JP6382030B2 - Synthesis of ceramics by low-temperature solid-phase reaction - Google Patents
Synthesis of ceramics by low-temperature solid-phase reaction Download PDFInfo
- Publication number
- JP6382030B2 JP6382030B2 JP2014173184A JP2014173184A JP6382030B2 JP 6382030 B2 JP6382030 B2 JP 6382030B2 JP 2014173184 A JP2014173184 A JP 2014173184A JP 2014173184 A JP2014173184 A JP 2014173184A JP 6382030 B2 JP6382030 B2 JP 6382030B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- powder
- ceramics
- material powder
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims description 24
- 238000003746 solid phase reaction Methods 0.000 title claims description 16
- 230000015572 biosynthetic process Effects 0.000 title claims description 12
- 238000003786 synthesis reaction Methods 0.000 title claims description 12
- 239000000843 powder Substances 0.000 claims description 54
- 239000002994 raw material Substances 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 230000002194 synthesizing effect Effects 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 4
- 239000007772 electrode material Substances 0.000 claims description 4
- 239000000049 pigment Substances 0.000 claims description 4
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 4
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 3
- 239000011222 crystalline ceramic Substances 0.000 claims description 3
- 229910002106 crystalline ceramic Inorganic materials 0.000 claims description 3
- 239000007784 solid electrolyte Substances 0.000 claims description 3
- 238000010303 mechanochemical reaction Methods 0.000 claims description 2
- 238000010189 synthetic method Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 30
- 238000001308 synthesis method Methods 0.000 description 22
- 238000002441 X-ray diffraction Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- -1 alkali metal vanadate Chemical class 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000002284 excitation--emission spectrum Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Luminescent Compositions (AREA)
- Compounds Of Iron (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明はセラミックスの合成法に関し、具体的には、比較的低温(つまり室温又は室温に近い温度環境中での)固相反応によるセラミックスの合成法に関するものである。 The present invention relates to a method for synthesizing ceramics, and specifically relates to a method for synthesizing ceramics by a solid-phase reaction at a relatively low temperature (that is, in a temperature environment at or near room temperature).
例えば、リン酸塩であるLi3PO4などのセラミックス材料は、一般に固相法や液相法などを用いて合成される。そして、そのような合成法を用いる理由は原料の反応性を上げるためである。 For example, a ceramic material such as Li 3 PO 4 which is a phosphate is generally synthesized using a solid phase method, a liquid phase method, or the like. The reason for using such a synthesis method is to increase the reactivity of the raw material.
しかしながら、従来の方法で通常利用される高温焼成や溶媒の乾燥操作などの工程は、高いエネルギーを要する。また、非特許文献1では室温合成でもセラミックス材料が得られることが開示されているが、特殊な装置を必要とする。 However, processes such as high-temperature baking and solvent drying operations that are normally used in conventional methods require high energy. Non-Patent Document 1 discloses that ceramic materials can be obtained even at room temperature synthesis, but a special device is required.
そこで、本発明は上記事情に鑑み、特殊な装置を用いずに低エネルギーでセラミックスを合成できるセラミックス合成法を提供することをその目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a ceramic synthesis method capable of synthesizing ceramics with low energy without using a special apparatus.
(従来の室温合成法)
ところで、特許文献1には、アルカリ金属化合物(Rb2CO3やCs2CO3)と酸化バナジウム(V2O5)とを室温の空気中で固相反応させてアルカリ金属バナジン酸塩を生成する手法が開示されている。このアルカリ金属バナジン酸塩は高効率な蛍光体材料として利用が見込めるものである。そして、本発明者も上述の手法を検討したところ、アルカリ金属化合物(Rb2CO3やCs2CO3)と、酸化バナジウム(V2O5)との組合せは極めて反応性が良いこと、つまり、互いに室温の気体中で接触させるだけで良く、生成条件等を厳しくコントロールする必要は無いことを突き止めた。
(Conventional room temperature synthesis method)
By the way, in Patent Document 1, an alkali metal compound (Rb 2 CO 3 or Cs 2 CO 3 ) and vanadium oxide (V 2 O 5 ) are subjected to solid phase reaction in air at room temperature to produce an alkali metal vanadate. A technique is disclosed. This alkali metal vanadate is expected to be used as a highly efficient phosphor material. Then, the present inventors also examined the above method, the alkali metal compound and (Rb 2 CO 3 or Cs 2 CO 3), a combination of a vanadium oxide (V 2 O 5) is extremely good reactivity, i.e. It has been found that it is only necessary to bring them into contact with each other in a room temperature gas, and it is not necessary to strictly control the production conditions.
しかしながら、本発明者は、アルカリ金属化合物と酸化バナジウムとの化合物の組合せ以外でも上記手法を利用して蛍光体材料を生成できないかを模索し、これを試みたところ、原料粉末同士以外に適度な分量の水分を追加したり、室温以上の温度(低温の範囲内ではあるけれども)で加熱したりするなどしなければ、反応・生成できないことが分かった。 However, the present inventor has sought to produce a phosphor material using the above method other than a combination of an alkali metal compound and a vanadium oxide compound. It was found that the reaction and generation could not be done without adding a sufficient amount of moisture or heating at a temperature above room temperature (although it was in the low temperature range).
また、本発明者は、蛍光体材料以外の用途(例えば、誘電体材料や電解質材料)に使用可能なセラミックスにも上記室温合成法は適用できないか否かについても検討したところ、所定の生成・反応条件下であれば、生成可能であることを見出した。 The present inventor also examined whether the room temperature synthesis method can be applied to ceramics that can be used for applications other than phosphor materials (for example, dielectric materials and electrolyte materials). It was found that it can be produced under reaction conditions.
すなわち、本発明のセラミックスの合成法は、少なくとも次の特徴・構成を有する。
(態様1)
室温、気体中において少なくとも2種類以上の原料粉末(但し、アルカリ金属化合物及びバナジウム酸化物の組合せを除く。)を接触させ、接触した該原料粉末を固相反応(但し、メカノケミカル反応を除く。)させて結晶性のセラミックスを得ることを特徴とするセラミックスの合成法であって、かつ、
前記原料粉末の接触ステップの前又は後に少量の水を加えるステップをさらに含み、
水を加える前記ステップでは、前記原料粉末の合計重量を1とした場合に、加える水の重量を1以下に設定することを特徴とするセラミックスの合成法。
(態様2)
前記原料粉末を密閉又は半密閉の容器に収容し、かつ、該容器内の温度を50℃〜250℃に維持しながら前記原料粉末を低温加熱するステップをさらに含むことを特徴とする態様1に記載のセラミックスの合成法。
(態様3)
蛍光体材料、触媒、顔料、誘電体材料、固体電解質材料又は電極材料のいずれかの用途のセラミックスを得るための合成法であることを特徴とする態様1又は2に記載のセラミックスの合成法。
That is, the ceramic synthesis method of the present invention has at least the following features and configurations.
(Aspect 1)
Excluding room temperature, at least two kinds of raw material powder in a gas (however, alkali metal compound and excluding the combination of vanadium oxide.) Contacting the solid phase reaction raw material powder in contact (but the mechanochemical reaction .) it is allowed to obtain the crystalline ceramic a synthesis of ceramic, characterized in, and,
Adding a small amount of water before or after the step of contacting the raw material powder,
In the step of adding water, when the total weight of the raw material powder is 1, the weight of water to be added is set to 1 or less.
(Aspect 2)
The raw material powder was contained in the container of a sealed or semi-sealed, and the temperature within said vessel in aspect 1, further comprising the step of the raw material powder for the low temperature heating while maintaining the 50 ° C. to 250 DEG ° C. A method of synthesizing the ceramics described.
(Aspect 3)
3. The method for synthesizing ceramics according to aspect 1 or 2, wherein the method is a synthetic method for obtaining ceramics for any one of phosphor material, catalyst, pigment, dielectric material, solid electrolyte material, and electrode material.
ここで、上述した少量(上記所定分量)の水を加えるステップには、上記所定分量の全てを別途、付与することはもちろん、吸湿性を持つ物質や構造中に水を含む物質(例えば、後述するBa(OH)2・8H2OやLiOH・H2O)を原料に使用した場合には、原料内の含水量を考慮した上で上記所定分量を決定するようにしても良い。 Here, in the step of adding a small amount of water (the predetermined amount) described above, all of the predetermined amount is added separately, as well as a hygroscopic substance or a substance containing water in the structure (for example, described later) When Ba (OH) 2 · 8H 2 O or LiOH · H 2 O) is used as a raw material, the predetermined amount may be determined in consideration of the water content in the raw material.
また、本発明者らは、若干加温(低温加熱)した気体(好ましくは密閉容器内の気体、製造コストの面からさらに好ましくは密閉容器内の空気)環境下では、室温環境下では固相反応が起こらない原料組合せでも固相反応を起こすことができること、あるいは、室温環境下での固相反応が起こる原料組合せにおいても上記環境下に設定することで固相反応が著しく促進するために室温環境下での固相反応に通常掛る原料同士の混合(攪拌)時間を極めて短縮できることを見出し、本発明の上記好適な態様を完成させたのである。 In addition, the present inventors have found that a slightly heated (low temperature heating) gas (preferably a gas in a sealed container, more preferably an air in a sealed container from the viewpoint of production cost) is a solid phase in a room temperature environment. It is possible to cause a solid phase reaction even in a raw material combination where no reaction occurs, or even in a raw material combination where a solid phase reaction occurs in a room temperature environment, the solid phase reaction is significantly accelerated by setting in the above environment. It has been found that the mixing (stirring) time of the raw materials normally required for a solid phase reaction under an environment can be extremely shortened, and the above preferred embodiment of the present invention has been completed.
また、密閉容器とは外気と容器内に区画された気体との流通を遮断し、容器内の気体の湿度・温度条件を任意に調整・維持できるものであれば良く、一例として、バイアル瓶、バイアル瓶より優れた耐熱性を有するステンレス製や鋼製の水熱反応用容器が挙げられる。また、本発明の容器として、上述した密閉容器の他、外気が容器内に極めて低い流入速度で流入したり、容器内の気体が極めて低い流出速度で漏れ出したりするような半密閉式の容器であっても構わない。その他の半密閉容器の例として、上述した所望の加温温度を有した気体(例えば、空気)を常に該容器内に流入し、流出可能な流路のような容器も挙げられる。 In addition, the sealed container may be any container that can block the flow of the outside air and the gas partitioned in the container and can arbitrarily adjust and maintain the humidity and temperature conditions of the gas in the container. Examples thereof include stainless steel and steel hydrothermal reaction containers having heat resistance superior to that of vials. Further, as the container of the present invention, in addition to the above-described sealed container, a semi-sealed container in which outside air flows into the container at a very low inflow rate or gas in the container leaks out at a very low outflow rate. It does not matter. As another example of the semi-sealed container, there is a container such as a flow path that allows the gas (for example, air) having the desired heating temperature described above to always flow into and out of the container.
本発明によれば、低コストかつ、簡便な操作のみでセラミックス材料を合成することができる。 According to the present invention, it is possible to synthesize a ceramic material only with a low cost and simple operation.
本発明の一つの好適な実施形態に係るセラミックスの合成法は、室温の気体中において少なくとも2種類以上の原料粉末(但し、アルカリ金属化合物及びバナジウム酸化物の組合せを除く。)を接触させ、少量の水を加えた後、混合することにより原料を固相反応させて結晶性のセラミックスを得るものであって、水を加える前記ステップでは、原料粉末の合計重量を1とした場合に、加える水の重量を1以下(より好ましくは、0.001〜0.1)に設定することを特徴とするものである。 In the method for synthesizing ceramics according to one preferred embodiment of the present invention, at least two kinds of raw material powders (except for a combination of an alkali metal compound and vanadium oxide) are brought into contact with each other in a gas at room temperature. In this step of adding water, the water is added when the total weight of the raw material powder is set to 1. Is set to 1 or less (more preferably 0.001 to 0.1).
ここで、水の量が上記好適範囲の下限を超えた場合には、一般の固相反応と同様、原料粉末粒子同士の接触面で安定な中間生成物が生成されることによって、原料粉末粒子間のイオン拡散速度が遅くなり、反応が進行しにくい状態になってしまう。一方、水の量が上記好適範囲の上限を超えた場合には、原料粉末が溶媒中に浮遊し、原料粉末粒子同士の接触面積が減少するため、反応が起こりにくい状態になってしまう。 Here, when the amount of water exceeds the lower limit of the above preferred range, a raw material powder particle is produced by generating a stable intermediate product at the contact surface between the raw material powder particles, as in a general solid phase reaction. In the meantime, the ion diffusion rate becomes slow, and the reaction hardly progresses. On the other hand, when the amount of water exceeds the upper limit of the above preferred range, the raw material powder floats in the solvent and the contact area between the raw material powder particles decreases, so that the reaction hardly occurs.
また、本発明のもう一つの好適な実施形態では、前述の混合ステップで得られた混合物を密閉又は半密閉の容器に収容して該容器内の温度を50℃〜250℃に維持しながら前記混合物を低温加熱するステップをさらに含むことを特徴とするものである。 In another preferred embodiment of the present invention, the mixture obtained in the mixing step is contained in a sealed or semi-sealed container, and the temperature in the container is maintained at 50 ° C. to 250 ° C. The method further includes the step of low-temperature heating the mixture.
このように、本発明によれば、従来の合成法とは異なり焼成を要せず、容易にセラミックスを合成することができる。本発明は、蛍光体材料、触媒、顔料、誘電体材料、固体電解質材料、電極材料など、様々な材料分野への展開も期待される。 Thus, according to the present invention, unlike conventional synthesis methods, ceramics can be easily synthesized without requiring firing. The present invention is also expected to develop into various material fields such as phosphor materials, catalysts, pigments, dielectric materials, solid electrolyte materials, and electrode materials.
一般的に、セラミックスの合成には高温の熱処理が必要であり、室温あるいは低温域において結晶性のセラミックス材料を特別なプロセスなしに結晶化させた例は知られていない。なお、特許文献1ではアルカリ金属バナジン酸塩という特殊なセラミックス材料(蛍光体材料)の製造に室温合成が用いられた例があるが、触媒・顔料・電極材料等の用途のセラミックス材料の製造に室温合成或いは密閉容器中での低温合成を行ったという例は見受けられない。本発明者らは、本発明の合成法及び合成条件を用いれば、低エネルギーでかつ簡便に多種多様のセラミックス材料を生成できることを見出したのである。 In general, high-temperature heat treatment is required for the synthesis of ceramics, and there is no known example in which a crystalline ceramic material is crystallized without a special process at room temperature or low temperature. In Patent Document 1, there is an example in which room temperature synthesis is used for the production of a special ceramic material (phosphor material) called alkali metal vanadate, but for the production of ceramic materials for applications such as catalysts, pigments, and electrode materials. There are no examples of room temperature synthesis or low temperature synthesis in a closed container. The present inventors have found that a wide variety of ceramic materials can be easily produced with low energy by using the synthesis method and synthesis conditions of the present invention.
なお、上述した密閉又は半密閉容器での収容・低温加熱ステップを施さない形態では、固相反応速度の低い原料の組合せによっては、混合ステップでの混合時間(原料攪拌時間)を1時間以上と比較的長時間に設定することが好ましい。 In addition, in the form in which the above-described containment or low-temperature heating step is not performed in a sealed or semi-sealed container, depending on the combination of raw materials having a low solid phase reaction rate, the mixing time (raw material stirring time) in the mixing step is 1 hour or more. It is preferable to set a relatively long time.
これに対し、密閉・低温加熱ステップを導入する形態においては、低温加熱ステップ実施中に密閉空間に収容された混合物内での反応速度が飛躍的に高まるため、極めて短時間に混合物全体に亘って固相反応を起こすことが可能となる。従って、低温加熱ステップ前の室温気体中の混合ステップでの原料攪拌時間についても大幅に短縮(例えば、30秒以上)にすることが可能となる。加えて、室温の気体環境下では固相反応がほとんど起こらない(又は起こりにくい)原料の組合せを用いた場合でも、このステップの導入により、固相反応が生じるようになる。 On the other hand, in the form in which the closed / low temperature heating step is introduced, the reaction rate in the mixture accommodated in the sealed space is dramatically increased during the low temperature heating step. It is possible to cause a solid phase reaction. Therefore, the raw material stirring time in the mixing step in the room temperature gas before the low temperature heating step can be significantly shortened (for example, 30 seconds or more). In addition, even when a combination of raw materials in which a solid phase reaction hardly occurs (or hardly occurs) in a gaseous environment at room temperature, a solid phase reaction is caused by the introduction of this step.
以下、具体的な実施例に基づいて説明する。 Hereinafter, description will be made based on specific examples.
(室温環境下での合成法の例示1)
室温、空気中においてLi2CO3粉末とNH4H2PO4粉末を化学量論比に従って秤量し、少量(0.05g)の水を加えてメノウ乳鉢で1分間、混合した後の混合物(実施例1)のX線回折パターンを図1に示す。実施例1の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンとを比較すると、それぞれのピークが合致しており、結晶性のLi3PO4が主相で生成できたことが確認された。なお、実施例1に用いた原料粉末の合計重量は0.5gであったため、原料粉末の合計重量を1とすると、水の上記付与量は0.1であった。なお、後述の実施例においても原料粉末の合計重量に対する水の付与量を同様の割合に設定した。また、実施例1の原料粉末の組合せでは、後述する低温加熱処理を行わなくても室温環境下で固相反応が短時間に終了することが確認された。
(Example 1 of synthesis method at room temperature)
Li 2 CO 3 powder and NH 4 H 2 PO 4 powder were weighed according to the stoichiometric ratio in air at room temperature, added with a small amount (0.05 g) of water, and mixed for 1 minute in an agate mortar ( The X-ray diffraction pattern of Example 1) is shown in FIG. When the X-ray diffraction pattern of the mixture of Example 1 was compared with the crystal pattern of the simulated target product (target compound), the respective peaks matched, and crystalline Li 3 PO 4 was generated in the main phase. It was confirmed that it was possible. In addition, since the total weight of the raw material powder used in Example 1 was 0.5 g, when the total weight of the raw material powder was 1, the amount of water applied was 0.1. In the examples described later, the amount of water applied to the total weight of the raw material powder was set to the same ratio. In addition, it was confirmed that in the combination of raw material powders of Example 1, the solid-phase reaction was completed in a short time in a room temperature environment without performing the low-temperature heat treatment described later.
室温、空気中においてLi2CO3粉末とNH4H2PO4粉末を、少量の水(0.05g)を加えて混合した後の混合物(実施例1)のSEM画像を図2に示す。平均粒径1μm以下の微粒子が得られたことが確認された。 FIG. 2 shows an SEM image of the mixture (Example 1) after mixing a small amount of water (0.05 g) with Li 2 CO 3 powder and NH 4 H 2 PO 4 powder in air at room temperature. It was confirmed that fine particles having an average particle diameter of 1 μm or less were obtained.
(室温環境下での合成法の例示2)
室温、空気中においてSrCO3粉末とMoO3粉末を化学量論比に従って秤量し、少量(0.05g)の水を加えてメノウ乳鉢で3時間、混合した後の混合物(実施例2)のX線回折パターンを図3に示す。実施例2の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンと比較すると、それぞれのピークが合致しており、結晶性のSrMoO4が主相で生成できたことが確認された。
(Example 2 of synthesis method in room temperature environment)
SrCO 3 powder and MoO 3 powder were weighed according to the stoichiometric ratio in air at room temperature, and a small amount (0.05 g) of water was added and mixed for 3 hours in an agate mortar (Example 2) X The line diffraction pattern is shown in FIG. When the X-ray diffraction pattern of the mixture of Example 2 and the crystal pattern of the simulated target product (target compound) were compared, the respective peaks matched and crystalline SrMoO 4 could be generated in the main phase. Was confirmed.
(室温環境下での合成法の例示3)
室温、空気中においてナノ粒子Y2O3粉末とV2O5粉末を化学量論比に従って秤量し、少量(0.05g)の水を加えてメノウ乳鉢で3時間、混合した後の混合物(実施例3)のX線回折パターンを図4に示す。実施例3の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンとを比較すると、それぞれのピークが合致しており、結晶性のYVO4が主相で生成できたことが確認された。
(Example 3 of synthesis method at room temperature)
Nanoparticles Y 2 O 3 powder and V 2 O 5 powder were weighed according to the stoichiometric ratio in air at room temperature, added with a small amount (0.05 g) of water, and mixed for 3 hours in an agate mortar ( The X-ray diffraction pattern of Example 3) is shown in FIG. When the X-ray diffraction pattern of the mixture of Example 3 was compared with the crystal pattern of the simulated target product (target compound), the respective peaks matched and crystalline YVO 4 could be generated in the main phase. It was confirmed.
(加温空気環境下での合成法の例示1)
Ba(OH)2・8H2O粉末とアナターゼ型TiO2粉末とを化学量論比に従って秤量し、メノウ乳鉢で1分間混合し、さらに80℃、空気で満たされたバイアル瓶内に上記混合物を密閉し、6時間、放置(低温加熱)した後の混合物(実施例4)のX線回折パターンを図5に示す。実施例4の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンとを比較すると、それぞれのピークが合致しており、結晶性のBaTiO3が主相で生成できたことが確認された。
(Example 1 of synthesis method in a heated air environment)
Ba (OH) 2 · 8H 2 O powder and anatase TiO 2 powder are weighed according to the stoichiometric ratio, mixed in an agate mortar for 1 minute, and further mixed in an air bottle filled with air at 80 ° C. FIG. 5 shows an X-ray diffraction pattern of the mixture (Example 4) after sealed and left to stand (low temperature heating) for 6 hours. When the X-ray diffraction pattern of the mixture of Example 4 was compared with the crystal pattern of the simulated target product (target compound), the respective peaks matched and crystalline BaTiO 3 could be generated in the main phase. It was confirmed.
なお、実施例4の合成法は、上述した実施例2,3の室温合成に比べて、密閉(低温加熱)処理を要するものの、混合(攪拌)時間を著しく短縮することができ、製造の際に製造装置における機械的な駆動エネルギーを著しく減らすことが可能となる。また、実施例4の合成法は、室温合成処理だけでは反応が生じない混合物に固相反応を起こすこともできる(後述の表2の原料の組合せのうち、室温合成だけで合成できない組合せも存在した)。後述の実施例5,6の合成法でも実施例4の上記作用効果と同様の作用効果を得ることができる。 In addition, although the synthesis method of Example 4 requires a sealing (low temperature heating) treatment as compared with the room temperature synthesis of Examples 2 and 3 described above, the mixing (stirring) time can be remarkably shortened. In addition, the mechanical driving energy in the manufacturing apparatus can be significantly reduced. In addition, the synthesis method of Example 4 can also cause a solid-phase reaction in a mixture in which a reaction does not occur only at room temperature synthesis treatment (some combinations of raw materials in Table 2 described below that cannot be synthesized only at room temperature synthesis). did). Effects similar to those of the fourth embodiment can be obtained by the synthesis methods of the fifth and sixth embodiments described later.
(加温空気環境下での合成法の例示2)
La(NO3)3・6H2O粉末、NH4H2PO4粉末、TbCl3・6H2O粉末、および CeCl3・7H2O粉末を化学量論比に従って秤量し、メノウ乳鉢で1分間混合し、さらに100℃、空気で満たされた水熱反応用容器内に上記混合物を密閉し、6時間、放置した後の混合物(実施例5)のX線回折パターンを図6に示す。実施例5の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンとを比較すると、それぞれのピークが合致しており、結晶性のLaPO4が主相で生成できたことが確認された。
(Example 2 of synthesis method in warm air environment)
La (NO 3 ) 3 · 6H 2 O powder, NH 4 H 2 PO 4 powder, TbCl 3 · 6H 2 O powder, and CeCl 3 · 7H 2 O powder are weighed according to the stoichiometric ratio, and then in an agate mortar for 1 minute FIG. 6 shows the X-ray diffraction pattern of the mixture (Example 5) after mixing, sealing the mixture in a hydrothermal reaction vessel filled with air at 100 ° C., and allowing it to stand for 6 hours. When the X-ray diffraction pattern of the mixture of Example 5 was compared with the crystal pattern of the simulated target product (target compound), the respective peaks matched and crystalline LaPO 4 could be generated in the main phase. It was confirmed.
上述のように合成(混合、密閉、放置)された実施例5の混合物の励起発光スペクトルを図7に示す。 FIG. 7 shows the excitation emission spectrum of the mixture of Example 5 synthesized (mixed, sealed, and left) as described above.
(加温空気環境下での合成法の例示3)
ナノ粒子Y2O3粉末とV2O5粉末、およびEu2O3粉末を化学量論比に従って秤量し、メノウ乳鉢で1分間混合し、少量(0.05g)の水を加え、さらに80℃、空気で満たされたバイアル瓶内に上記混合物を密閉し、6時間、放置(低温加熱)した後の混合物(実施例6)のX線回折パターンを図8に示す。実施例6の混合物のX線回折パターンと、シミュレーションした目標生成物(ターゲット化合物)の結晶パターンとを比較すると、それぞれのピークが合致しており、結晶性のYVO4が主相で生成できたことが確認された。
(Example 3 of synthesis method in a heated air environment)
Nanoparticles Y 2 O 3 powder, V 2 O 5 powder, and Eu 2 O 3 powder are weighed according to the stoichiometric ratio, mixed for 1 minute in an agate mortar, a small amount (0.05 g) of water is added, and an additional 80 FIG. 8 shows an X-ray diffraction pattern of the mixture (Example 6) after the mixture was sealed in a vial filled with air at 0 ° C. and allowed to stand (low temperature heating) for 6 hours. When the X-ray diffraction pattern of the mixture of Example 6 was compared with the crystal pattern of the simulated target product (target compound), the respective peaks matched and crystalline YVO 4 could be generated in the main phase. It was confirmed.
上述のように合成された実施例6の混合物の励起発光スペクトルを図9に示す。 FIG. 9 shows the excitation emission spectrum of the mixture of Example 6 synthesized as described above.
(その他の実施例:室温環境下での合成法のその他の例示)
実施例1の合成法に用いた原料とは異なる原料を用いても、実施例1と同様の製造条件で別のセラミックスを多数合成することができた(表1参照)。
(Other Examples: Other Examples of Synthesis Methods at Room Temperature)
Even when a raw material different from the raw material used in the synthesis method of Example 1 was used, many other ceramics could be synthesized under the same production conditions as in Example 1 (see Table 1).
表1中、Raw material(1)とRaw material(2)の欄は、各実施例(T1−1〜T1−5)で用い、互いに混合した第1の原料と第2の原料とを示す。そして、表1中のTarget compoundの欄は各実施例において生成を目標にした化合物(目標生成物)であり、Resultの欄は各実施例において実際に得られた生成物であり、この得られた生成物のX線回折パターンを上記目標生成物のシミュレーションパターンと比較することにより同定した。なお、後述する表2,3の各欄の表記も表1の対応する欄の表記と同様である。 In Table 1, the columns of raw material (1) and raw material (2) are used in each example (T1-1 to T1-5) and indicate the first raw material and the second raw material mixed with each other. In Table 1, the Target compound column is the compound targeted for production in each Example (target product), and the Result column is the product actually obtained in each Example. The X-ray diffraction pattern of the product was identified by comparing it with the simulation pattern of the target product. Note that the notation in each column in Tables 2 and 3 described later is the same as the notation in the corresponding column in Table 1.
(その他の実施例:加温空気環境下での合成法のその他の例示(目標生成物は3元系))
実施例4の合成法に用いた原料とは異なる原料を用いても、実施例4と同様の製造条件(80℃の空気で満たされた容器内での密閉・放置)で別のセラミックスを多数合成することができた(表2参照)。
(Other examples: Other examples of the synthesis method in a heated air environment (the target product is a ternary system))
Even when a raw material different from the raw material used in the synthesis method of Example 4 is used, many other ceramics are produced under the same production conditions as in Example 4 (sealing and leaving in a container filled with air at 80 ° C.). Could be synthesized (see Table 2).
(その他の実施例:加温空気環境下での合成法のその他の例示(目標生成物は4元系))
実施例4の合成法に用いた原料とは異なる原料を用いても、実施例4と同様の製造条件(80℃の空気で満たされた容器内での密閉・放置)で別のセラミックスを多数合成することができた(表3参照)。
(Other examples: Other examples of the synthesis method in a heated air environment (the target product is a quaternary system))
Even when a raw material different from the raw material used in the synthesis method of Example 4 is used, many other ceramics are produced under the same production conditions as in Example 4 (sealing and leaving in a container filled with air at 80 ° C.). Could be synthesized (see Table 3).
ここで、表3に記載の実施例では表2に記載の実施例と異なる点は、第1・第2の原料の他、第3の原料(表3中のRaw material(3)の欄参照)を用いて、4元系のセラミックス化合物の生成を目標にした点である。 Here, the embodiment described in Table 3 is different from the embodiment described in Table 2 in that the first and second raw materials as well as the third raw material (see the column of Raw material (3) in Table 3). ) To target the production of quaternary ceramic compounds.
本願発明の方法によれば、上述のように、特殊な装置を用いずに低エネルギーでセラミックスを合成できるため、産業上の利用価値及び産業上の利用可能性が非常に高い。 According to the method of the present invention, as described above, ceramics can be synthesized with low energy without using a special apparatus, so that industrial utility value and industrial applicability are very high.
Claims (3)
前記原料粉末の接触ステップの前又は後に少量の水を加えるステップをさらに含み、 水を加える前記ステップでは、前記原料粉末の合計重量を1とした場合に、加える水の重量を1以下に設定することを特徴とするセラミックスの合成法。 Excluding room temperature, at least two kinds of raw material powder in a gas (however, alkali metal compound and excluding the combination of vanadium oxide.) Contacting the solid phase reaction raw material powder in contact (but the mechanochemical reaction .) it is allowed to obtain the crystalline ceramic a synthesis of ceramic, characterized in, and,
The method further includes the step of adding a small amount of water before or after the contact step of the raw material powder, and in the step of adding water, when the total weight of the raw material powder is 1, the weight of the added water is set to 1 or less. A method for synthesizing ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014173184A JP6382030B2 (en) | 2013-08-27 | 2014-08-27 | Synthesis of ceramics by low-temperature solid-phase reaction |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013175120 | 2013-08-27 | ||
JP2013175120 | 2013-08-27 | ||
JP2014173184A JP6382030B2 (en) | 2013-08-27 | 2014-08-27 | Synthesis of ceramics by low-temperature solid-phase reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015063452A JP2015063452A (en) | 2015-04-09 |
JP6382030B2 true JP6382030B2 (en) | 2018-08-29 |
Family
ID=52831685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014173184A Active JP6382030B2 (en) | 2013-08-27 | 2014-08-27 | Synthesis of ceramics by low-temperature solid-phase reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6382030B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017504A (en) * | 1998-07-16 | 2000-01-25 | Universite Laval | Process for synthesizing perovskites using high energy milling |
EP1092679A4 (en) * | 1999-03-26 | 2005-03-09 | Nara Machinery Co Ltd | Method for producing calcium phosphate powder |
JP2001302941A (en) * | 2000-04-20 | 2001-10-31 | Toyota Central Res & Dev Lab Inc | Filler comprising hydroxide composition, its production method, and flame-retardant material using the same |
JP2004224590A (en) * | 2003-01-20 | 2004-08-12 | Nittetsu Mining Co Ltd | Method for synthesizing hydrotalcite-like compound |
JP4208666B2 (en) * | 2003-07-18 | 2009-01-14 | エスケー化研株式会社 | Method for producing bismuth vanadate fine particles |
JP2006021966A (en) * | 2004-07-08 | 2006-01-26 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | Method for producing synthetic powder, and powder treatment apparatus |
CA2637618C (en) * | 2006-02-16 | 2015-03-31 | Brigham Young University | Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys |
US20100034730A1 (en) * | 2007-05-01 | 2010-02-11 | The Hong Kong University Of Science And Technology | One-step, paste-state mechanochemical process for the synthesis of zinc oxide nanoparticles |
JP5907482B2 (en) * | 2010-07-20 | 2016-04-26 | 国立大学法人茨城大学 | Method for producing ceria-based composite oxide |
-
2014
- 2014-08-27 JP JP2014173184A patent/JP6382030B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015063452A (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Tuning of emission by Eu3+ concentration in a pyrophosphate: the effect of local symmetry | |
Marques et al. | Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties | |
Gupta et al. | Deciphering the role of charge compensator in optical properties of SrWO4: Eu3+: A (A= Li+, Na+, K+): spectroscopic insight using photoluminescence, positron annihilation, and X-ray absorption | |
Longo et al. | Hierarchical assembly of CaMoO4 nano-octahedrons and their photoluminescence properties | |
Atuchin et al. | Synthesis and spectroscopic properties of monoclinic α-Eu2 (MoO4) 3 | |
Zuniga et al. | Effect of molten salt synthesis processing duration on the photo-and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7: Eu3+ nanoparticles | |
Bomio et al. | Toward understanding the photocatalytic activity of PbMoO4 powders with predominant (111),(100),(011), and (110) facets. A combined experimental and theoretical study | |
Yu et al. | Polar polymorphism: α-, β-, and γ-Pb2Ba4Zn4B14O31–Synthesis, characterization, and nonlinear optical properties | |
Morozov et al. | Influence of the Structure on the Properties of Na x Eu y (MoO4) z Red Phosphors | |
Maak et al. | Efficient yellow-orange phosphor Lu4Ba2 [Si9ON16] O: Eu2+ and orange-red emitting Y4Ba2 [Si9ON16] O: Eu2+: two oxonitridosilicate oxides with outstanding structural variety | |
CN103466701B (en) | A kind of method that solid state reaction prepares bismuth oxide nano wire | |
Ok et al. | Asymmetric cationic coordination environments in new oxide materials: Synthesis and characterization of Pb4Te6M10O41 (M= Nb5+ or Ta5+) | |
Zhang et al. | Self-assembled 3D sphere-like SrMoO4 and SrMoO4: Ln3+ (Ln= Eu, Sm, Tb, Dy) microarchitectures: facile sonochemical synthesis and optical properties | |
Luo et al. | Electronic structure and site occupancy of lanthanide-doped (Sr, Ca) 3 (Y, Lu) 2Ge3O12 garnets: a spectroscopic and first-principles study | |
Zhang et al. | Monoclinic Lu2–x Sm x WO6-Based White Light-Emitting Phosphors: From Ground–Excited-States Calculation Prediction to Experiment Realization | |
Wen et al. | Thermodynamic stabilities, electronic properties, and optical transitions of intrinsic defects and lanthanide ions (Ce3+, Eu2+, and Eu3+) in Li2SrSiO4 | |
Liu et al. | Rare-earth-doped Y4Al2O9 nanoparticles for stable light-converting phosphors | |
Zhang et al. | PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4: Tb3+ green phosphor | |
Vaidhyanathan et al. | Microwave-assisted solid-state synthesis of oxide ion conducting stabilized bismuth vanadate phases | |
Gomez Torres et al. | Pure and RE3+-doped La7O6 (VO4) 3 (RE= Eu, Sm): polymorphism stability and luminescence properties of a new oxyvanadate matrix | |
Ptak et al. | The structural, phonon and optical properties of [CH 3 NH 3] M 0.5 Cr x Al 0.5− x (HCOO) 3 (M= Na, K; x= 0, 0.025, 0.5) metal–organic framework perovskites for luminescence thermometry | |
Du et al. | Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction | |
Zhang et al. | Dielectric and optical properties of a new organic–inorganic hybrid phase transition material | |
Popov et al. | The effect of the synthesis conditions on the structure and phase transitions in Ln2 (MoO4) 3 | |
JP6382030B2 (en) | Synthesis of ceramics by low-temperature solid-phase reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6382030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |