JP6380509B2 - Heat retaining method, residual thickness measuring method, and heat retaining device for molten metal carrying container - Google Patents

Heat retaining method, residual thickness measuring method, and heat retaining device for molten metal carrying container Download PDF

Info

Publication number
JP6380509B2
JP6380509B2 JP2016220517A JP2016220517A JP6380509B2 JP 6380509 B2 JP6380509 B2 JP 6380509B2 JP 2016220517 A JP2016220517 A JP 2016220517A JP 2016220517 A JP2016220517 A JP 2016220517A JP 6380509 B2 JP6380509 B2 JP 6380509B2
Authority
JP
Japan
Prior art keywords
molten metal
carrying container
heat retaining
heat
metal carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220517A
Other languages
Japanese (ja)
Other versions
JP2017094398A (en
Inventor
新吾 佐藤
新吾 佐藤
下平 賢一
賢一 下平
安藤 誠
誠 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017094398A publication Critical patent/JP2017094398A/en
Application granted granted Critical
Publication of JP6380509B2 publication Critical patent/JP6380509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融金属(例えば、溶鋼)を溶融金属運搬容器(例えば、溶鋼運搬容器)内から放出した後の該溶融金属運搬容器内の温度の低下を防ぐことができる溶融金属運搬容器の保熱方法、残厚測定方法、及び保熱装置に関する。   The present invention maintains a molten metal carrying container that can prevent a temperature drop in the molten metal carrying container after the molten metal (eg, molten steel) is released from the molten metal carrying container (eg, molten steel carrying container). The present invention relates to a heat method, a remaining thickness measurement method, and a heat retention device.

鉄鋼業において、溶鋼の精錬や運搬を行うために、溶鋼を収容し運搬するための溶鋼運搬容器が使用される。このような溶鋼運搬容器の具体例として、転炉で精錬された溶鋼を受ける取鍋が挙げられる。取鍋は、転炉等から溶鋼を受鋼した後、鋳造設備に搬送され、次いで、底部のノズルより溶鋼を出鋼する。出鋼後は、再び転炉等から受鋼するために転炉等の炉下に搬送されるが、近年では、出鋼後に、取鍋の内壁を形成する耐火物の補修や、その残厚測定が頻繁に行われるようになっている。   In the steel industry, in order to refining and transporting molten steel, a molten steel transport container for containing and transporting molten steel is used. A specific example of such a molten steel carrying container is a ladle that receives molten steel refined in a converter. The ladle receives the molten steel from a converter or the like, then is transported to a casting facility, and then the molten steel is discharged from the bottom nozzle. After steel output, it is transported to the bottom of the converter to receive the steel again from the converter, but in recent years, after the steel output, repair of the refractory that forms the inner wall of the ladle and the remaining thickness Measurements are made frequently.

耐火物の補修や残厚測定は、取鍋を横向きにした状態で行われる。このような状態では、取鍋の開口部を通して熱が放散することで、取鍋の内壁を形成する耐火物表面の温度が低下してしまう。また、次いで行われる溶鋼の受鋼時には、取鍋の内壁を形成する耐火物表面の温度は上昇する。耐火物の補修や残厚測定時と、溶鋼の受鋼時との間での取鍋内の温度差が大きいと、温度上昇・下降を繰り返すうちに、熱疲労によって取鍋内部の耐火物に割れ等の破損が生じてしまうという問題がある。   Refractory repairs and residual thickness measurements are performed with the ladle sideways. In such a state, the temperature of the surface of the refractory forming the inner wall of the ladle is lowered by the heat dissipating through the opening of the ladle. Moreover, the temperature of the refractory surface which forms the inner wall of a ladle rises at the time of receiving the molten steel performed next. If there is a large temperature difference in the ladle between repairing refractories and measuring the remaining thickness, and receiving molten steel, the refractory inside the ladle will be damaged by thermal fatigue as the temperature rises and falls repeatedly. There is a problem that damage such as cracking occurs.

特許文献1等に開示されているように、取鍋内の耐火物表面の温度変化を小さくするための手段として、溶鋼を出鋼した後、取鍋の開口部に蓋をかけることが行われている。このような取鍋用の蓋として、一般的には、鉄皮に耐火物を貼り付けた部材が用いられる。   As disclosed in Patent Document 1 and the like, as a means for reducing the temperature change of the surface of the refractory in the ladle, after the molten steel is removed, a lid is applied to the opening of the ladle. ing. As such a ladle cover, a member in which a refractory is attached to an iron skin is generally used.

特開2009−255124号公報JP 2009-255124 A

しかしながら、上記特許文献1に記載された方法では、溶鋼を出鋼した後、取鍋内部の耐火物の補修や残厚測定を行う際には、容器内を確認するために蓋を開ける必要があり、十分な保熱効果を得られないという問題がある。また、特許文献1に記載された方法では、取鍋の開口部を上方向に向けたままにしており、取鍋内部の確認が難しいという問題もある。これらの問題は、溶鋼以外の溶融金属(例えば、溶銑、亜鉛系メッキ液)の場合も同様である。   However, in the method described in Patent Document 1, it is necessary to open the lid in order to check the inside of the container when repairing the refractory inside the ladle and measuring the remaining thickness after the molten steel is produced. There is a problem that a sufficient heat retention effect cannot be obtained. Moreover, in the method described in patent document 1, the opening part of a ladle is kept facing upwards, and there also exists a problem that the confirmation inside a ladle is difficult. These problems are the same in the case of molten metals other than molten steel (for example, hot metal, zinc-based plating solution).

本発明は上記事情に鑑みてなされたものであり、その目的は、容器に蓋を設置することなく、内部の耐火物表面の温度低下を抑えることができる溶融金属運搬容器の保熱方法、残厚測定方法、及び保熱装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat retaining method for a molten metal carrying container that can suppress a temperature drop on the surface of the internal refractory without installing a lid on the container. A thickness measurement method and a heat retention device are provided.

上記課題を解決するための手段は、以下の通りである。
[1] 保熱媒体を吐出する複数の吐出手段と、前記保熱媒体を下方向に吐出可能となるように前記吐出手段を支持する支持手段と、を有する保熱装置を使用し、横向きに静置された溶融金属運搬容器の開口部の前方上部に、前記保熱装置の吐出手段を配し、前記溶融金属運搬容器の開口部の前方において、開口部の上方から下方へ向けて、前記吐出手段から前記保熱媒体を吐出させて、下記の温度降下指数を1未満とすることを特徴とする溶融金属運搬容器の保熱方法。
(温度降下指数)=(保熱媒体を吐出した場合の溶融金属運搬容器内部の耐火物表面の温度降下量)/(保熱媒体を吐出しない場合の溶融金属運搬容器内部の耐火物表面の温度降下量)
[2] 前記吐出手段は細口パイプを備え、前記支持手段は前記細口パイプに保熱媒体を供給する配管を備え、前記配管により供給した保熱媒体を前記細口パイプから吐出することを特徴とする前記[1]に記載の溶融金属運搬容器の保熱方法。
[3] 前記吐出手段は送風機を備え、前記送風機により保熱媒体を吐出することを特徴とする前記[1]又は[2]に記載の溶融金属運搬容器の保熱方法。
[4] 前記保熱媒体は、溶融金属運搬容器の開口部とは反対方向に、鉛直方向に対する傾斜角度θが5°≦θ≦15°となるように吐出されることを特徴とする前記[1]から[3]までのいずれか一つに記載の溶融金属運搬容器の保熱方法。
[5] 溶鋼運搬容器の開口部に設けられた上蓋を外し、溶融金属運搬容器を横向きに傾け、前記[1]から[4]までのいずれか一つに記載された溶融金属運搬容器の保熱方法を用いて、溶鋼運搬容器の開口部の前方に前記保熱媒体の層を形成させながら、前記保熱媒体の層の外側に設置された残厚測定器を用いて、溶融金属運搬容器内部の耐火物の残厚を測定することを特徴とする、溶融金属運搬容器の残厚測定方法。
[6] 保熱媒体を吐出する複数の吐出手段と、前記保熱媒体を下方向に吐出可能となるように、前記吐出手段を支持する支持手段と、を有することを特徴とする溶融金属運搬容器の保熱装置。
[7] 前記吐出手段は、細口パイプを備え、前記支持手段は、前記細口パイプに保熱媒体を供給する配管を備えることを特徴とする前記[6]に記載の溶融金属運搬容器の保熱装置。
[8] 前記吐出手段は、送風機を備えることを特徴とする前記[6]又は[7]に記載の溶融金属運搬容器の保熱装置。
[9] 前記吐出手段は、鉛直方向に対して、溶融金属運搬容器の開口部とは反対方向に、傾斜角度θが5°≦θ≦15°となるように取り付けられてなることを特徴とする前記[6]から[8]までのいずれか一つに記載の溶融金属運搬容器の保熱装置。
[10] 前記吐出手段は、総吐出流量Qが100m/min≦Q≦200m/minとなることを特徴とする前記[1]から[4]までのいずれか一つに記載の溶融金属運搬容器の保熱方法。
[11] 前記吐出手段は、溶融金属運搬容器の開口面からの水平距離L1が0.25m≦L1≦1mとなることを特徴とする前記[1]から[4]まで又は[10]のいずれか一つに記載の溶融金属運搬容器の保熱方法。
[12] 前記吐出手段は、溶融金属運搬容器の開口部上端からの鉛直距離L2が0.5m≦L2≦3mとなることを特徴とする前記[1]から[4]まで又は[10]および[11]のいずれか一つに記載の溶融金属運搬容器の保熱方法。
[13] 前記吐出手段は、総吐出流量Qが100m/min≦Q≦200m/minとなることを特徴とする前記[6]から[9]までのいずれか一つに記載の溶融金属運搬容器の保熱装置。
[14] 前記吐出手段は、溶融金属運搬容器の開口面からの水平距離L1が0.25m≦L1≦1mとなることを特徴とする前記[6]から[9]まで又は[13]のいずれか一つに記載の溶融金属運搬容器の保熱装置。
[15] 前記吐出手段は、溶融金属運搬容器の開口部上端からの鉛直距離L2が0.5m≦L2≦3mとなることを特徴とする前記[6]から[9]まで又は[13]および[14]のいずれか一つに記載の溶融金属運搬容器の保熱装置。
Means for solving the above problems are as follows.
[1] Using a heat retention device having a plurality of discharge means for discharging a heat retention medium and a support means for supporting the discharge means so that the heat retention medium can be discharged in a downward direction, Distributing means of the heat retaining device is arranged at the front upper part of the opening of the molten metal transporting container which has been stationary, and in front of the opening of the molten metal transporting container from above to below, A heat retaining method for a molten metal carrying container, wherein the heat retaining medium is ejected from a discharging means to make the following temperature drop index less than 1.
(Temperature drop index) = (Temperature drop on the surface of the refractory inside the molten metal carrying container when the heat retaining medium is discharged) / (Temperature of the surface of the refractory inside the molten metal carrying container when the heat retaining medium is not discharged) Descent amount)
[2] The discharge means includes a narrow pipe, the support means includes a pipe for supplying a heat retaining medium to the narrow pipe, and the heat retaining medium supplied by the pipe is discharged from the narrow pipe. The heat retaining method for a molten metal carrying container according to the above [1].
[3] The heat retention method for a molten metal carrying container according to [1] or [2], wherein the discharge unit includes a blower, and a heat retention medium is discharged by the blower.
[4] The heat retention medium is discharged in the direction opposite to the opening of the molten metal carrying container so that the inclination angle θ with respect to the vertical direction is 5 ° ≦ θ ≦ 15 °. The heat retaining method for a molten metal carrying container according to any one of 1] to [3].
[5] The upper lid provided at the opening of the molten steel transport container is removed, the molten metal transport container is tilted sideways, and the molten metal transport container described in any one of [1] to [4] is maintained. Using a heat method, a molten metal carrying container is formed using a residual thickness measuring device installed outside the heat retaining medium layer while forming the heat retaining medium layer in front of the opening of the molten steel carrying container. A method for measuring a remaining thickness of a molten metal carrying container, comprising measuring a remaining thickness of an internal refractory.
[6] Molten metal transport comprising a plurality of discharge means for discharging the heat retaining medium and a support means for supporting the discharge means so that the heat retaining medium can be discharged downward. Container heat retention device.
[7] The heat retention of the molten metal carrying container according to [6], wherein the discharge means includes a narrow pipe, and the support means includes a pipe for supplying a heat retaining medium to the narrow pipe. apparatus.
[8] The heat retention device for a molten metal carrying container according to [6] or [7], wherein the discharge means includes a blower.
[9] The discharge means is attached so that the inclination angle θ is 5 ° ≦ θ ≦ 15 ° in the direction opposite to the opening of the molten metal carrying container with respect to the vertical direction. The heat retaining device for a molten metal carrying container according to any one of [6] to [8].
[10] The molten metal according to any one of [1] to [4], wherein the discharge means has a total discharge flow rate Q of 100 m 3 / min ≦ Q ≦ 200 m 3 / min. How to keep the transport container warm.
[11] In any of the above [1] to [4] or [10], the discharge means has a horizontal distance L1 from the opening surface of the molten metal carrying container of 0.25 m ≦ L1 ≦ 1 m. The heat-retaining method of the molten metal carrying container as described in any one.
[12] From the above [1] to [4] or [10], wherein the discharge means has a vertical distance L2 from the upper end of the opening of the molten metal carrying container of 0.5 m ≦ L2 ≦ 3 m. [11] The heat retention method for a molten metal carrying container according to any one of [11].
[13] The molten metal according to any one of [6] to [9], wherein the discharge means has a total discharge flow rate Q of 100 m 3 / min ≦ Q ≦ 200 m 3 / min. Heat retention device for transport containers.
[14] In any one of [6] to [9] or [13], the discharge means has a horizontal distance L1 from the opening surface of the molten metal carrying container of 0.25 m ≦ L1 ≦ 1 m. A heat retaining device for a molten metal carrying container according to claim 1.
[15] From the above [6] to [9] or [13], wherein the discharge means has a vertical distance L2 from the upper end of the opening of the molten metal carrying container of 0.5 m ≦ L2 ≦ 3 m. [14] The heat retention device for a molten metal carrying container according to any one of [14].

本発明によって、蓋を設けずとも、溶融金属を放出した後の溶融金属運搬容器内の耐火物表面の温度の低下を防ぐことができる。   According to the present invention, it is possible to prevent the temperature of the refractory surface in the molten metal carrying container from being lowered after the molten metal is discharged without providing a lid.

本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 図1を溶鋼運搬容器の開口部正面から見た説明図である。It is explanatory drawing which looked at FIG. 1 from the opening part front surface of the molten steel conveyance container. 吐出手段から保熱媒体が吐出している状況を模式的に示す概略図である。It is the schematic which shows typically the condition where the heat retention medium is discharging from the discharge means. 細口パイプによる保熱媒体の吐出方法を示す概略図である。It is the schematic which shows the discharge method of the heat retention medium by a narrow mouth pipe. ファンによる保熱媒体の吐出方法を示す概略図である。It is the schematic which shows the discharge method of the heat retention medium by a fan. 取鍋内の耐火物の表面平均温度を、本発明例と従来法とで比較して示す図である。It is a figure which compares and compares the surface average temperature of the refractory in a ladle with the example of this invention, and the conventional method.

以下、転炉での製鋼工程を例に、添付図面を参照して本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, taking a steelmaking process in a converter as an example.

図1は、補修場所に運ばれた溶融金属運搬容器(ここでは、溶鋼運搬容器)を示す概略図である。   FIG. 1 is a schematic view showing a molten metal carrying container (here, a molten steel carrying container) transported to a repair location.

溶鋼運搬容器の一例である取鍋1は、溶鋼の収容、運搬、及び排出を所定の回数行った後に、内部の耐火物の補修や残厚測定のために、補修場所へと運ばれる。そして、作業をより容易に実施するため、図1のように、取鍋1は開口部11を横に向けた状態で静置される。尚、取鍋1は溶鋼の運搬時には、開口部11に上蓋が設けられているが、補修場所へと運ばれる際には予め上蓋が外される。上蓋を外して開口部11を横に向けた状態で、取鍋1内部の熱は、開口部11から取鍋1の前方へと水平に放射され、その後暖められた気体が気流となって上昇する。   The ladle 1 which is an example of the molten steel carrying container is carried to a repair place for repairing the internal refractory and measuring the remaining thickness after the molten steel is stored, transported and discharged a predetermined number of times. And in order to implement a work | work more easily, as shown in FIG. 1, the ladle 1 is left still in the state which orient | assigned the opening part 11 sideways. The ladle 1 is provided with an upper lid at the opening 11 when the molten steel is transported, but the upper lid is removed in advance when the ladle 1 is transported to a repair location. With the top cover removed and the opening 11 facing sideways, the heat inside the ladle 1 is radiated horizontally from the opening 11 to the front of the ladle 1, and then the warmed gas rises as an air flow To do.

このように、取鍋1内部の熱は一般に開口部11から外部へと放散されるので、補修場所において何らかの保熱対策をとらないと、取鍋1内部の温度は徐々に下がっていくことになる。取鍋1内部の温度が一旦下がってしまうと、再度溶鋼が注がれて取鍋の温度が上昇した際に、取鍋1内部の耐火物が温度差で傷んでしまう。取鍋1内部の温度上昇・下降が繰り返しなされることで、熱疲労により最悪の場合は耐火物が破損してしまうこともある。   Thus, since the heat inside the ladle 1 is generally dissipated from the opening 11 to the outside, the temperature inside the ladle 1 will gradually decrease unless some heat retention measures are taken at the repair location. Become. Once the temperature inside the ladle 1 is lowered, when the molten steel is poured again and the temperature of the ladle rises, the refractory inside the ladle 1 is damaged by the temperature difference. By repeatedly raising and lowering the temperature inside the ladle 1, the refractory may be damaged in the worst case due to thermal fatigue.

そこで、図1のように、吐出手段2と、吐出手段2を支持する支持手段3とによって、保熱装置7を形成する。保熱装置7は、取鍋1の上方に設置される。吐出手段2は、保熱媒体4を自身の前方に吐出する機能を有するものである。また、保熱媒体は、気体とする。そして、吐出手段2は支持手段3において下向きに取り付けられることで、取鍋1の開口部11の前方に保熱媒体4を吐出する。その結果、取鍋1の前方には、吐出手段2から吹き出された保熱媒体4の層が作り出される。この保熱媒体4の層によって、取鍋1内部熱が開口部11から放散することを抑制するエアカーテン効果が得られ、取鍋1内部の熱が開口部11から放散することが抑制され、補修や残厚測定の作業の際に取鍋1内部の温度が低下してしまうことを防止することができる。   Therefore, as shown in FIG. 1, the heat retaining device 7 is formed by the discharge means 2 and the support means 3 that supports the discharge means 2. The heat retaining device 7 is installed above the ladle 1. The discharge means 2 has a function of discharging the heat retaining medium 4 in front of itself. The heat retaining medium is gas. And the discharge means 2 is attached downward in the support means 3, and discharges the heat retaining medium 4 ahead of the opening part 11 of the ladle 1. As a result, a layer of the heat retaining medium 4 blown out from the discharge means 2 is created in front of the ladle 1. By the layer of the heat retaining medium 4, an air curtain effect that suppresses the heat dissipated in the ladle 1 from the opening 11 is obtained, and the heat in the ladle 1 is suppressed from being dissipated from the opening 11. It is possible to prevent the temperature inside the ladle 1 from being lowered during the work of repairing or measuring the remaining thickness.

保熱媒体4の種類は、気体である限りにおいて特に制限されず、例えば空気を用いることができる。また、保熱媒体4の温度についても特に制限されず、保熱装置7を使用する環境の気温と同等の温度であればよい。   The type of the heat retaining medium 4 is not particularly limited as long as it is a gas, and for example, air can be used. Further, the temperature of the heat retaining medium 4 is not particularly limited as long as it is equal to the temperature of the environment in which the heat retaining device 7 is used.

本発明では、温度降下指数が1未満となるように、保熱装置から保熱媒体を吐出させる。温度降下指数は、保熱媒体を吐出しない場合の溶鋼運搬容器内部の耐火物表面の温度降下量(A)に対する、保熱媒体を吐出した場合の溶鋼運搬容器内部の耐火物表面の温度降下量(B)の割合を示す値である。前記(A)及び(B)は、実際に実験で得られた値を採用することができる。例えば、上蓋を取り外し、取鍋を横向きに静置させた直後の溶鋼運搬容器の内部の耐火物表面の温度をT1とし、その後保熱媒体を吐出することなく15分が経過した後の溶鋼運搬容器の内部の耐火物表面の温度をT2として測定する。また同様に、取鍋の蓋を取り外し、取鍋を横向きに静置させた直後の溶鋼運搬容器の内部の耐火物表面の温度をT3とし、その後保熱媒体を吐出してから15分が経過した後の溶鋼運搬容器の内部の耐火物表面の温度をT4として測定する。温度降下指数は、(T3−T4)/(T1−T2)により表される。T1、T2、T3、及びT4は、溶鋼運搬容器の内壁の任意の箇所で測定すればよい。尚、前記T2、T4を測定するタイミングは、T2とT4との差が検知でき、かつ耐火物が温度差による熱疲労等の悪影響を受けないタイミングであればよく、例えば前述のように保熱媒体を吐出してから15分経過後、又は取鍋を横向きに静置させた時から15分経過後が挙げられる。耐火物表面の温度測定には、例えば放射温度計を用いることができる。   In the present invention, the heat retaining medium is discharged from the heat retaining device so that the temperature drop index is less than 1. The temperature drop index is the amount of temperature drop on the surface of the refractory inside the molten steel transport container when the heat retaining medium is discharged with respect to the temperature drop (A) of the surface of the refractory inside the molten steel transport container when the heat retaining medium is not discharged. It is a value which shows the ratio of (B). As the (A) and (B), values actually obtained through experiments can be adopted. For example, the temperature of the surface of the refractory inside the molten steel transport container immediately after the top lid is removed and the ladle is left to stand is set to T1, and then the molten steel transport after 15 minutes has passed without discharging the heat retaining medium. The temperature of the surface of the refractory inside the container is measured as T2. Similarly, the temperature of the surface of the refractory inside the molten steel transport container immediately after removing the lid of the ladle and allowing the ladle to stand sideways is T3, and then 15 minutes have passed since the heat retaining medium was discharged. After that, the temperature of the surface of the refractory inside the molten steel carrying container is measured as T4. The temperature drop index is represented by (T3-T4) / (T1-T2). T1, T2, T3, and T4 may be measured at any location on the inner wall of the molten steel transport container. The timing for measuring T2 and T4 may be any timing at which the difference between T2 and T4 can be detected and the refractory is not subject to adverse effects such as thermal fatigue due to the temperature difference. After 15 minutes have passed since the medium was discharged, or after 15 minutes from when the ladle was allowed to stand sideways. For example, a radiation thermometer can be used to measure the temperature of the refractory surface.

温度降下指数が1未満ということは、本発明のように保熱媒体を使用することで、保熱媒体を使用しない場合よりも溶鋼運搬容器内部の耐火物表面の温度が低くなることを防ぐことができる、ということを示している。逆に、温度降下指数が1以上の場合は、保熱媒体を使用しても溶鋼運搬容器内部の耐火物表面の温度の低下が保熱媒体を使用しない場合よりも大きくなり、耐火物が損傷する可能性が大きくなる。したがって、温度降下指数が1未満となるように、保熱方法の条件を適切に設定することが重要である。条件の具体例として、吐出手段の設けられる高さ、吐出手段の数、吐出手段から吐出される保熱媒体の広がり角度、保熱媒体の吐出圧、及び保熱媒体の流速等が挙げられる。ここで、温度降下指数として0.9未満であることが好ましく、0.7未満であることが更に好ましい。当然ながら、温度降下指数が小さいほうが、耐火物表面の温度が低くなることを、より効果的に防ぐことができる。   When the temperature drop index is less than 1, the use of the heat retaining medium as in the present invention prevents the temperature of the surface of the refractory inside the molten steel transport container from becoming lower than when the heat retaining medium is not used. It shows that you can. On the other hand, when the temperature drop index is 1 or more, even if the heat retaining medium is used, the temperature drop on the surface of the refractory inside the molten steel transport container is larger than when the heat retaining medium is not used, and the refractory is damaged. The possibility to do is increased. Therefore, it is important to appropriately set the conditions of the heat retention method so that the temperature drop index is less than 1. Specific examples of conditions include the height at which the ejection means is provided, the number of ejection means, the spread angle of the heat retaining medium ejected from the ejection means, the ejection pressure of the heat retaining medium, and the flow rate of the heat retaining medium. Here, the temperature drop index is preferably less than 0.9, and more preferably less than 0.7. Of course, a smaller temperature drop index can more effectively prevent the temperature of the refractory surface from becoming lower.

温度降下指数を低く抑える(溶鋼運搬容器内部の保熱効果を高める)ためには、図2で示すように開口部11を正面から見た際に、一定の広がりをもって吐出される保熱媒体4の層が、開口部11の全面に隙間なく形成されていることが好ましい。   In order to keep the temperature drop index low (increase the heat retention effect inside the molten steel transport container), as shown in FIG. 2, when the opening 11 is viewed from the front, the heat retention medium 4 is discharged with a certain spread. This layer is preferably formed on the entire surface of the opening 11 without any gap.

また、温度降下指数を低くするためには、開口部11になるべく近い位置に、吐出手段2を設けることが好ましい。一方で、取鍋1内部の温度低下を防ぐためには、吐出手段2を開口部11に近づけすぎて、保熱媒体4の一部が取鍋1の内部に侵入しないようにすることが好ましい。   In order to lower the temperature drop index, it is preferable to provide the discharge means 2 at a position as close as possible to the opening 11. On the other hand, in order to prevent the temperature inside the ladle 1 from decreasing, it is preferable that the discharge means 2 be too close to the opening 11 so that a part of the heat retaining medium 4 does not enter the ladle 1.

本発明において、効果的な取鍋1内部の保熱を実現するためには、吐出手段2の設置場所、吐出手段2から吹き出される保熱媒体4の傾斜角度や流量が特に重要である。   In the present invention, in order to achieve effective heat retention inside the ladle 1, the installation location of the discharge means 2, the inclination angle and the flow rate of the heat retention medium 4 blown out from the discharge means 2 are particularly important.

図3は、吐出手段2と、横向きに静置させた取鍋1との関係を示す側面図である。保熱媒体4は、吐出手段2から溶鋼運搬容器の開口部11とは反対方向であって、鉛直方向に対して傾斜角度θとなるように吐出される。すなわち、保熱媒体4が開口部11に向かって吐出しないように、吐出手段2が取り付けられる。   FIG. 3 is a side view showing the relationship between the discharge means 2 and the ladle 1 left to stand sideways. The heat retaining medium 4 is discharged from the discharge means 2 in a direction opposite to the opening 11 of the molten steel carrying container and at an inclination angle θ with respect to the vertical direction. That is, the discharge means 2 is attached so that the heat retaining medium 4 is not discharged toward the opening 11.

吐出手段2の設置場所は、溶鋼運搬容器の開口面からの水平距離L1が0.25m≦L1≦1m、溶鋼運搬容器の開口部上端からの距離L2が0.5m≦L2≦3mとなるように設置するのが望ましい。近すぎると取鍋1の内部に保熱媒体4が侵入してしまい、取鍋1内部の温度が下がってしまう。一方、遠すぎると保熱媒体4が十分にエアカーテンを形成せず、効果的に取鍋1内部を保熱することが出来ない。   The installation location of the discharge means 2 is such that the horizontal distance L1 from the opening surface of the molten steel carrying container is 0.25 m ≦ L1 ≦ 1 m, and the distance L2 from the upper end of the opening of the molten steel carrying container is 0.5 m ≦ L2 ≦ 3 m. It is desirable to install in. If it is too close, the heat retaining medium 4 enters the inside of the ladle 1 and the temperature inside the ladle 1 falls. On the other hand, if it is too far, the heat retaining medium 4 does not sufficiently form an air curtain, and the inside of the ladle 1 cannot be effectively heat-insulated.

吐出手段2から吹き出される保熱媒体4の流量Qは、100m/min≦Q≦200m/minとなるようにするのが望ましい。流量が小さすぎると十分なエアカーテン効果が得られない。一方、流量が大きすぎると巻き込み空気量が増加することで取鍋1の内部に保熱媒体4が侵入してしまい、取鍋1内部の温度が下がってしまうことや、コスト増につながってしまう。 It is desirable that the flow rate Q of the heat retaining medium 4 blown out from the discharge means 2 is 100 m 3 / min ≦ Q ≦ 200 m 3 / min. If the flow rate is too small, a sufficient air curtain effect cannot be obtained. On the other hand, if the flow rate is too large, the amount of entrained air increases, so that the heat retaining medium 4 enters the ladle 1 and the temperature inside the ladle 1 decreases, leading to an increase in cost. .

具体的には、保熱媒体4は、溶鋼運搬容器の開口部とは反対方向に、鉛直方向に対する傾斜角度(θ)が5°≦θ≦15°となるように吐出されることが好ましい。   Specifically, it is preferable that the heat retaining medium 4 is discharged in the direction opposite to the opening of the molten steel carrying container so that the inclination angle (θ) with respect to the vertical direction is 5 ° ≦ θ ≦ 15 °.

実際には、図4及び図5のように、側面図において、保熱媒体4は一定の広がりをもって吐出される。前記傾斜角度(θ)としては、保熱媒体の吐出方向における中心軸線22と、鉛直線21との間で形成される角度を採用することができる。前記傾斜角度が5°よりも小さいと、取鍋1の内部に保熱媒体4が侵入してしまい、取鍋1内部の温度が下がり耐火物の冷却が促進されてしまうことがある。一方、傾斜角度が15°よりも大きいと、保熱媒体4が十分にエアカーテンを形成せず、効果的に取鍋1内部を保熱することが出来ないことがある。また、保熱媒体4の傾斜角度(θ)は、10°となることが最も好ましい。   Actually, as shown in FIGS. 4 and 5, in the side view, the heat retaining medium 4 is discharged with a certain spread. As the inclination angle (θ), an angle formed between the central axis 22 in the heat retaining medium discharge direction and the vertical line 21 can be employed. If the inclination angle is less than 5 °, the heat retaining medium 4 may enter the inside of the ladle 1, and the temperature inside the ladle 1 may be lowered to promote cooling of the refractory. On the other hand, if the inclination angle is larger than 15 °, the heat retaining medium 4 may not sufficiently form an air curtain, and the inside of the ladle 1 may not be effectively heated. The inclination angle (θ) of the heat retaining medium 4 is most preferably 10 °.

図4は、吐出手段2の吐出口として細口パイプ5を使用し、前記保熱媒体4を細口パイプ5から吐出させている状況を示す概略図である。細口パイプ5が設置される支持手段3には、細口パイプ5に保熱媒体4を供給する配管が付随している。配管を通して、複数の細口パイプ5それぞれに保熱媒体4が供給される。   FIG. 4 is a schematic view showing a situation in which a narrow pipe 5 is used as a discharge port of the discharge means 2 and the heat retaining medium 4 is discharged from the narrow pipe 5. A pipe for supplying the heat retaining medium 4 to the narrow pipe 5 is attached to the support means 3 on which the narrow pipe 5 is installed. The heat retaining medium 4 is supplied to each of the plurality of narrow pipes 5 through the piping.

また、支持手段3を中空部材とし、その内部に保熱媒体4を通して、細口パイプ5それぞれに保熱媒体4を供給するようにしてもよい。   Alternatively, the support means 3 may be a hollow member, and the heat retaining medium 4 may be supplied to each narrow pipe 5 through the heat retaining medium 4.

細口パイプ5としては、保熱媒体が吹き出す部分の内径が15mm〜25mmであるパイプを使用することができる。パイプの形状は特に問わないが、軸線方向に沿って内径が一定である直管でもよいし、吐出口が先端に向って先細となっている形状でもよい。   As the narrow mouth pipe 5, a pipe having an inner diameter of 15 mm to 25 mm at a portion where the heat retaining medium blows out can be used. The shape of the pipe is not particularly limited, but may be a straight pipe having a constant inner diameter along the axial direction, or a shape in which the discharge port is tapered toward the tip.

なお、図4において、23は溶鋼運搬容器(ここでは、取鍋1)の開口面(開口部11)と細口パイプ5の吐出口先端のとの水平距離(L1)、24は溶鋼運搬容器(ここでは、取鍋1)の開口部11上端と細口パイプ5の吐出口先端との鉛直距離(L2)である。   In FIG. 4, reference numeral 23 denotes a horizontal distance (L1) between the opening surface (opening portion 11) of the molten steel carrying container (here, ladle 1) and the discharge port tip of the narrow pipe 5, and 24 denotes a molten steel carrying container ( Here, it is the vertical distance (L2) between the upper end of the opening 11 of the ladle 1) and the outlet end of the narrow pipe 5.

図5は、吐出手段2の吐出口に送風機6を用いた場合の保熱媒体吐出方法を示す概略図である。送風機6は、周囲のガスを吸い込んで下方に吐出する部材であり、ファン、ブロア等が用いられる。保熱媒体4は、送風機6の周囲に存在していればよい。あるいは、送風機6の周囲まで配管を設置し、配管を通して保熱媒体4を送風機6の周囲に送るようにしてもよい。送風機6の形状は特に規定されるものではない。   FIG. 5 is a schematic diagram showing a heat retaining medium discharge method when the blower 6 is used at the discharge port of the discharge means 2. The blower 6 is a member that sucks ambient gas and discharges it downward, and a fan, blower, or the like is used. The heat retaining medium 4 may be present around the blower 6. Alternatively, a pipe may be installed up to the periphery of the blower 6 and the heat retaining medium 4 may be sent to the periphery of the blower 6 through the pipe. The shape of the blower 6 is not particularly specified.

また、1つの支持手段3において用いられる複数の吐出手段2として、細口パイプと送風機との両方を用いてもよい。例えば、1つの支持手段3に、細口パイプ5と送風機6とを交互に設けることもできる。   Further, as the plurality of discharge means 2 used in one support means 3, both a narrow pipe and a blower may be used. For example, the narrow pipes 5 and the blowers 6 can be alternately provided on one support means 3.

尚、本発明における保熱方法は、溶鋼運搬容器だけでなく、溶銑運搬容器に適用することもできる。例えば、溶銑を転炉へと運搬するために用いられる溶銑鍋についても同様に本発明の保熱方法を用いることができる。   In addition, the heat-retaining method in the present invention can be applied not only to the molten steel transport container but also to the hot metal transport container. For example, the heat-retaining method of the present invention can be similarly used for a hot metal ladle used to transport hot metal to a converter.

さらに、転炉だけではなく、電気炉で用いられる取鍋に適用可能である。さらに加えれば、溶鋼、溶銑だけでなく、溶解した金属を運搬する容器、たとえば亜鉛系メッキのめっき槽や、アルミニウムや銅などの非鉄金属の製造にも適用可能である。   Furthermore, it is applicable not only to a converter but also to a ladle used in an electric furnace. In addition, it is applicable not only to molten steel and hot metal, but also to the production of non-ferrous metals such as containers for carrying molten metal, such as zinc plating plating tanks, and aluminum and copper.

次に、上述した溶鋼運搬容器の保熱方法を用いて行う、溶鋼運搬容器の残厚測定方法について説明する。   Next, a method for measuring the remaining thickness of the molten steel carrying container, which is performed using the above-described heat retaining method for the molten steel carrying container, will be described.

まず、溶鋼運搬容器の内部に溶鋼が装入されていない状態で、溶鋼運搬容器の運搬時に開口部に取り付けられている上蓋を取り外し、開口部11を横向きにして溶鋼運搬容器を静置する。次に、温度降下指数が1未満となるように、開口部11の前方上部から下部に向かって、吐出手段2から保熱媒体4を吐出する。これにより、開口部11の前方には保熱媒体4の層が形成されるようになる。図4及び5に示されるように、保熱媒体4の層から見て開口部11とは反対側(保熱媒体4の層の外側)に、残厚測定器9を設ける。残厚測定器9は、保熱媒体4の層越しに、取鍋1内部の残厚を測定することになる。残厚測定器9としては、例えば、超音波の伝播時間を元に厚さを算出する超音波伝播計、レーザー距離計、及び3Dレーザースキャナー等を用いることができる。尚、残厚測定器9によって内部の残厚を測定しやすいように、取鍋1の傾き角度を適宜調節することもできる。   First, in a state where the molten steel is not charged in the molten steel carrying container, the upper lid attached to the opening is removed when carrying the molten steel carrying container, and the molten steel carrying container is left still with the opening 11 facing sideways. Next, the heat retaining medium 4 is discharged from the discharge means 2 from the front upper part to the lower part of the opening 11 so that the temperature drop index is less than 1. Thereby, a layer of the heat retaining medium 4 is formed in front of the opening 11. As shown in FIGS. 4 and 5, a remaining thickness measuring device 9 is provided on the side opposite to the opening 11 as viewed from the layer of the heat retaining medium 4 (outside the layer of the heat retaining medium 4). The remaining thickness measuring device 9 measures the remaining thickness inside the ladle 1 over the layer of the heat retaining medium 4. As the remaining thickness measuring device 9, for example, an ultrasonic wave propagation meter, a laser distance meter, a 3D laser scanner, or the like that calculates the thickness based on the propagation time of the ultrasonic wave can be used. In addition, the inclination angle of the ladle 1 can also be adjusted as appropriate so that the remaining thickness measuring device 9 can easily measure the remaining thickness inside.

残厚測定結果が一定の基準値を満たさない場合には、耐火物の交換等の補修作業を行うことができる。   When the remaining thickness measurement result does not satisfy a certain reference value, repair work such as replacement of the refractory can be performed.

溶鋼を排出した後の取鍋を横向きにし、取鍋内の上下左右4点の耐火物の表面温度を放射温度計にて測定した。取鍋の大きさは、開口部外径が約4.9mであり、底部外径が約4.5mであり、高さが約4.5mであった。また、取鍋に用いられる耐火物の厚さは、150mm〜400mmの範囲にあった。温度測定位置は、図2に示すA点〜D点のように(A点は図示されず)、開口部の上端、下端、右端、及び左端から、取鍋の軸線方向と平行に、それぞれ50cmずつ取鍋の内側に進んだ位置とした。保熱媒体として、空気を使用した。図2に示すように、空気を吐出する細口パイプ又は吐出ファンは、取鍋1の開口部前方上部に6個設置した。細口パイプ又は吐出ファンは、端から端までの距離が約3mとなるように、等間隔に設置した。空気の総供給量は150m/minであり、細口パイプ又は吐出ファン1つあたりの空気の総供給量は25m/minであった。また、細口パイプの吐出口の内径は、20.8mmであった。 The ladle after discharging the molten steel was turned sideways, and the surface temperature of the refractory at four points in the ladle was measured with a radiation thermometer. As for the size of the ladle, the outer diameter of the opening was about 4.9 m, the outer diameter of the bottom was about 4.5 m, and the height was about 4.5 m. Moreover, the thickness of the refractory used for the ladle was in the range of 150 mm to 400 mm. The temperature measurement positions are 50 cm each from point A to point D shown in FIG. 2 (point A is not shown) in parallel with the ladle axial direction from the upper end, lower end, right end, and left end of the opening. The position was advanced inside the ladle one by one. Air was used as a heat retaining medium. As shown in FIG. 2, six narrow-mouth pipes or discharge fans that discharge air were installed in the upper front part of the opening of the ladle 1. The narrow pipes or discharge fans were installed at equal intervals so that the distance from end to end was about 3 m. The total supply amount of air was 150 m 3 / min, and the total supply amount of air per narrow pipe or discharge fan was 25 m 3 / min. Further, the inner diameter of the discharge port of the narrow pipe was 20.8 mm.

以下の表1にて今回実施した条件と測定結果の一覧を示す。横向きにさせた直後の取鍋内の上下左右4点の温度の平均値を耐火物初期温度T0とした。細口パイプ又は吐出ファンから空気を吐出しだしてから15分経過後の取鍋内の上下左右4点の温度の平均値を耐火物温度T15とした。細口パイプや吐出ファンの取鍋開口部から外向きへの傾斜角度を様々に変更し、取鍋温度を測定した(本発明例、比較例)。また、空気を使用しない場合(従来法)での取鍋温度も測定した。 Table 1 below shows a list of conditions and measurement results implemented this time. The average value of the temperatures at the top, bottom, left, and right in the ladle immediately after being turned sideways was defined as the refractory initial temperature T 0 . The average value of the temperature of the upper, lower, left and right four points in the ladle after 15 minutes from the out ejecting air was refractory temperature T 15 from narrow neck pipe or discharge fans. The inclination angle from the ladle opening of the narrow-mouthed pipe or the discharge fan to the outside was changed in various ways, and the ladle temperature was measured (invention example, comparative example). The ladle temperature was also measured when no air was used (conventional method).

Figure 0006380509
Figure 0006380509

そして、表1に基づいて、本発明例と、比較例及び従来法とで、取鍋内の耐火物温度を比較した。具体的には、空気を吐出しない場合(従来法)に対する、空気を吐出する場合(本発明例、比較例)の耐火物表面の温度降下の程度を示す、温度降下指数を用いた。温度降下指数が1より大きいと取鍋内部の温度が降下しやすく、1より小さいと温度降下が抑制されることを示している。1例として、比較例1について温度降下指数を計算する。比較例1で、耐火物の初期温度T0と15分後の温度T15との温度差を計算すると、1004−800=204(℃)となる。また、比較対象とする従来法においても同様に温度差を計算すると、1000−850=150(℃)となる。比較例1における温度降下指数は、204/150を計算することで、1.36と求められた。図6に、本発明例1〜6と比較例2〜4についても同様の計算で求めた温度降下指数と、傾斜角度との関係をグラフで示した。 And based on Table 1, the refractory temperature in a ladle was compared with the example of this invention, the comparative example, and the conventional method. Specifically, a temperature drop index indicating the degree of temperature drop on the surface of the refractory when air is discharged (invention example, comparative example) relative to when air is not discharged (conventional method) was used. If the temperature drop index is greater than 1, the temperature inside the ladle tends to drop, and if it is less than 1, the temperature drop is suppressed. As an example, a temperature drop index is calculated for Comparative Example 1. In Comparative Example 1, when calculating the temperature difference between the initial temperature T 0 and the temperature T 15 after 15 minutes of the refractory becomes 1004-800 = 204 (℃). Further, when the temperature difference is similarly calculated in the conventional method to be compared, 1000−850 = 150 (° C.) is obtained. The temperature drop index in Comparative Example 1 was calculated to be 1.36 by calculating 204/150. FIG. 6 is a graph showing the relationship between the temperature drop index obtained by the same calculation and the inclination angle for Invention Examples 1 to 6 and Comparative Examples 2 to 4.

図6に示すように、傾斜角度が5°≦θ≦15°の範囲内にある例(本発明例1〜6)では、いずれも温度降下指数が1未満であり、空気を吐出しない従来法よりも取鍋内耐火物表面の温度降下を抑えられることが確認された。   As shown in FIG. 6, in the examples in which the inclination angle is in the range of 5 ° ≦ θ ≦ 15 ° (Invention Examples 1 to 6), the temperature drop index is less than 1 and the conventional method does not discharge air. It was confirmed that the temperature drop on the surface of the refractory in the ladle can be suppressed.

溶鋼を排出した後の取鍋を横向きにし、取鍋内の上下左右4点の耐火物の表面温度を放射温度計にて測定した。取鍋の大きさは、開口部外径が約4.9mであり、底部外径が約4.5mであり、高さが約4.5mであった。また、取鍋に用いられる耐火物の厚さは、150mm〜400mmの範囲にあった。温度測定位置は、図2に示すA点〜D点のように(A点は図示されず)、開口部の上端、下端、右端、及び左端から、取鍋の軸線方向と平行に、それぞれ50cmずつ取鍋の内側に進んだ位置とした。保熱媒体として、空気を使用した。図2に示すように、空気を吐出する細口パイプ又は吐出ファンは、取鍋1の開口部前方上部に6個設置した。細口パイプ又は吐出ファンは、端から端までの距離が約3mとなるように、等間隔に設置した。また、細口パイプの吐出口の内径は、20.8mmであった。   The ladle after discharging the molten steel was turned sideways, and the surface temperature of the refractory at four points in the ladle was measured with a radiation thermometer. As for the size of the ladle, the outer diameter of the opening was about 4.9 m, the outer diameter of the bottom was about 4.5 m, and the height was about 4.5 m. Moreover, the thickness of the refractory used for the ladle was in the range of 150 mm to 400 mm. The temperature measurement positions are 50 cm each from point A to point D shown in FIG. 2 (point A is not shown) in parallel with the ladle axial direction from the upper end, lower end, right end, and left end of the opening. The position was advanced inside the ladle one by one. Air was used as a heat retaining medium. As shown in FIG. 2, six narrow-mouth pipes or discharge fans that discharge air were installed in the upper front part of the opening of the ladle 1. The narrow pipes or discharge fans were installed at equal intervals so that the distance from end to end was about 3 m. Further, the inner diameter of the discharge port of the narrow pipe was 20.8 mm.

以下の表2にて今回実施した条件と測定結果の一覧を示す。横向きにさせた直後の取鍋内の上下左右4点の温度の平均値を耐火物初期温度T0とした。細口パイプ又は吐出ファンから空気を吐出しだしてから15分経過後の取鍋内の上下左右4点の温度の平均値を耐火物温度T15とした。細口パイプや吐出ファンの流量や設置位置を様々に変更し、取鍋温度を測定した(本発明例、比較例)。また、空気を使用しない場合(従来法)での取鍋温度も測定した。 Table 2 below shows a list of conditions and measurement results implemented this time. The average value of the temperatures at the top, bottom, left, and right in the ladle immediately after being turned sideways was defined as the refractory initial temperature T 0 . The average value of the temperature of the upper, lower, left and right four points in the ladle after 15 minutes from the out ejecting air was refractory temperature T 15 from narrow neck pipe or discharge fans. The ladle temperature was measured by changing the flow rate and the installation position of the narrow pipe and discharge fan in various ways (invention example, comparative example). The ladle temperature was also measured when no air was used (conventional method).

Figure 0006380509
Figure 0006380509

そして、表2において、本発明例と、比較例及び従来法とで、取鍋内の耐火物温度を比較した。具体的には、上記実施例1と同様に、空気を吐出しない場合(従来法)に対する、空気を吐出する場合(本発明例、比較例)の耐火物表面の温度降下の程度を示す、温度降下指数を用いた。温度降下指数が1より大きいと取鍋内部の温度が降下しやすく、1より小さいと温度降下が抑制されることを示している。表2に、本発明例7〜12と比較例5〜16について上記の計算で求めた温度降下指数を示した。   And in Table 2, the refractory temperature in a ladle was compared with the example of this invention, the comparative example, and the conventional method. Specifically, as in Example 1 above, the temperature indicating the degree of temperature drop on the surface of the refractory when air is discharged (invention example, comparative example) versus when air is not discharged (conventional method) The descent index was used. If the temperature drop index is greater than 1, the temperature inside the ladle tends to drop, and if it is less than 1, the temperature drop is suppressed. Table 2 shows the temperature drop index determined by the above calculation for Invention Examples 7-12 and Comparative Examples 5-16.

表2に示すように、エアー流量が100m/min≦Q≦200m/minの範囲内にあり、設置位置が0.25m≦L1≦1m、0.5m≦L2≦3mの範囲内にある例(本発明例7〜12)では、いずれも温度降下指数が1未満であり、空気を吐出しない従来法よりも取鍋内耐火物表面の温度降下を抑えられることが確認された。 As shown in Table 2, the air flow rate is in the range of 100 m 3 / min ≦ Q ≦ 200 m 3 / min, and the installation position is in the range of 0.25 m ≦ L1 ≦ 1 m and 0.5 m ≦ L2 ≦ 3 m. In all the examples (Invention Examples 7 to 12), the temperature drop index was less than 1, and it was confirmed that the temperature drop on the surface of the refractory in the ladle could be suppressed as compared with the conventional method in which no air was discharged.

1 取鍋
2 吐出手段
3 支持手段
4 保熱媒体
5 細口パイプ
6 送風機
7 保熱装置
9 残厚測定器
11 開口部
21 鉛直線
22 保熱媒体の吐出方向における中心軸線
23 溶鋼運搬容器の開口面と吐出口との水平距離(L1)
24 溶鋼運搬容器の開口部上端と吐出口との鉛直距離(L2)
DESCRIPTION OF SYMBOLS 1 Ladle 2 Discharge means 3 Support means 4 Heat retention medium 5 Narrow pipe 6 Blower 7 Heat retention apparatus 9 Remaining thickness measuring device 11 Opening part 21 Vertical line 22 Central axis line 23 in the discharge direction of a heat retention medium Open surface of a molten steel carrying container Distance between the nozzle and the discharge port (L1)
24 Vertical distance (L2) between the upper end of the opening of the molten steel carrying container and the discharge port

Claims (15)

保熱媒体を吐出する複数の吐出手段と、前記保熱媒体を下方向に吐出可能となるように前記吐出手段を支持する支持手段と、を有する保熱装置を使用し、横向きに静置された溶融金属運搬容器の開口部の前方上部に、前記保熱装置の吐出手段を配し、前記溶融金属運搬容器の開口部の前方において、開口部の上方から下方へ向けて、前記吐出手段から前記保熱媒体を吐出させて、下記の温度降下指数を1未満とすることを特徴とする溶融金属運搬容器の保熱方法。
(温度降下指数)=(保熱媒体を吐出した場合の溶融金属運搬容器内部の耐火物表面の温度降下量)/(保熱媒体を吐出しない場合の溶融金属運搬容器内部の耐火物表面の温度降下量)
Using a heat retention device having a plurality of discharge means for discharging the heat retention medium and a support means for supporting the discharge means so as to be able to discharge the heat retention medium in the downward direction, the heat retention medium is left to stand horizontally. Discharge means of the heat retaining device is arranged at the front upper part of the opening of the molten metal transport container, and from the discharge means in front of the opening of the molten metal transport container from above to below. A heat retaining method for a molten metal carrying container, wherein the heat retaining medium is discharged to make the following temperature drop index less than 1.
(Temperature drop index) = (Temperature drop on the surface of the refractory inside the molten metal carrying container when the heat retaining medium is discharged) / (Temperature of the surface of the refractory inside the molten metal carrying container when the heat retaining medium is not discharged) Descent amount)
前記吐出手段は細口パイプを備え、前記支持手段は前記細口パイプに保熱媒体を供給する配管を備え、前記配管により供給した保熱媒体を前記細口パイプから吐出することを特徴とする請求項1に記載の溶融金属運搬容器の保熱方法。   2. The discharge means includes a narrow pipe, and the support means includes a pipe for supplying a heat retaining medium to the narrow pipe, and the heat retaining medium supplied by the pipe is discharged from the narrow pipe. The heat-retaining method for the molten metal carrying container according to 1. 前記吐出手段は送風機を備え、前記送風機により保熱媒体を吐出することを特徴とする請求項1又は2に記載の溶融金属運搬容器の保熱方法。   3. The heat retention method for a molten metal carrying container according to claim 1 or 2, wherein the discharge means includes a blower and discharges a heat retaining medium by the blower. 前記保熱媒体は、溶融金属運搬容器の開口部とは反対方向に、鉛直方向に対する傾斜角度θが5°≦θ≦15°となるように吐出されることを特徴とする請求項1から3までのいずれか一項に記載の溶融金属運搬容器の保熱方法。   4. The heat retaining medium is discharged in a direction opposite to the opening of the molten metal carrying container so that an inclination angle θ with respect to a vertical direction is 5 ° ≦ θ ≦ 15 °. The heat retention method of the molten metal carrying container as described in any one of the above. 溶融金属運搬容器の開口部に設けられた上蓋を外し、溶融金属運搬容器を横向きに傾け、請求項1から4までのいずれか一項に記載された溶融金属運搬容器の保熱方法を用いて、溶融金属運搬容器の開口部の前方に前記保熱媒体の層を形成させながら、前記保熱媒体の層の外側に設置された残厚測定器を用いて、溶融金属運搬容器内部の耐火物の残厚を測定することを特徴とする、溶融金属運搬容器の残厚測定方法。   The upper lid provided at the opening of the molten metal carrying container is removed, the molten metal carrying container is tilted sideways, and the heat retaining method for the molten metal carrying container according to any one of claims 1 to 4 is used. The refractory inside the molten metal carrying container is formed by using a residual thickness measuring device installed outside the layer of the heat retaining medium while forming the layer of the heat retaining medium in front of the opening of the molten metal carrying container. A method for measuring a remaining thickness of a molten metal carrying container, characterized by measuring a remaining thickness of the molten metal. 保熱媒体を吐出する複数の吐出手段と、前記保熱媒体を下方向に吐出可能となるように前記吐出手段を支持する支持手段とを有する保熱装置であって、横向きに静置された溶融金属運搬容器の開口部の前方上部に、前記吐出手段を配し、前記溶融金属運搬容器の開口部の前方において、開口部の上方から下方へ向けて、前記吐出手段から前記保熱媒体を吐出させて、下記の温度降下指数を1未満とすることを特徴とする溶融金属運搬容器の保熱装置。
(温度降下指数)=(保熱媒体を吐出した場合の溶融金属運搬容器内部の耐火物表面の温度降下量)/(保熱媒体を吐出しない場合の溶融金属運搬容器内部の耐火物表面の温度降下量)
A heat retention device having a plurality of ejection means for ejecting a thermal insulation medium and a support means for supporting the ejection means so that the thermal insulation medium can be ejected in a downward direction . Disposing the discharge means on the front upper part of the opening of the molten metal carrying container, and in front of the opening of the molten metal carrying container, the heat retaining medium is transferred from the discharge means from above to below the opening. A heat retention device for a molten metal carrying container, wherein the temperature drop index is less than 1 by discharging .
(Temperature drop index) = (Temperature drop on the surface of the refractory inside the molten metal carrying container when the heat retaining medium is discharged) / (Temperature of the surface of the refractory inside the molten metal carrying container when the heat retaining medium is not discharged) Descent amount)
前記吐出手段は細口パイプを備え、前記支持手段は前記細口パイプに保熱媒体を供給する配管を備え、前記配管により供給した保熱媒体を前記細口パイプから吐出することを特徴とする請求項6に記載の溶融金属運搬容器の保熱装置。 7. The discharge means includes a narrow pipe, and the support means includes a pipe for supplying a heat retaining medium to the narrow pipe, and discharges the heat retaining medium supplied by the pipe from the narrow pipe. A heat-retaining device for a molten metal carrying container according to 1. 前記吐出手段は送風機を備え、前記送風機により保熱媒体を吐出することを特徴とする請求項6又は7に記載の溶融金属運搬容器の保熱装置。 The heat retaining device for a molten metal carrying container according to claim 6 or 7, wherein the discharge means includes a blower and discharges a heat retaining medium by the blower . 前記保熱媒体は、溶融金属運搬容器の開口部とは反対方向に、鉛直方向に対する傾斜角度θが5°≦θ≦15°となるように吐出されることを特徴とする請求項6から8までのいずれか一項に記載の溶融金属運搬容器の保熱装置。 The heat-retaining medium from the claims 6 to the opening of the molten metal transfer vessel in the opposite direction, characterized in that the inclination angle theta with respect to the vertical direction is discharged such that 5 ° ≦ θ ≦ 15 ° 8 The heat retention apparatus for the molten metal carrying container according to any one of the preceding items. 前記吐出手段は、総吐出流量Qが100m/min≦Q≦200m/minとなることを特徴とする、請求項1から4までのいずれか一項に記載の溶融金属運搬容器の保熱方法。 5. The heat retention of the molten metal carrying container according to claim 1, wherein the discharge means has a total discharge flow rate Q of 100 m 3 / min ≦ Q ≦ 200 m 3 / min. Method. 前記吐出手段は、溶融金属運搬容器の開口面からの水平距離L1が0.25m≦L1≦1mとなることを特徴とする、請求項1から4まで又は10のいずれか一項に記載の溶融金属運搬容器の保熱方法。   11. The melting according to claim 1, wherein the discharge means has a horizontal distance L1 from the opening surface of the molten metal carrying container of 0.25 m ≦ L1 ≦ 1 m. Heat retention method for metal transport containers. 前記吐出手段は、溶融金属運搬容器の開口部上端からの鉛直距離L2が0.5m≦L2≦3mとなることを特徴とする、請求項1から4まで又は10および11のいずれか一項に記載の溶融金属運搬容器の保熱方法。   The discharge means is characterized in that the vertical distance L2 from the upper end of the opening of the molten metal carrying container is 0.5 m ≦ L2 ≦ 3 m, or any one of claims 1 to 4 or 10 and 11 The heat-retaining method of the molten metal conveyance container as described. 前記吐出手段は、総吐出流量Qが100m/min≦Q≦200m/minとなることを特徴とする、請求項6から9までのいずれか一項に記載の溶融金属運搬容器の保熱装置。 The heat retention of the molten metal carrying container according to any one of claims 6 to 9, wherein the discharge means has a total discharge flow rate Q of 100 m 3 / min ≦ Q ≦ 200 m 3 / min. apparatus. 前記吐出手段は、溶融金属運搬容器の開口面からの水平距離L1が0.25m≦L1≦1mとなることを特徴とする、請求項6から9まで又は13のいずれか一項に記載の溶融金属運搬容器の保熱装置。   The melting according to any one of claims 6 to 9 or 13, wherein the discharge means has a horizontal distance L1 from the opening surface of the molten metal carrying container of 0.25 m ≤ L1 ≤ 1 m. Thermal insulation device for metal transport containers. 前記吐出手段は、溶融金属運搬容器の開口部上端からの鉛直距離L2が0.5m≦L2≦3mとなることを特徴とする、請求項6から9まで又は13および14のいずれか一項に記載の溶融金属運搬容器の保熱装置。   The discharge means is characterized in that the vertical distance L2 from the upper end of the opening of the molten metal carrying container is 0.5 m ≦ L2 ≦ 3 m, or any one of claims 6 to 9 or 13 and 14. The heat retention apparatus of the molten metal conveyance container as described.
JP2016220517A 2015-11-13 2016-11-11 Heat retaining method, residual thickness measuring method, and heat retaining device for molten metal carrying container Active JP6380509B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222743 2015-11-13
JP2015222743 2015-11-13

Publications (2)

Publication Number Publication Date
JP2017094398A JP2017094398A (en) 2017-06-01
JP6380509B2 true JP6380509B2 (en) 2018-08-29

Family

ID=58805162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220517A Active JP6380509B2 (en) 2015-11-13 2016-11-11 Heat retaining method, residual thickness measuring method, and heat retaining device for molten metal carrying container

Country Status (1)

Country Link
JP (1) JP6380509B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140014U (en) * 1978-03-23 1979-09-28
US5212738A (en) * 1991-04-12 1993-05-18 Martin Marietta Magnesia Specialties Inc. Scanning laser measurement system
JP3375443B2 (en) * 1994-12-27 2003-02-10 住友金属工業株式会社 Ladle maintenance equipment
JP2014142152A (en) * 2013-01-25 2014-08-07 Nisshin Steel Co Ltd Residual thickness measurement method of wear layer
CN106041040A (en) * 2016-07-20 2016-10-26 宁波钢铁有限公司 Gas sealing device for dust removal and thermal insulation of torpedo ladle

Also Published As

Publication number Publication date
JP2017094398A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP4887308B2 (en) Arc furnace
KR101257472B1 (en) Measuring apparatus for slag and measuring method thereof
TW201833479A (en) Heating method for object to be heated and heating apparatus
JP6380509B2 (en) Heat retaining method, residual thickness measuring method, and heat retaining device for molten metal carrying container
JP4506607B2 (en) Molten metal container
JP2018126757A (en) Heat-keeping method of molten metal carrying container, remaining thickness measuring method and heat-keeping device
KR101236123B1 (en) Cooling And Transferring Apparatus For Continuous Casting Metal
JP2007186762A (en) Operating method in producing process for steel and operating apparatus therefor
JP5906945B2 (en) How to prevent ladle leakage
NO154380B (en) HORIZONTAL STRUCTURE DEVICE.
JP5267315B2 (en) Tundish for continuous casting and continuous casting method
JP2008127619A (en) Method for deciding whether repair of refractory in molten iron ladle is needed or not
US3810564A (en) Air pressure discharge furnace having protective atmosphere inlet and outlet
KR19980702647A (en) Penetrating element at bottom of container for back casting
JP5838804B2 (en) Thermal insulation method of hot metal transport container
JP2010188405A (en) Method for reducing amount of residual steel in ladle
JP5621214B2 (en) Ladle for continuous casting and continuous casting method
JP2022149432A (en) Method for detecting throughput of molten iron, method for controlling grained iron production facility and device for detecting throughput of molten iron
JP2004082190A (en) Continuous casting apparatus
JP6188610B2 (en) Control method of heat insulation burner to keep the ladle warm
JP6419680B2 (en) Method for cooling steelmaking slag
JP6625921B2 (en) Steel ingot manufacturing method and steel ingot manufacturing apparatus
KR20190085084A (en) Method and apparatus for controlling glass tube taper
JP2011104622A (en) Continuous casting method and ladle for continuous casting
KR101534663B1 (en) Apparatus for preheating pot roll unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250