JP6379748B2 - Spark plug for internal combustion engine - Google Patents

Spark plug for internal combustion engine Download PDF

Info

Publication number
JP6379748B2
JP6379748B2 JP2014136946A JP2014136946A JP6379748B2 JP 6379748 B2 JP6379748 B2 JP 6379748B2 JP 2014136946 A JP2014136946 A JP 2014136946A JP 2014136946 A JP2014136946 A JP 2014136946A JP 6379748 B2 JP6379748 B2 JP 6379748B2
Authority
JP
Japan
Prior art keywords
insulator
end side
shelf
spark plug
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014136946A
Other languages
Japanese (ja)
Other versions
JP2016015257A (en
Inventor
柴田 正道
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014136946A priority Critical patent/JP6379748B2/en
Priority to DE102015110416.4A priority patent/DE102015110416B4/en
Priority to US14/790,013 priority patent/US9219350B1/en
Publication of JP2016015257A publication Critical patent/JP2016015257A/en
Application granted granted Critical
Publication of JP6379748B2 publication Critical patent/JP6379748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中心電極と接地電極との間に火花放電間隙が形成された、内燃機関用のスパークプラグに関する。   The present invention relates to a spark plug for an internal combustion engine in which a spark discharge gap is formed between a center electrode and a ground electrode.

エンジン等の内燃機関においては、点火コイルによって発生させたスパーク用電圧を放電して、混合気に着火するためのスパークプラグが多用されている。スパークプラグは、筒状のハウジングの内周側に筒状の絶縁碍子が挿通され、絶縁碍子の内周側に中心電極が挿通されて形成されている。スパークプラグは、ハウジングの先端部に設けられた接地電極と中心電極との間に形成された火花放電間隙に、放電による火花を発生させるよう構成されている。   In an internal combustion engine such as an engine, a spark plug for discharging a spark voltage generated by an ignition coil and igniting an air-fuel mixture is often used. The spark plug is formed by inserting a cylindrical insulator on the inner peripheral side of a cylindrical housing and inserting a center electrode on the inner peripheral side of the insulator. The spark plug is configured to generate a spark due to discharge in a spark discharge gap formed between a ground electrode and a center electrode provided at a front end portion of the housing.

例えば、特許文献1においては、中心電極、中心電極を保持する絶縁碍子、絶縁碍子を保持する主体金具、及び絶縁碍子と主体金具との間に介在する環状のパッキンを備えるスパークプラグについて開示されている。パッキンは、絶縁碍子の碍子先端向き面と、主体金具の金具後端向き面との間に配置されている。そして、主体金具の金具縮径部とパッキンとの位置関係を規定し、コロナ放電による清浄効果を利用して、スパークプラグの耐汚損性を向上させることが開示されている。   For example, Patent Document 1 discloses a spark plug including a center electrode, an insulator holding the center electrode, a metal shell holding the insulator, and an annular packing interposed between the insulator and the metal shell. Yes. The packing is disposed between the insulator leading end surface of the insulator and the metal rear end facing surface of the metal shell. Then, it is disclosed that the positional relationship between the reduced-diameter portion of the metal shell and the packing is defined and the antifouling property of the spark plug is improved by utilizing the cleaning effect by corona discharge.

特開2009−176525号公報JP 2009-176525 A

近年、エンジンにおいては、低燃費化、高効率化等を目標としており、エンジン内の混合気が燃えにくい環境にあり、エンジン内の燃焼温度も低下している。燃焼温度が低下すると、特に低温始動時等の燃焼時にカーボンが発生しやすくなり、このカーボンが絶縁碍子に付着しやすくなる。特許文献1のスパークプラグにおいては、主体金具の金具縮径部とパッキンとの位置関係を規定しているのみであり、主体金具の構造に工夫をしていない。また、特許文献1においては、絶縁碍子がカーボンの付着によって汚損されたときの漏洩(リーク)電流の発生を抑え、コロナ放電を発生させることによって、カーボンの清浄効果を得ることを目的としている。
しかしながら、コロナ放電の際に流れるコロナ電流の大きさは、漏洩電流の大きさに比べて小さい。そのため、特許文献1のスパークプラグにおいては、絶縁碍子に付着したカーボンを焼失させる十分な効果を得ることができない。
In recent years, the engine has aimed to reduce fuel consumption and efficiency, and is in an environment where the air-fuel mixture in the engine is difficult to burn, and the combustion temperature in the engine is also decreasing. When the combustion temperature is lowered, carbon is likely to be generated particularly at the time of combustion such as at low temperature start, and this carbon is likely to adhere to the insulator. In the spark plug of Patent Document 1, only the positional relationship between the reduced diameter portion of the metal shell and the packing is defined, and the structure of the metal shell is not devised. Moreover, in patent document 1, it aims at obtaining the carbon cleaning effect by suppressing generation | occurrence | production of the leakage (leak) electric current when an insulator is soiled by adhesion of carbon, and generating corona discharge.
However, the magnitude of the corona current that flows during corona discharge is smaller than the magnitude of the leakage current. Therefore, in the spark plug of Patent Document 1, it is not possible to obtain a sufficient effect of burning off carbon adhering to the insulator.

本発明は、かかる背景に鑑みてなされたもので、ハウジングの棚部と、絶縁碍子の外周面との間に漏洩電流を発生させて、絶縁碍子の外周面に付着したカーボンを効果的に焼失させることができるスパークプラグを提供しようとして得られたものである。   The present invention has been made in view of such a background, and generates leakage current between the housing shelf and the outer peripheral surface of the insulator, thereby effectively burning out carbon adhering to the outer peripheral surface of the insulator. It was obtained in an attempt to provide a spark plug that can be made to operate.

本発明の一態様は、接地電極が設けられた筒状のハウジングと、該ハウジングの内周側に挿通された筒状の絶縁碍子と、該絶縁碍子の内周側に挿通された中心電極とを備え、該中心電極の先端と上記接地電極の先端とが対向する先端側位置において火花放電間隙が形成されたスパークプラグにおいて、
上記ハウジングは、その内周面における中心軸線方向の一部が縮径して形成された棚部を有しており、
上記絶縁碍子は、上記先端側位置に近い位置に形成された先端側碍子部と、該先端側碍子部の後端側に位置して、該先端側碍子部よりも拡径して形成された後端側碍子部と、該後端側碍子部と上記先端側碍子部との間に形成された段差面とを有しており、
上記棚部の後端側端面と上記段差面との間には、環状のパッキンが挟持されており、
上記棚部の内周面には、上記先端側碍子部の外周面との隙間が変化する凹凸が、周方向の複数箇所において繰り返し形成されていることを特徴とする内燃機関用のスパークプラグにある。
One embodiment of the present invention includes a cylindrical housing provided with a ground electrode, a cylindrical insulator inserted into the inner peripheral side of the housing, and a center electrode inserted into the inner peripheral side of the insulator In a spark plug in which a spark discharge gap is formed at a tip side position where the tip of the center electrode and the tip of the ground electrode face each other,
The housing has a shelf formed by reducing the diameter of a part of the inner peripheral surface in the central axis direction,
The insulator is formed at a distal end side insulator portion formed at a position close to the distal end side position and at a rear end side of the distal end side insulator portion and having a diameter larger than that of the distal end side insulator portion. A rear end side insulator portion, and a step surface formed between the rear end side insulator portion and the front end side insulator portion,
An annular packing is sandwiched between the rear end side end surface of the shelf and the step surface,
In the spark plug for an internal combustion engine, the inner circumferential surface of the shelf portion is repeatedly formed with irregularities that change the gap with the outer circumferential surface of the tip side insulator portion at a plurality of locations in the circumferential direction. is there.

上記スパークプラグにおいては、ハウジングの棚部の内周面における周方向の複数箇所に、凹凸が繰り返し形成されている。そして、この凹凸の形成により、漏洩電流を意図的に発生させて、絶縁碍子に付着したカーボンを焼失させるようにしている。
ハウジングの棚部に凹凸が形成されていることにより、棚部の内周面と絶縁碍子の先端側碍子部の外周面との隙間は、周方向の複数箇所において繰り返し変化している。そして、内燃機関の燃焼が行われると、先端側碍子部の外周面にカーボンが付着していく。このとき、凹凸における凸部と先端側碍子部の外周面に付着したカーボンとの隙間が所定の隙間以下になると、凸部における電界集中により絶縁破壊が発生し、この隙間において漏洩電流が流れる。この漏洩電流は、コロナ電流に比べて、数十〜数百倍の大きさになる。
In the spark plug, irregularities are repeatedly formed at a plurality of locations in the circumferential direction on the inner peripheral surface of the housing shelf. And by forming this unevenness, a leakage current is intentionally generated to burn out carbon adhering to the insulator.
Since the unevenness is formed on the shelf portion of the housing, the gap between the inner peripheral surface of the shelf portion and the outer peripheral surface of the distal end side insulator portion of the insulator is repeatedly changed at a plurality of locations in the circumferential direction. When combustion of the internal combustion engine is performed, carbon adheres to the outer peripheral surface of the tip side insulator portion. At this time, if the gap between the convex portion in the concavo-convex portion and the carbon adhering to the outer peripheral surface of the tip side insulator portion is equal to or less than a predetermined gap, dielectric breakdown occurs due to electric field concentration in the convex portion, and a leakage current flows in this gap. This leakage current is several tens to several hundreds times as large as the corona current.

これにより、凸部の先端が放電の起点となり、ハウジングの周方向におけるいずれかの凸部において、選択的に漏洩電流が流れる。そして、凸部に対向する、絶縁碍子の外周面におけるカーボンを、漏洩電流によって効果的に焼失させることができる。
それ故、上記スパークプラグによれば、ハウジングの棚部と、絶縁碍子の外周面との間に漏洩電流を発生させて、絶縁碍子の外周面に付着したカーボンを効果的に焼失させることができる。
Thereby, the tip of the convex portion becomes a starting point of discharge, and a leakage current selectively flows in any convex portion in the circumferential direction of the housing. And the carbon in the outer peripheral surface of an insulator facing a convex part can be effectively burned down by a leakage current.
Therefore, according to the spark plug, it is possible to generate a leakage current between the housing shelf and the outer peripheral surface of the insulator, and to effectively burn off carbon adhering to the outer peripheral surface of the insulator. .

実施例にかかる、スパークプラグの先端側部分を示す断面図。Sectional drawing which shows the front end side part of the spark plug concerning an Example. 実施例にかかる、中心軸線方向から見た状態のスパークプラグを示す図で、図1のI−I線矢視断面図。It is a figure which shows the spark plug of the state concerning the Example seen from the center axis line direction, and is the II sectional view taken on the line of FIG. 実施例にかかる、ハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of a housing concerning an Example. 実施例にかかる、中心軸線方向から見た状態のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the housing of the state concerning the Example seen from the center axis direction. 実施例にかかる、他のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the other housing concerning an Example. 実施例にかかる、他のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the other housing concerning an Example. 実施例にかかる、中心軸線方向から見た状態の他のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the other housing of the state concerning the Example seen from the center axis line direction. 実施例にかかる、中心軸線方向から見た状態の他のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the other housing of the state concerning the Example seen from the center axis line direction. 実施例にかかる、中心軸線方向から見た状態の他のハウジングの棚部の周辺を拡大して示す断面図。Sectional drawing which expands and shows the periphery of the shelf part of the other housing of the state concerning the Example seen from the center axis line direction. 実施例にかかる、隣り合う凸部同士の間の周方向の角度間隔と、絶縁抵抗値が10MΩ未満になるときのサイクル数との関係を示すグラフ。The graph which shows the relationship between the angular interval of the circumferential direction between adjacent convex parts concerning an Example, and the cycle number when an insulation resistance value becomes less than 10 Mohm. 実施例にかかる、隣り合う凸部同士の間の周方向の角度間隔と、電界強度との関係を示すグラフ。The graph which shows the relationship between the angular interval of the circumferential direction between adjacent convex parts concerning an Example, and electric field strength. 実施例にかかる、棚部の凹凸における凸部の先端と絶縁碍子の先端側碍子部の外周面との隙間と、絶縁抵抗値が10MΩ未満になるときのサイクル数との関係を示すグラフ。The graph which shows the relationship between the clearance gap between the front-end | tip of the convex part in the unevenness | corrugation of a shelf part, and the outer peripheral surface of the front end side insulator part of an insulator, and the cycle number when an insulation resistance value becomes less than 10 Mohm concerning an Example. 実施例にかかる、棚部の凹凸における凸部の内周側先端の角部の曲率半径と、絶縁抵抗値が10MΩ未満になるときのサイクル数との関係を示すグラフ。The graph which shows the relationship between the curvature radius of the corner | angular part of the inner peripheral side tip of the convex part in the unevenness | corrugation of a shelf part, and the cycle number when an insulation resistance value becomes less than 10 MΩ concerning an Example.

以下に、内燃機関用のスパークプラグにかかる実施例について、図面を参照して説明する。
(実施例)
本例のスパークプラグ1は、図1、図2に示すように、接地電極21が設けられた筒状のハウジング2と、ハウジング2の内周側に挿通された筒状の絶縁碍子3と、絶縁碍子3の内周側に挿通された中心電極4とを備えている。また、中心電極4の先端と接地電極21の先端とが対向する先端側位置においては、火花放電間隙Sが形成されている。
Embodiments of a spark plug for an internal combustion engine will be described below with reference to the drawings.
(Example)
As shown in FIGS. 1 and 2, the spark plug 1 of this example includes a cylindrical housing 2 provided with a ground electrode 21, a cylindrical insulator 3 inserted on the inner peripheral side of the housing 2, and And a center electrode 4 inserted on the inner peripheral side of the insulator 3. Further, a spark discharge gap S is formed at the tip side position where the tip of the center electrode 4 and the tip of the ground electrode 21 face each other.

ハウジング2は、図3に示すように、その内周面201における中心軸線方向Oの一部が縮径して形成された棚部22を有している。絶縁碍子3は、先端側位置に近い位置に形成された先端側碍子部31と、先端側碍子部31の後端側に隣接して、先端側碍子部31よりも拡径して形成された後端側碍子部32と、後端側碍子部32と先端側碍子部31との間に形成された段差面33とを有している。棚部22の後端側端面221と段差面33との間には、環状のパッキン5が挟持されている。図4に示すように、棚部22の内周面201には、絶縁碍子3の外周面301との隙間Uが変化する凹凸23が、周方向Cの複数箇所において繰り返し形成されている。   As shown in FIG. 3, the housing 2 has a shelf portion 22 formed by reducing the diameter of a part of the inner peripheral surface 201 in the central axis direction O. The insulator 3 is formed adjacent to the front end side insulator part 31 formed at a position close to the front end side position and the rear end side of the front end side insulator part 31 and having a diameter larger than that of the front end side insulator part 31. It has a rear end side insulator portion 32 and a step surface 33 formed between the rear end side insulator portion 32 and the front end side insulator portion 31. An annular packing 5 is sandwiched between the rear end side end surface 221 of the shelf 22 and the step surface 33. As shown in FIG. 4, irregularities 23 in which the gap U with the outer peripheral surface 301 of the insulator 3 changes are repeatedly formed at a plurality of locations in the circumferential direction C on the inner peripheral surface 201 of the shelf portion 22.

以下に、本例のスパークプラグ1について、図1〜図13を参照して詳説する。
図1に示すように、スパークプラグ1は、内燃機関としてのエンジンにおいて、スパーク用の高電圧を発生させる点火コイルに接続して用いられる。スパークプラグ1の中心電極4の後端部は、点火コイルの高電圧ターミナルに接続され、スパークプラグ1のハウジング2は、エンジンのシリンダヘッドに接続される。
ハウジング2の先端側部分の外周には、シリンダヘッドのプラグホールの端部に設けられたねじ穴に螺合するおねじ部24が形成されている。接地電極21は、ハウジング2の先端部から突出して、中心電極4の先端に先端側から対向するよう屈曲して形成されている。
Hereinafter, the spark plug 1 of this example will be described in detail with reference to FIGS.
As shown in FIG. 1, the spark plug 1 is used in an engine as an internal combustion engine by being connected to an ignition coil that generates a high voltage for spark. The rear end of the center electrode 4 of the spark plug 1 is connected to the high voltage terminal of the ignition coil, and the housing 2 of the spark plug 1 is connected to the cylinder head of the engine.
On the outer periphery of the front end side portion of the housing 2, a male screw portion 24 that is screwed into a screw hole provided at an end portion of the plug hole of the cylinder head is formed. The ground electrode 21 is formed so as to protrude from the front end portion of the housing 2 and bend so as to face the front end of the center electrode 4 from the front end side.

図1、図3に示すように、ハウジング2の棚部22は、絶縁碍子3の段差面33を下方から受けるよう、ハウジング2の内周面201から突出して形成されている。棚部22は、ハウジング2の内周面201の全周に形成されており、段差面33は、絶縁碍子3の外周面301の全周に形成されている。棚部22の後端側端面221及び絶縁碍子3の段差面33は、後端側に向かうほど拡径する傾斜面として形成されている。
絶縁碍子3の先端側碍子部31の外周面301は、先端側に向かうに連れて縮径するテーパ状に形成されている。ハウジング2の先端側部分の内周面201は、中心軸線方向Oに平行に形成されている。ハウジング2の先端側部分の内周面201と、絶縁碍子3の先端側碍子部31の外周面301との隙間は、後端側に向かうに連れて狭くなるよう変化している。中心電極4の先端部41は、絶縁碍子3の先端側碍子部31の先端から突出している。
As shown in FIGS. 1 and 3, the shelf 22 of the housing 2 is formed so as to protrude from the inner peripheral surface 201 of the housing 2 so as to receive the stepped surface 33 of the insulator 3 from below. The shelf 22 is formed on the entire circumference of the inner circumferential surface 201 of the housing 2, and the step surface 33 is formed on the entire circumference of the outer circumferential surface 301 of the insulator 3. The rear end side end surface 221 of the shelf 22 and the step surface 33 of the insulator 3 are formed as inclined surfaces that increase in diameter toward the rear end side.
The outer peripheral surface 301 of the front end side insulator portion 31 of the insulator 3 is formed in a tapered shape whose diameter decreases toward the front end side. The inner peripheral surface 201 of the front end side portion of the housing 2 is formed in parallel to the central axis direction O. The gap between the inner peripheral surface 201 of the front end side portion of the housing 2 and the outer peripheral surface 301 of the front end side insulator portion 31 of the insulator 3 changes so as to become narrower toward the rear end side. The tip portion 41 of the center electrode 4 protrudes from the tip of the tip side insulator portion 31 of the insulator 3.

図3に示すように、ハウジング2の棚部22における凹凸23は、棚部22の中心軸線方向Oに沿って、棚部22の全長に亘って設けられている。本例の凹凸23の径方向の深さは、棚部22の中心軸線方向Oの全長に亘って一定である。
なお、棚部22における凹凸23は、図5に示すように、棚部22の中心軸線方向Oに沿って、棚部22の端部から中間位置まで設けられていてもよい。この場合、凹凸23は、棚部22の内周面201に設けられた溝によって形成することができる。また、図6に示すように、棚部22における凹凸23(凹部232)の径方向の深さは、棚部22の中心軸線方向Oに対して傾斜状に変化していてもよい。
As shown in FIG. 3, the unevenness 23 in the shelf 22 of the housing 2 is provided over the entire length of the shelf 22 along the central axis direction O of the shelf 22. The depth in the radial direction of the unevenness 23 in this example is constant over the entire length in the central axis direction O of the shelf 22.
In addition, the unevenness | corrugation 23 in the shelf part 22 may be provided from the edge part of the shelf part 22 to the intermediate position along the center axis direction O of the shelf part 22, as shown in FIG. In this case, the unevenness 23 can be formed by a groove provided on the inner peripheral surface 201 of the shelf 22. As shown in FIG. 6, the depth in the radial direction of the unevenness 23 (recessed portion 232) in the shelf portion 22 may change in an inclined manner with respect to the central axis direction O of the shelf portion 22.

図4に示すように、棚部22の凹凸23における凸部231は、中心軸線方向Oから見た形状が、三角形状を有している。そして、凸部231における、三角形状を形成する一対の側面234は、直線状に形成されている。また、図7に示すごとく、凸部231における一対の側面234は、曲線状に形成されていてもよい。これらの場合、棚部22の凹凸23における凸部231と、絶縁碍子3の先端側碍子部31の外周面301との間の隙間Uは、三角形状の凸部231の内周側頂点において最も小さくなる。   As shown in FIG. 4, the convex part 231 in the unevenness 23 of the shelf part 22 has a triangular shape when viewed from the central axis direction O. And a pair of side surface 234 which forms triangular shape in the convex part 231 is formed in linear form. Moreover, as shown in FIG. 7, the pair of side surfaces 234 in the convex portion 231 may be formed in a curved shape. In these cases, the gap U between the convex portion 231 of the concave and convex portion 23 of the shelf portion 22 and the outer peripheral surface 301 of the tip side insulator portion 31 of the insulator 3 is most at the inner peripheral apex of the triangular convex portion 231. Get smaller.

また、図8に示すように、棚部22の凹凸23における凸部231は、中心軸線方向Oから見た形状が、四角形状を有していてもよい。この場合、凸部231における、四角形状を形成する一対の側面235は、直線状に形成されていてもよく、曲線状に形成されていてもよい。この場合、棚部22の凹凸23における凸部231と、絶縁碍子3の先端側碍子部31の外周面301との間の隙間Uは、四角形状の凸部231の周方向Cの両側の角部233又は内周側側面236において最も小さくなる。   Moreover, as shown in FIG. 8, the convex part 231 in the unevenness | corrugation 23 of the shelf part 22 may have a quadrilateral shape when viewed from the central axis direction O. In this case, the pair of side surfaces 235 forming the quadrangular shape in the convex portion 231 may be formed in a straight line shape or a curved shape. In this case, the gap U between the convex portion 231 of the concave and convex portion 23 of the shelf portion 22 and the outer peripheral surface 301 of the distal end side insulator portion 31 of the insulator 3 is an angle on both sides in the circumferential direction C of the quadrangular convex portion 231. It becomes the smallest at the part 233 or the inner peripheral side surface 236.

図4に示すように、棚部22の凹凸23における凸部231は、周方向Cに等間隔に、5〜30°の角度間隔θで繰り返し形成されている。この角度間隔θは、棚部22の周方向Cにおける凸部231の形成数によって決定される。三角形状の凸部231は、凸部231の突出高さ(凹部232の深さ)及び凸部231の形成数に応じて、鈍角状又は鋭角状に形成することができる。
また、棚部22における凹凸23は、図4に示すごとく、凸部231と凹部232とが周方向Cに連続して隣接する形状に形成することができ、図9に示すように、凸部231が円周形状の内周面201から部分的に突出する形状に形成することもできる。
As shown in FIG. 4, the convex portions 231 in the unevenness 23 of the shelf portion 22 are repeatedly formed at an equal interval in the circumferential direction C at an angular interval θ of 5 to 30 °. This angular interval θ is determined by the number of projections 231 formed in the circumferential direction C of the shelf 22. The triangular convex portion 231 can be formed in an obtuse or acute angle shape according to the protruding height of the convex portion 231 (depth of the concave portion 232) and the number of convex portions 231 formed.
Further, as shown in FIG. 4, the unevenness 23 in the shelf portion 22 can be formed in a shape in which the convex portion 231 and the concave portion 232 are continuously adjacent to each other in the circumferential direction C. As shown in FIG. 231 may be formed in a shape partially protruding from the circumferential inner peripheral surface 201.

図3、図4に示すように、棚部22の凹凸23における凸部231の先端と絶縁碍子3の先端側碍子部31の外周面301との隙間Uは、0.05〜0.4mmの範囲内にある。また、棚部22の凹凸23における凸部231の内周側先端の角部233は、曲率半径Rが0.3mm以下の曲面形状に形成されている。なお、この角部233は、面取り幅が0.3mm以下の面取り形状に形成されていてもよい。
また、環状のパッキン5は、金属材料から構成されており、鋼板から打ち抜かれて形成されている。パッキン5は、ハウジング2と絶縁碍子3との間の緩衝部材となる種々の材料から構成することができる。
As shown in FIGS. 3 and 4, the gap U between the tip of the convex portion 231 and the outer peripheral surface 301 of the tip side insulator portion 31 of the insulator 3 in the unevenness 23 of the shelf portion 22 is 0.05 to 0.4 mm. Is in range. Moreover, the corner | angular part 233 of the inner peripheral side tip of the convex part 231 in the unevenness | corrugation 23 of the shelf part 22 is formed in the curved-surface shape whose curvature radius R is 0.3 mm or less. In addition, this corner | angular part 233 may be formed in the chamfering shape whose chamfering width is 0.3 mm or less.
The annular packing 5 is made of a metal material and is formed by punching from a steel plate. The packing 5 can be made of various materials that serve as a buffer member between the housing 2 and the insulator 3.

本例においては、JISD1606のくすぶり汚損試験において、試験条件に従う1サイクル終了ごとの、ハウジング2と絶縁碍子3との間の絶縁抵抗値を測定し、絶縁抵抗値が10MΩ未満になるときのサイクル数Nを測定した。具体的には、4気筒、1.8Lのエンジンを用い、棚部22の凹凸23が三角形状の凸部231によって形成されたハウジング2について測定を行った。また、棚部22の凹凸23における凸部231の、角度間隔θ、隙間U、曲率半径Rの各寸法を変化させて、サイクル数Nを測定した。図10〜図13は、測定を行った結果を示す。   In this example, in the smoldering fouling test of JIS D1606, the insulation resistance value between the housing 2 and the insulator 3 is measured at the end of each cycle according to the test conditions, and the number of cycles when the insulation resistance value is less than 10 MΩ. N was measured. Specifically, the measurement was performed on the housing 2 in which the uneven portion 23 of the shelf portion 22 was formed by the triangular convex portion 231 using a 4-cylinder 1.8 L engine. Further, the number N of cycles was measured by changing the dimensions of the convex portion 231 of the concave and convex portion 23 of the shelf portion 22 such as the angular interval θ, the gap U, and the curvature radius R. 10 to 13 show the results of measurement.

図10は、横軸に、隣り合う凸部231同士の間の周方向Cの角度間隔θをとり、縦軸に、絶縁抵抗値が10MΩ未満になるときのサイクル数Nをとって、両者の関係を示す。同図に示すように、角度間隔θが30°を超えると、サイクル数Nは10回にまで低下し、30°以下においては、サイクル数Nが多いことが分かった。また、角度間隔θが22.5°以下になると、サイクル数Nがより多くなることが分かった。また、角度間隔θが小さくなり過ぎると、図11に示すように、隣り合う凸部231同士の間に電界干渉が発生し、電界強度が低下する。
以上の結果より、棚部22の凹凸23における凸部231は、周方向Cに等間隔に、5〜30°の角度間隔θで繰り返し形成することが好ましく、5〜22.5°の角度間隔θで繰り返し形成することがさらに好ましいことが分かった。
In FIG. 10, the horizontal axis indicates the angular interval θ in the circumferential direction C between adjacent convex portions 231 and the vertical axis indicates the number of cycles N when the insulation resistance value is less than 10 MΩ, Show the relationship. As shown in the figure, it was found that when the angular interval θ exceeds 30 °, the cycle number N decreases to 10 times, and when it is 30 ° or less, the cycle number N is large. It was also found that the cycle number N was increased when the angular interval θ was 22.5 ° or less. If the angle interval θ is too small, as shown in FIG. 11, electric field interference occurs between adjacent convex portions 231 and the electric field strength decreases.
From the above results, it is preferable that the convex portions 231 in the concave and convex portions 23 of the shelf portion 22 are repeatedly formed at equal intervals in the circumferential direction C at an angular interval θ of 5 to 30 °, and an angular interval of 5 to 22.5 ° It has been found that it is more preferable to repeat the formation with θ.

図12は、横軸に、棚部22の凹凸23における凸部231の先端と絶縁碍子3の先端側碍子部31の外周面301との隙間Uをとり、縦軸に、絶縁抵抗値が10MΩ未満になるときのサイクル数Nをとって、両者の関係を示す。同図に示すように、隙間Uが0.4mmを超えると、サイクル数Nは10回にまで低下し、0.4mm以下においては、サイクル数Nが多いことが分かった。また、隙間Uが0.3mm以下になると、サイクル数Nがより多くなることが分かった。また、上記隙間Uは、小さいほど電界強度が大きくなって好ましいが、凸部231の先端と先端側碍子部31の外周面301との干渉を避けるために、0.05mm以上とすることが好ましい。
以上の結果より、棚部22の凹凸23における凸部231の先端と先端側碍子部31の外周面301との隙間Uは、0.05〜0.4mmとすることが好ましく、0.05〜0.3mmとすることがさらに好ましいことが分かった。
In FIG. 12, the horizontal axis indicates the gap U between the tip of the convex portion 231 and the outer peripheral surface 301 of the tip side insulator portion 31 of the insulator 3 on the unevenness 23 of the shelf 22, and the vertical axis indicates an insulation resistance value of 10 MΩ. The relationship between the two is shown by taking the number of cycles N when the number is less than 1. As shown in the figure, when the gap U exceeds 0.4 mm, the cycle number N decreases to 10 times, and when the gap U is 0.4 mm or less, the cycle number N is large. Further, it was found that when the gap U was 0.3 mm or less, the cycle number N was increased. Further, the smaller the gap U is, the larger the electric field strength is, but it is preferable that the gap U is 0.05 mm or more in order to avoid interference between the tip of the convex portion 231 and the outer peripheral surface 301 of the tip side insulator portion 31. .
From the above results, the gap U between the tip of the convex part 231 and the outer peripheral surface 301 of the tip side insulator part 31 in the unevenness 23 of the shelf part 22 is preferably 0.05 to 0.4 mm, 0.05 to It turned out that it is more preferable to set it as 0.3 mm.

図13は、横軸に、棚部22の凹凸23における凸部231の内周側先端の角部233の曲率半径Rをとり、縦軸に、絶縁抵抗値が10MΩ未満になるときのサイクル数Nをとって、両者の関係を示す。同図に示すように、曲率半径Rが0.3mmを超えると、サイクル数Nは10回にまで低下し、0.3mm以下においては、サイクル数Nが多いことが分かった。また、曲率半径Rが0.2mm以下になると、サイクル数Nがより多くなることが分かった。また、上記曲率半径Rは、小さいほど電界強度が大きくなって好ましいが、製造上の理由により、0.05mm未満とすることは困難であると考えられる。
以上の結果より、凸部231の内周側先端の角部233の曲率半径Rは、0.05〜0.3mmとすることが好ましく、0.05〜0.2mmとすることがさらに好ましいことが分かった。
In FIG. 13, the horizontal axis represents the curvature radius R of the corner 233 at the inner peripheral side tip of the convex portion 231 in the unevenness 23 of the shelf portion 22, and the vertical axis represents the number of cycles when the insulation resistance value is less than 10 MΩ. N is taken to indicate the relationship between the two. As shown in the figure, when the radius of curvature R exceeds 0.3 mm, the cycle number N decreases to 10 times, and when the radius of curvature is 0.3 mm or less, the cycle number N is large. Moreover, it turned out that the cycle number N increases when the curvature radius R becomes 0.2 mm or less. The smaller the radius of curvature R is, the smaller the electric field strength is. However, it is considered difficult to make it less than 0.05 mm for manufacturing reasons.
From the above results, it is preferable that the curvature radius R of the corner portion 233 at the tip on the inner peripheral side of the convex portion 231 is 0.05 to 0.3 mm, and more preferably 0.05 to 0.2 mm. I understood.

次に、本例のスパークプラグ1の作用効果について説明する。
本例のスパークプラグ1においては、ハウジング2の棚部22の内周面201における周方向Cの複数箇所に、凹凸23が繰り返し形成されている。そして、この凹凸23の形成により、漏洩電流を意図的に発生させて、絶縁碍子3に付着したカーボンXを焼失させるようにしている。
ハウジング2の棚部22に凹凸23が形成されていることにより、棚部22の内周面201と絶縁碍子3の先端側碍子部31の外周面301との隙間Uは、周方向Cの複数箇所において繰り返し変化している。そして、内燃機関の燃焼が行われると、先端側碍子部31の外周面301にカーボンXが付着していく(図2、図3参照)。このとき、凹凸23における凸部231の先端と先端側碍子部31の外周面301に付着したカーボンXとの隙間が所定の隙間以下になると、凸部231における電界集中により絶縁破壊が発生し、この隙間において漏洩電流が流れる。この漏洩電流は、コロナ電流に比べて、数十〜数百倍の大きさになる。
Next, the effect of the spark plug 1 of this example is demonstrated.
In the spark plug 1 of this example, the unevenness 23 is repeatedly formed at a plurality of locations in the circumferential direction C on the inner peripheral surface 201 of the shelf portion 22 of the housing 2. And by forming this unevenness | corrugation 23, the leakage current is intentionally generated and the carbon X adhering to the insulator 3 is burned out.
Since the unevenness 23 is formed on the shelf 22 of the housing 2, the gap U between the inner peripheral surface 201 of the shelf 22 and the outer peripheral surface 301 of the distal end side insulator 31 of the insulator 3 is plural in the circumferential direction C. It has changed repeatedly in places. When the internal combustion engine is combusted, the carbon X adheres to the outer peripheral surface 301 of the tip side insulator portion 31 (see FIGS. 2 and 3). At this time, if the gap between the tip of the convex portion 231 in the concave and convex portion 23 and the carbon X attached to the outer peripheral surface 301 of the tip side insulator portion 31 is equal to or less than a predetermined gap, dielectric breakdown occurs due to electric field concentration in the convex portion 231. Leakage current flows in this gap. This leakage current is several tens to several hundreds times as large as the corona current.

これにより、凸部231の角部233が放電の起点となり、ハウジング2の周方向Cにおけるいずれかの凸部231において、選択的に漏洩電流が流れる。そして、凸部231に対向する、絶縁碍子3の外周面301におけるカーボンXを、漏洩電流によって効果的に焼失させることができる。
図4に示したように、棚部22の凹凸23における凸部231が三角形状を有している場合には、凸部231の内周側頂点において漏洩電流が発生し、この凸部231の内周側頂点に対向する部分を起点として、カーボンXを焼失させることができる。
また、図8に示したように、棚部22の凹凸23における凸部231が四角形状を有している場合には、凸部231の周方向Cの両側の角部233において漏洩電流が発生し、この凸部231の周方向Cの両側の角部233に対向する部分を起点として、カーボンXを焼失させることができる。
Thereby, the corner portion 233 of the convex portion 231 becomes a starting point of discharge, and a leakage current selectively flows in any convex portion 231 in the circumferential direction C of the housing 2. And the carbon X in the outer peripheral surface 301 of the insulator 3 which opposes the convex part 231 can be burned off effectively by a leakage current.
As shown in FIG. 4, when the convex portion 231 in the concave and convex portion 23 of the shelf portion 22 has a triangular shape, a leakage current is generated at the inner peripheral side vertex of the convex portion 231, and the convex portion 231 The carbon X can be burned off starting from the portion facing the inner peripheral apex.
In addition, as shown in FIG. 8, when the convex portion 231 in the concave and convex portion 23 of the shelf portion 22 has a quadrangular shape, leakage current is generated in the corner portions 233 on both sides in the circumferential direction C of the convex portion 231. The carbon X can be burned off starting from the portions facing the corners 233 on both sides of the convex portion 231 in the circumferential direction C.

それ故、本例のスパークプラグ1によれば、ハウジング2の棚部22と、絶縁碍子3の外周面301との間に漏洩電流を発生させて、絶縁碍子3の外周面301に付着したカーボンXを効果的に焼失させることができる。   Therefore, according to the spark plug 1 of this example, the carbon adhering to the outer peripheral surface 301 of the insulator 3 by generating a leakage current between the shelf 22 of the housing 2 and the outer peripheral surface 301 of the insulator 3. X can be burned off effectively.

1 スパークプラグ
2 ハウジング
201 内周面
21 接地電極
22 棚部
221 後端側端面
23 凹凸
3 絶縁碍子
301 外周面
31 先端側碍子部
32 後端側碍子部
33 段差面
4 中心電極
5 パッキン
DESCRIPTION OF SYMBOLS 1 Spark plug 2 Housing 201 Inner peripheral surface 21 Ground electrode 22 Shelf part 221 Rear end side end surface 23 Concavity and convexity 3 Insulator 301 Outer peripheral surface 31 Front end side insulator part 32 Rear end side insulator part 33 Step surface 4 Center electrode 5 Packing

Claims (6)

接地電極(21)が設けられた筒状のハウジング(2)と、該ハウジング(2)の内周側に挿通された筒状の絶縁碍子(3)と、該絶縁碍子(3)の内周側に挿通された中心電極(4)とを備え、該中心電極(4)の先端と上記接地電極(21)の先端とが対向する先端側位置において火花放電間隙(S)が形成されたスパークプラグ(1)において、
上記ハウジング(2)は、その内周面(201)における中心軸線方向(O)の一部が縮径して形成された棚部(22)を有しており、
上記絶縁碍子(3)は、上記先端側位置に近い位置に形成された先端側碍子部(31)と、該先端側碍子部(31)の後端側に位置して、該先端側碍子部(31)よりも拡径して形成された後端側碍子部(32)と、該後端側碍子部(32)と上記先端側碍子部(31)との間に形成された段差面(33)とを有しており、
上記棚部(22)の後端側端面(221)と上記段差面(33)との間には、環状のパッキン(5)が挟持されており、
上記棚部(22)の内周面(201)には、上記先端側碍子部(31)の外周面(301)との隙間が変化する凹凸(23)が、周方向(C)の複数箇所において繰り返し形成されていることを特徴とする内燃機関用のスパークプラグ(1)。
A cylindrical housing (2) provided with a ground electrode (21), a cylindrical insulator (3) inserted through the inner periphery of the housing (2), and an inner periphery of the insulator (3) A spark having a spark discharge gap (S) formed at a tip side position where the tip of the center electrode (4) and the tip of the ground electrode (21) face each other. In plug (1)
The housing (2) has a shelf (22) formed by reducing the diameter of a portion of the inner peripheral surface (201) in the central axis direction (O).
The insulator (3) is positioned on the distal end side of the distal end side insulator portion (31) formed at a position close to the distal end side position, and on the rear end side of the distal end side insulator portion (31). (31) a rear end side insulator part (32) formed with a larger diameter, and a stepped surface formed between the rear end side insulator part (32) and the front end side insulator part (31) ( 33)
An annular packing (5) is sandwiched between the rear end side surface (221) of the shelf (22) and the step surface (33),
On the inner peripheral surface (201) of the shelf (22), there are uneven portions (23) in which the gap with the outer peripheral surface (301) of the distal end side lever portion (31) changes in a plurality of locations in the circumferential direction (C). A spark plug (1) for an internal combustion engine, wherein the spark plug (1) is formed repeatedly.
上記凹凸(23)は、上記棚部(22)の上記中心軸線方向(O)に沿って、該棚部(22)の全長に亘って、又は該棚部(22)の先端側の端部から中間位置まで設けられていることを特徴とする請求項1に記載の内燃機関用のスパークプラグ(1)。 The unevenness (23) extends along the central axis direction (O) of the shelf (22), over the entire length of the shelf (22), or at the end of the shelf (22) on the tip side. The spark plug (1) for an internal combustion engine according to claim 1, wherein the spark plug (1) is provided from an intermediate position to an intermediate position. 上記凹凸(23)における凸部(231)は、上記中心軸線方向(O)から見た形状が、三角形状又は四角形状を有していることを特徴とする請求項1又は2に記載の内燃機関用のスパークプラグ(1)。   The internal combustion engine according to claim 1 or 2, wherein the convex portion (231) in the concave and convex portion (23) has a triangular shape or a quadrangular shape as viewed from the central axis direction (O). Spark plug for engine (1). 上記凹凸(23)における凸部(231)は、上記周方向(C)に等間隔に、5〜30°の角度間隔(θ)で繰り返し形成されていることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関用のスパークプラグ(1)。   The convex portions (231) in the concave and convex portions (23) are repeatedly formed at equal intervals in the circumferential direction (C) at an angular interval (θ) of 5 to 30 °. The spark plug (1) for internal combustion engines as described in any one of these. 上記凹凸(23)における凸部(231)の先端と上記絶縁碍子(3)の外周面(301)との隙間(U)は、0.05〜0.4mmの範囲内にあることを特徴とする請求項1〜4のいずれか一項に記載の内燃機関用のスパークプラグ(1)。   The gap (U) between the tip of the convex portion (231) and the outer peripheral surface (301) of the insulator (3) in the unevenness (23) is in the range of 0.05 to 0.4 mm. A spark plug (1) for an internal combustion engine according to any one of claims 1 to 4. 上記凹凸(23)における凸部(231)の内周側先端の角部(233)は、曲率半径(R)又は面取り幅が0.3mm以下の曲面形状又は面取り形状に形成されていることを特徴とする請求項1〜5のいずれか一項に記載の内燃機関用のスパークプラグ(1)。   The corner (233) at the tip on the inner peripheral side of the convex portion (231) in the concave and convex portion (23) is formed in a curved surface shape or a chamfered shape with a radius of curvature (R) or a chamfer width of 0.3 mm or less. 6. A spark plug (1) for an internal combustion engine according to any one of the preceding claims.
JP2014136946A 2014-07-02 2014-07-02 Spark plug for internal combustion engine Active JP6379748B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014136946A JP6379748B2 (en) 2014-07-02 2014-07-02 Spark plug for internal combustion engine
DE102015110416.4A DE102015110416B4 (en) 2014-07-02 2015-06-29 Spark plug for an internal combustion engine
US14/790,013 US9219350B1 (en) 2014-07-02 2015-07-02 Spark plug for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136946A JP6379748B2 (en) 2014-07-02 2014-07-02 Spark plug for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016015257A JP2016015257A (en) 2016-01-28
JP6379748B2 true JP6379748B2 (en) 2018-08-29

Family

ID=55231309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136946A Active JP6379748B2 (en) 2014-07-02 2014-07-02 Spark plug for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6379748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311499B2 (en) * 2014-07-02 2018-04-18 株式会社デンソー Spark plug for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960135U (en) * 1972-09-13 1974-05-27
JPS5341629Y2 (en) * 1977-01-13 1978-10-06

Also Published As

Publication number Publication date
JP2016015257A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
US20170358906A1 (en) Prechamber spark plug for igniting a fuel-air mixture in an internal combustion engine
CA2928119A1 (en) Prechamber spark plug
JP5149295B2 (en) Spark plug
US9000658B2 (en) Spark plug for internal combustion engine
CN107689555B (en) Spark plug and ignition device
JP6379748B2 (en) Spark plug for internal combustion engine
JP6645314B2 (en) Spark plug for internal combustion engine and method of manufacturing the same
JP6414398B2 (en) Spark plug for internal combustion engine
JP5953894B2 (en) Spark plug for internal combustion engine
FI124610B (en) Spark plug for internal combustion engine
JP4965471B2 (en) Spark plug
JP5862498B2 (en) Spark plug for internal combustion engine
US9219350B1 (en) Spark plug for internal combustion engine
JP6311499B2 (en) Spark plug for internal combustion engine
US10424901B2 (en) Spark plug
JP2014529850A (en) Spark plug for internal combustion engine
JP6781141B2 (en) Spark plug
JP6007344B1 (en) Multi-point spark plug
JP7233329B2 (en) Spark plug
JP5519581B2 (en) Spark plug
JP6028955B1 (en) Multi-point ignition engine
JP2006073205A (en) Spark plug
JP6179914B1 (en) Multipoint ignition device and multipoint ignition engine
JP2022162652A (en) Spark plug
JP4399242B2 (en) Semi creeping discharge type spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6379748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250