℃で10分間加熱して糖縮合物組成物サンプルを得た。反応後のサンプルは室温まで冷却し、このサンプルを固形分当たり20%水溶液とした後、活性炭を濾過で完全に除去し、可溶性糖質を得た。得られた糖質画分を活性炭による脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で94.3%含む画分)を除去した。上記(2)で得られた糖縮合物および(4)で得られた糖縮合物を総合した水溶性食物繊維の総量は128.1gであり、食物繊維含量は92%であった。よって原料154gからの歩留りは83.2%であった。
(4) Sugar condensation reaction After adding and mixing 2% (per solid content) of activated carbon (Futamura Chemical Co., Ltd.) to the saccharified solution using the low molecular fraction obtained in (3) above, a heating reactor (ADVANTEC) And heated at 180 ° C. for 10 minutes to obtain a sugar condensate composition sample. The sample after the reaction was cooled to room temperature, and this sample was made into a 20% aqueous solution per solid content, and then the activated carbon was completely removed by filtration to obtain a soluble carbohydrate. The obtained carbohydrate fraction was decolorized and filtered with activated carbon and decolorized with an ion exchange resin, and then concentrated with an evaporator. Thereafter, using a resin fractionator, a low molecular fraction having a disaccharide or less (a fraction containing 94.3% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (4) was 128.1 g, and the dietary fiber content was 92%. Therefore, the yield from 154 g of the raw material was 83.2%.

例11:ポリデキストロース低分子画分の原資への再利用による糖縮合物の製造(1)ポリデキストロース縮合反応
固形分89gのブドウ糖(日本食品化工社製)、固形分10gのソルビトール(ソルビット、三菱化学フードテック社製)、固形分1gのクエン酸(関東化学社製)を添加混合後、加熱反応機(ADVANTEC社製)に投入し、180℃で10分間加熱して糖縮合物組成物サンプルを得た。反応後のサンプルは室温まで冷却し、このサンプルを固形分当たり20%水溶液とし、可溶性糖質を得た。得られた糖質画分を活性炭による脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。
Example 11: Production of sugar condensate by reusing polydextrose low molecular weight fraction as raw material (1) Polydextrose condensation reaction Glucose with a solid content of 89 g ( manufactured by Nippon Shokuhin Kako), sorbitol with a solid content of 10 g (Sorbit, Mitsubishi) Chemical Foodtech Co., Ltd.), 1 g of citric acid (manufactured by Kanto Chemical Co., Inc.) with a solid content of 1 g is added and mixed, then charged into a heating reactor (ADVANTEC Co., Ltd.), heated at 180 ° C. for 10 minutes, and a sugar condensate composition sample Got. The sample after the reaction was cooled to room temperature, and this sample was made into a 20% aqueous solution per solid content to obtain a soluble carbohydrate. The obtained carbohydrate fraction was decolorized and filtered with activated carbon and decolorized with an ion exchange resin, and then concentrated with an evaporator.

(2)低分子画分の分離
その後、樹脂分画装置(日本錬水社製)を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で74.1%含む画分)を分離した。得られた水溶性食物繊維は72.0gであり、食物繊維含量は92%であった。よって、原料100gからの歩留りは72.0%であった。
(2) Separation of low-molecular fraction Subsequently, using a resin fractionator (manufactured by Nippon Nissui Co., Ltd.), a low-molecular fraction of disaccharide or less (sugar of disaccharide or less is 74.1% in terms of solid content). Containing fractions). The obtained water-soluble dietary fiber was 72.0 g, and the dietary fiber content was 92%. Therefore, the yield from 100 g of the raw material was 72.0%.

(3)低分子画分の原資への再利用
さらに上記(2)で分離した低分子画分(固形分18.0g)を固形分濃度70%に濃縮し、固形分73gのブドウ糖(日本食品化工社製)、固形分8.2gのソルビトール(ソルビット、三菱化学フードテック社製)、固形分0.8gのクエン酸(関東化学社製)とブレンドし、固形分濃度70%となるようにポリデキストロース用原料として再利用した。同様に加熱処理及び、活性炭脱色濾過、イオン交換樹脂による精製を行い、エバポレーターで濃縮した。その後、樹脂分画装置を用いて、二糖以下の低分子画分(二糖以下の糖質を固形分換算で76.9%含む画分)を除去した。上記(2)で得られたポリデキストロースおよび(3)で得られたポリデキストロースを総合した水溶性食物繊維の総量は144gであり、食物繊維含量は92%であった。よって原料182gからの歩留りは79.1%であった。
(3) Reuse of low molecular fractions as raw materials Further, the low molecular fraction (solid content: 18.0 g) separated in (2) above was concentrated to a solid content concentration of 70%, and glucose (Japanese food) with a solid content of 73 g was obtained. Kako), sorbitol with a solid content of 8.2 g (Sorbit, manufactured by Mitsubishi Chemical Foodtech Co., Ltd.), and citric acid with a solid content of 0.8 g (manufactured by Kanto Chemical Co., Ltd.) to a solid content concentration of 70%. Reused as a raw material for polydextrose. Similarly, heat treatment, activated carbon decolorization filtration, purification with an ion exchange resin were performed, and the mixture was concentrated with an evaporator. Thereafter, using a resin fractionator, a low molecular fraction having a disaccharide or less (a fraction containing 76.9% of a sugar having a disaccharide or less in terms of solid content) was removed. The total amount of water-soluble dietary fiber obtained by combining the polydextrose obtained in (2) and the polydextrose obtained in (3) was 144 g, and the dietary fiber content was 92%. Therefore, the yield from 182 g of the raw material was 79.1%.

例12:ポリデキストロース低分子画分の原資への再利用10サイクルによる糖縮合物の製造
(1)ポリデキストロース縮合反応
例11(1)と同様の作業を行った。
Example 12: Reuse of polydextrose low molecular weight fraction as raw material Production of sugar condensate by 10 cycles (1) Polydextrose condensation reaction The same operation as in Example 11 (1) was performed.

(2)低分子画分の分離
例11(2)と同様の作業を行った。
(2) Separation of low-molecular fraction The same operation as in Example 11 (2) was performed.

(3)ポリデキストロース低分子画分の原資への再利用10サイクル
例11と同様に上記(2)で得られた低分子画分をポリデキストロース反応の原料にブレンドし糖縮合反応させた後、上記(2)の方法で再度低分子画分を分離する作業を1サイクルとし、前記サイクルを10サイクル繰り返した。上記(2)で得られた糖縮合物および(3)で得られた糖縮合物を総合した水溶性食物繊維の総量は792gであり、食物繊維含量は92%であった。よって原料965gからの歩留りは86.1%であった。
(3) 10 cycles of reuse of polydextrose low molecular fraction for raw materials After blending the low molecular fraction obtained in (2) above with a raw material for polydextrose reaction in the same manner as in Example 11, sugar condensation reaction was performed. The operation of separating the low-molecular fraction again by the method (2) was defined as one cycle, and the cycle was repeated 10 cycles. The total amount of water-soluble dietary fiber combining the sugar condensate obtained in (2) above and the sugar condensate obtained in (3) was 792 g, and the dietary fiber content was 92%. Therefore, the yield from 965 g of the raw material was 86.1%.

例11から例12で得られた水溶性食物繊維の歩留り(%)を表6に纏めた。糖縮合物組成物(ポリデキストロース)から分画した低分子画分を原料糖質に混合し再度糖縮合反応に利用することで食物繊維含量が豊富な糖縮合物(ポリデキストロース)を極めて高い歩留りで製造できることが判明した(例11および12)。また、低分子画分を廃棄しないことで環境負荷の低減も可能であった。   The yield (%) of the water-soluble dietary fiber obtained in Examples 11 to 12 is summarized in Table 6. Yield of sugar condensate (polydextrose) rich in dietary fiber is extremely high by mixing the low molecular fraction fractionated from the sugar condensate composition (polydextrose) with the raw sugar and using it again in the sugar condensation reaction. (Examples 11 and 12). In addition, it was possible to reduce the environmental load by not discarding the low molecular fraction.

Figure 0006382058
Figure 0006382058

例13:難消化性デキストリン製造時に発生する低分子画分の糖縮合物原資への再利用による糖縮合物の製造
(1)難消化性デキストリン製造
コーンスターチ(日本食品化工社製)1000gに1%塩酸溶液30mlを噴霧添加し、混合機にて10分間均一に混ぜ、気流乾燥機を用いて50℃で水分4%になるまで乾燥した。次いで、回転するガラス製ナス型フラスコにオイルバスを組み合わせた加熱装置を用いて、160℃で30分間加熱反応させ焙焼デキストリンを得た。得られた焙焼デキストリンに対して2Lの水を加えて溶解し、20%水酸化ナトリウム溶液でpH6.0に調製し、α−アミラーゼ(ターマミル120L、ノボザイム社製)を0.2重量%添加して85℃1時間加水分解した。次にその液を常温まで冷却してから5%塩酸溶液でpH5.0に調製し、アミログルコシダーゼ(Sigma社製)を0.2重量%添加して60℃38時間加水分解した。酵素処理後、煮沸により酵素失活させアミログルコシダーゼの作用を停止した。この液を活性炭による脱色濾過、イオン交換樹脂による脱塩などの精製を行った。その後、40%程度まで濃縮してから、樹脂分画装置(日本錬水社製)を用いて、2糖以下の低分子画分(二糖以下の糖質を固形分換算で92.0%含む画分)を除去した。得られた水溶性食物繊維は525gであり、食物繊維含量は91.6%であった。よって、原料1000gからの歩留りは52.5%であった。
Example 13: Production of sugar condensate by reusing low molecular fraction generated during production of indigestible dextrin as raw material for sugar condensate (1) Production of indigestible dextrin Corn starch ( manufactured by Nippon Shokuhin Kako Co., Ltd.) 1000% 30 ml of hydrochloric acid solution was added by spraying, mixed uniformly for 10 minutes in a mixer, and dried using an air dryer at 50 ° C. until the water content reached 4%. Next, using a heating apparatus in which an oil bath was combined with a rotating glass eggplant-shaped flask, the reaction was performed by heating at 160 ° C. for 30 minutes to obtain roasted dextrin. 2 L of water was added to the obtained roasted dextrin to dissolve it, adjusted to pH 6.0 with 20% sodium hydroxide solution, and 0.2 wt% of α-amylase (Termamyl 200L, Novozyme) was added. And then hydrolyzed at 85 ° C. for 1 hour. Next, the solution was cooled to room temperature, adjusted to pH 5.0 with a 5% hydrochloric acid solution, added with 0.2% by weight of amyloglucosidase (manufactured by Sigma), and hydrolyzed at 60 ° C. for 38 hours. After the enzyme treatment, the enzyme was inactivated by boiling to stop the action of amyloglucosidase. This solution was purified by decolorization filtration with activated carbon, desalting with an ion exchange resin, or the like. Then, after concentrating to about 40%, using a resin fractionation device (manufactured by Nippon Nuisui Co., Ltd.), a low molecular fraction of 2 sugars or less (sugar of 2 sugars or less is converted to 92.0% in terms of solid content) The containing fraction) was removed. The water-soluble dietary fiber obtained was 525 g, and the dietary fiber content was 91.6%. Therefore, the yield from 1000 g of raw material was 52.5%.

(2)難消化性デキストリン製造時に発生する低分子画分の糖縮合物原資への再利用
上記(1)で分離した低分子画分(固形分425g)を固形分濃度70%に濃縮し、固形分当り1700gの水あめ(DE87、日本食品化工社製)とブレンドし、固形分濃度70%となるように糖縮合反応用原料として再利用した。2%(固形分当たり)の活性炭(フタムラ化学社製)を添加混合後、加熱反応機(ADVANTEC社製)に投入し、180℃で10分間加熱して糖縮合物組成物サンプルを得た。反応後のサンプルは室温まで冷却し、このサンプルを固形分当たり20%水溶液とした後、活性炭を濾過で完全に除去し、可溶性糖質を得た。得られた糖質画分を活性炭による脱色濾過、イオン交換樹脂による脱色を行った後、エバポレーターで濃縮した。
(2) Reuse of low molecular fraction generated during production of indigestible dextrin as a raw material for sugar condensate The low molecular fraction (solid content 425 g) separated in (1) above is concentrated to a solid content concentration of 70%, It was blended with 1700 g of water candy (DE87, manufactured by Nippon Shokuhin Kako Co., Ltd.) per solid content, and reused as a raw material for sugar condensation reaction so that the solid content concentration became 70%. After adding and mixing 2% (per solid content) activated carbon (Futamura Chemical Co., Ltd.), the mixture was put into a heating reactor (ADVANTEC Co., Ltd.) and heated at 180 ° C. for 10 minutes to obtain a sugar condensate composition sample. The sample after the reaction was cooled to room temperature, and this sample was made into a 20% aqueous solution per solid content, and then the activated carbon was completely removed by filtration to obtain a soluble carbohydrate. The obtained carbohydrate fraction was decolorized and filtered with activated carbon and decolorized with an ion exchange resin, and then concentrated with an evaporator.

(2)で得られた水溶性食物繊維は1913gであり、食物繊維含量は85.0%であった。上記(1)で得られた難消化性デキストリンおよび(2)で得られた糖縮合物を総合した水溶性食物繊維の総量は2438gであり、よって原料2700gからの歩留りは90.3%であった。   The water-soluble dietary fiber obtained in (2) was 1913 g, and the dietary fiber content was 85.0%. The total amount of water-soluble dietary fiber combining the indigestible dextrin obtained in (1) above and the sugar condensate obtained in (2) was 2438 g, so the yield from 2700 g of the raw material was 90.3%. It was.

糖縮合物中の低分子画分を分画し、原料糖質に添加して再度糖縮合反応を行うプロセスフローの一例として、低分子画分を添加した原料糖質をそのまま糖縮合反応させるプロセスフローを示した図である。分離した低分子画分を原料糖質に再利用するフローを点線で示した。As an example of a process flow in which a low molecular fraction in a sugar condensate is fractionated, added to a raw sugar, and a sugar condensation reaction is performed again, a process in which the raw sugar to which the low molecular fraction is added is subjected to a sugar condensation reaction as it is It is the figure which showed the flow. The flow of reusing the separated low-molecular fraction as a raw material carbohydrate is shown by a dotted line. 糖縮合物中の低分子画分を分画し、原料糖質に添加して再度糖縮合反応を行うプロセスフローの一例として、低分子画分を添加した原料糖質を加水分解した後に糖縮合反応させるプロセスフローを示した図である。分離した低分子画分を原料糖質に再利用するフローを点線で示した。As an example of a process flow in which a low molecular fraction in a sugar condensate is fractionated, added to a raw sugar, and a sugar condensation reaction is performed again, the raw sugar to which the low molecular fraction is added is hydrolyzed and then condensed. It is the figure which showed the process flow made to react. The flow of reusing the separated low-molecular fraction as a raw material carbohydrate is shown by a dotted line. 糖縮合物中の低分子画分を分画し、原料糖質に添加して再度糖縮合反応を行うプロセスフローの一例として、低分子画分を別の反応系に添加して糖縮合反応させるプロセスフローを示した図である。難消化性デキストリンの製造により生じた低分子画分を、水あめを原料とする別の反応系に添加するプロセスフローを示した。分離した低分子画分を原料糖質に再利用するフローを点線で示した。As an example of a process flow in which a low molecular fraction in a sugar condensate is fractionated, added to a raw sugar, and a sugar condensation reaction is performed again, the low molecular fraction is added to another reaction system to cause a sugar condensation reaction. It is the figure which showed the process flow. A process flow was shown in which the low molecular fraction produced by the production of indigestible dextrin was added to another reaction system using starch syrup. The flow of reusing the separated low-molecular fraction as a raw material carbohydrate is shown by a dotted line.

Claims (9)

糖縮合物またはその還元物を製造する方法であって、
(A)1種または2種以上の糖質またはその誘導体を糖縮合反応させて得られた糖縮合物組成物またはその酵素分解組成物を、重合度9以下の糖質を固形分換算で50%以上含む分画(低分子画分)とそれ以外の分画に分け(ここで、低分子画分は、糖縮合反応により生じた無水糖を含む)、次いで、
(B)下記工程(B−1a)、(B−1)および(B−2):
(B−1a)低分子画分の固形分濃度を15〜99%に調整し、
(B−1)工程(B−1a)で得られた低分子画分を1種または2種以上の糖質またはその誘導体と一緒に糖縮合反応させて糖縮合物組成物またはその酵素分解組成物を得る工程、および
(B−2)工程(B−1)で得られた糖縮合物組成物またはその酵素分解組成物を、低分子画分とそれ以外の画分に分ける工程
を1回または2回以上行う(但し、工程(B−2)が最終工程に当たる場合には工程(B−2)を省略してもよい)
ことを特徴とする、製造方法。
A method for producing a sugar condensate or a reduced product thereof,
(A) A saccharide condensate composition obtained by subjecting one or more saccharides or derivatives thereof to a saccharide condensation reaction or an enzyme-decomposable composition thereof, and a saccharide having a degree of polymerization of 9 or less in terms of solids % Fraction (low molecular fraction) and other fractions (here, the low molecular fraction contains the anhydrosugar produced by the sugar condensation reaction) , then
(B) The following steps (B-1a), (B-1) and (B-2):
(B-1a) Adjust the solid content concentration of the low molecular fraction to 15-99%,
(B-1) A sugar condensate composition or an enzyme-decomposing composition thereof by subjecting the low molecular fraction obtained in step (B-1a) to a sugar condensation reaction together with one or more saccharides or derivatives thereof And (B-2) a step of dividing the sugar condensate composition obtained in step (B-1) or its enzymatic degradation composition into a low molecular fraction and other fractions. Or it is performed twice or more (however, when the step (B-2) corresponds to the final step, the step (B-2) may be omitted)
The manufacturing method characterized by the above-mentioned.
工程(B−1a)において、低分子画分の固形分濃度を50〜99%に調整する、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which adjusts the solid content density | concentration of a low molecular fraction to 50 to 99% in a process (B-1a). 工程(B−1a)において、低分子画分の固形分濃度を濃縮処理により調整する、請求項1または2に記載の製造方法。   The process according to claim 1 or 2, wherein in the step (B-1a), the solid content concentration of the low-molecular fraction is adjusted by a concentration treatment. 糖縮合反応が、無機酸、有機酸、鉱物性物質および活性炭から選択される1種または2種以上の触媒存在下で行われる、請求項1〜3のいずれか一項に記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the sugar condensation reaction is carried out in the presence of one or more catalysts selected from inorganic acids, organic acids, mineral substances and activated carbon. 糖縮合物中の水溶性食物繊維含量が70%以上である、請求項1〜4のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-4 whose water-soluble dietary fiber content in a sugar condensate is 70% or more. 糖縮合反応が100℃〜300℃の温度条件下で行われる、請求項1〜5のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-5 by which saccharide | sugar condensation reaction is performed on the temperature conditions of 100 to 300 degreeC. 工程(B)において、工程(B−1a)、工程(B−1)および工程(B−2)を2回以上繰り返すことを特徴とする、請求項1〜6のいずれか一項に記載の製造方法。   In a process (B), a process (B-1a), a process (B-1), and a process (B-2) are repeated 2 times or more, It is characterized by the above-mentioned. Production method. 製造された糖縮合物を還元処理する工程をさらに含んでなる、請求項1〜7のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-7 which further includes the process of carrying out the reduction process of the manufactured sugar condensate. 請求項1〜8のいずれか一項に記載の製造方法により糖縮合物またはその還元物を製造し、次いで、該糖縮合物またはその還元物を飲食品またはその原料に添加することを特徴とする、飲食品の製造方法。   A sugar condensate or a reduced product thereof is produced by the production method according to any one of claims 1 to 8, and then the sugar condensate or the reduced product thereof is added to a food or drink or a raw material thereof. The manufacturing method of food-drinks.
JP2014209996A 2012-11-28 2014-10-14 Method for producing sugar condensate Active JP6382058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209996A JP6382058B2 (en) 2012-11-28 2014-10-14 Method for producing sugar condensate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012260037 2012-11-28
JP2012260037 2012-11-28
JP2014209996A JP6382058B2 (en) 2012-11-28 2014-10-14 Method for producing sugar condensate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013212064A Division JP5671594B2 (en) 2012-11-28 2013-10-09 Method for producing sugar condensate

Publications (3)

Publication Number Publication Date
JP2015045011A JP2015045011A (en) 2015-03-12
JP2015045011A5 JP2015045011A5 (en) 2016-11-24
JP6382058B2 true JP6382058B2 (en) 2018-08-29

Family

ID=51408093

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013212064A Expired - Fee Related JP5671594B2 (en) 2012-11-28 2013-10-09 Method for producing sugar condensate
JP2014209996A Active JP6382058B2 (en) 2012-11-28 2014-10-14 Method for producing sugar condensate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013212064A Expired - Fee Related JP5671594B2 (en) 2012-11-28 2013-10-09 Method for producing sugar condensate

Country Status (1)

Country Link
JP (2) JP5671594B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019026661A2 (en) * 2017-06-14 2020-06-23 Cargill, Incorporated MANNOSIS OLIGOSACARIDE COMPOSITION, FOOD, ANIMAL FEED OR FOOD PRODUCT, PROCESS TO PREPARE A COMPOSITION UNDERSTANDING MANNOSIS OLIGOSACARIDE, USE OF THE COMPOSITION, AND, COSMETIC PRODUCT.
CN111212916A (en) * 2017-11-20 2020-05-29 龟甲万株式会社 Low-colored sugar solution and method for producing same
KR102381709B1 (en) * 2019-12-20 2022-04-01 대상 주식회사 Method of manufacuring dietary fiber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612977B2 (en) * 1985-05-27 1994-02-23 加藤化学株式会社 Method for producing fructose condensate
JPS62292791A (en) * 1986-06-12 1987-12-19 Sanmatsu Kogyo Kk Production of low-caloric polysaccharides
JPH02163101A (en) * 1988-12-16 1990-06-22 Sanmatsu Kogyo Kk Production of hardly digestible polysaccharide
JPH04312595A (en) * 1991-04-08 1992-11-04 Mitsui Sugar Co Ltd Production of palatinose condensate
US5968362A (en) * 1997-08-04 1999-10-19 Controlled Enviromental Systems Corporation Method for the separation of acid from sugars
JP2005510581A (en) * 2001-04-10 2005-04-21 ダニスコ・ユーエスエー・インコーポレーテッド Polymerization of monosaccharides and disaccharides using monocarboxylic acids and lactones.
JP2003231694A (en) * 2002-02-06 2003-08-19 Hokkaido Electric Power Co Inc:The Method for producing saccharide polymer and glycosides
US6881838B2 (en) * 2002-05-21 2005-04-19 A.E. Staley Manufacturing Company Polysaccharide gum and process for its manufacture
DE10262018B4 (en) * 2002-06-13 2007-09-06 Südzucker AG Mannheim/Ochsenfurt Compositions, foodstuffs, food and beverages, confectionery, animal feed, dietary special nutrition, child nutrition, sweeteners and pharmaceutical compositions containing condensed palatinose
US8057840B2 (en) * 2006-01-25 2011-11-15 Tate & Lyle Ingredients Americas Llc Food products comprising a slowly digestible or digestion resistant carbohydrate composition
ATE555135T1 (en) * 2006-06-15 2012-05-15 Syral Belgium Nv METHOD FOR PRODUCING STATISTICALLY BONDED POLYSACCHARIDES
JP4966429B1 (en) * 2011-01-07 2012-07-04 日本食品化工株式会社 Sugar condensate and production method and use thereof

Also Published As

Publication number Publication date
JP2015045011A (en) 2015-03-12
JP5671594B2 (en) 2015-02-18
JP2014129334A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
US11572380B2 (en) Saccharide polycondensate, method for producing the same, and application therefor
JP4973454B2 (en) Maltooligosaccharide composition
JP6962674B2 (en) Branched α-glucan mixture syrup and its uses
JP6382058B2 (en) Method for producing sugar condensate
JP2023168419A (en) Method for preparing isomaltooligosaccharide composition
JP3100139B2 (en) Manufacturing method of food and drink
US9237765B2 (en) Non-digestible hydroxypropyl starch hydrolysate, method for production thereof and food and beverage
WO2002088374A1 (en) Process for producing isomaltose and use thereof
JP5868931B2 (en) Method for stabilizing water-soluble dietary fiber, stabilized water-soluble dietary fiber composition, and method for producing the same
JP6896491B2 (en) Indigestible glucan with a taste-enhancing effect
JPS647752B2 (en)
JP3020583B2 (en) Method for removing bitterness of β-glucooligosaccharide
JP7088483B2 (en) Manufacturing method of water-soluble dietary fiber composition, manufacturing method of food and drink, and novel microorganisms
JP6588071B2 (en) β-D-glucopyranosyl- (1 → 1) -D-fructose and uses thereof
JP6636003B2 (en) Method for producing sugar composition and sugar composition
JP7445759B2 (en) Composition for producing allulose and method for producing allulose using the same
JP6040285B1 (en) Method for producing water-soluble dietary fiber-containing solution with reduced coloring and method for reducing coloration of water-soluble dietary fiber-containing solution
JP4363967B2 (en) Cyclic pentasaccharide and its glycosyl derivative, production method and use thereof
JP2021193992A (en) Taste improver

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250