JP6372850B2 - Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material - Google Patents

Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material Download PDF

Info

Publication number
JP6372850B2
JP6372850B2 JP2014115330A JP2014115330A JP6372850B2 JP 6372850 B2 JP6372850 B2 JP 6372850B2 JP 2014115330 A JP2014115330 A JP 2014115330A JP 2014115330 A JP2014115330 A JP 2014115330A JP 6372850 B2 JP6372850 B2 JP 6372850B2
Authority
JP
Japan
Prior art keywords
sio
powder
pvdf
polymer
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014115330A
Other languages
Japanese (ja)
Other versions
JP2015229605A (en
Inventor
正督 藤
正督 藤
白井 孝
孝 白井
博紀 長谷川
博紀 長谷川
仙名 保
保 仙名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014115330A priority Critical patent/JP6372850B2/en
Publication of JP2015229605A publication Critical patent/JP2015229605A/en
Application granted granted Critical
Publication of JP6372850B2 publication Critical patent/JP6372850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、SiOを含むナノコンポジット製造に関するものである。 The present invention relates to the production of nanocomposites containing SiO.

近年、二次電池負極材料の候補として,従来の黒鉛等炭素系材料の代替として、資源的に潤沢であり、廉価で、かつ環境負荷の小さい二酸化珪素(SiO)を原材料としたSiOが大容量化の観点より注目されている。 In recent years, as a candidate for secondary battery negative electrode materials, as an alternative to conventional carbon-based materials such as graphite, SiO using silicon dioxide (SiO 2 ) as a raw material, which is abundant in resources, inexpensive and has a low environmental impact, has been widely used. It attracts attention from the viewpoint of capacity.

SiO製造方法の典型的な従来法は、減圧下において加熱してSiO気体を発生させ、SiO気体をSiO粉体として析出させる方法である(特許文献1参照)。また、同様な方法に関しては,雰囲気制御の方法などの改良例もある(特許文献2参照)。また,リチウムイオン電池への応用に特化した真空蒸着若しくはスパッタリングによる薄膜製造などの先行技術もある(特許文献3および特許文献4参照)。特許文献1に関連して、SiOをSi、C、あるいはSiCなどと混合して加熱する方法が報告されている(非特許文献1および非特許文献2)。SiO薄膜に関しては,SiH4とCO2とHeなどの混合気体からの化学気相蒸着法が報告されている(非特許文献3)。 A typical conventional method for producing SiO is a method in which SiO gas is generated by heating under reduced pressure, and SiO gas is precipitated as SiO powder (see Patent Document 1). In addition, with respect to the same method, there is an improvement example such as an atmosphere control method (see Patent Document 2). There are also prior arts such as vacuum deposition or thin film production by sputtering specialized for application to lithium ion batteries (see Patent Document 3 and Patent Document 4). In relation to Patent Document 1, a method of heating SiO 2 mixed with Si, C, SiC, or the like has been reported (Non-Patent Document 1 and Non-Patent Document 2). Regarding the SiO thin film, a chemical vapor deposition method from a mixed gas such as SiH 4, CO 2 and He has been reported (Non-patent Document 3).

これらの先行技術は,いずれも還元雰囲気でSiOを含む混合物を高温加熱し、化学的に不安定なSiOの気相から凝縮してSiOを生成するので、生成物の一部に必然的にSiとSiOが混入しやすく、生成物の組成の予測や制御が容易ではない。また、高コストで量産性に乏しい。また、SiOを炭素などと複合化するためには,この従来法で得られたSiOと炭素源をさらに機械的に攪拌、混合する必要があった。 In each of these prior arts, a mixture containing SiO 2 is heated at a high temperature in a reducing atmosphere and condensed from a chemically unstable gas phase of SiO to generate SiO. Si and SiO 2 are likely to be mixed, and it is not easy to predict and control the composition of the product. Moreover, it is expensive and lacks mass productivity. Further, in order to combine SiO with carbon or the like, it was necessary to further mechanically stir and mix the SiO obtained by this conventional method and the carbon source.

再公特許WO2006/025194号公報Republication WO2006 / 025194 再公表特許WO2006/046353号公報Republished Patent WO2006 / 046353 特開2009-78949号公報JP 2009-78949 特開2007-53084号公報JP 2007-53084 A

H. Sepehri-Amin, T. Ohkubo, M. Kodzuka, H. Yamamura, T. Saito, H. Iba and K. Hono, Scripta Materialia 69 (2013) 92-95H. Sepehri-Amin, T. Ohkubo, M. Kodzuka, H. Yamamura, T. Saito, H. Iba and K. Hono, Scripta Materialia 69 (2013) 92-95 B. G. Gribov, K. V. Zinov’ev, O. N. Kalashnika N. N. Gerasimenko,D. I. Smirnov, V. N. Sukhanov,Semiconductors, 46 (2012) 1576-1579B. G. Gribov, K. V. Zinov’ev, O. N. Kalashnika N. N. Gerasimenko, D. I. Smirnov, V. N. Sukhanov, Semiconductors, 46 (2012) 1576-1579 Arup Samanta, Debajyoti Das, Solar Energy Mater. Solar Cells, 93 (2009) 588-596Arup Samanta, Debajyoti Das, Solar Energy Mater.Solar Cells, 93 (2009) 588-596

本発明の課題は、かかる従来技術の不具合を解決すべくなされたものであって、常温・常圧で、簡易な方法により、固相のままSiO系材料、およびSiO系材料と炭素材料料との複合材料を得る方法を提供することである。 An object of the present invention is to solve the problems of the prior art, and at room temperature and normal pressure, by a simple method, the SiO-based material, and the SiO-based material and the carbon material material remain in a solid phase. It is providing the method of obtaining the composite material of this.

本発明者らは、SiOを高分子等有機物と混合粉砕するだけの簡易な方法により、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下のSiO系材料の製造方法、およびSiO系材料と炭素材料とのナノ複合体が提供される。 The present inventors have found that the above problem can be solved by a simple method in which SiO 2 is mixed and ground with an organic substance such as a polymer. That is, according to the present invention, the following method for producing a SiO-based material and a nanocomposite of a SiO-based material and a carbon material are provided.

[1]SiO微粉体とポリマーとを混合し,粉砕することによるSiO系材料の製造方法。 [1] A method for producing a SiO-based material by mixing and pulverizing a fine SiO 2 powder and a polymer.

[2]前記ポリマーがポリオレフィン系である、前記[1]に記載のSiO系材料の製造方法。 [2] The method for producing a SiO-based material according to [1], wherein the polymer is a polyolefin-based polymer.

[3]前記[1]または[2]の製造方法で得られたSiO系材料と炭素材料との複合材料。 [3] A composite material of a SiO-based material and a carbon material obtained by the production method of [1] or [2].

SiO(原料粉体)、SiO(リファレンス試料)、およびPVDFとSiOとの混合粉体のメカノケミカル処理後の粉体のXPS(Si2p)測定結果を示す図である。SiO 2 (raw material powder), SiO (reference samples), and is a diagram showing an XPS (Si2p) measurement results of the powder after mechanochemical treatment of the mixed powder of PVDF and SiO 2. SiO(原料粉体)、SiO(リファレンス試料)、およびPVDFとSiOとの混合粉体のメカノケミカル処理後の粉体のXPS(O1s)測定結果を示す図である。SiO 2 (raw material powder), SiO (reference samples), and is a diagram showing an XPS (O1s) measurement results of the powder after mechanochemical treatment of the mixed powder of PVDF and SiO 2. SiO(原料粉体)、SiO(リファレンス試料)、およびPVDFとSiOとの混合粉体のメカノケミカル処理後の粉体のFT-IRスペクトル(1100cm-1付近)を示す図である。SiO 2 (raw material powder) is a diagram showing a SiO (reference samples), and PVDF and powder FT-IR spectrum after mechanochemical treatment of the mixed powder of SiO 2 (1100 cm around -1). PVDFとSiOとの混合粉体のメカノケミカル処理3時間後の粉体のラマンスペクトルによる炭素成分の評価結果を示す図である。Is a graph showing evaluation results of the carbon component by Raman spectra of the powder of mechanochemical treatment 3 hours after the mixed powder of PVDF and SiO 2. PVDF、PVDFのメカノケミカル処理3時間後、及びPVDFとSiOとの混合粉体のメカノケミカル処理3時間後の粉体のNMR(13C)による構造状態を示す図である。PVDF, illustrates After PVDF mechanochemical treatment 3 hours, and PVDF and the structural state by NMR (@ 13 C) of the powder mechanochemical treatment 3 hours after the mixed powder of SiO 2. PVDF等4種のポリマーとSiOとの混合粉体のメカノケミカル処理3時間後、SiO(リファレンス)、SiO(原料粉体)のXPS(Si2p)のスペクトルを示す図である。After mechanochemical treatment 3 hours mixed powder of PVDF such 4 kinds of the polymer and SiO 2, SiO (Reference) is a diagram showing the spectrum of XPS (Si2p) of SiO 2 (raw material powder). PVDF等4種ポリマーとSiOとの混合粉体のメカノケミカル処理3時間後、SiO(リファレンス)、SiO(原料粉体)のXPS(O1s)のスペクトルを示す図である。After mechanochemical treatment 3 hours mixed powder of PVDF such four polymer and SiO 2, SiO (Reference) is a diagram showing the spectrum of XPS (O1s) of SiO 2 (raw material powder). PVDF等4種ポリマーとSiO2との混合粉体のメカノケミカル処理3時間後のXPS(C1s)のスペクトルを示す図である。It is a figure which shows the spectrum of XPS (C1s) 3 hours after mechanochemical processing of the mixed powder of 4 types polymers, such as PVDF, and SiO2. PVDF等4種ポリマーとSiOとの混合粉体のメカノケミカル処理3時間後、SiO(リファレンス)、SiO(原料粉体)のIRスペクトル(1100cm-1付近)を示す図である。It is a figure which shows IR spectrum (near 1100 cm -1 ) of SiO (reference) and SiO 2 (raw material powder) after 3 hours of mechanochemical treatment of a mixed powder of four kinds of polymers such as PVDF and SiO 2 . 本技術における推定される反応メカニズムを示す図である。It is a figure which shows the presumed reaction mechanism in this technique.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明における出発物質は,SiOの微粉末と高分子(ポリマー)の粉末の混合物から成る。SiOの微粉末としては、アモルファスシリカ、結晶シリカ、石英、砂、珪砂、珪石粉、岩石粉末(シラス、抗火石等)、長石、珪灰石等、ケイ酸及び/又はケイ酸塩が含まれる材料全般が利用できる。粉末粒子径は20nm〜100μmが好ましい。ポリマーとしては、ポリオレフィン系、セルロース系、アクリル系、熱可塑性ポリエステル系が好ましく、ポリオレフィンが特に好ましい。ポリオレフィン系粉末は,ポリエチレン(PE),ポリプロピレン(PP),ポリテトラフッ化エチレン(PTFE),ポリフッ化ビニリデン(PVDF)などを含む。ポリオレフィン系粉末の粒子径は100nm〜50μmが好ましい。SiOの微粉末とポリオレフィン系粉末の混合比は質量比で99.9:0.1〜50:50の範囲が好ましく、95:5〜85〜15が特に好ましい。 The starting material in the present invention consists of a mixture of a fine powder of SiO 2 and a polymer powder. Examples of the fine powder of SiO 2 include amorphous silica, crystalline silica, quartz, sand, quartz sand, quartzite powder, rock powder (shirasu, anti-fluorite, etc.), feldspar, wollastonite, etc., silicic acid and / or silicate. All materials are available. The powder particle diameter is preferably 20 nm to 100 μm. As the polymer, polyolefin, cellulose, acrylic, and thermoplastic polyester are preferable, and polyolefin is particularly preferable. The polyolefin-based powder includes polyethylene (PE), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like. The particle diameter of the polyolefin-based powder is preferably 100 nm to 50 μm. The mixing ratio of the fine powder of SiO 2 and the polyolefin-based powder is preferably in the range of 99.9: 0.1 to 50:50, particularly preferably 95: 5 to 85 to 15 by mass ratio.

SiOとポリオレフィン等ポリマーとは,各種ボールミルによって混合されることが好ましい。反応を促進させるには、衝撃、摩擦、圧縮、せん断等の各種力を複合的に作用させることが効果的である。そのための装置としては、ボールミル、振動ミル、遊星ミル、媒体攪拌型ミル等の混合装置、ボール媒体ミル、ローラーミル、乳鉢などがあげられるが、これらに限定されるものではない。 It is preferable that SiO 2 and a polymer such as polyolefin are mixed by various ball mills. In order to promote the reaction, it is effective to apply various forces such as impact, friction, compression, and shear in combination. Examples of the apparatus for this purpose include, but are not limited to, a mixing apparatus such as a ball mill, a vibration mill, a planetary mill, and a medium stirring mill, a ball medium mill, a roller mill, and a mortar.

以下、本発明を実施例に基づいてさらに説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, this invention is not limited to these Examples.

(実施例1)
SiOは日本アエロジル社製(型番:Aerojil200、アモルファスシリカ、一次平均粒子径12nm)を用いた。PVDFはAldrich社製(型番:182702、粒子径5μm)を用いた。またリファレンス試料としてSiO系粉末は大阪チタニウム製(粒子径5μm)を用いた。
Example 1
SiO 2 manufactured by Nippon Aerosil Co., Ltd. (model number: Aerojil200, amorphous silica, primary average particle size 12 nm) was used. PVDF manufactured by Aldrich (model number: 182702, particle size 5 μm) was used. As a reference sample, an SiO-based powder made of Osaka Titanium (particle diameter: 5 μm) was used.

SiO微粉末とPVDFを、重量比90:10として、遊星型ボールミル(Fritsch製、PULVERISETTE5classicline P-5)を用いてメカノケミカル処理を行った。メカノケミカル処理時間は30min、1h、3h、5h、10hとした。 SiO 2 fine powder and PVDF were subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, PULVERISETTE5classicline P-5) at a weight ratio of 90:10. The mechanochemical treatment time was 30 min, 1 h, 3 h, 5 h, and 10 h.

SiOの微粉末の酸化状態、結合状態の評価のため、XPS(ULVAC−PHI社製 PHI5000VersaProve)を使用して測定を行った。Si(2p)、O(1s)の分析をした。X線(単色化したAlKα線、1486.6eV、25W)を直径100μmで試料に照射した。 The oxidation state of the fine powder of SiO 2, for evaluation in binding conditions, was measured using XPS (ULVAC-PHI Inc. PHI5000VersaProve). Si (2p) and O (1s) were analyzed. The sample was irradiated with X-rays (monochromatic AlKα rays, 1486.6 eV, 25 W) with a diameter of 100 μm.

図1にメカノケミカル処理をしていないSiO(原料粉体)とSiO(リファレンス試料)、さらにPVDFとSiOとを混合して3時間のメカノケミカル処理後(以後、「PVDF+SiO2-3h」という)のXPS (Si2p)のスペクトルを示す。 SiOの低エネルギー側のピークはSiO中に含まれるSiのピークであり、高エネルギー側にピークはSiOxのピークである。SiO2とPVDF とをメカノケミカル処理することにより、ピークがSiO2と比べて、結合エネルギーの低い方にシフトする。PVDF+SiO2-3h、SiO2、SiO、以上3種類の試料のピーク位置の比較から、SiOは還元されたと考えられる。 Fig. 1 shows a mixture of SiO 2 (raw powder) and SiO (reference sample) that have not been mechanochemically treated, and then PVDF and SiO 2 mixed together for 3 hours after mechanochemical treatment (hereinafter referred to as “PVDF + SiO2-3h XPS (Si2p) spectrum. The peak on the low energy side of SiO is the Si peak contained in SiO, and the peak on the high energy side is the SiOx peak. By mechanochemical treatment of SiO 2 and PVDF, the peak shifts to a lower binding energy compared to SiO 2 . From the comparison of the peak positions of PVDF + SiO 2 -3h, SiO 2 , SiO, and the above three types of samples, it is considered that SiO 2 was reduced.

図2にSiO(原料粉体)、SiO(リファレンス試料)、PVDF+SiO2-3h のXPS(O1s)スペクトルを示す。 SiO2とPVDF と混合粉体をメカノケミカル処理することによりピークが結合エネルギーの低い方にシフトする。XPS(Si2p)スペクトルと同様にSiO2、SiOとの比較から、メカノケミカル処理によりSiOは還元されたと考えられる。 FIG. 2 shows XPS (O1s) spectra of SiO 2 (raw material powder), SiO (reference sample), and PVDF + SiO 2 -3h. By the mechanochemical treatment of the mixed powder of SiO 2 and PVDF, the peak shifts to the lower binding energy. From the comparison with SiO 2 and SiO as in the XPS (Si 2 p) spectrum, it is considered that SiO 2 was reduced by mechanochemical treatment.

結合状態の評価のため、フーリエ変換赤外分光光度計(FT/IR-6200、Jasco製)を使用して分析を行った.窒素雰囲気下でKBr希釈法により測定した.分解能4.0 cm-1,積算回数128回,バックグラウンド測定にはKBrを用いた. To evaluate the binding state, analysis was performed using a Fourier transform infrared spectrophotometer (FT / IR-6200, manufactured by Jasco). The measurement was performed by the KBr dilution method in a nitrogen atmosphere. The resolution was 4.0 cm -1 , the number of integration was 128 times, and KBr was used for background measurement.

図3にPVDFとSiOの混合粉末の30min、1h、3h、5h、10hでメカノケミカル処理したもの、SiO、SiOのIRスペクトルを示す。PVDFとSiOの混合粉末をメカノケミカル処理したもののピーク位置は、SiOより低波数側へシフトした。SiOに比べて、SiOのXの数が少なくなるほど、Si-O伸縮振動のピークは低波数側にシフトするため、SiOが還元された可能性が示唆された。 FIG. 3 shows IR spectra of PVDF and SiO 2 mixed powders processed for 30 min, 1 h, 3 h, 5 h, and 10 h, SiO 2 and SiO. The peak position of the mechanochemical treatment of the mixed powder of PVDF and SiO 2 was shifted to the lower wave number side than SiO 2 . As the number of X in SiO X decreases as compared with SiO 2 , the peak of Si—O stretching vibration shifts to the lower wavenumber side, suggesting that SiO 2 may be reduced.

合成物に含まれる炭素成分の評価のためレーザーラマン分光光度計(日本分光株式会社製、NRS-3100)を用いてラマンスペクトルを測定した。対物レンズには倍率100倍のレンズ、励起レーザーには波長532.0nmの緑色レーザー光を用い、露光時間5秒、レーザー出力4-6 W、積算回数8回の測定条件で行った。 Raman spectra were measured using a laser Raman spectrophotometer (manufactured by JASCO Corporation, NRS-3100) for evaluation of carbon components contained in the synthesized product. A 100 × magnification lens was used as the objective lens, a green laser beam having a wavelength of 532.0 nm was used as the excitation laser, and the measurement was performed under an exposure time of 5 seconds, a laser output of 4-6 W, and an integration count of 8 times.

図4にPVDF+SiO2-3hのラマンスペクトルを示す。1600cm-1付近に炭素の環状構造に起因するピークがみられる。このことより、PVDF+SiO2-3hは、カーボンでみられるような環状構造になっている部分があると考えられる。 FIG. 4 shows the Raman spectrum of PVDF + SiO2-3h. A peak due to the cyclic structure of carbon is observed in the vicinity of 1600 cm- 1 . From this, it is considered that PVDF + SiO2-3h has a portion having an annular structure as seen in carbon.

構造状態の分析のためにNMR(超伝導固体核磁気共鳴装置、VARIAN INOVA-400plus)にて測定を行った。13Cの分析をした。リファレンスには、PDMS(ポリジメチルシラン)-34.44ppmを使用した。サンプル回転数 を3,000 Hz、積算回数 1,024 回で測定をした。 In order to analyze the structural state, measurement was performed by NMR (superconducting solid state nuclear magnetic resonance apparatus, VARIAN INOVA-400plus). Analysis of 13C was performed. PDMS (polydimethylsilane) -34.44 ppm was used as a reference. Measurements were taken at a sample speed of 3,000 Hz and 1,024 integrations.

図5にPVDF、PVDFのみで3時間メカノケミカル処理したもの、SiO2+PVDF-3hのNMR(13C)のスペクトルを示す。PVDFの原料の40ppm付近のピークはCH2に起因するピークである。120付近のピークはCF2に起因するピークである。PVDF-3hでは、ピークの位置に変化はなかったが、SiO2+PVDF 3hでは、ピークが非常にブロードになった。二重結合をもつsp2 炭素では200ppmほどの幅を持ったブロードなピークが見られることが知られており、SiO2+PVDF-3h は部分的に、sp2結合をもつ炭素のような構造を有しているのではないかと考えられる。 Fig. 5 shows the NMR (13C) spectrum of PVDF, PVDF alone and mechanochemical treatment for 3 hours, SiO 2 + PVDF-3h. The peak around 40 ppm of the PVDF raw material is a peak due to CH 2 . The peak near 120 is a peak due to CF 2 . In PVDF-3h, the position of the peak was not changed, but in SiO 2 + PVDF 3h, the peak was very broad. It is known that a broad peak with a width of about 200 ppm is observed in sp2 carbon with a double bond, and SiO 2 + PVDF-3h has a carbon-like structure with a sp2 bond partially. It is thought that it is doing.

(実施例2)
実施例1との比較実験として、PVDFの代わりのポリマーとして、PTFE、PP、PEを用いて、SiOに対する還元効果をPVDFと比較する。
(Example 2)
As a comparison experiment with Example 1, PTFE, PP, and PE are used as polymers instead of PVDF, and the reduction effect on SiO 2 is compared with PVDF.

実施例1と同じアモルファスシリカ(Aerojil200日本アエロジル社製 一次粒子径12nm)を用い、ポリマーとしてPTFE(関東化学社製、素材研究用、5μm)、PP(セイシン企業社製、PPW-5、5μm)、PE(セイシン企業社製、SK-PE-20L、5μm)を用いた。なお、実施例1と同じ遊星型ボールミル(Fritsch製、PULVERISETTE5classicline P-5)を用いてメカノケミカル処理を行った。メカノケミカル処理時間は30min、1h、3h、5h、10hとした。 Using the same amorphous silica as in Example 1 (Aerojil 200, made by Nippon Aerosil Co., Ltd., primary particle size 12 nm), PTFE (manufactured by Kanto Chemical Co., Ltd., material research, 5 μm), PP (manufactured by Seishin Enterprise Co., Ltd., PPW-5, 5 μm) PE (Seishin Enterprise Co., Ltd., SK-PE-20L, 5 μm) was used. The mechanochemical treatment was performed using the same planetary ball mill as in Example 1 (Fritsch, PULVERISETTE5classicline P-5). The mechanochemical treatment time was 30 min, 1 h, 3 h, 5 h, and 10 h.

図6に各ポリマーとSiOとの混合粉体のメカノケミカル処理3時間後のピークとSiO(リファレンス)、SiO(原料粉体)のXPS(Si2p)のスペクトルを示す。ピーク位置を結合エネルギーの順に並べると、PTFE+SiO2-3hとPVDF+SiO2-3hがほぼ同位置にあり、PE+SiO2-3h、PP+SiO2-3hの順に小さくなっていることがわかる。 FIG. 6 shows the peak after 3 hours of mechanochemical treatment of the mixed powder of each polymer and SiO 2 and the XPS (Si 2 p) spectrum of SiO (reference) and SiO 2 (raw material powder). When the peak positions are arranged in the order of binding energy, PTFE + SiO 2 -3h and PVDF + SiO 2 -3h are almost at the same position, and PE + SiO 2 -3h and PP + SiO 2 -3h are smaller in this order. I understand.

図7に各ポリマーとSiO2のメカノケミカル処理3時間後のピークとSiO(リファレンス)、SiO2(原料粉体)のXPS(O1s)のスペクトルを示す。ピーク位置を結合エネルギー順に並べると、酸化状態はSi2pの時と同じ傾向がみられ、ポリマーごとにPTFE+SiO2-3hとPVDF+SiO2-3hがほぼ同位置にあり、PE+SiO2-3h、PP+SiO2-3hの順になっている。PP+SiO2-3hはSiOのピークとほぼ同位置にまでシフトしている。図6の結果と合わせて考えると、PPが最も還元効果が大きく、PP+SiO2-3h、PE+SiO2-3h、PTFE+SiO2-3h、PVDF+SiO2-3hの順であった。 FIG. 7 shows the XPS (O1s) spectra of each polymer and SiO 2 after 3 hours of mechanochemical treatment and SiO (reference) and SiO 2 (raw material powder). When the peak positions are arranged in the order of binding energy, the oxidation state shows the same tendency as in Si2p, and PTFE + SiO 2 -3h and PVDF + SiO 2 -3h are almost at the same position for each polymer, PE + SiO 2- 3h, PP + SiO 2 -3h. PP + SiO2-3h has shifted to almost the same position as the peak of SiO. Considering together with the result of FIG. 6, PP had the greatest reduction effect, and was in the order of PP + SiO 2 -3h, PE + SiO 2 -3h, PTFE + SiO 2 -3h, PVDF + SiO 2 -3h.

図8に各ポリマーとSiO2のメカノケミカル処理3時間後のピークとSiO(リファレンス)、SiO2(原料粉体)のXPS(C1s)のスペクトルを示す。PP+SiO2-3h、PE+SiO2-3hのピークがPP、PEに比べて高エネルギー側にシフトしている。PE、PP、sp2結合のグラファイト等のピークは同位置にみられることが分かっているが、アモルファスカーボンや水素の付加したアモルファスカーボンではsp3結合の割合が増えるとsp2結合のグラファイトより高エネルギー側にシフトすることが知られている。このことより、高エネルギー側へのシフトはPP+SiO2-3h、PE+SiO2-3hのC同士のsp3結合に起因をしているのではないかと考えられる。 FIG. 8 shows the XPS (C1s) spectrum of each polymer and SiO 2 after 3 hours of mechanochemical treatment and SiO (reference) and SiO 2 (raw material powder). The peaks of PP + SiO2-3h and PE + SiO2-3h are shifted to the higher energy side compared to PP and PE. Peaks of PE, PP, sp2 bonded graphite, etc. are known to be found at the same position, but amorphous carbon or amorphous carbon with hydrogen added increases the sp3 bonded ratio to a higher energy side than sp2 bonded graphite. It is known to shift. This suggests that the shift to the high energy side may be caused by the sp3 bond between C in PP + SiO2-3h and PE + SiO2-3h.

図9に下から各ポリマーとSiO2の後のメカノケミカル処理3時間後、SiO2、SiOのFT-IRスペクトルを示す。PVDF+SiO2-3h、PTFE+SiO2-3h、PE+SiO2-3h、PP+SiO2-3hの順に低波数側にシフトしていることがわかる。PP+SiO2 3hは、SiOのピークとほぼ同位置までシフトしている。SiO2に比べて、SiOxのXの数が少なくなるほど、Si-O伸縮振動のピークは低波数側になるという結果も報告されているため、PPが最も還元効果が大きく、PP+SiO2-3h、PE+SiO2-3h、PTFE+SiO2-3h、PVDF+SiO2-3h の順にSiO2が還元されたと考えられる。 FIG. 9 shows the FT-IR spectra of SiO 2 and SiO 3 hours after the mechanochemical treatment after each polymer and SiO 2 from the bottom. It can be seen that PVDF + SiO 2 -3h, PTFE + SiO 2 -3h, PE + SiO 2 -3h, and PP + SiO 2 -3h are shifted to the lower wavenumber in this order. PP + SiO2 3h is shifted to almost the same position as the peak of SiO. It has also been reported that the smaller the number of X of SiO x compared to SiO 2 , the more the Si-O stretching vibration peak becomes on the lower wave number side, so PP has the largest reduction effect, and PP + SiO 2 -3h It is considered that SiO 2 was reduced in the order of PE + SiO 2 -3h, PTFE + SiO 2 -3h, PVDF + SiO 2 -3h.

以上の結果より、SiO微粉末をポリオレフィン系ポリマーと混合してメカノケミカル処理という簡易な処理をすることにより、SiOが還元処理されることが分かった。図10に本発明の技術における反応メカニズムを示す。すなわち、機械的エネルギーを加えることによって、ポリオレフィン系ポリマーの構造は変化し、C-F結合、C-H結合が切断され、ラジカルが生成したと考えられる。その際、ポリマーの分解反応も起こり、ポリオレフィン系ポリマーの酸化分解反応に必要な酸素の一部をSiOから奪うことで、SiOの還元が起こったと考えられる。その結果、SiOが還元されたSiO系材料のみならず、SiO系材料と炭素材料との複合材料も生成されたと考えられる。 From the above results, it was found that SiO 2 was reduced by mixing SiO 2 fine powder with a polyolefin polymer and performing a simple process called a mechanochemical process. FIG. 10 shows a reaction mechanism in the technique of the present invention. That is, it is considered that by adding mechanical energy, the structure of the polyolefin-based polymer changes, the CF bond and the CH bond are cut, and radicals are generated. At that time, the decomposition reaction of the polymer also occurred, and it is considered that the reduction of SiO 2 occurred by taking a part of oxygen necessary for the oxidative decomposition reaction of the polyolefin polymer from SiO 2 . As a result, it is considered that not only the SiO-based material in which SiO 2 was reduced but also a composite material of the SiO-based material and the carbon material was generated.

本発明の還元処理されたSiO系材料、あるいはSiO系材料と炭素系材料と混合した材料を負極に用いることにより、大容量かつ充放電サイクル特性の優れた二次電池を作製することができる。 By using the reduction-treated SiO-based material of the present invention or a material obtained by mixing a SiO-based material and a carbon-based material for the negative electrode, a secondary battery having a large capacity and excellent charge / discharge cycle characteristics can be produced.

本発明は,リチウムイオン二次電池等の負極材料、あるいはキャパシターの電極に利用することができる。
The present invention can be used for a negative electrode material such as a lithium ion secondary battery or a capacitor electrode.

Claims (3)

SiO微粉体とポリオレフィン粉末を、混合比が質量比で99.9:0.1〜50:50の範囲とした混合粉体混合し粉砕するメカノケミカル処理によって、前記混合粉体は、前記SiO 微紛体がSiO微粉体に至るまで前記SiO 微粉体の酸素の一部が奪われて還元されたものを、さらに含む混合粉体の複合材料の製造方法。 A polyolefin powder SiO 2 fine powder, mixing ratio in a mass ratio 99.9: 0.1 to 50: I to 50 range and the mixed powder, mixed, by the mechanochemical treatment you grinding, the mixed powder method of producing a composite material of the SiO 2 fine powder is what a portion of the oxygen of the SiO 2 fine powder up to the SiO fine powder is reduced deprived, mixed powder further comprises. 前記ポリオレフィン粉末はポリエチレン、ポリプロピレン、ポリテトラフッ化エチレン又はポリフッ化ビニリデンである請求項1に記載の混合粉体の複合材料の製造方法。The method for producing a mixed powder composite material according to claim 1, wherein the polyolefin powder is polyethylene, polypropylene, polytetrafluoroethylene, or polyvinylidene fluoride. 前記メカノケミカル処理は30分〜10時間で行われる請求項1又は2に記載の混合粉体の複合材料の製造方法。The method for producing a composite material of mixed powder according to claim 1 or 2, wherein the mechanochemical treatment is performed in 30 minutes to 10 hours.
JP2014115330A 2014-06-04 2014-06-04 Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material Active JP6372850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115330A JP6372850B2 (en) 2014-06-04 2014-06-04 Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115330A JP6372850B2 (en) 2014-06-04 2014-06-04 Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material

Publications (2)

Publication Number Publication Date
JP2015229605A JP2015229605A (en) 2015-12-21
JP6372850B2 true JP6372850B2 (en) 2018-08-15

Family

ID=54886592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115330A Active JP6372850B2 (en) 2014-06-04 2014-06-04 Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material

Country Status (1)

Country Link
JP (1) JP6372850B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093356A1 (en) * 2014-12-12 2016-06-16 ダイキン工業株式会社 Polytetrafluoroethylene composition
JP6811478B2 (en) * 2017-02-01 2021-01-13 国立大学法人 名古屋工業大学 Silica / graphite unfired solidified body and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694369B2 (en) * 1989-05-24 1994-11-24 日本化学工業株式会社 Modified fused spherical silica and method for producing the same
JPH1012217A (en) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd Negative electrode for lithium ion secondary battery
JP2000243396A (en) * 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2003012311A (en) * 2001-06-29 2003-01-15 Kawasaki Steel Corp Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP5058494B2 (en) * 2006-02-15 2012-10-24 株式会社クラレ Composite, method for producing the same, and electrode material for power storage device
JP5362614B2 (en) * 2010-02-16 2013-12-11 日清エンジニアリング株式会社 Method for producing silicon monoxide fine particles and silicon monoxide fine particles
JP5516529B2 (en) * 2011-07-29 2014-06-11 住友ベークライト株式会社 The manufacturing method of the carbon material for lithium ion secondary batteries, the carbon material for lithium ion secondary batteries, the negative mix for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.

Also Published As

Publication number Publication date
JP2015229605A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
Nan et al. Recent advances in plasma modification of 2D transition metal dichalcogenides
Shi et al. Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method
Sun et al. New solvent-stabilized few-layer black phosphorus for antibacterial applications
US20140037531A1 (en) Method for preparing graphene
Elashmawi et al. The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles
US20130302693A1 (en) Graphene powder, production method thereof, and electrochemical device comprising same
Liu et al. Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene
JP6372850B2 (en) Method for producing SiO-based material using SiO2 and polymer as raw materials, and composite material of SiO-based material and carbon material
KR20150124636A (en) Preparation method for edge-functionalized graphite via mechanic-chemical process using low grade graphite and the graphine nano-plate manufactured thereby
Wang et al. Improving dielectric properties of poly (vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene
US20160204425A1 (en) Facile Preparation Method of Silicon Materials for LI-Ion and Solar Cell Application
Yao et al. Will a graphitic-like ZnO single-layer be an ideal substrate for graphene?
Kim et al. Organic-inorganic hybrid thermoelectric material synthesis and properties
Shu et al. Electronic and optical properties of Janus Ga 2 STe bilayer: a promising candidate for excitonic solar cell
Behzad et al. Engineering the light absorption spectrum and electronic properties of black and blue phases of a SiSe monolayer via biaxial straining
Zhu et al. First-principles prediction of ferroelectric Janus Si 2 XY (X/Y= S/Se/Te, X≠ Y) monolayers with negative Poisson's ratios
Kaneda et al. Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides
Li et al. HfSe2 monolayer stability tuning by strain and charge doping
TWI548448B (en) Method for preparing two-dimensional material
CN104098093A (en) Method for preparing fluorinated graphene based on gama ray irradiation
Meng et al. Hierarchical self‐assembly of black phosphorus quantum dots with quantum confinement effects to a centimeter‐scale membrane
JP2017016863A (en) Manufacturing method of sulfide solid electrolyte
Yu et al. Theoretical design of sandwich two-dimensional structures for photocatalysts and nano-optoelectronic devices
Shu et al. Enhanced stability and tunable optoelectronic properties of silicon–carbon monolayers by strain and surface functionalization
Saidin et al. Direct exfoliation of graphite and its Raman spectroscopic study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6372850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150