JP6375266B2 - Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same - Google Patents

Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same Download PDF

Info

Publication number
JP6375266B2
JP6375266B2 JP2015124915A JP2015124915A JP6375266B2 JP 6375266 B2 JP6375266 B2 JP 6375266B2 JP 2015124915 A JP2015124915 A JP 2015124915A JP 2015124915 A JP2015124915 A JP 2015124915A JP 6375266 B2 JP6375266 B2 JP 6375266B2
Authority
JP
Japan
Prior art keywords
electromagnetic
cross
coil
electromagnetic forming
forming coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015124915A
Other languages
Japanese (ja)
Other versions
JP2017006948A (en
Inventor
寛哲 細井
寛哲 細井
秀樹 石飛
秀樹 石飛
橋本 成一
成一 橋本
真吾 下赤
真吾 下赤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015124915A priority Critical patent/JP6375266B2/en
Publication of JP2017006948A publication Critical patent/JP2017006948A/en
Application granted granted Critical
Publication of JP6375266B2 publication Critical patent/JP6375266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、略楕円断面形状および略矩形断面形状の金属製素管をそれぞれ拡管および縮管成形できる電磁成形コイル並びにこれを用いた自動車用バンパーステイの製造方法に関するものである。   The present invention relates to an electromagnetic forming coil capable of expanding and contracting a metal element pipe having a substantially elliptical cross-sectional shape and a substantially rectangular cross-sectional shape, respectively, and a method for manufacturing a bumper stay for an automobile using the same.

電磁成形は、管成形および板成形等さまざまな分野への適用が研究されている。近年では、アルミニウム合金製素管を電磁成形で拡管し、矩形断面形状をした部材(例えば、自動車用フロントバンパーステイ)を製造する技術も開示されている(特許文献1参照)。   Application of electromagnetic forming to various fields such as tube forming and plate forming has been studied. In recent years, a technique for manufacturing a member (for example, a front bumper stay for an automobile) having a rectangular cross section by expanding an aluminum alloy tube by electromagnetic forming has also been disclosed (see Patent Document 1).

上記特許文献1に記載された電磁成形においては、導体素線を螺旋状に巻いた円柱状の電磁成形用コイルと特殊な形状に予備整形された略矩形断面形状のアルミニウム合金製素管が採用されている。   In the electromagnetic forming described in Patent Document 1, a cylindrical electromagnetic forming coil in which a conductor wire is spirally wound and an aluminum alloy element tube having a substantially rectangular cross section preliminarily shaped into a special shape are adopted. Has been.

特開2014−73502号公報JP 2014-73502 A

本来ならば、矩形断面形状をした自動車用フロントバンパーステイを電磁成形で製造するのであれば、略矩形柱形状の電磁成形コイルを用いて、略矩形断面形状のアルミニウム合金製素管を単純に拡管成形したいところである。   Originally, if an automobile front bumper stay with a rectangular cross-section shape is manufactured by electromagnetic forming, an aluminum alloy element tube having a substantially rectangular cross-section shape is simply expanded by using an electromagnetic forming coil with a substantially rectangular column shape. I want to do it.

しかし、電磁成形コイルの巻線部は、導体素線が前記電磁成形コイルの軸のまわりを螺旋状に巻かれたものであり、この巻線部の平面視は、耐久性能の観点から、これまで略真円でなければならないという制約があった。   However, the winding portion of the electromagnetic forming coil is formed by winding a conductor wire spirally around the axis of the electromagnetic forming coil. There was a restriction that it had to be almost a perfect circle.

したがって、このような巻線部の平面視が略真円である電磁成形コイルを用いて、矩形断面形状をした自動車用フロントバンパーステイを製造するためには、試行錯誤を重ね、断面形状を特殊な形状に予備整形した略矩形断面形状のアルミニウム合金製素管を準備しなければならないという問題があった。   Therefore, in order to manufacture a front bumper stay for automobiles having a rectangular cross-section shape using an electromagnetically formed coil having a substantially circular plan view of such a winding portion, trial and error are repeated and the cross-sectional shape is made special. There was a problem that an aluminum alloy element tube having a substantially rectangular cross-sectional shape pre-shaped into a shape had to be prepared.

このような問題は、巻線部の平面視が略真円である電磁成形コイルを用いて、略楕円断面形状をした部材を製造する際の金属製素管についても同様なことが言える。   Such a problem can be said to be the same for a metal element tube when a member having a substantially elliptical cross-sectional shape is manufactured using an electromagnetically formed coil having a substantially circular shape in a plan view of the winding portion.

本発明の目的は、略楕円断面形状および略矩形断面形状の金属製素管をそれぞれ拡管および縮管成形できる、十分な耐久性を有した電磁成形コイル並びにこれを用いた自動車用バンパーステイの製造方法を提供することにある。   An object of the present invention is to produce a sufficiently durable electromagnetic forming coil capable of expanding and contracting a metal element pipe having a substantially elliptical cross-sectional shape and a substantially rectangular cross-sectional shape, respectively, and a bumper stay for an automobile using the same. It is to provide a method.

この目的を達成するために、第1発明に係る電磁成形コイルは、
略楕円断面形状の金属製素管を拡管成形するための略楕円柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略楕円の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを螺旋状に巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略楕円形状であり、これらの略楕円形状の寸法は、それぞれ長径がa(mm)、短径がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、下記式(1)を満足することを特徴とする電磁成形コイルである。
In order to achieve this object, the electromagnetic formed coil according to the first invention is:
Electromagnetic forming coil having a substantially elliptical column shape for expanding and forming a metal element tube having a substantially elliptical cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially elliptical hole for forming the metal element tube by contraction forming Because
The winding portions of these electromagnetic molded coils have a cross-sectional shape of a circle, a square or a circle having a hollow portion, or any one conductor wire in a square spiral around the axis of each electromagnetic molded coil. It is wound around
The cross-sectional shapes of the winding portions in the direction perpendicular to the axis are substantially elliptical, and the dimensions of these substantially elliptical shapes are a major axis a 1 (mm) and a minor axis b 1 (mm), respectively.
A planar view thickness t 1 (mm) of each conductor wire satisfies the following formula (1), and is an electromagnetically formed coil.

また、第2発明に係る電磁成形コイルは、
略矩形断面形状の金属製素管を拡管成形するための略矩形柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略矩形の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを周回しながら軸方向と平行な方向に進むように巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略矩形状であり、これらの略矩形状の寸法は、それぞれ長辺がa(mm)、短辺がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、下記式(2)を満足することを特徴とする電磁成形コイルである。
An electromagnetically formed coil according to the second invention is
A substantially rectangular column-shaped electromagnetic forming coil for expanding and forming a metal element tube having a substantially rectangular cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially rectangular hole for forming the metal element tube by contraction Because
Each of the winding portions of the electromagnetic molded coils has a circular cross section, a square or a circle having a hollow portion, or any one conductor wire out of a square orbits around the axis of each electromagnetic molded coil. However, it is wound so as to proceed in a direction parallel to the axial direction,
The cross-sectional shapes in the direction perpendicular to the axis of the winding part are each substantially rectangular, and the dimensions of these substantially rectangular shapes are a 2 (mm) for the long side and b 2 (mm) for the short side,
The thickness t 2 (mm) in plan view of each conductor wire satisfies the following formula (2), and is an electromagnetically formed coil.

また、第3発明に係る電磁成形コイルは、第1または第2発明に係る電磁成形コイルにおいて、前記導体素線は、良導体であることを特徴とする。   Moreover, the electromagnetic molded coil which concerns on 3rd invention is the electromagnetic molded coil which concerns on the 1st or 2nd invention, The said conductor strand is a good conductor, It is characterized by the above-mentioned.

また、第4発明に係る自動車用バンパーステイの製造方法は、
第1発明に係る略楕円柱形状の電磁成形コイルまたは第2発明に係る略矩形柱形状の電磁成形コイルを用いて、略楕円断面形状または略矩形断面形状のアルミニウム合金製素管をそれぞれ拡管成形することを特徴とする自動車用バンパーステイの製造方法である。
Moreover, the manufacturing method of the bumper stay for automobiles according to the fourth invention is as follows:
Using the substantially elliptical columnar electromagnetic forming coil according to the first invention or the substantially rectangular columnar electromagnetic forming coil according to the second invention, an aluminum alloy element tube having a substantially elliptical cross sectional shape or a substantially rectangular cross sectional shape is respectively expanded. This is a method for manufacturing a bumper stay for an automobile.

第1発明に係る電磁成形コイルは、
略楕円断面形状の金属製素管を拡管成形するための略楕円柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略楕円の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを螺旋状に巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略楕円形状であり、これらの略楕円形状の寸法は、それぞれ長径がa(mm)、短径がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、上記式(1)を満足することを特徴とする構成であるため、
略楕円断面形状の金属製素管を拡管および縮管成形できる、十分な耐久性を有した(巻線部に働く最大ミーゼス応力σが降伏点を超えない)電磁成形コイルを提供することができる。
The electromagnetic molded coil according to the first invention is:
Electromagnetic forming coil having a substantially elliptical column shape for expanding and forming a metal element tube having a substantially elliptical cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially elliptical hole for forming the metal element tube by contraction forming Because
The winding portions of these electromagnetic molded coils have a cross-sectional shape of a circle, a square or a circle having a hollow portion, or any one conductor wire in a square spiral around the axis of each electromagnetic molded coil. It is wound around
The cross-sectional shapes of the winding portions in the direction perpendicular to the axis are substantially elliptical, and the dimensions of these substantially elliptical shapes are a major axis a 1 (mm) and a minor axis b 1 (mm), respectively.
Since the thickness t 1 (mm) in plan view of each conductor wire satisfies the above formula (1),
To provide an electromagnetically formed coil having sufficient durability (the maximum Mises stress σ 1 acting on the winding portion does not exceed the yield point) capable of expanding and contracting a metal element tube having a substantially elliptical cross section. it can.

また、第2発明に係る電磁成形コイルは、
略矩形断面形状の金属製素管を拡管成形するための略矩形柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略矩形の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを周回しながら軸方向と平行な方向に進むように巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略矩形状であり、これらの略矩形状の寸法は、それぞれ長辺がa(mm)、短辺がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、上記式(2)を満足することを特徴とする構成であるため、
略矩形断面形状の金属製素管を拡管および縮管成形できる、十分な耐久性を有した(巻線部に働く最大ミーゼス応力σが降伏点を超えない)電磁成形コイルを提供することができる。
An electromagnetically formed coil according to the second invention is
A substantially rectangular column-shaped electromagnetic forming coil for expanding and forming a metal element tube having a substantially rectangular cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially rectangular hole for forming the metal element tube by contraction Because
Each of the winding portions of the electromagnetic molded coils has a circular cross section, a square or a circle having a hollow portion, or any one conductor wire out of a square orbits around the axis of each electromagnetic molded coil. However, it is wound so as to proceed in a direction parallel to the axial direction,
The cross-sectional shapes in the direction perpendicular to the axis of the winding part are each substantially rectangular, and the dimensions of these substantially rectangular shapes are a 2 (mm) for the long side and b 2 (mm) for the short side,
Since the thickness t 2 (mm) in plan view of each conductor wire satisfies the above formula (2),
To provide an electromagnetic forming coil having sufficient durability (the maximum Mises stress σ 2 acting on the winding portion does not exceed the yield point) capable of expanding and contracting a metal element tube having a substantially rectangular cross section. it can.

また、第4発明に係る自動車用バンパーステイの製造方法は、
第1発明に係る略楕円柱形状の電磁成形コイルまたは第2発明に係る略矩形柱形状の電磁成形コイルを用いて、略楕円断面形状または略矩形断面形状のアルミニウム合金製素管をそれぞれ拡管成形することを特徴とする構成であるため、
試行錯誤を重ね、断面形状を特殊な形状に予備整形した略楕円断面形状または略矩形断面形状のアルミニウム合金製素管をわざわざ準備する必要がなく、単純な形状の略楕円断面形状または略矩形断面形状のアルミニウム合金製素管をそのまま用いて、楕円断面形状または矩形断面形状をした自動車用バンパーステイを製造することが可能である。
Moreover, the manufacturing method of the bumper stay for automobiles according to the fourth invention is as follows:
Using the substantially elliptical columnar electromagnetic forming coil according to the first invention or the substantially rectangular columnar electromagnetic forming coil according to the second invention, an aluminum alloy element tube having a substantially elliptical cross sectional shape or a substantially rectangular cross sectional shape is respectively expanded. Because it is a feature characterized by
There is no need to prepare a substantially elliptical or rectangular shaped aluminum alloy tube that has been pre-shaped into a special shape through repeated trial and error, and has a simple elliptical or rectangular shape. It is possible to manufacture an automobile bumper stay having an elliptical cross-sectional shape or a rectangular cross-sectional shape by directly using a shaped aluminum alloy tube.

本発明の実施形態1の楕円柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an elliptical columnar electromagnetic forming coil of Embodiment 1 of this invention, (a) is a top view, (b) is an elevation view. 同楕円柱形状の電磁成形コイルにおける、長径aと短径bに基づき式(1)から算出された導体素線の平面視厚さtのコンター図である。In electromagnetic forming coil of the elliptic cylinder shape, a contour diagram in plan view the thickness t 1 of the conductor wire which is calculated from the equation based on the major axis a 1 and minor axis b 1 (1). 本発明の実施形態2の楕円筒形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is an elliptical cylindrical electromagnetic forming coil of Embodiment 2 of this invention, (a) is a top view, (b) is an elevation view. 本発明の実施形態3の長円柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is an oblong cylindrical electromagnetic forming coil of Embodiment 3 of the present invention, (a) is a top view and (b) is an elevation. 本発明の実施形態4の長円筒形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is a long cylindrical electromagnetic forming coil of Embodiment 4 of the present invention, (a) is a top view and (b) is an elevation. 本発明の実施形態5の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is an electromagnetic forming coil of the rectangular column shape of Embodiment 5 of the present invention, (a) is a top view and (b) is an elevation. 本発明の実施形態6の別の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is another rectangular column-shaped electromagnetic forming coil of Embodiment 6 of this invention, (a) is a top view, (b) is an elevation view. 本発明の実施形態7のさらに別の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。It is another rectangular column-shaped electromagnetic forming coil of Embodiment 7 of this invention, (a) is a top view, (b) is an elevation view.

(実施形態1)
図1は本発明の実施形態1の楕円柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 1)
1A and 1B show an elliptic cylindrical electromagnetic molding coil according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B is an elevational view.

図1において、11は断面形状が四角形状の純銅製の導体素線、12は導体素線11の周囲にFRP樹脂を含浸して空隙部を補強するための絶縁性補強材、13は電磁成形コイル14のFRP製ボビン(図示せず)の軸のまわりを螺旋状に巻かれた巻線部である。なお、楕円柱形状の電磁成形コイル14は、巻線部13と絶縁性補強材12から構成されている。   In FIG. 1, 11 is a conductor element made of pure copper having a quadrangular cross-sectional shape, 12 is an insulating reinforcing material for impregnating the FRP resin around the conductor element wire 11 to reinforce the gap, and 13 is electromagnetic forming. This is a winding portion spirally wound around the axis of an FRP bobbin (not shown) of the coil 14. The elliptical columnar electromagnetic forming coil 14 includes a winding portion 13 and an insulating reinforcing material 12.

本発明者らは、如何にすれば、断面形状を特殊な形状に予備整形した略矩形断面形状のアルミニウム合金製素管を用いず、断面形状が単純な略矩形断面形状のアルミニウム合金製素管を用いて、単純に矩形柱形状の電磁成形コイルによる拡管成形で矩形断面形状をした自動車用バンパーステイができないか鋭意検討した。   The inventors of the present invention do not use an aluminum alloy element tube having a substantially rectangular cross-sectional shape whose cross-sectional shape is pre-shaped into a special shape, but an aluminum alloy element tube having a simple rectangular cross-sectional shape. Was used to study whether a bumper stay for automobiles with a rectangular cross-section could be obtained simply by expanding the tube with an electromagnetic forming coil having a rectangular column shape.

それには、まず初めに、耐久性能の観点から、これまで円柱形状の電磁成形コイル(図示せず)を用いなければならない原因について、市販の汎用構造解析ソフトABAQUSを用い、電磁力を想定した径方向の分布荷重を与えたときの応力挙動を図1に示す楕円柱形状の電磁成形コイル14の場合と比較することで究明した。   To that end, from the viewpoint of durability performance, commercially available general-purpose structural analysis software ABAQUS is used to determine the cause of the necessity of using a cylindrical electromagnetic forming coil (not shown) so far. The stress behavior when a directional distributed load was applied was investigated by comparing with the case of the elliptically shaped electromagnetic coil 14 shown in FIG.

例えば、円柱形状の電磁成形コイルの巻線部の軸直交方向の断面形状は、直径が160mm、この巻線部における導体素線の平面視での厚さが6mmの円断面に内圧5MPaを与えた場合、応力は断面内で一様に分布し、最大ミーゼス応力は約60MPaとなった。   For example, the cross-sectional shape in the direction perpendicular to the axis of the winding portion of the cylindrical electromagnetic molded coil is 160 mm in diameter, and an internal pressure of 5 MPa is applied to a circular cross section of the conductor wire in the winding portion having a thickness of 6 mm in plan view. In this case, the stress was uniformly distributed in the cross section, and the maximum Mises stress was about 60 MPa.

―方、図1に示す楕円柱形状の電磁成形コイル14の巻線部13の軸直交方向の断面形状は、長径aが160mm、短径bが120mmの楕円状をなし、この巻線部13における導体素線11の平面視での厚さtが6mmの楕円断面に内圧5MPaを与えた楊合、応力は断面内で不均等に分布するように変化し、長径aの先端部{図1(a)に示す符号アの位置}で最大ミーゼス応力σが約597MPaとなった。また、長径aの先端部(符号ア)付近において応力分布が導体素線11の平面視厚さtの方向に直線的に変化した。つまり、このような楕円柱形状の電磁成形コイル14が短寿命で破損する原因(耐久性能の観点から問題となる原因)は、長径aの先端部(符号ア)周辺では、非常に高い曲げ応力が生じることで導体素線11が降伏点を超え、塑性変形するためであると分かった。 On the other hand, the cross-sectional shape in the direction orthogonal to the axis of the winding portion 13 of the elliptical cylindrical electromagnetic forming coil 14 shown in FIG. 1 is an ellipse having a major axis a 1 of 160 mm and a minor axis b 1 of 120 mm. When the internal pressure 5 MPa is applied to an elliptical cross section having a thickness t 1 of 6 mm in plan view of the conductor wire 11 in the portion 13, the stress changes so as to be unevenly distributed in the cross section, and the tip of the major axis a 1 The maximum Mises stress σ 1 was about 597 MPa at the portion {the position indicated by the symbol A shown in Fig. 1 (a)}. In addition, the stress distribution linearly changed in the direction of the thickness t 1 in plan view of the conductor wire 11 in the vicinity of the distal end portion (symbol A) of the major axis a 1 . In other words, the reason why such an elliptical columnar electromagnetic molded coil 14 is damaged in a short life (a problem that causes a problem from the viewpoint of durability) is that the bending around the tip portion (symbol A) of the long diameter a 1 is very high. It was found that the conductor wire 11 exceeded the yield point due to the stress and was plastically deformed.

したがって、次に、楕円柱形状の電磁成形コイル14の場合でも、巻線部13の長径aの先端部{図1(a)に示す符号アの位置}での最大ミーゼス応力σが降伏点を超えない条件は、どこにあるのかさらに詳細に検討した。 Accordingly, then, even if elliptical, the shape of the electromagnetic forming coil 14, the maximum Mises stress sigma 1 at the tip portion of the long diameter a 1 {code points A shown in FIG. 1 (a)} of the winding portion 13 yield We examined in more detail where the conditions that do not exceed the point are.

この検討にあたっては、上記汎用構造解析ソフトABAQUSを用い、下記80条件の形状の組合せで、最大ミーゼス応力σの計算を行った。 In this examination, the maximum Mises stress σ 1 was calculated using the above-mentioned general-purpose structural analysis software ABAQUS under a combination of shapes under the following 80 conditions.

巻線部13の短径bがそれぞれ50、100、150、200mmの4水準、長径aが短径bよりそれぞれ0(すなわち、真円)、25、50、75、100mm大きな5水準、巻線部13における導体素線11の平面視厚さtがそれぞれ3、6、9、12mmの4水準変化させた80条件の形状の組合せで、上記最大ミーゼス応力σの計算を行った。なお、この計算の前提として、上述した場合と同様に、電磁力を想定し、楕円断面に内圧p=5MPaが加えられる場合に固定した。上記80条件の形状の組合せで計算した結果を分析すると、巻線部13の長径aの先端部{図1(a)に示す符号アの位置}での最大ミーゼス応力σ、長径a、短径b、導体素線11の平面視厚さtと内圧Pとの間の関係は、下記式(A1)で表せることが判明した。
ここで、a=b、tは、それぞれ円柱形状の電磁成形コイルの巻線部の平面視円断面に内圧p(これは、例えば、被加工材としてのアルミニウム合金製素管を電磁拡管成形するために必要な電磁力に相当)を与えた場合に巻線部に発生する最大ミーゼス応力σが降伏点を超えない基準条件下における値であり、a=b、tの単位はmmである。なお、a=b、tの定義は下記の通りである。
=b: 円柱形状の電磁成形コイルの巻線部の平面視での直径
: 円柱形状の電磁成形コイルの巻線部において、導体素線11の 断面形状と同一の四角形状の導体素線の平面視での厚さ
Winding portion 13 has a minor axis b 1 of 4 levels of 50, 100, 150, and 200 mm, and a major axis a 1 of 5 levels greater than the minor axis b 1 of 0 (ie, perfect circle), 25, 50, 75, and 100 mm, respectively. The maximum Mises stress σ 1 is calculated with a combination of 80 conditions in which the thickness t 1 of the conductor wire 11 in the winding portion 13 is changed in four levels of 3, 6, 9, and 12 mm, respectively. It was. As a premise of this calculation, similarly to the case described above, an electromagnetic force is assumed and fixed when an internal pressure p 1 = 5 MPa is applied to the elliptical cross section. The 80 Analysis of the results of calculation by combination of the shape of conditions, the maximum von Mises stress sigma 1 at the tip portion of the long diameter a 1 {code points A shown in FIG. 1 (a)} of the winding portion 13, the long diameter a 1 , minor b 1, the relationship between the viewed thickness t 1 and the internal pressure P 1 of the conductor element wire 11 was found to be expressed by the following formula (A1).
Here, a 0 = b 0 and t 0 are internal pressures p 0 (this is, for example, an aluminum alloy base tube as a workpiece) on the circular cross section in a plan view of a winding portion of a cylindrical electromagnetic forming coil. The maximum Mises stress σ 0 generated in the winding portion when an electromagnetic force necessary for electromagnetic tube forming is applied is a value under reference conditions that do not exceed the yield point, and a 0 = b 0 , t The unit of 0 is mm. The definitions of a 0 = b 0 and t 0 are as follows.
a 0 = b 0 : Diameter in a plan view of a winding portion of a cylindrical electromagnetic forming coil
t 0 : Thickness in plan view of a rectangular conductor wire having the same cross-sectional shape as that of the conductor wire 11 in the winding part of the cylindrical electromagnetic forming coil

また、上記式(A1)中のp/pは、電磁成形を行なう対象としての被加工材(金属製素管)の寸法や材料強度によって変化する。通常の薄肉円管の降伏条件式(すなわち、金属製素管の降伏に必要な内圧(電磁力)≧金属製素管の耐力×金属製素管の肉厚/金属製素管の断面の半径)を考慮すると、前記被加工材(金属製素管)の塑性変形に必要な電磁力は前記被加工材(金属製素管)の半径に反比例する。したがって、p/pも、電磁成形コイルの巻線部の平面視での径に反比例すると推定できる。よって、下記式(B1)が成立する。
Further, p 1 / p 0 in the above formula (A1) varies depending on the size and material strength of the workpiece (metal base tube) to be subjected to electromagnetic forming. Normal thin-walled tube yield condition (that is, internal pressure (electromagnetic force) required for yielding a metal tube ≥ proof strength of the metal tube x thickness of the metal tube / radius of the cross-section of the metal tube ), The electromagnetic force required for plastic deformation of the workpiece (metal blank) is inversely proportional to the radius of the workpiece (metal blank). Therefore, it can be estimated that p 1 / p 0 is also inversely proportional to the diameter of the winding portion of the electromagnetic forming coil in plan view. Therefore, the following formula (B1) is established.

上記式(B1)を上記式(A1)に代入し、σ/σ=1(すなわち、降伏点を超えない基準条件下の最大ミーゼス応力σと同等となる最大ミーゼス応力σ)とおき、tに対する2次方程式を解くことで、図1に示す楕円柱形状の電磁成形コイル14の十分な耐久性を有した(巻線部13に働く最大ミーゼス応力σが降伏点を超えない)巻線部13における導体素線11の平面視厚さtを算出可能な下記式(C1)が得られる。
The above formula (B1) are substituted into the formula (A1), σ 1 / σ 0 = 1 (i.e., the maximum Mises stress sigma 1 to be equal to the maximum Mises stress sigma 0 reference conditions not exceeding the yield point) In addition, by solving a quadratic equation for t 1 , the elliptical columnar electromagnetic forming coil 14 shown in FIG. 1 has sufficient durability (the maximum Mises stress σ 1 acting on the winding portion 13 exceeds the yield point) No) The following formula (C1) that can calculate the planar view thickness t 1 of the conductor wire 11 in the winding portion 13 is obtained.

現在使用され、十分な耐久性を有する円柱形状の電磁成形コイル(基準条件)の巻線部の平面視での直径a=b=90mm、導体素線の平面視での厚さt=2mmを上記式(C1)に代入し整理すると下記式(1)が得られる。
The diameter a 0 = b 0 = 90 mm in a plan view of a winding portion of a cylindrical electromagnetic forming coil (reference condition) that is currently used and has sufficient durability, and the thickness t 0 in a plan view of a conductor wire Substituting = 2 mm into the above formula (C1) and rearranging gives the following formula (1).

図2は、図1に示す楕円柱形状の電磁成形コイル14における、長径aと短径bを上記式(1)にそれぞれ代入して算出された導体素線11の平面視厚さtのコンター図である。図2の意味するところは、長径aと短径bを有する楕円柱形状の電磁成形コイル14において、コンター図に示された導体素線11の平面視厚さt以上の平面視厚さを採用すれば、十分な耐久性を有した(巻線部13に働く最大ミーゼス応力σが降伏点を超えない)楕円柱形状の電磁成形コイル14を実現できるということである。 FIG. 2 is a plan view thickness t of the conductor wire 11 calculated by substituting the major axis a 1 and the minor axis b 1 into the above formula (1) in the elliptically cylindrical electromagnetic forming coil 14 shown in FIG. it is a contour diagram of one. The meaning of FIG. 2 is that in the elliptical columnar electromagnetic forming coil 14 having the major axis a 1 and the minor axis b 1 , the planar thickness of the conductor wire 11 shown in the contour diagram is equal to or larger than the planar thickness t 1. If this is adopted, it is possible to realize an elliptically shaped electromagnetic coil 14 having sufficient durability (the maximum Mises stress σ 1 acting on the winding portion 13 does not exceed the yield point).

本実施形態においては、円柱形状の電磁成形コイルの巻線部の平面視での直径a=b=90mm、導体素線の平面視での厚さt=2mmを十分な耐久性を有するための基準条件として具体的に採用したが、必ずしもこれに限定されるものではなく、a=b、tとしては、円柱形状の電磁成形コイルの巻線部の平面視円断面に内圧pを与えた場合に巻線部に発生する最大ミーゼス応力σが降伏点を超えない基準条件を満足するものであればよい。 In the present embodiment, the diameter a 0 = b 0 = 90 mm in plan view of the winding portion of the cylindrical electromagnetic molded coil and the thickness t 0 = 2 mm in plan view of the conductor wire have sufficient durability. Although it was specifically adopted as a reference condition for having it, it is not necessarily limited to this, and a 0 = b 0 , t 0 is a circular sectional view in a plan view of a winding portion of a cylindrical electromagnetic forming coil. It is sufficient if the maximum Mises stress σ 0 generated in the winding portion when the internal pressure p 0 is applied satisfies the reference condition that does not exceed the yield point.

また、本実施形態においては、導体素線11の断面形状として、四角形状の場合について説明したが、必ずしもこれに限定されるものではなく、例えば、円または中空部を有した円または四角の内のいずれか1つの断面形状を有するものでもよい。また、本実施形態においては、導体素線11の材質として、純銅製の場合について説明したが、必ずしもこれに限定されるものではなく、例えば、銅合金をはじめとした導電率の高い良導体であればよい。   In the present embodiment, the case where the conductor wire 11 has a quadrangular cross-sectional shape has been described. However, the present invention is not necessarily limited to this, for example, a circle or a square having a hollow portion. It may have any one of the cross-sectional shapes. In the present embodiment, the case where the conductor element 11 is made of pure copper has been described. However, the present invention is not necessarily limited to this. For example, the conductor element 11 may be a good conductor having a high conductivity such as a copper alloy. That's fine.

また、本実施形態においては、楕円柱形状の電磁成形コイルの場合を例に説明したが、本発明のメカニズムに立脚するならば、楕円筒形状の電磁成形コイル(詳細は、後記実施形態2参照)、長円柱形状の電磁成形コイル(詳細は、後記実施形態3参照)、長円筒形状の電磁成形コイル(詳細は、後記実施形態4参照)にも適用可能である。この場合は、上記式(1)を満足していればよい。本発明において、略楕円柱形状の定義は、数学的に言う楕円柱、この数学的な楕円柱に近い楕円柱および前記長円柱(後記実施形態3参照)を含めた総称である。また、略楕円筒形状の定義は、数学的に言う楕円筒、この数学的な楕円筒に近い楕円筒および前記長円筒(後記実施形態4参照)を含めた総称である。   Further, in the present embodiment, the case of an elliptically shaped electromagnetic shaped coil has been described as an example. However, if it is based on the mechanism of the present invention, an elliptically shaped electromagnetic shaped coil (for details, see Embodiment 2 below). ), An electromagnetic molded coil having a long cylindrical shape (for details, see Embodiment 3 below), and an electromagnetic forming coil having a long cylindrical shape (for details, see Embodiment 4 below). In this case, it is only necessary to satisfy the above formula (1). In the present invention, the definition of a substantially elliptic cylinder shape is a generic name including an elliptic cylinder mathematically referred to, an elliptic cylinder close to the mathematical elliptic cylinder, and the long cylinder (see Embodiment 3 below). The definition of the substantially elliptic cylinder shape is a generic name including an elliptic cylinder mathematically referred to, an elliptic cylinder close to the mathematical elliptic cylinder, and the long cylinder (see Embodiment 4 described later).

さらに、本発明のメカニズムに立脚するならば、矩形柱形状の電磁成形コイル(詳細は、後記実施形態5参照)、別の矩形柱形状の電磁成形コイル(詳細は、後記実施形態6参照)およびさらに別の矩形柱形状の電磁成形コイル(詳細は、後記実施形態7参照)にも適用可能である。図示はされないが、矩形筒形状の電磁成形コイルにも適用可能である。これらの場合は、上述した式(2)を満足していればよい。また、本発明において、略矩形柱形状の定義は、四角柱、長方形断面の柱(後記実施形態5参照)、後記実施形態6に記載された断面形状の柱および後記実施形態7に記載された断面形状の柱を含めた総称である。また、略矩形筒形状の定義は、前記略矩形柱形状に定義された立体から中が貫通された筒を含めた総称である。   Further, if based on the mechanism of the present invention, a rectangular column-shaped electromagnetic formed coil (for details, see Embodiment 5 below), another rectangular column-shaped electromagnetic formed coil (for details, see Embodiment 6 below), and Furthermore, the present invention can be applied to another electromagnetic forming coil having a rectangular column shape (for details, refer to Embodiment 7 described later). Although not shown, the present invention can also be applied to a rectangular cylindrical electromagnetic forming coil. In these cases, it is only necessary to satisfy the above-described formula (2). In addition, in the present invention, the definition of the substantially rectangular column shape is described in a quadrangular column, a column with a rectangular cross section (see Embodiment 5 below), a column with a cross-sectional shape described in Embodiment 6 below, and Embodiment 7 below. It is a generic term that includes pillars with a cross-sectional shape. Further, the definition of the substantially rectangular tube shape is a generic name including a tube that penetrates from the solid defined in the substantially rectangular column shape.

図1に示す楕円柱形状の電磁成形コイル14において、長径aが150mm、短径bが100mm、断面形状が四角形状の純銅製の導体素線11の平面視厚さtが10mm、巻線長さが300mmであり、導体素線11をFRP製ボビンに巻きつけて製造した。巻線後、絶縁性補強材としてのFRP樹脂12を含浸して空隙部を補強した。このようにして製造された楕円柱形状の電磁成形コイル14を用いて、肉厚3mm、長径170mm、短径120mm、長さ250mmの金属製素管としての6000系アルミニウム合金製押出素管の電磁拡管成形を行なった。電磁拡管成形を行なった対象は、自動車用のフロントバンパーステイである。この電磁拡管成形により、所望の形状へ成形することができ、且つ、電磁成形コイルの導体素線にも異常は認められず、実用に十分な耐久性能を有することが確認された。本実施例においては、楕円柱形状の電磁成形コイルを用いて、楕円断面形状をした自動車用フロントバンパーステイに電磁拡管成形する例について説明したが、必ずしもこれに限定されるものではなく、例えば、矩形柱形状の電磁成形コイルを用いて、この電磁成形コイルに対応した矩形断面形状の金属製素管から矩形断面形状をした自動車用フロントバンパーステイに電磁拡管成形することも可能である。また、本実施例においては、電磁成形の対象とする金属製素管として、6000系アルミニウム合金製を例にして説明したが、必ずしもこれに限定されるものではなく、例えば、その他のアルミニウム合金、銅合金、マグネシウム合金、金、銀、あるいは、白金等も適する。すなわち、導電率が高く、且つ、比透磁率が低い金属製素管がより好適である。 In the ellipsoidal column-shaped electromagnetic forming coil 14 shown in FIG. 1, the planar view thickness t 1 of a conductor element 11 made of pure copper having a major axis a 1 of 150 mm, a minor axis b 1 of 100 mm, and a quadrangular cross section is 10 mm, The winding length was 300 mm, and the conductor wire 11 was wound around an FRP bobbin. After winding, the gap was reinforced by impregnating with FRP resin 12 as an insulating reinforcing material. Using the electromagnetic column-shaped electromagnetic forming coil 14 manufactured in this manner, the electromagnetic of a 6000 series aluminum alloy extruded element tube as a metal element tube having a wall thickness of 3 mm, a major axis of 170 mm, a minor axis of 120 mm, and a length of 250 mm. Tube expansion was performed. The object subjected to electromagnetic tube expansion molding is a front bumper stay for automobiles. By this electromagnetic tube expansion molding, it was possible to form into a desired shape, and no abnormality was observed in the conductor wire of the electromagnetic forming coil, and it was confirmed that the material has durability sufficient for practical use. In the present embodiment, an example in which electromagnetic tube expansion molding is performed on an automobile front bumper stay having an elliptical cross-section shape using an ellipsoidal column-shaped electromagnetic forming coil has been described. Using a columnar electromagnetic forming coil, it is also possible to perform electromagnetic pipe expansion molding from a rectangular metal cross-section corresponding to the electromagnetic forming coil to a front bumper stay for automobiles having a rectangular cross section. Further, in the present embodiment, as a metal element tube to be subjected to electromagnetic forming, a description has been given by taking a 6000 series aluminum alloy as an example, but it is not necessarily limited to this, for example, other aluminum alloys, Copper alloy, magnesium alloy, gold, silver, platinum, etc. are also suitable. That is, a metal element tube having high conductivity and low relative permeability is more preferable.

(実施形態2)
図3は本発明の実施形態2の楕円筒形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 2)
FIGS. 3A and 3B are elliptic cylindrical electromagnetic forming coils according to the second embodiment of the present invention. FIG. 3A is a plan view and FIG. 3B is an elevation view.

図3において、21は導体素線、22は絶縁性補強材としてのFRP樹脂、23は巻線部、24は楕円筒形状の電磁成形コイルであり、楕円筒形状の電磁成形コイル24は絶縁性補強材としてのFRP樹脂22と巻線部23から構成される。また、aは楕円筒形状の電磁成形コイル24の巻線部23の軸直交方向の断面形状の長径、bはその短径であり、tは巻線部23における導体素線21の平面視での厚さである。 In FIG. 3, 21 is a conductor wire, 22 is an FRP resin as an insulating reinforcing material, 23 is a winding portion, 24 is an elliptical cylindrical electromagnetic molding coil, and the elliptical cylindrical electromagnetic molding coil 24 is insulative. It consists of an FRP resin 22 as a reinforcing material and a winding part 23. Further, a 1 is the major axis of the cross-sectional shape in the direction orthogonal to the axis of the winding part 23 of the electromagnetically formed coil 24 having an elliptical cylindrical shape, b 1 is the minor axis, and t 1 is the conductor wire 21 of the winding part 23. It is the thickness in plan view.

図3に示すような楕円筒形状の電磁成形コイル24を用いたならば、この電磁成形コイル24に対応した楕円断面形状の金属製素管からそのまま所望の楕円断面形状へ電磁縮管成形でき、且つ、電磁成形コイル24の導体素線21にも異常は認められず、実用に十分な耐久性能を有する。   If an elliptical cylindrical shaped electromagnetic forming coil 24 as shown in FIG. 3 is used, an electromagnetic contraction can be formed as it is from an elliptical cross sectional metal element tube corresponding to the electromagnetic forming coil 24 into a desired elliptical cross sectional shape. In addition, no abnormality is observed in the conductor wire 21 of the electromagnetic forming coil 24, and it has a durability performance sufficient for practical use.

(実施形態3)
図4は本発明の実施形態3の長円柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 3)
4A and 4B show a long cylindrical electromagnetic forming coil according to Embodiment 3 of the present invention, in which FIG. 4A is a plan view and FIG. 4B is an elevation view.

図4において、31は導体素線、32は絶縁性補強材としてのFRP樹脂、33は巻線部、34は長円柱形状の電磁成形コイルであり、長円柱形状の電磁成形コイル34は絶縁性補強材としてのFRP樹脂32と巻線部33から構成される。また、aは長円柱形状の電磁成形コイル34の巻線部33の平面視での長径、bはその短径であり、tは巻線部33における導体素線31の平面視での厚さである。 In FIG. 4, 31 is a conductor wire, 32 is FRP resin as an insulating reinforcing material, 33 is a winding part, 34 is a long cylindrical electromagnetic forming coil, and the long cylindrical electromagnetic forming coil 34 is insulative. It consists of an FRP resin 32 as a reinforcing material and a winding part 33. In addition, a 1 is a long diameter in a plan view of the winding portion 33 of the electromagnetic forming coil 34 having a long cylindrical shape, b 1 is a short diameter thereof, and t 1 is a plan view of the conductor wire 31 in the winding portion 33. Is the thickness.

図4に示すような長円柱形状の電磁成形コイル34を用いたならば、この電磁成形コイル34に対応した長円断面形状の金属製素管からそのまま所望の長円断面形状へ電磁拡管成形でき、且つ、電磁成形コイル34の導体素線31にも異常は認められず、実用に十分な耐久性能を有する。   If an electromagnetic forming coil 34 having a long cylindrical shape as shown in FIG. 4 is used, an electromagnetic tube can be formed from a metal element tube having an elliptical cross section corresponding to the electromagnetic forming coil 34 into a desired elliptical cross sectional shape as it is. In addition, no abnormality is observed in the conductor wire 31 of the electromagnetic forming coil 34, and it has durability sufficient for practical use.

(実施形態4)
図5は本発明の実施形態4の長円筒形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 4)
5A and 5B show a long cylindrical electromagnetic forming coil according to Embodiment 4 of the present invention, in which FIG. 5A is a plan view and FIG. 5B is an elevation view.

図5において、41は導体素線、42は絶縁性補強材としてのFRP樹脂、43は巻線部、44は長円筒形状の電磁成形コイルであり、長円筒形状の電磁成形コイル44は絶縁性補強材としてのFRP樹脂42と巻線部43から構成される。また、aは長円筒形状の電磁成形コイル44の巻線部43の軸直交方向の断面形状の長径、bはその短径であり、tは巻線部43における導体素線41の平面視での厚さである。 In FIG. 5, 41 is a conductor wire, 42 is an FRP resin as an insulating reinforcing material, 43 is a winding portion, 44 is a long cylindrical electromagnetic forming coil, and the long cylindrical electromagnetic forming coil 44 is insulative. It consists of an FRP resin 42 as a reinforcing material and a winding part 43. Further, a 1 is the major axis of the cross-sectional shape in the direction perpendicular to the axis of the winding portion 43 of the electromagnetic forming coil 44 having a long cylindrical shape, b 1 is the minor axis thereof, and t 1 is the length of the conductor wire 41 in the winding portion 43. It is the thickness in plan view.

図5に示すような長円筒形状の電磁成形コイル44を用いたならば、この電磁成形コイル44に対応した長円断面形状の金属製素管からそのまま所望の長円断面形状へ電磁縮管成形でき、且つ、電磁成形コイル44の導体素線41にも異常は認められず、実用に十分な耐久性能を有する。   If a long cylindrical electromagnetic forming coil 44 as shown in FIG. 5 is used, an electromagnetic constriction tube forming from an oblong cross-sectional metal element tube corresponding to the electromagnetic forming coil 44 to a desired oblong cross sectional shape as it is. And no abnormality is found in the conductor wire 41 of the electromagnetic forming coil 44, and it has durability sufficient for practical use.

(実施形態5)
図6は本発明の実施形態5の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 5)
6A and 6B are rectangular columnar electromagnetic molded coils according to the fifth embodiment of the present invention. FIG. 6A is a plan view and FIG. 6B is an elevation view.

図6において、51は導体素線、52は絶縁性補強材としてのFRP樹脂、53は巻線部、54は矩形柱形状としての長方形柱形状の電磁成形コイルであり、長方形柱形状の電磁成形コイル54は絶縁性補強材としてのFRP樹脂52と巻線部53から構成される。また、aは長方形柱形状の電磁成形コイル54の巻線部53の軸直交方向の断面形状の長辺51bの長さ、bはその短辺51aの長さであり、tは巻線部53における導体素線51の平面視での厚さである。 In FIG. 6, 51 is a conductor wire, 52 is an FRP resin as an insulating reinforcing material, 53 is a winding portion, 54 is a rectangular column-shaped electromagnetic forming coil as a rectangular column shape, and rectangular column-shaped electromagnetic forming The coil 54 includes an FRP resin 52 as an insulating reinforcing material and a winding portion 53. Also, a 2 long side 51b of the length of the direction perpendicular to the axis of the cross-sectional shape of the winding portion 53 of a rectangular prism shape of the electromagnetic forming coil 54, b 2 is the length of the short sides 51a, t 2 is wound This is the thickness of the conductor wire 51 in the line portion 53 in plan view.

本実施形態に関しても、上述したように、本発明のメカニズムに立脚するため、上述した式(1)における長径a、短径bをそれぞれ長辺a、短辺bと読み替えることにより、そのまま成立し、これを上記式(2)とした。 Also in this embodiment, as described above, in order to be based on the mechanism of the present invention, the long diameter a 1 and the short diameter b 1 in the above formula (1) are read as the long side a 2 and the short side b 2 , respectively. This is established as is, and this is defined as the above equation (2).

図6に示すような長方形柱形状の電磁成形コイル54を用いたならば、この電磁成形コイル54に対応した長方形断面形状の金属製素管からそのまま所望の長方形断面形状へ電磁拡管成形でき、且つ、電磁成形コイル54の導体素線51にも異常は認められず、実用に十分な耐久性能を有する。   If a rectangular column-shaped electromagnetic forming coil 54 as shown in FIG. 6 is used, an electromagnetic tube expansion can be formed as it is from a rectangular metal section tube corresponding to the electromagnetic forming coil 54 into a desired rectangular sectional shape, and No abnormality is observed in the conductor wire 51 of the electromagnetic forming coil 54, and it has durability sufficient for practical use.

(実施形態6)
図7は本発明の実施形態6の別の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 6)
7A and 7B show another rectangular column-shaped electromagnetic forming coil according to Embodiment 6 of the present invention. FIG. 7A is a plan view and FIG. 7B is an elevation view.

図7において、61は導体素線、62は絶縁性補強材としてのFRP樹脂、63は巻線部、64は別の矩形柱形状の電磁成形コイルであり、この電磁成形コイル64は絶縁性補強材としてのFRP樹脂62と巻線部63から構成される。また、aは電磁成形コイル64の巻線部63の軸直交方向の断面形状の長辺61bの長さ、bはその短辺61aの長さであり、tは巻線部63における導体素線61の平面視での厚さである。 In FIG. 7, 61 is a conductor wire, 62 is an FRP resin as an insulating reinforcing material, 63 is a winding portion, and 64 is another rectangular column-shaped electromagnetic forming coil. The electromagnetic forming coil 64 is an insulating reinforcing member. It consists of an FRP resin 62 as a material and a winding part 63. Further, a 2 is the length of the long side 61 b of the cross-sectional shape in the direction perpendicular to the axis of the winding part 63 of the electromagnetic forming coil 64, b 2 is the length of the short side 61 a, and t 2 is the length of the winding part 63. This is the thickness of the conductor wire 61 in plan view.

本実施形態に関しても、上述したように、本発明のメカニズムに立脚するため、上述した式(1)における長径a、短径bをそれぞれ長辺a、短辺bと読み替えることにより、そのまま成立し、これを上記式(2)とした。 Also in this embodiment, as described above, in order to be based on the mechanism of the present invention, the long diameter a 1 and the short diameter b 1 in the above formula (1) are read as the long side a 2 and the short side b 2 , respectively. This is established as is, and this is defined as the above equation (2).

図7に示すような電磁成形コイル64を用いたならば、この電磁成形コイル64に対応した断面形状の金属製素管からそのまま所望の対応した断面形状へ電磁拡管成形でき、且つ、電磁成形コイル64の導体素線61にも異常は認められず、実用に十分な耐久性能を有する。   If an electromagnetic forming coil 64 as shown in FIG. 7 is used, an electromagnetic tube can be formed from a metal element tube having a cross-sectional shape corresponding to the electromagnetic forming coil 64 to a desired corresponding cross-sectional shape, and the electromagnetic forming coil. No abnormality was found in the 64 conductor wires 61, and the durability sufficient for practical use was obtained.

(実施形態7)
図8は本発明の実施形態7のさらに別の矩形柱形状の電磁成形コイルであり、(a)は平面図、(b)は立面図である。
(Embodiment 7)
FIG. 8 shows still another rectangular columnar electromagnetic molded coil according to the seventh embodiment of the present invention, in which (a) is a plan view and (b) is an elevational view.

図8において、71は導体素線、72は絶縁性補強材としてのFRP樹脂、73は巻線部、74はさらに別の矩形柱形状の電磁成形コイルであり、この電磁成形コイル74は絶縁性補強材としてのFRP樹脂72と巻線部73から構成される。また、aは電磁成形コイル74の巻線部73の平面視での長辺71bの長さ、bはその短辺71aの長さであり、tは巻線部73における導体素線71の平面視での厚さである。 In FIG. 8, 71 is a conductor wire, 72 is an FRP resin as an insulating reinforcing material, 73 is a winding portion, and 74 is another rectangular column-shaped electromagnetic forming coil. This electromagnetic forming coil 74 is insulative. It is comprised from the FRP resin 72 and the coil | winding part 73 as a reinforcing material. Further, a 2 is the length of the long side 71 b in a plan view of the winding portion 73 of the electromagnetic forming coil 74, b 2 is the length of the short side 71 a, and t 2 is a conductor wire in the winding portion 73. 71 is a thickness in plan view.

本実施形態に関しても、上述したように、本発明のメカニズムに立脚するため、上述した式(1)における長径a、短径bをそれぞれ長辺a、短辺bと読み替えることにより、そのまま成立し、これを上記式(2)とした。 Also in this embodiment, as described above, in order to be based on the mechanism of the present invention, the long diameter a 1 and the short diameter b 1 in the above formula (1) are read as the long side a 2 and the short side b 2 , respectively. This is established as is, and this is defined as the above equation (2).

図8に示すような電磁成形コイル74を用いたならば、この電磁成形コイル74に対応した断面形状の金属製素管からそのまま所望の対応した断面形状へ電磁拡管成形でき、且つ、電磁成形コイル74の導体素線71にも異常は認められず、実用に十分な耐久性能を有する。   If an electromagnetic forming coil 74 as shown in FIG. 8 is used, an electromagnetic tube can be formed from a metal element tube having a cross-sectional shape corresponding to the electromagnetic forming coil 74 to a desired corresponding cross-sectional shape, and the electromagnetic forming coil. No abnormality is observed in the conductor wire 71 of 74, and it has durability sufficient for practical use.

11、21、31、41、51、61、71 導体素線
12、22、32、42、52、62、72 絶縁性補強材としてのFRP樹脂
13、23、33、43、53、63、73 巻線部
14、24、34、44、54、64、74 電磁成形コイル
11, 21, 31, 41, 51, 61, 71 Conductor wire 12, 22, 32, 42, 52, 62, 72 FRP resin as an insulating reinforcing material 13, 23, 33, 43, 53, 63, 73 Winding part 14, 24, 34, 44, 54, 64, 74 Electromagnetic forming coil

Claims (4)

略楕円断面形状の金属製素管を拡管成形するための略楕円柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略楕円の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを螺旋状に巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略楕円形状であり、これらの略楕円形状の寸法は、それぞれ長径がa(mm)、短径がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、下記式(1)を満足することを特徴とする電磁成形コイル。
Electromagnetic forming coil having a substantially elliptical column shape for expanding and forming a metal element tube having a substantially elliptical cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially elliptical hole for forming the metal element tube by contraction forming Because
The winding portions of these electromagnetic molded coils have a cross-sectional shape of a circle, a square or a circle having a hollow portion, or any one conductor wire in a square spiral around the axis of each electromagnetic molded coil. It is wound around
The cross-sectional shapes of the winding portions in the direction perpendicular to the axis are substantially elliptical, and the dimensions of these substantially elliptical shapes are a major axis a 1 (mm) and a minor axis b 1 (mm), respectively.
A thickness t 1 (mm) in plan view of each of the conductor wires satisfies the following formula (1).
略矩形断面形状の金属製素管を拡管成形するための略矩形柱形状の電磁成形コイル、または、前記金属製素管を縮管成形するための略矩形の孔を持つ筒形状の電磁成形コイルであって、
これらの電磁成形コイルの巻線部は、それぞれ断面形状が円、四角または中空部を有した円または四角の内のいずれか1つの導体素線が前記各電磁成形コイルの軸のまわりを周回しながら軸方向と平行な方向に進むように巻かれたものであり、
前記巻線部の軸直交方向の断面形状は、それぞれ略矩形状であり、これらの略矩形状の寸法は、それぞれ長辺がa(mm)、短辺がb(mm)をなし、
前記各導体素線の平面視厚さt(mm)は、下記式(2)を満足することを特徴とする電磁成形コイル。
A substantially rectangular column-shaped electromagnetic forming coil for expanding and forming a metal element tube having a substantially rectangular cross-sectional shape, or a cylindrical electromagnetic forming coil having a substantially rectangular hole for forming the metal element tube by contraction Because
Each of the winding portions of the electromagnetic molded coils has a circular cross section, a square or a circle having a hollow portion, or any one conductor wire out of a square orbits around the axis of each electromagnetic molded coil. However, it is wound so as to proceed in a direction parallel to the axial direction,
The cross-sectional shapes in the direction perpendicular to the axis of the winding part are each substantially rectangular, and the dimensions of these substantially rectangular shapes are a 2 (mm) for the long side and b 2 (mm) for the short side,
A thickness t 2 (mm) in plan view of each of the conductor wires satisfies the following formula (2).
前記導体素線は、良導体であることを特徴とする請求項1または2に記載の電磁成形コイル。   The electromagnetic forming coil according to claim 1, wherein the conductor wire is a good conductor. 請求項1に記載の略楕円柱形状の電磁成形コイルまたは請求項2に記載の略矩形柱形状の電磁成形コイルを用いて、略楕円断面形状または略矩形断面形状のアルミニウム合金製素管をそれぞれ拡管成形することを特徴とする自動車用バンパーステイの製造方法。   Using the substantially elliptical columnar electromagnetic forming coil according to claim 1 or the substantially rectangular columnar electromagnetic forming coil according to claim 2, an aluminum alloy element tube having a substantially elliptical cross-sectional shape or a substantially rectangular cross-sectional shape is respectively provided. A method of manufacturing a bumper stay for an automobile, characterized by performing pipe expansion molding.
JP2015124915A 2015-06-22 2015-06-22 Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same Active JP6375266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124915A JP6375266B2 (en) 2015-06-22 2015-06-22 Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124915A JP6375266B2 (en) 2015-06-22 2015-06-22 Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same

Publications (2)

Publication Number Publication Date
JP2017006948A JP2017006948A (en) 2017-01-12
JP6375266B2 true JP6375266B2 (en) 2018-08-15

Family

ID=57762329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124915A Active JP6375266B2 (en) 2015-06-22 2015-06-22 Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same

Country Status (1)

Country Link
JP (1) JP6375266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560547A (en) * 2019-08-14 2019-12-13 武汉理工大学 metal plate uniform-pressure electromagnetic forming device and method under action of anisotropic current
CN111515291A (en) * 2020-04-30 2020-08-11 华中科技大学 Electromagnetic forming device and method for metal pipe fitting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100822A (en) * 1980-12-17 1982-06-23 Inoue Japax Res Inc Electromagnetic forming device
JPH06312226A (en) * 1993-04-28 1994-11-08 Showa Alum Corp Production of hollow material with changing cross section in longitudinal direction
JP5410339B2 (en) * 2010-03-04 2014-02-05 株式会社神戸製鋼所 Inductor for electromagnetic tube forming and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560547A (en) * 2019-08-14 2019-12-13 武汉理工大学 metal plate uniform-pressure electromagnetic forming device and method under action of anisotropic current
CN111515291A (en) * 2020-04-30 2020-08-11 华中科技大学 Electromagnetic forming device and method for metal pipe fitting

Also Published As

Publication number Publication date
JP2017006948A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6375266B2 (en) Electromagnetic forming coil and manufacturing method of bumper stay for automobile using the same
US20090025814A1 (en) Flexible fluid line and method for manufacturing it
JP6394254B2 (en) Manufacturing method and manufacturing apparatus for expanded diameter pipe parts
EP3604087A1 (en) Vehicle structural member and method for producing same
JP5491403B2 (en) Magnetic field generating coil and manufacturing method thereof
JP5729368B2 (en) Segment coil manufacturing method
US9962753B2 (en) Tool for preforming a tube for subsequent internal high pressure forming, as well as a method for producing such a tool and for producing a component by internal high pressure forming
CN101533747B (en) Method for manufacturing helix line slow-wave system of wide frequency band traveling wave tube
JP5410339B2 (en) Inductor for electromagnetic tube forming and manufacturing method thereof
JP2007275909A (en) Electromagnetic forming coil
JP5244081B2 (en) Inductor for electromagnetic tube forming and manufacturing method thereof
KR101954066B1 (en) Manufacturing method of copper pipe terminal
US11774013B2 (en) Stepped pipe member and stepped pipe member production method
JP4786474B2 (en) Inductors for electromagnetic forming
JP2004351457A (en) Electromagnetic forming coil, and electromagnetic forming method
JP5306671B2 (en) Braided cable for automobile
KR20130137001A (en) Hybrid pin for connecting a piston for an internal combustion engine to a piston rod, and pressing device for producing the hybrid pin
KR102105652B1 (en) Wire-reinforced metallic tube manufactured by hydroforming process, and apparatus and method for manufacturing the same
DE102017102570A1 (en) TURBODREEN METER SENSOR AND METHOD FOR THE PRODUCTION THEREOF AND TURBOLADER
JP6847454B2 (en) Assembly parts of compression connection members, compression connection structure of transmission lines, and construction method of compression connection members
JP5837472B2 (en) Electromagnetic tube expansion method for rectangular cross-section members
JP4464315B2 (en) Manufacturing method of connecting rod
JP2012143801A (en) Method for manufacturing main metal piece for spark plug and method for manufacturing spark plug
US6971356B2 (en) Engine pushrod
Kuboki et al. Examination of working condition for reducing thickness variation in tube drawing with

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6375266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150