JP6375191B2 - Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor - Google Patents

Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor Download PDF

Info

Publication number
JP6375191B2
JP6375191B2 JP2014186302A JP2014186302A JP6375191B2 JP 6375191 B2 JP6375191 B2 JP 6375191B2 JP 2014186302 A JP2014186302 A JP 2014186302A JP 2014186302 A JP2014186302 A JP 2014186302A JP 6375191 B2 JP6375191 B2 JP 6375191B2
Authority
JP
Japan
Prior art keywords
metal
producing
nanoparticle dispersion
liquid
metal nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014186302A
Other languages
Japanese (ja)
Other versions
JP2016027184A (en
Inventor
樋口 章二
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2014186302A priority Critical patent/JP6375191B2/en
Publication of JP2016027184A publication Critical patent/JP2016027184A/en
Application granted granted Critical
Publication of JP6375191B2 publication Critical patent/JP6375191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は金属ナノ粒子の分散液の製造方法、金属クラスターを含む溶液の製造方法、発光性金属クラスター並びにこれを用いた塗布膜及びセンサーに関する。   The present invention relates to a method for producing a dispersion of metal nanoparticles, a method for producing a solution containing metal clusters, a luminescent metal cluster, and a coating film and a sensor using the same.

Ag、Au、Pt、Pd、Rh、Ir、Ru、Osといった貴金属を微小サイズにしていくと、いずれの貴金属も量子的な効果によって特異な光学的性質が発現することが知られている。その中で、Auは、粒子径が20nm程度までナノ粒子化することでプラズモン吸収と呼ばれる特異な光吸収特性が発現し、粒子の大きさ、形状によって赤、赤紫、青紫など特徴ある色相を示すことが知られている。   It is known that when noble metals such as Ag, Au, Pt, Pd, Rh, Ir, Ru, and Os are made minute, any noble metal exhibits a specific optical property due to a quantum effect. Among them, Au has a unique light absorption characteristic called plasmon absorption by forming nanoparticles to a particle size of about 20 nm, and has a characteristic hue such as red, magenta, and bluish violet depending on the size and shape of the particles. It is known to show.

以下、貴金属の内の金(Au)を例にして、背景技術とその課題を説明する。
金(Au)ナノ粒子の製造方法には、金塩溶液に還元剤を適用して金を還元する方法が一般に知られている。非特許文献1には塩化金酸をクエン酸ナトリウム水和物によって還元する方法が示されている。特許文献1および特許文献2にはクエン酸塩、アスコルビン酸塩で金塩溶液を還元して金ナノ粒子分散液を製造する方法が開示されている。
Hereinafter, the background art and its problems will be described using gold (Au) of noble metals as an example.
As a method for producing gold (Au) nanoparticles, a method of reducing gold by applying a reducing agent to a gold salt solution is generally known. Non-Patent Document 1 discloses a method of reducing chloroauric acid with sodium citrate hydrate. Patent Documents 1 and 2 disclose a method for producing a gold nanoparticle dispersion by reducing a gold salt solution with citrate and ascorbate.

また、特許文献3には、液体中に配置した金(Au)板にパルスレーザーを照射してレーザーの大きなエネルギーで金板から物理的に微小な金をはぎ取って、金ナノ粒子を液体中に分散させる金ナノ粒子の製造方法が開示されている。   Patent Document 3 discloses that a gold (Au) plate placed in a liquid is irradiated with a pulsed laser to physically remove fine gold from the gold plate with a large energy of the laser, and gold nanoparticles are placed in the liquid. A method for producing dispersed gold nanoparticles is disclosed.

非特許文献2には、塩化カリウムを含む塩化金酸溶液中で、パルス幅2μ秒、電圧2.5kVをタングステン電極に印加して、プラズマを発生させる、いわゆる液中プラズマ法で金ナノ粒子が生成することが示されている。さらに特許文献4には、水溶液中の少なくとも1対の貴金属電極間に電圧を印加してプラズマを発生させる液中プラズマ法で貴金属ナノ粒子を生成し、水溶液中に存在する酸化物粒子に該貴金属ナノ粒子を担持させる製造方法が開示されている。   Non-Patent Document 2 discloses that gold nanoparticles are produced by a so-called submerged plasma method in which plasma is generated by applying a pulse width of 2 μs and a voltage of 2.5 kV to a tungsten electrode in a chloroauric acid solution containing potassium chloride. It has been shown to generate. Further, in Patent Document 4, noble metal nanoparticles are generated by a liquid plasma method in which a voltage is applied between at least one pair of noble metal electrodes in an aqueous solution to generate plasma, and the noble metal is added to oxide particles present in the aqueous solution. A manufacturing method for supporting nanoparticles is disclosed.

しかしながら、金塩溶液を還元する手法では、必ず金以外の対イオンが存在しており、さらに還元剤・添加剤を使用することから金ナノ粒子分散液から、不純物であるそれらの対イオンや還元剤・添加剤由来成分を除去することは困難であった。また、原料に用いる金塩は、貴金属としての金よりもはるかに高価で供給量も少なく、金ナノ粒子供給は十分ではなく、産業応用が進みにくい状況であった。   However, in the method of reducing a gold salt solution, there are always counterions other than gold, and since a reducing agent / additive is used, the gold nanoparticle dispersion is used to reduce those counterions and impurities as impurities. It was difficult to remove the components derived from the additives. In addition, the gold salt used as a raw material is much more expensive and less supplied than gold as a noble metal, the supply of gold nanoparticles is not sufficient, and industrial application is difficult to proceed.

パルスレーザー照射の方法は、こうした金塩溶液を還元する手法の課題を解決するために提案された金と分散溶液以外の不純物を全く含まない金ナノ粒子の製造手法であったが、レーザーパルス幅がピコ秒オーダーの高価なピコ秒パルスレーザーである必要があり、そのうえレーザースポットをターゲットである金上でスキャンさせなければならず、産業応用の観点から、大型装置や複雑な工程が不要な製造方法であるとは言えるものではなかった。   The method of pulsed laser irradiation was a method for producing gold nanoparticles that did not contain impurities other than gold and dispersion solution, which was proposed to solve the problem of the technique for reducing such gold salt solution. Must be an expensive picosecond pulsed laser on the order of picoseconds, and the laser spot must be scanned on the target gold, making large equipment and complex processes unnecessary from an industrial application perspective It was not a method.

液中プラズマ法の場合、不純物を含まない液中で電極金属から金属ナノ粒子を生成する可能性を示唆されているが、特許文献4では、安定したプラズマを得るために塩化カリウム等の塩を液中に加えて、水溶液の導電率を300μS/cmから3000μS/cmの間に調整することが好ましいと記述されており、不純物を含まない、すなわち導電率の小さな液中でのプラズマ発生については何ら技術的可能性を示唆するものではなかった。
一方、Auナノ粒子を1nm以下に微小化してAu原子が数個ないし数十個集まった状態はAuクラスターと呼ばれ、量子効果によって、強い発光(蛍光)を示す例が知られている。
In the case of the in-liquid plasma method, it has been suggested that metal nanoparticles may be generated from the electrode metal in a liquid not containing impurities. However, in Patent Document 4, a salt such as potassium chloride is used to obtain a stable plasma. In addition to the liquid, it is described that it is preferable to adjust the electrical conductivity of the aqueous solution between 300 μS / cm and 3000 μS / cm , and plasma generation in a liquid not containing impurities, that is, having low electrical conductivity It did not suggest any technical possibility.
On the other hand, a state in which Au nanoparticles are miniaturized to 1 nm or less and several to several tens of Au atoms are gathered is called an Au cluster, and an example in which strong light emission (fluorescence) is caused by a quantum effect is known.

Auクラスターの製造方法には、Au塩溶液に還元剤を適用してAuを還元する方法が一般に知られている。非特許文献3、非特許文献4、特許文献5および特許文献6には、ポリアミドアミンデンドリマーを鋳型(template)として含む塩化金酸またはハロゲン化金酸溶液を水素化ホウ素ナトリウムによって還元して製造する方法が示されている。得られたAuクラスターは原子数に応じて、発光ピーク波長が異なっており、金(Au)8原子からなるAu8の発光ピーク波長が455nm(青)、同様にA5の発光ピーク波長が385nm(紫外)、Au13の発光ピーク波長が510nm(緑)、Au23の発光ピーク波長が760nm(赤)、Au31の発光ピーク波長が866nm(近赤外)であると示されていた。特許文献7には、安定化剤としてホスフィン化合物を塩化金酸やハロゲン化金化合物に作用させてAuクラスターを製造する方法が開示されている。   As a method for producing Au clusters, a method of reducing Au by applying a reducing agent to an Au salt solution is generally known. Non-Patent Document 3, Non-Patent Document 4, Patent Document 5 and Patent Document 6 are prepared by reducing a chloroauric acid or halogenohaloacid solution containing a polyamidoamine dendrimer as a template with sodium borohydride. The method is shown. The obtained Au clusters have different emission peak wavelengths depending on the number of atoms, the emission peak wavelength of Au8 consisting of 8 gold (Au) atoms is 455 nm (blue), and similarly the emission peak wavelength of A5 is 385 nm (ultraviolet). ), The emission peak wavelength of Au13 is 510 nm (green), the emission peak wavelength of Au23 is 760 nm (red), and the emission peak wavelength of Au31 is 866 nm (near infrared). Patent Document 7 discloses a method for producing Au clusters by causing a phosphine compound to act on a chloroauric acid or a gold halide compound as a stabilizer.

しかしながら、上記製法ではAu原料である塩化金酸やハロゲン化金が劇物であること、ならびに該試薬が高価で通常取引量が1g単位と極小であった。また、原料が金塩であるので、Au以外に必ず、対アニオンである塩化物イオン(Cl−)などのハロゲン化物イオンが反応系中に残留しており、Auナノ粒子から分離除去できず、生体標識などに適用する際の安全性や標識精度が十分に担保できないことが課題であった。さら、鋳型としてポリアミドアミンデンドリマーを用いる製造方法では、ポリアミドアミンデンドリマーも、さらに、製造量が少なく非常に高価であるので、Auクラスターを大量生産するには適するものではなかった。また、ホスフィン化合物金塩溶液を還元する手法で得られるAuクラスターの中で最も小さいAuクラスターは、原子数11のAu11(登録商標:ウンデカゴールド)とされているが、発光特性を保持していないものであった。   However, in the above-mentioned production method, chloroauric acid and gold halide, which are Au raw materials, are deleterious substances, and the reagent is expensive and the transaction amount is usually as small as 1 g. In addition, since the raw material is a gold salt, a halide ion such as a chloride ion (Cl-) as a counter anion always remains in the reaction system in addition to Au, and cannot be separated and removed from the Au nanoparticles. The problem is that safety and labeling accuracy when applied to biomarkers cannot be sufficiently secured. Further, in the production method using a polyamidoamine dendrimer as a template, the polyamidoamine dendrimer is also not suitable for mass production of Au clusters because the production amount is small and very expensive. In addition, the smallest Au cluster among Au clusters obtained by reducing the gold salt solution of the phosphine compound is Au11 (registered trademark: undecagold) having 11 atoms, but it retains the light emission characteristics. It was not.

また、特許文献5および特許文献6には、塩化金酸水溶液とアスコルビン酸を混合して発光性のAuクラスターを得る製法も開示されているが、アスコルビン酸の混合は、非発光性のAuクラスターの生成を抑制するために、遮光下4℃の低温環境条件で行うか、室温緩衝溶液中で行わなければならない旨記載されていた。   Patent Document 5 and Patent Document 6 also disclose a method for producing a luminescent Au cluster by mixing an aqueous chloroauric acid solution and ascorbic acid. The mixing of ascorbic acid is not a non-luminescent Au cluster. In order to suppress the formation of the above, it should be carried out under a low temperature environment condition of 4 ° C. under light shielding or in a room temperature buffer solution.

特許第2834400号公報Japanese Patent No. 2834400 特許第2902954号公報Japanese Patent No. 2990254 特開2009−299112号公報JP 2009-299112 A 特開2014−97476号公報JP 2014-97476 A 米国特許 第7914588号U.S. Pat. No. 7,914,588 米国特許 第8536119号U.S. Pat. No. 8,536,119 特開2013−255887号公報JP2013-255887A

ネイチャー フィジカル サイエンス(Nature Physical Science)、1973年、第20巻、p241Nature Physical Science, 1973, Volume 20, p241 粉砕、2008年、No51、p30−36Grinding, 2008, No51, p30-36 フィジカル レビュー レターズ(Physical Review Letters)、2004年、第93巻、第7号、077402−1Physical Review Letters, 2004, Vol. 93, No. 7, 077402-1 日本物理学会 秋季大会 要旨集、25aPS−63、2006年Abstracts of Annual Meeting of the Physical Society of Japan, 25aPS-63, 2006

本発明の目的は、上記した問題点を解決するものであって、簡易でかつ汎用的な設備で、さらに短時間で分散剤を含まない高純度の金属ナノ粒子分散液を製造することおよび前記金属ナノ粒子分散液から分散安定性ならび保存安定性さらには生体適合性に優れる発光性の金属クラスターを含む溶液を製造する方法を提供することである。
さらには、本発明は前記金属クラスターを含む溶液を用いて発光する薄膜の提供及びアスコルビン酸のセンサーを提供することを目的とする。
An object of the present invention is to solve the above-described problems, and to produce a high-purity metal nanoparticle dispersion liquid containing no dispersant in a short time with simple and versatile equipment, and the above-mentioned The object is to provide a method for producing a solution containing a luminescent metal cluster which is excellent in dispersion stability, storage stability and biocompatibility from a metal nanoparticle dispersion.
Furthermore, an object of the present invention is to provide a thin film that emits light using a solution containing the metal cluster and an ascorbic acid sensor.

発明者らは、鋭意検討した結果、従来技術の問題点を完全に解消し、純度が高くかつ分散安定性の高い高品質な金属ナノ粒子分散液製造方法を見出すとともに、その金属ナノ粒子分散液を用いて分散安定性ならびに保存安定性の高い発光性金属クラスターおよびそれを含む水溶液の製造方法を見出し、本発明を完成するに至った。
すなわち、本発明は、以下の技術的手段から構成される。
As a result of intensive investigations, the inventors completely solved the problems of the prior art, found a high-quality metal nanoparticle dispersion production method with high purity and high dispersion stability, and the metal nanoparticle dispersion liquid. Has been used to find a method for producing a luminescent metal cluster having high dispersion stability and storage stability and an aqueous solution containing the same, and the present invention has been completed.
That is, the present invention comprises the following technical means.

〔1〕 液体中に配置した少なくとも1対の金属電極間に放電プラズマを発生させて、金属ナノ粒子分散液の製造方法であって、
(1)前記液体の導電率が20μS/cm以下であり、
(2)前記金属電極がAg、Au、Cu、Pt、Pd、Rh、Ir、Ru、Os、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、C、Si、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、In、Sn、Sb、Te、Hf、Ta、W、Re、Tl、Pb、Biおよびランタノイドのうちのいずれか少なくとも一種の金属であり、
(3)前記プラズマは、前記金属電極間に交流電圧が800V以上20kV以下、短絡電流40mA以下となるように電圧を印加して発生させる交流放電プラズマである
ことを特徴とする金属ナノ粒子分散液の製造方法
〔2〕 前記液体が蒸留水または純水であることを特徴とする前記〔1〕に記載の金属ナノ粒子分散液の製造方法。
〔3〕前記金属電極間の電極間距離が、接触状態から3mmの間であることを特徴とする前記〔1〕または前記〔2〕に記載の金属ナノ粒子分散液の製造方法。
〔4〕 前記〔1〕〜〔3〕のいずれかに記載の金属ナノ粒子分散液の製造方法によって製造された金属ナノ粒子分散液とアスコルビン酸とを室温で混合する工程とを含むことを特徴とする金属クラスターを含む発光溶液の製造方法

前記金属ナノ粒子がAu又はPtであることを特徴とする前記〔〕に記載の貴金属クラスターを含む発光溶液の製造方法
〕 前記〔〕または前記〔〕に記載の金属クラスターを含む溶液を塗布、乾燥して得られることを特徴とする紫外線照射によって発光する薄膜の製造方法
〕 前記〔1〕〜〔3〕のいずれかに記載の金属ナノ粒子分散液の製造方法によって製造された金属ナノ粒子分散液とアスコルビン酸を含む検体を混合した液に紫外線を照射して発光を検知する手段を有することを特徴とするアスコルビン酸の検出及び定量方法
[1] A method for producing a metal nanoparticle dispersion by generating discharge plasma between at least one pair of metal electrodes arranged in a liquid,
(1) The conductivity of the liquid is 20 μS / cm or less,
(2) The metal electrode is made of Ag, Au, Cu, Pt, Pd, Rh, Ir, Ru, Os, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, C, Si, Ga , Ge, Se, Y, Zr, Nb, Mo, Tc, In, Sn, Sb, Te, Hf, Ta, W, Re, Tl, Pb, Bi and at least one metal selected from lanthanoids,
(3) The metal nanoparticle dispersion liquid, wherein the plasma is an AC discharge plasma generated by applying a voltage between the metal electrodes so that an AC voltage is 800 V to 20 kV and a short-circuit current is 40 mA or less. [2] The method for producing a metal nanoparticle dispersion according to [1], wherein the liquid is distilled water or pure water.
[3] The method for producing a metal nanoparticle dispersion liquid according to [1] or [2], wherein an interelectrode distance between the metal electrodes is 3 mm from a contact state.
[4] A step of mixing the metal nanoparticle dispersion liquid produced by the method for producing a metal nanoparticle dispersion liquid according to any one of [1] to [3] and ascorbic acid at room temperature. A method for producing a luminescent solution containing metal clusters.

[ 5 ] The method for producing a luminescent solution containing a noble metal cluster according to [ 4 ], wherein the metal nanoparticles are Au or Pt .
[ 6 ] A method for producing a thin film that emits light by irradiation with ultraviolet rays, which is obtained by applying and drying a solution containing the metal cluster according to [ 4 ] or [ 5 ].
[ 7 ] The liquid obtained by mixing the metal nanoparticle dispersion produced by the method for producing a metal nanoparticle dispersion according to any one of [1] to [3] and a specimen containing ascorbic acid is irradiated with ultraviolet rays. A method for detecting and quantifying ascorbic acid , comprising means for detecting luminescence.

本発明によって、安価でかつ汎用的な設備で、さらに短時間で分散剤を含まない高純度の金属ナノ粒子分散液を製造することができる。さらに本発明によって得られる金属ナノ粒子分散液は、保護剤を含んでいないことから活性な触媒として用いることができる。また、Au、Ag、Cuなど金属種類によっては可視域にプラズモン吸収があるので着色しておりバイオセンサー用色材、インク用色材として使用可能であり産業応用上有用である。   According to the present invention, a high-purity metal nanoparticle dispersion containing no dispersant can be produced in a short time with inexpensive and general-purpose equipment. Furthermore, since the metal nanoparticle dispersion obtained by the present invention does not contain a protective agent, it can be used as an active catalyst. Further, depending on the type of metal such as Au, Ag, Cu, etc., there is plasmon absorption in the visible range, so that it is colored and can be used as a color material for biosensors and a color material for ink, and is useful for industrial applications.

また、本発明によって、安価でかつ汎用的な設備で、分散安定性ならび保存安定性さらには生体適合性に優れる発光性の金属クラスターおよびそれを含む水溶液を製造することができる。さらに本発明は、金属ナノ粒子が、有機酸の中でもアスコルビン酸(光学異性体のうちL体はビタミンC)と選択的に反応することで発光性の金属クラスターとなるので、ビタミンCセンサーのセンシング機構としても有用である。   In addition, according to the present invention, a luminescent metal cluster excellent in dispersion stability, storage stability, and biocompatibility and an aqueous solution containing the same can be produced with inexpensive and general-purpose equipment. Furthermore, the present invention provides a metal cluster that emits light by selectively reacting with metal ascorbic acid (L form of vitamin C is an optical isomer) among organic acids. It is also useful as a mechanism.

本発明にかかる装置の概念図。The conceptual diagram of the apparatus concerning this invention. 実施例1で作製した金ナノ粒子分散液の可視光消滅スペクトルの図。The figure of the visible light annihilation spectrum of the gold nanoparticle dispersion liquid produced in Example 1. 実施例6で作製したAuクラスター水溶液の電子吸収スペクトルと発光スペクトル。The electronic absorption spectrum and emission spectrum of the Au cluster aqueous solution produced in Example 6. 実施例12で作製したAuクラスター薄膜の発光スペクトル。The emission spectrum of the Au cluster thin film produced in Example 12.

(金属塩を原料としない金属ナノ粒子の製法)
本発明の金属ナノ粒子分散液の製造方法は、導電率が20μS/cm以下である液体中に配置した少なくとも1対の金属電極間に交流電圧が800V以上20kV以下、短絡電流40mA以下となるように電圧を印加して交流放電プラズマを発生させて、金属ナノ粒子分散液を製造することを特徴とする。
(Manufacturing method of metal nanoparticles not using metal salt)
In the method for producing a metal nanoparticle dispersion according to the present invention, an AC voltage is 800 V or more and 20 kV or less and a short-circuit current is 40 mA or less between at least one pair of metal electrodes arranged in a liquid having an electric conductivity of 20 μS / cm or less. In this way, a metal nanoparticle dispersion is produced by applying AC voltage to generate AC discharge plasma.

本発明の金属ナノ粒子分散液の製造方法は、Ag、Au、Cu、Pt、Pd、Rh、Ir、Ru、Os、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、C、Si、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、In、Sn、Sb、Te、Hf、Ta、W、Re、Tl、Pb、Biおよびランタノイドのうちのいずれか少なくとも一種の金属を原料として用いてそれぞれの金属ナノ粒子分散液を製造することができる。   The method for producing the metal nanoparticle dispersion of the present invention includes Ag, Au, Cu, Pt, Pd, Rh, Ir, Ru, Os, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al. , C, Si, Ga, Ge, Se, Y, Zr, Nb, Mo, Tc, In, Sn, Sb, Te, Hf, Ta, W, Re, Tl, Pb, Bi and at least one of lanthanoids Each metal nanoparticle dispersion liquid can be manufactured using a kind of metal as a raw material.

上記の金属の中でもAg、Au、Pt、Pd、Rh、Ir、RuおよびOsのうちのいずれかの貴金属の金属ナノ粒子分散液が、金属固有の酸化還元電位に基づいて酸化しにくく安定であること、これら貴金属は高い触媒作用を有している点で有用であり、その中でもAuまたはPtの金属ナノ粒子分散液が特に有用である。   Among the above-mentioned metals, the metal nanoparticle dispersion liquid of any one of Ag, Au, Pt, Pd, Rh, Ir, Ru, and Os is difficult to be oxidized based on the redox potential inherent to the metal and is stable. In particular, these noble metals are useful in that they have high catalytic action, and among these, Au or Pt metal nanoparticle dispersions are particularly useful.

本発明の金属ナノ粒子分散液製造に用いる装置の概念図を図1に示す。
金属ナノ粒子分散液の製造装置は、電気絶縁性の容器(103)に例えば、変圧器(トランス)などの小さな電圧(1次側電圧という)を高電圧(2次側電圧という)に昇圧する高電圧発生装置(106)に接続された少なくとも1対の金属電極(101)を備えている。そして、電極には最大20kVの高電圧が印加されるので、容器と電気的に絶縁する必要があり、金属電極は電気絶縁材(102)を介して前記容器内に設置される。前記電気絶縁材(102)は、例えば、樹脂ブロックに孔をあけておき、棒状の金属をその孔に通して電気的絶縁を担保する。絶縁材としては樹脂やセラミックスを用いることができるが、樹脂の場合、液体と接触しても変化しない樹脂であることが好ましい。
The conceptual diagram of the apparatus used for metal nanoparticle dispersion liquid manufacture of this invention is shown in FIG.
The apparatus for producing a metal nanoparticle dispersion boosts, for example, a small voltage (referred to as a primary voltage) such as a transformer (transformer) to a high voltage (referred to as a secondary voltage) in an electrically insulating container (103). It comprises at least one pair of metal electrodes (101) connected to a high voltage generator (106). Since a high voltage of 20 kV at maximum is applied to the electrode, it is necessary to electrically insulate the container, and the metal electrode is installed in the container via an electric insulating material (102). For example, the electrical insulating material (102) has a hole formed in a resin block, and a rod-shaped metal is passed through the hole to ensure electrical insulation. As the insulating material, a resin or a ceramic can be used. In the case of a resin, a resin that does not change even when in contact with a liquid is preferable.

1対の金属電極は、先端が接触状態から3mmの電極間距離で前記液体中に設置すればよい。そして、金属電極は、高電圧発生装置(106)に配線(107)により接続されており、金属電極と高電圧発生装置(106)は、前記電気絶縁材(102)中で接続されても良いし、図1の概念図に示すように金属電極の一部を前記電気絶縁材(102)で絶縁し、電極の他端を液体から空気中に出るように設置して容器の外側で接続するようにしても良い。本発明は20μS/cm以下の絶縁性液体を用いるので、図1の接続方法が可能となっている。図1の接続方法を適用することで、装置の構造が簡便になるばかりでなく、装置本体から金属電極の交換・保守が容易となり、設備としての価値が高くなる。 The pair of metal electrodes may be placed in the liquid at a distance of 3 mm between the tips from the contact state. The metal electrode is connected to the high voltage generator (106) by the wiring (107), and the metal electrode and the high voltage generator (106) may be connected in the electrical insulating material (102). Then, as shown in the conceptual diagram of FIG. 1, a part of the metal electrode is insulated by the electric insulating material (102), and the other end of the electrode is installed so as to come out from the liquid into the air and connected outside the container. You may do it. Since the present invention uses an insulating liquid of 20 μS / cm or less, the connection method of FIG. 1 is possible. By applying the connection method of FIG. 1, not only the structure of the apparatus becomes simple, but also replacement / maintenance of the metal electrode from the apparatus main body becomes easy, and the value as equipment increases.

電極に用いる金属は、純度99.9%以上で、少なくとも1対の対向電極として作用すればよく、形状は特に限定はしないが、ワイヤー状、棒状、板状であれば、液体を満たす容器中に配置しやすく好適である。   The metal used for the electrode may have a purity of 99.9% or more and act as at least one pair of counter electrodes, and the shape is not particularly limited. It is easy to arrange in.

プラズマ発生のための高電圧発生装置は、最大20kVの交流電圧(2次側電圧)が発生するトランスを用いればよく、インバータ式、巻線式いずれであってもよい。1次側電圧源は直流、交流いずれであってもよいが、日本国内では、一般商用電源である交流単相100V電源、交流単相200V電源あるいは交流3相200V電源を用いることが可能である。当然のことながら、日本国外で本発明を実施する場合は、各国の電源事情に合わせた電源を1次側電圧に用いればよい。高電圧発生装置のなかでも、ネオン管点灯用のネオントランスは入手が容易で、かつ2次側電圧最大15kV、短絡電流20mAとなっており好適である。そして、トランスの2次側電圧を調整するときは、電圧調整器あるいは可変抵抗器を使用してトランス1次側電圧を調整すればよい。   A high voltage generator for generating plasma may use a transformer that generates an alternating voltage (secondary voltage) of a maximum of 20 kV, and may be either an inverter type or a winding type. The primary side voltage source may be either direct current or alternating current, but in Japan, an AC single phase 100V power source, an AC single phase 200V power source or an AC three phase 200V power source which is a general commercial power source can be used. . Naturally, when the present invention is implemented outside of Japan, a power supply suitable for the power supply situation in each country may be used as the primary side voltage. Among the high voltage generators, neon transformers for lighting neon tubes are easy to obtain, and the secondary side voltage is a maximum of 15 kV and the short-circuit current is 20 mA, which is preferable. And when adjusting the secondary side voltage of a transformer, what is necessary is just to adjust a transformer primary side voltage using a voltage regulator or a variable resistor.

前記液体を満たす容器も同様に電気絶縁性であることが必要である。好適には、ガラス、樹脂を用いることができる。   The container filled with the liquid needs to be electrically insulating as well. Preferably, glass or resin can be used.

前記液体は、導電率が20μS/cm以下の液体を用いる。
導電率がこれ以上であると液体中に不純物が存在していることになるので、製造する金属ナノ粒子分散液の純度が低くなるので好ましくない。また、導電率が大きいと液中に配置した電極金属のうち、プラズマ発生部位以外からも電界が形成され(漏れ電界という)、印加した電圧が分散してしまい、結果としてプラズマ発生のためにより大きなエネルギー(高電圧)が必要となり、エネルギー消費の観点から好ましくない。
前記液体には、水(蒸留水または純水)および導電率が20μS/cm以下の有機溶媒を単独あるいは混合して用いることができる。前記液体を用いる際には、不純物混入による導電性が20μS/cmより大きな値を示さないようにする。前記有機溶媒の種類には、特に制限はないが、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、エチレングリコール、プロピレングリコールなどのグリコール類(化学的分類ではジオール類)、アセトン、メチルエチルケトンなどのケトン類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルなどのセロセルブ類など水と容易に混和する溶媒が好適である。
As the liquid, a liquid having an electric conductivity of 20 μS / cm or less is used.
If the electrical conductivity is higher than this, impurities are present in the liquid, which is not preferable because the purity of the metal nanoparticle dispersion to be produced is lowered. In addition, if the conductivity is high, an electric field is formed from other than the plasma generation site among the electrode metals arranged in the liquid (referred to as a leakage electric field), and the applied voltage is dispersed, resulting in a larger voltage for plasma generation. Energy (high voltage) is required, which is not preferable from the viewpoint of energy consumption.
As the liquid, water (distilled water or pure water) and an organic solvent having a conductivity of 20 μS / cm or less can be used alone or in combination. When the liquid is used, the conductivity due to mixing of impurities should not be greater than 20 μS / cm . The type of the organic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol and isopropyl alcohol, glycols such as ethylene glycol and propylene glycol (diols in chemical classification), acetone, methyl ethyl ketone, and the like. Solvents that are easily miscible with water, such as ketones, celloselves such as ethylene glycol monomethyl ether and propylene glycol monomethyl ether, are preferred.

金属ナノ粒子を製造するには、上記の設備、部材を使用して図1記載のように設備を設置して、所定の電圧を印加する。電圧印加してもプラズマ発生しないときは、1対の電極を接触させて短絡すればよい。短絡と同時にプラズマ放電が始まる。プラズマの大きなエネルギーによって、金属電極から金属の微小粒子、すなわち金属ナノ粒子がはぎ取られていく。一旦プラズマが発生すれば、プラズマ発生が継続するように電極間の距離をわずかに離す。電極間距離を離しすぎるとプラズマが消滅する。消滅した場合は再び電極間を接触させて再びプラズマ放電させてやればよい。このときの電極間の距離は接触状態から3mmの間が好ましく、電極間距離の制御は手動であっても自動であってもよい。手動の場合は、プラズマ発生の状態を目視観察しながら電極を移動させることにより、また、自動の場合は、例えば、オシロスコープを用いて1対のAu電極間の電圧および電流をモニターしておき、短絡時の電流値(短絡電流)、プラズマ発生時の電流値(プラズマ電流)、プラズマ発生していないときの電流値(非プラズマ電流)の3値を検出して、Au電極間の距離を制御すればよい。具体的には、非プラズマ電流を検知したときは、短絡電流を検知するまで1対の電極を接触させる方向に移動させる。短絡電流を検知したときは、プラズマ電流を検知するまで1対の電極を離す方向に移動させる。その状態で非プラズマ電流を検知したときは、再び短絡電流を検知するまで1対の電極を接触させる方向に移動させる。この制御を繰り返し行ってやればよい。その制御の際の電極の移動速度はできるだけ早い方が単位時間当たりのプラズマ発生時間が長くなるので好ましいが、特に限定するものではなく、モーター、振動等の既存の機械制御機構をもちいてやればよい。   In order to produce metal nanoparticles, the equipment is installed as shown in FIG. 1 using the equipment and members described above, and a predetermined voltage is applied. If plasma is not generated even when a voltage is applied, a pair of electrodes may be brought into contact with each other and short-circuited. Plasma discharge starts simultaneously with the short circuit. Due to the large energy of the plasma, metal microparticles, that is, metal nanoparticles, are stripped from the metal electrode. Once plasma is generated, the distance between the electrodes is slightly increased so that plasma generation continues. If the distance between the electrodes is too great, the plasma will disappear. When it disappears, the electrodes may be brought into contact again to cause plasma discharge again. The distance between the electrodes at this time is preferably 3 mm from the contact state, and the control of the distance between the electrodes may be manual or automatic. In manual operation, the electrode is moved while visually observing the state of plasma generation. In automatic operation, the voltage and current between a pair of Au electrodes are monitored using an oscilloscope, for example. Controls the distance between Au electrodes by detecting three values: current value when short circuit (short circuit current), current value when plasma is generated (plasma current), and current value when plasma is not generated (non-plasma current) do it. Specifically, when a non-plasma current is detected, the pair of electrodes are moved in a contact direction until a short-circuit current is detected. When the short-circuit current is detected, the pair of electrodes are moved away from each other until the plasma current is detected. When a non-plasma current is detected in this state, the pair of electrodes are moved in contact with each other until a short-circuit current is detected again. This control may be repeated. The moving speed of the electrode during the control is preferably as fast as possible because the plasma generation time per unit time becomes long, but is not particularly limited, and if an existing mechanical control mechanism such as a motor or vibration is used. Good.

連続してプラズマを発生させた場合は、液体の温度が上がるので、前記容器の外周部に冷却用の熱交換器または冷却恒温槽が付属させて、装置内の液体の温度上昇を押さえて金属ナノ粒子を製造することができる。容器外部に取り付けた熱交換器あるいは冷却恒温槽を付属させる場合は、前記容器は、熱交換効率のよいガラスがさらに好適である。   When plasma is generated continuously, the temperature of the liquid rises, so a heat exchanger for cooling or a cooling thermostatic bath is attached to the outer periphery of the container to suppress the rise in the temperature of the liquid in the apparatus. Nanoparticles can be produced. When a heat exchanger or a cooling thermostat attached to the outside of the container is attached, the container is more preferably made of glass with good heat exchange efficiency.

(金属クラスターの製造方法)
以上記述した製法による金属ナノ粒子分散液には、金属以外の化学成分を含まない高純度の金属からなる金属ナノ粒子分散液なので、本発明の金属クラスターを含む溶液の原料として好適である。原料の金属ナノ粒子分散液の濃度は大きい方が、得られる金属クラスターからの発光の目視観察が容易であるが、例えば、Auナノ粒子分散液の場合、該分散液中の金(Au)プラズモン吸収帯(450nmから600nm)のピークでの直線光線透過率が80%以下(光路長1cm)であれば十分な濃度であると判断できる。
(Metal cluster manufacturing method)
The metal nanoparticle dispersion by the production method described above is a metal nanoparticle dispersion made of a high-purity metal that does not contain chemical components other than metals, and is therefore suitable as a raw material for a solution containing the metal cluster of the present invention. The higher the concentration of the raw material metal nanoparticle dispersion, the easier the visual observation of the light emission from the resulting metal cluster. For example, in the case of Au nanoparticle dispersion, gold (Au) plasmon in the dispersion If the linear light transmittance at the peak of the absorption band (450 nm to 600 nm) is 80% or less (optical path length 1 cm), it can be determined that the concentration is sufficient.

本発明の金属クラスターを含む溶液の製造法は、まず、金属ナノ粒子分散液にアスコルビン酸を室温で混合溶解する。アスコルビン酸はL体、D体どちらであってもよい。このときアスコルビン酸の濃度が0.1mmol/Lから1000mmol/Lの範囲となるように混合する。さらに好適には1mol/Lから100mmol/Lの範囲である。混合溶解後、数時間で黒色の浮遊物が認められるが、さらに数日室温で保持しておくと黒色浮遊物は消失して、金属クラスター−アスコルビン酸錯体からなる均一な透明溶液が得られる。このときの透明溶液は金属の種類に応じて着色していることがある。また、溶媒の沸点まで加温して均一透明溶液の生成を促進することもできる。得られた透明溶液に紫外線を照射すると金属クラスター由来の発光が目視で確認できる。Auクラスター溶液の場合、該透明溶液に含まれるAuクラスターは、発光スペクトルから少なくともAu8、Au13の2種類が存在している。そのため、発光色は青色と緑色の加法混色によって、人間の目には白色に見える。   In the method for producing a solution containing a metal cluster of the present invention, first, ascorbic acid is mixed and dissolved in a metal nanoparticle dispersion at room temperature. Ascorbic acid may be either L-form or D-form. At this time, mixing is performed so that the concentration of ascorbic acid is in the range of 0.1 mmol / L to 1000 mmol / L. More preferably, it is in the range of 1 mol / L to 100 mmol / L. After mixing and dissolving, a black floating substance is observed within a few hours. However, when kept at room temperature for several days, the black floating substance disappears and a uniform transparent solution composed of a metal cluster-ascorbic acid complex is obtained. The transparent solution at this time may be colored according to the kind of metal. It is also possible to promote the production of a uniform transparent solution by heating to the boiling point of the solvent. When the obtained transparent solution is irradiated with ultraviolet rays, light emission derived from the metal cluster can be visually confirmed. In the case of an Au cluster solution, there are at least two types of Au clusters, Au8 and Au13, from the emission spectrum. Therefore, the luminescent color appears white to human eyes due to the additive color mixture of blue and green.

(金属クラスターを含む発光性薄膜の作製)
以上記述した製法によって得られた金属クラスター溶液を、基材に塗布・乾燥することで金属クラスターを含む発光性薄膜が得られる。このとき用いる基材の素材は特に限定されないが、紙、ガラス、金属、セラミックス、プラスチックスなどを用いることができる。通常、溶液を塗布する場合、基材表面は親水性であることが望ましい。基材表面を親水化する処理としては、プラズマ処理、紫外線オゾン処理、酸処理、アルカリ処理など既知の表面処理方法を適用することができる。塗布方法は、回転塗布、浸漬塗布、バーコートなど各種の塗布方法が適用できる。塗布後の乾燥処理は、室温での自然乾燥でもよいし、250℃までの任意の温度での加熱乾燥であってもよい。以上の方法で得られた薄膜に紫外線を照射すると金属クラスター由来の発光が目視で確認できる。
(Preparation of luminescent thin film containing metal clusters)
A luminescent thin film containing metal clusters can be obtained by applying and drying the metal cluster solution obtained by the production method described above on a substrate. The material of the base material used at this time is not particularly limited, but paper, glass, metal, ceramics, plastics and the like can be used. Usually, when applying a solution, it is desirable that the substrate surface is hydrophilic. As the treatment for hydrophilizing the substrate surface, known surface treatment methods such as plasma treatment, ultraviolet ozone treatment, acid treatment, and alkali treatment can be applied. Various coating methods such as spin coating, dip coating, and bar coating can be applied as the coating method. The drying treatment after coating may be natural drying at room temperature or heat drying at an arbitrary temperature up to 250 ° C. When the thin film obtained by the above method is irradiated with ultraviolet rays, light emission from the metal cluster can be visually confirmed.

(アスコルビン酸(ビタミンC)センサー)
ビタミンC(L−アスコルビン酸)を含む検体に、金属塩を原料としない本発明の金属ナノ粒子分散液を作用させる。作用させるときの該検体は固体、液体のどちらであってもよい。固体の場合、該検体を該金属ナノ粒子分散液に加えればよく、液体の場合は、該液体と該金属ナノ粒子分散液を混合すればよい。但し。固体の場合は、該検体が完全に分散溶媒に溶解しなければならない。作用させると、その分子的機構詳細は明確ではないが、金属ナノ粒子は、カルボキシル基やヒドロキシ基を含む有機酸の中で、アスコルビン酸と選択的に作用して金属クラスター−アスコルビン酸錯体を形成する。作用させた後の保管温度は、検体が変質しない範囲で加温することができるが、100℃以下とすることが望ましい。金属クラスター−アスコルビン酸錯体は紫外線照射によって発光するので、容易に検出できる。検体中に存在するビタミンCの量に応じて生成する金属クラスター−アスコルビン酸錯体の量が決まる。発光強度は金属クラスター−アスコルビン酸錯体の量に比例しているので、予め、発光強度とL−アスコルビン酸量の検量線を作成しておけば、発光強度から検体中のアスコルビン酸量が求められる。
(Ascorbic acid (vitamin C) sensor)
A metal nanoparticle dispersion of the present invention that does not use a metal salt as a raw material is allowed to act on a specimen containing vitamin C (L-ascorbic acid). The specimen to be acted on may be either solid or liquid. In the case of a solid, the sample may be added to the metal nanoparticle dispersion, and in the case of a liquid, the liquid and the metal nanoparticle dispersion may be mixed. However. In the case of a solid, the specimen must be completely dissolved in the dispersion solvent. Although the molecular mechanism details are not clear when applied, metal nanoparticles selectively react with ascorbic acid in organic acids containing carboxyl groups and hydroxy groups to form metal cluster-ascorbic acid complexes. To do. The storage temperature after the action can be heated as long as the specimen does not change in quality, but is preferably 100 ° C. or lower. Since the metal cluster-ascorbic acid complex emits light when irradiated with ultraviolet rays, it can be easily detected. The amount of the metal cluster-ascorbic acid complex produced is determined according to the amount of vitamin C present in the specimen. Since the emission intensity is proportional to the amount of the metal cluster-ascorbic acid complex, if a calibration curve of the emission intensity and the amount of L-ascorbic acid is prepared in advance, the amount of ascorbic acid in the sample can be obtained from the emission intensity. .

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.

〔実施例1〕
純度99.9%、厚み1mm、25mm角の金板(田中貴金属工業)を切断して長さ25mm、1mm角の短冊2本作製した。12.5mm×25mm、厚み5mmのテフロン(登録商標)ブロックに孔をあけて、短冊状の金を通して、1対の絶縁電極を作製した。ガラス製シャーレ(φ70mm、深さ18mm)の中央部分に作製した1対の絶縁電極の金の先端部分が1mmの隙間を空けて配置した。その後、30mlの蒸留水(15μS/cm ナカライテスク)を加え、絶縁電極の金先端部分を水中に配置した。ネオントランス(レシップ)を用いて絶縁電極に9kVを印加した後、絶縁電極を接触させてプラズマを発生させた。その後電極間距離を微調整しながら30分間プラズマ発生を継続したところ、シャーレ中の蒸留水が赤紫色となっていた。分光光度計を用いて、得られた赤紫色の液体の可視光消滅スペクトルを測定したところ、522nmに金のプラズモン吸収に基づく吸収極大が認められた(図2)。また、動的光散乱法で粒度分布を測定したところd50(粒度の累積頻度が50%となる粒度)は30nmであった。吸収極大波長、d50、外観色を表1に示した。
[Example 1]
A metal plate (Tanaka Kikinzoku Kogyo) with a purity of 99.9%, a thickness of 1 mm, and a 25 mm square was cut to produce two strips of 25 mm length and 1 mm square. A pair of insulated electrodes was produced by punching a hole in a 12.5 mm × 25 mm, 5 mm thick Teflon (registered trademark) block and passing a strip of gold. The gold tips of a pair of insulated electrodes prepared at the center of a glass petri dish (φ70 mm, depth 18 mm) were arranged with a 1 mm gap. Thereafter, 30 ml of distilled water (15 μS / cm Nacalai Tesque) was added, and the gold tip of the insulating electrode was placed in water. After applying 9 kV to the insulating electrode using a neon transformer (Lesship), the insulating electrode was brought into contact with it to generate plasma. Thereafter, plasma generation was continued for 30 minutes while finely adjusting the distance between the electrodes. As a result, distilled water in the petri dish became reddish purple. When the visible light extinction spectrum of the obtained reddish purple liquid was measured using a spectrophotometer, an absorption maximum based on gold plasmon absorption was observed at 522 nm (FIG. 2). Further, when the particle size distribution was measured by a dynamic light scattering method, d50 (particle size at which the cumulative frequency of particle size was 50%) was 30 nm. Table 1 shows the maximum absorption wavelength, d50, and appearance color.

〔実施例2〕
印加電圧が5kVであること以外は、実施例1と同様に行って、赤紫色の液体を得た。得られた赤紫色液体の収極大波長、d50、外観色を表1に示した。
[Example 2]
A reddish purple liquid was obtained in the same manner as in Example 1 except that the applied voltage was 5 kV. Table 1 shows the maximum wavelength, d50, and appearance color of the obtained reddish purple liquid.

〔実施例3〕
印加電圧が1kVであること以外は、実施例1と同様に行って、赤紫色の液体を得た。得られた赤紫色液体の収極大波長、d50、外観色を表1に示した。
Example 3
A reddish purple liquid was obtained in the same manner as in Example 1 except that the applied voltage was 1 kV. Table 1 shows the maximum wavelength, d50, and appearance color of the obtained reddish purple liquid.

〔実施例4〕
短冊状の金の代わりにPt線(外径0.5mm、長さ50mm)を用いたこと以外は、実施例1と同様に行って、黒色透明の液体を得た。d50、外観色を表1に示した。なおPtは明確なプラズモン吸収をもたないので可視光消滅スペクトルにおいてピーク形状は認められなかった。
Example 4
A black transparent liquid was obtained in the same manner as in Example 1 except that Pt wire (outer diameter 0.5 mm, length 50 mm) was used instead of the strip-shaped gold. The appearance color of d50 is shown in Table 1. Since Pt has no clear plasmon absorption, no peak shape was observed in the visible light extinction spectrum.

〔実施例5〕
短冊状の金の代わりにCu線(外径1.5mm、長さ50mm)を用いたこと以外は、実施例1と同様に行って、褐色透明の液体を得た。d50、外観色を表1に示した。
Example 5
A brown transparent liquid was obtained in the same manner as in Example 1 except that Cu wire (outer diameter 1.5 mm, length 50 mm) was used instead of the strip-shaped gold. The appearance color of d50 is shown in Table 1.

〔比較例1〕
印加電圧が730Vであること以外は、実施例1と同様に行って、青紫色の液体を得た。得られた青紫色液体の収極大波長、d50、外観色を表1に示した。
[Comparative Example 1]
A blue-violet liquid was obtained in the same manner as in Example 1 except that the applied voltage was 730V. Table 1 shows the maximum wavelength, d50, and appearance color of the obtained blue-violet liquid.

〔比較例2〕
蒸留水に代えて、0.01重量%の塩化ナトリウム水溶液(210μS/cm)を用いたこと以外は、実施例1と同様に行ったところ、電圧印加すると電極で水の電気分解による気泡が認められ、放電プラズマは発生せず、金ナノ粒子に基づく着色液体を得ることができなかった。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that a 0.01% by weight sodium chloride aqueous solution (210 μS / cm 2 ) was used in place of distilled water. Recognized, no discharge plasma was generated, and a colored liquid based on gold nanoparticles could not be obtained.

Figure 0006375191
Figure 0006375191

〔実施例6〕
水中放電プラズマ法で作製した522nmのAuのプラズモン吸収に基づく吸収ピークの直線光線透過率(光路長1cm)が47%であるAuナノ粒子水分散液にL−アスコルビン酸濃度が52mmol/Lとなるように加えた。L−アスコルビン酸溶解後、1週間室温に保持して淡黄色透明溶液を得た。この溶液に紫外線LED(365nm、約38mW/cm2)を照射すると白色発光が認められた。発光スペクトル(励起波長:366nm)を測定したところ、442nmと467nmに極大ピークが認められ、560nm近傍にショルダーピークが認められた。表2に得られた溶液の外観色、発光スペクトルのピーク波長、最大ピークでの発光強度、発光色をまとめて示した。図3には電子吸収スペクトルと発光スペクトルを示した。
Example 6
The concentration of L-ascorbic acid is 52 mmol / L in an aqueous dispersion of Au nanoparticles having an absorption peak based on plasmon absorption of 522 nm Au produced by an underwater discharge plasma method and having a linear light transmittance (optical path length of 1 cm) of 47%. Added as follows. After dissolving L-ascorbic acid, it was kept at room temperature for 1 week to obtain a pale yellow transparent solution. When this solution was irradiated with an ultraviolet LED (365 nm, about 38 mW / cm 2), white light emission was observed. When an emission spectrum (excitation wavelength: 366 nm) was measured, maximum peaks were observed at 442 nm and 467 nm, and a shoulder peak was observed near 560 nm. Table 2 summarizes the appearance color, peak wavelength of the emission spectrum, emission intensity at the maximum peak, and emission color of the solutions obtained. FIG. 3 shows an electron absorption spectrum and an emission spectrum.

〔実施例7〕
545nmのAuのプラズモン吸収に基づく吸収ピークの直線光線透過率(光路長1cm)が77%であるAuナノ粒子水分散液を用いた以外は実施例6と同様に行って、淡黄色透明溶液を得た。表2に得られた溶液の外観色、発光スペクトルのピーク波長、発光色をまとめて示した。
Example 7
A pale yellow transparent solution was prepared in the same manner as in Example 6 except that an Au nanoparticle aqueous dispersion having a linear light transmittance (optical path length of 1 cm) of 77% based on plasmon absorption of 545 nm Au was used. Obtained. Table 2 shows the appearance color, peak wavelength of the emission spectrum, and emission color of the solutions obtained.

〔実施例8〕
600nmの直線光線透過率(光路長1cm)が43%であるPtナノ粒子水分散液(Ptの場合、プラズモン吸収は認められない)を用いた以外は実施例6と同様に行って、淡黄緑色透明溶液を得た。表2に得られた溶液の外観色、発光スペクトルのピーク波長、発光色をまとめて示した。
Example 8
The procedure was the same as in Example 6 except that a Pt nanoparticle aqueous dispersion having a linear light transmittance of 600 nm (optical path length 1 cm) of 43% (in the case of Pt, plasmon absorption is not recognized) was used. A clear green solution was obtained. Table 2 shows the appearance color, peak wavelength of the emission spectrum, and emission color of the solutions obtained.

〔実施例9〕
600nmの直線光線透過率(光路長1cm)が66%であるCuナノ粒子水分散液を用いた以外は実施例6と同様に行って、無色透明溶液を得た。表2に得られた溶液の外観色、発光スペクトルのピーク波長、発光色をまとめて示した。
Example 9
A colorless transparent solution was obtained in the same manner as in Example 6 except that a Cu nanoparticle aqueous dispersion having a linear light transmittance of 600 nm (optical path length: 1 cm) was 66% was used. Table 2 shows the appearance color, peak wavelength of the emission spectrum, and emission color of the solutions obtained.

〔実施例10〕
L−アスコルビン酸を用いるところを、L−アスコルビン酸15mmmol/L、クエン酸1水和物15mmmol/L、L−酒石酸15mmmol/Lの混合物を用いた以外は実施例6と同様に行って、黒色浮遊物を含む淡黄色透明溶液を得た。表2に得られた溶液の外観色、発光スペクトルのピーク波長、ピーク強度、発光色をまとめて示した。
Example 10
Using L-ascorbic acid in the same manner as in Example 6 except that a mixture of L-ascorbic acid 15 mmol / L, citric acid monohydrate 15 mmol / L, and L-tartaric acid 15 mmol / L was used. A pale yellow transparent solution containing suspended matter was obtained. Table 2 summarizes the appearance color, peak wavelength of emission spectrum, peak intensity, and emission color of the solutions obtained.

〔実施例11〕
L−アスコルビン酸を用いるところを、L−アスコルビン酸30mmmol/L、クエン酸1水和物15mmmol/L、L−酒石酸15mmmol/Lの混合物を用いた以外は実施例6と同様に行って、黒色浮遊物を含む淡黄色透明溶液を得た。表2に得られた溶液の外観色、発光スペクトルのピーク波長、発光色をまとめて示した。
Example 11
Using L-ascorbic acid in the same manner as in Example 6 except that a mixture of L-ascorbic acid 30 mmol / L, citric acid monohydrate 15 mmol / L, and L-tartaric acid 15 mmol / L was used. A pale yellow transparent solution containing suspended matter was obtained. Table 2 shows the appearance color, peak wavelength of the emission spectrum, and emission color of the solutions obtained.

〔実施例12〕
実施例6で得た淡黄色透明液体0.1mLをスライドグラスに滴下、自然乾燥して無色透明薄膜を得た。この薄膜に紫外線LED(365nm、約38mW/cm2)を照射すると淡緑色発光が認められた。このときの発光スペクトルを図4に示した。
Example 12
0.1 mL of the pale yellow transparent liquid obtained in Example 6 was dropped on a slide glass and naturally dried to obtain a colorless transparent thin film. When this thin film was irradiated with an ultraviolet LED (365 nm, about 38 mW / cm 2), light green emission was observed. The emission spectrum at this time is shown in FIG.

〔比較例3〕
L−アスコルビン酸を用いるところを、クエン酸1水和物52mmmol/Lを用いた以外は、実施例1と同様に行ったところ、黒色沈殿物を含む無色透明液体を得た。得られた液体に紫外線照射しても発光は認められなかった。
[Comparative Example 3]
When L-ascorbic acid was used except that citric acid monohydrate 52 mmol / L was used, a colorless transparent liquid containing a black precipitate was obtained. Even if the obtained liquid was irradiated with ultraviolet rays, no luminescence was observed.

〔比較例4〕
L−アスコルビン酸を用いるところを、L−酒石酸52mmmol/Lを用いた以外は、実施例1と同様に行ったところ、黒色沈殿物を含む無色透明液体を得た。得られた液体に紫外線照射しても発光は認められなかった。
[Comparative Example 4]
When L-ascorbic acid was used except that L-tartaric acid 52 mmol / L was used, a colorless transparent liquid containing a black precipitate was obtained. Even if the obtained liquid was irradiated with ultraviolet rays, no luminescence was observed.

Figure 0006375191
Figure 0006375191

本発明の金属ナノ粒子分散液は、分散剤等の添加物を含まないにもかかわらず分散安定性のよい金属ナノ粒子分散液を簡易な設備で短時間に製造することができ、産業上、例えば、医療、ヘルスケア分野で用いられる体外検査薬用の発色色材としての利用価値は甚大である。また、これらの金属ナノ粒子分散液から金属酸化物ナノ粒子分散液、金属水酸化物ナノ粒子分散液を得ることができ、産業上の波及範囲は極めて広範囲である。   The metal nanoparticle dispersion of the present invention can produce a metal nanoparticle dispersion with good dispersion stability in a short time with simple equipment despite the fact that it does not contain additives such as a dispersant. For example, the utility value as a coloring material for in-vitro diagnostics used in the medical and healthcare fields is enormous. Moreover, a metal oxide nanoparticle dispersion and a metal hydroxide nanoparticle dispersion can be obtained from these metal nanoparticle dispersions, and the industrial spillover range is extremely wide.

さらに、本発明は、分散安定性のよい発光性金属クラスター分散液および金属クラスターを含む薄膜を安価な設備で短時間に製造することができ、産業上、特に、医療、ヘルスケア分野への利用価値は甚大である。さらに本発明によれば、ビタミンCのセンシングも可能となり食品、医療分野に適用可能であるとともに、金属クラスター自身が保有する触媒機能を利用することも可能であり、産業上の波及範囲は極めて広範囲である。   Furthermore, the present invention can produce a light-emitting metal cluster dispersion having good dispersion stability and a thin film containing the metal cluster in a short time with inexpensive equipment, and is industrially used, particularly in the medical and healthcare fields. The value is enormous. Furthermore, according to the present invention, vitamin C can be sensed and applied to the food and medical fields, and the catalytic function possessed by the metal cluster itself can be used, and the industrial spillover range is extremely wide. It is.

101 金電極
102 電気絶縁材
103 電気絶縁性容器
104 導電率が20μS/cm以下の液体
105 電極間距離(0〜3mm)
106 高電圧発生装置
107 配線
DESCRIPTION OF SYMBOLS 101 Gold electrode 102 Electrical insulation material 103 Electrical insulation container 104 Liquid with electrical conductivity of 20 μS / cm or less 105 Distance between electrodes (0 to 3 mm)
106 High-voltage generator 107 Wiring

Claims (7)

液体中に配置した少なくとも1対の金属電極間に放電プラズマを発生させて、金属ナノ粒子分散液の製造方法であって、
(1)前記液体の導電率が20μS/cm以下であり、
(2)前記金属電極がAg、Au、Cu、Pt、Pd、Rh、Ir、Ru、Os、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、C、Si、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、In、Sn、Sb、Te、Hf、Ta、W、Re、Tl、Pb、Biおよびランタノイドのうちのいずれか少なくとも一種の金属であり、
(3)前記プラズマは、前記金属電極間に交流電圧が800V以上20kV以下、短絡電流40mA以下となるように電圧を印加して発生させる交流放電プラズマである
ことを特徴とする金属ナノ粒子分散液の製造方法
A method for producing a metal nanoparticle dispersion by generating discharge plasma between at least one pair of metal electrodes disposed in a liquid,
(1) The conductivity of the liquid is 20 μS / cm or less,
(2) The metal electrode is made of Ag, Au, Cu, Pt, Pd, Rh, Ir, Ru, Os, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, C, Si, Ga , Ge, Se, Y, Zr, Nb, Mo, Tc, In, Sn, Sb, Te, Hf, Ta, W, Re, Tl, Pb, Bi and at least one metal selected from lanthanoids,
(3) The metal nanoparticle dispersion liquid, wherein the plasma is an AC discharge plasma generated by applying a voltage between the metal electrodes so that an AC voltage is 800 V to 20 kV and a short-circuit current is 40 mA or less. Manufacturing method
前記液体が蒸留水または純水であることを特徴とする請求項1に記載の金属ナノ粒子分散液の製造方法。 The method for producing a metal nanoparticle dispersion according to claim 1, wherein the liquid is distilled water or pure water. 前記金属電極間の電極間距離が、接触状態から3mmの間であることを特徴とする請求項1または請求項2に記載の金属ナノ粒子分散液の製造方法。 The method for producing a metal nanoparticle dispersion liquid according to claim 1 or 2, wherein the distance between the metal electrodes is 3 mm from the contact state. 請求項1〜3のいずれかに記載の金属ナノ粒子分散液の製造方法によって製造された金属ナノ粒子分散液とアスコルビン酸とを室温で混合する工程とを含むことを特徴とする金属クラスターを含む発光溶液の製造方法A metal cluster comprising: a step of mixing a metal nanoparticle dispersion produced by the method for producing a metal nanoparticle dispersion according to claim 1 and ascorbic acid at room temperature. A method for producing a luminescent solution. 前記金属ナノ粒子がAu又はPtであることを特徴とする請求項に記載の発光溶液の製造方法 The method for producing a luminescent solution according to claim 4 , wherein the metal nanoparticles are Au or Pt . 請求項または請求項に記載の金属クラスターを含む溶液を塗布、乾燥して得られることを特徴とする紫外線照射によって発光する薄膜の製造方法 Method of manufacturing a thin film that emits applying a solution containing a metal-cluster of claim 4 or claim 5, by ultraviolet irradiation, characterized in that it is obtained by drying. 請求項1〜3のいずれかに記載の金属ナノ粒子分散液の製造方法によって製造された金属ナノ粒子分散液とアスコルビン酸を含む検体を混合した液に紫外線を照射して発光を検知する手段を有することを特徴とするアスコルビン酸の検出及び定量方法A means for detecting luminescence by irradiating a liquid obtained by mixing a metal nanoparticle dispersion produced by the method for producing a metal nanoparticle dispersion according to any one of claims 1 to 3 with a specimen containing ascorbic acid. A method for detecting and quantifying ascorbic acid , comprising:
JP2014186302A 2014-07-08 2014-09-12 Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor Active JP6375191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186302A JP6375191B2 (en) 2014-07-08 2014-09-12 Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014140123 2014-07-08
JP2014140123 2014-07-08
JP2014186302A JP6375191B2 (en) 2014-07-08 2014-09-12 Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor

Publications (2)

Publication Number Publication Date
JP2016027184A JP2016027184A (en) 2016-02-18
JP6375191B2 true JP6375191B2 (en) 2018-08-15

Family

ID=55352680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186302A Active JP6375191B2 (en) 2014-07-08 2014-09-12 Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor

Country Status (1)

Country Link
JP (1) JP6375191B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803796A (en) * 2019-10-22 2020-02-18 江苏永冠给排水设备有限公司 Preparation method of plasma defluorination solution, water purification process and equipment
CN114488983A (en) * 2022-01-25 2022-05-13 龙岩市天宏计算机技术有限公司 Monitoring system for potassium aurous cyanide production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI255695B (en) * 2001-10-12 2006-06-01 Phild Co Ltd Method and device for producing ultrafine dispersion of noble metal

Also Published As

Publication number Publication date
JP2016027184A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
Han et al. Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission
Kazakevich et al. Production of copper and brass nanoparticles upon laser ablation in liquids
Liu et al. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging
Saito et al. Nanomaterial synthesis using plasma generation in liquid
Gupta et al. Multifunctional pure and Eu 3+ doped β-Ag 2 MoO 4: photoluminescence, energy transfer dynamics and defect induced properties
Tien et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method
Huang et al. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide
Wu et al. Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications
Xuan et al. Single-step noninjection synthesis of highly luminescent water soluble Cu+ doped CdS quantum dots: application as bio-imaging agents
Stojadinović et al. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium
JP6375191B2 (en) Method for producing metal nanoparticle dispersion, solution containing metal cluster, method for producing the same, coating film thereof, and ascorbic acid sensor
JP2008248298A (en) Method for producing metal nanoparticle, silver/copper nanoparticle, and electrically conductive paste
Abdi et al. Effect of CTAB concentration on the properties of ZnO nanoparticles produced by laser ablation method in CTAB solution
Shi et al. Sonoelectrochemical synthesis of water-soluble CdTe quantum dots
JP6899561B2 (en) Method for manufacturing metal nanoparticle dispersion liquid
CN108044125B (en) Method for preparing Ag nano particles by using liquid diaphragm discharge plasma
Tsuda et al. Electrochemical behavior and solvation analysis of rare earth complexes in ionic liquids media investigated by SECM and Raman spectroscopy
Ajimsha et al. Luminescence from surfactant-free ZnO quantum dots prepared by laser ablation in liquid
JP2014150007A (en) Titanium oxide nanorod carrying visible light absorbing quantum dots and method for producing the same
Ramya et al. Concentration dependent thermo-optic properties of yellow emissive ZnO quantum dots
CN114316964B (en) Carbon quantum dot and preparation method and application thereof
Tseng et al. Parameter control and property analysis in the preparation of platinum iodide nanocolloids through the electrical spark discharge method
CN102348836A (en) Lower order titanium oxide and process for producing same
Tseng et al. Characteristics of nano-metal colloid prepared by electrical spark discharge method
Kholikov et al. Surface plasmon resonance improved photocatalytic activity of Au/TiO2 nanocomposite under visible light for degradation of pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6375191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250