JP6371997B2 - Calculation method of renal cortex volume - Google Patents

Calculation method of renal cortex volume Download PDF

Info

Publication number
JP6371997B2
JP6371997B2 JP2014141537A JP2014141537A JP6371997B2 JP 6371997 B2 JP6371997 B2 JP 6371997B2 JP 2014141537 A JP2014141537 A JP 2014141537A JP 2014141537 A JP2014141537 A JP 2014141537A JP 6371997 B2 JP6371997 B2 JP 6371997B2
Authority
JP
Japan
Prior art keywords
renal cortex
renal
volume
cortex volume
egfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014141537A
Other languages
Japanese (ja)
Other versions
JP2016016170A (en
Inventor
俊之 今澤
俊之 今澤
博夫 池平
博夫 池平
毅 中里
毅 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2014141537A priority Critical patent/JP6371997B2/en
Publication of JP2016016170A publication Critical patent/JP2016016170A/en
Application granted granted Critical
Publication of JP6371997B2 publication Critical patent/JP6371997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、腎皮質体積の算定方法に関する。   The present invention relates to a method for calculating a renal cortex volume.

糸球体は、腎臓のネフロンでボーマン嚢に囲まれた毛細血管の塊であり、糸球体数は腎予後・高血圧発症リスクと相関する。非特許文献1、2には、低糸球体数がCKD予後悪化因子であることが記載されている。   A glomerulus is a mass of capillaries surrounded by a Bowman's sac with nephrons of the kidney, and the number of glomeruli correlates with the renal prognosis and the risk of developing hypertension. Non-Patent Documents 1 and 2 describe that the number of low glomeruli is a CKD prognostic deterioration factor.

腎皮質体積はこの糸球体数の重要な決定要因である。即ち、腎皮質体積を知ることは、患者の高血圧発症リスクや腎予後を推定するに当たり極めて有用である。   Renal cortex volume is an important determinant of this glomerular number. That is, knowing the renal cortex volume is extremely useful in estimating the risk of developing hypertension and the renal prognosis of the patient.

核磁気共鳴装置(MRI)を使用することで腎皮質体積を測定することが可能である。しかしながら、保険診療上のコストの問題や、撮影時間の長さ(40-50分)あるいはその計測方法(スライス毎に画像上の皮質部分を手動で囲う等)の煩雑さ、体内金属のある患者では禁忌であること等から、一般の日常診療で腎皮質体積を測定するためにMRIを使用することは困難である。   It is possible to measure renal cortex volume by using a nuclear magnetic resonance apparatus (MRI). However, the cost of insurance medical care, the length of imaging time (40-50 minutes) or the measurement method (such as manually surrounding the cortical area on the image for each slice), patients with metal in the body Therefore, it is difficult to use MRI to measure renal cortex volume in general daily medical care because of contraindications.

腎臓超音波検査で腎臓の長径、短径、厚径を測定し、腎臓の形態につき楕円を想定して腎皮質体積を概算することも可能である。しかしながら、ソラマメ型の腎臓の正確な体積は、単純な楕円を想定した体積計算では正確には評価できない。   It is also possible to measure the major, minor, and thick diameters of the kidney by renal ultrasonography, and to estimate the renal cortex volume assuming an ellipse for the kidney morphology. However, the exact volume of the broad bean kidney cannot be accurately evaluated by volume calculation assuming a simple ellipse.

非特許文献3には、CT検査を利用した腎皮質の体積と分腎機能との関係性が記載されている。しかしながら、この手法では腎皮質体積が正確に算定されておらず、更に造影剤を用いたCT検査であるため腎機能障害のある人には施行できない。   Non-Patent Document 3 describes the relationship between the volume of the renal cortex and CT function using CT examination. However, this method does not accurately calculate the renal cortex volume, and since it is a CT examination using a contrast medium, it cannot be performed for people with renal impairment.

Vikse BE. J Am Soc Nephrol 2008年Vikse BE. J Am Soc Nephrol 2008 Luyckx VA. Kidney Int 2005. Lackland DT Arch Intern Med 2000年Luyckx VA. Kidney Int 2005. Lackland DT Arch Intern Med 2000 Relationship between Renal Cortex Thickness or Volume and Split Renal Function : Study with CT Measurement, WANG Yunhua (Dep. of Radiology,the 2nd Xiangya Hospital of Central South Univ., Hunan, Changsha)、LIU Ruihong、HOU Weiwei, Linchuang Fangshexue Zazhi 巻:29号:2ページ:267-270, 2010年Relationship between Renal Cortex Thickness or Volume and Split Renal Function: Study with CT Measurement, WANG Yunhua (Dep. Of Radiology, the 2nd Xiangya Hospital of Central South Univ., Hunan, Changsha), LIU Ruihong, HOU Weiwei, Linchuang Fangshexue Zazhi : 29: 2 pages: 267-270, 2010

本発明はかかる問題点に鑑みてなされたものであって、簡易且つ正確な腎皮質体積の算定方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a simple and accurate method for calculating a renal cortex volume.

本発明にかかる腎皮質体積の算定方法は、下記式(1)を用いる。   The calculation method of the renal cortex volume according to the present invention uses the following formula (1).

Figure 0006371997
Figure 0006371997

ここで、RCVは腎皮質体積であり、USLLは超音波測定腎長軸長径であり、USLSは超音波測定腎長軸短径であり、eGFRは推定糸球体濾過量であり、WTは体重である。また、K1は0.180〜0.210であり、xは1.070〜1.140であり、yは0.500〜0.520であり、zは0.200〜0.210であり、wは0.470〜0.490である。 Where RCV is the renal cortex volume, USLL is the ultrasound major axis long axis, USLS is the ultrasound major kidney major axis, eGFR is the estimated glomerular filtration rate, WT is the body weight is there. K 1 is 0.180 to 0.210, x is 1.070 to 1.140, y is 0.500 to 0.520, z is 0.200 to 0.210, and w is 0.470 to 0.490.

本発明によれば、簡易且つ正確に腎皮質体積を算定することができる。   According to the present invention, the renal cortex volume can be calculated easily and accurately.

以下、本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。   Hereinafter, embodiments of the present invention will be specifically described. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is not limited to the following embodiments. In addition, other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

本発明者は、容易に取得できる臨床情報を説明変数として用い、最終的に重回帰分析で予測式を作成することとした。   The present inventor used clinical information that can be easily acquired as an explanatory variable, and finally created a prediction formula by multiple regression analysis.

説明変数の候補は、腎皮質体積に関わると推測される下記に示す変数から選択した。即ち、1.長径、2.短径、3.厚径、4.身長、5.体重、6.BMI、7.腎機能(推定GFR: eGFR)、8.糖尿病有無(DM)、9.高血圧有無、10.年齢、11.性別(sex)、12.低出生体重であったか否か(BirthW)、13.出生週齢数 (Week)、14.腎疾患の家族歴有無(CKD)である。   The explanatory variable candidates were selected from the variables shown below, which are assumed to be related to the renal cortex volume. That is: Long diameter, 2. Minor axis, 3. Thickness, 4 Height, 5. Weight, 6; BMI, 7. Renal function (Estimated GFR: eGFR), 8. 8. Diabetes (DM), 9. Presence or absence of hypertension, 10. Age, 11. Sex, 12. Whether it was low birth weight (BirthW); 13. Birth age (Week), 14. Family history of kidney disease (CKD).

被説明変数はMRIによる腎皮質体積とした。即ち、科学的に推算式の正確性を評価する必要性があることから、統計学上100以上の患者を対象とした臨床研究を行う必要があり、倫理委員会等の諸手続を経て、また患者へのインフォームドコンセントを得た上で、MRIで測定した247個の腎臓のデータを用いて腎皮質体積を計算し、被説明変数とした。   The explained variable was the renal cortex volume by MRI. In other words, since it is necessary to scientifically evaluate the accuracy of the estimation formula, it is necessary to conduct clinical research on more than 100 patients in statistics, and after various procedures such as the Ethics Committee, After obtaining informed consent to the patient, the renal cortex volume was calculated using the data of 247 kidneys measured by MRI and used as the explained variable.

腎皮質体積の算定式を考察するにあたり、下記を方針とした。
(1)各変数について腎皮質体積との相関を評価し(単回帰)、糖尿病有無等2群についてはそれぞれの腎皮質体積をt検定で評価し、正規分布であることを確認する。
(2)統計的に有意な変数をステップワイズで選択する。
(3)相関係数が高いことが望まれるが、説明変数の数を多くしない(最終5個程度)。
(4)多重共線性(説明変数の中に相関関係が強いものが含まれている場合に発生する予測精度の低下)を防ぐためVIF<5、可能ならVIF<3を理想とする。
(5)臨床的に評価、計測が容易な指標とする(手間を要するものは指標としては省く)。
In considering the calculation formula of renal cortex volume, the following policy was adopted.
(1) The correlation with the renal cortex volume is evaluated for each variable (single regression), and for each of the 2 groups such as the presence or absence of diabetes, the respective renal cortex volume is evaluated by t-test to confirm that it is a normal distribution.
(2) Select statistically significant variables stepwise.
(3) Although it is desired that the correlation coefficient is high, the number of explanatory variables is not increased (the last is about 5).
(4) In order to prevent multicollinearity (decrease in prediction accuracy that occurs when explanatory variables include highly correlated ones), VIF <5, and if possible VIF <3, are ideal.
(5) Use indices that are easy to evaluate and measure clinically (those that require labor are omitted as indices).

その結果、MRI測定による腎皮質体積との相関を各説明変数で評価(単回帰)したところ、有意に相関するものとして下記変数を見いだした。即ち、1.年齢、2.腎臓超音波測定値(長径、短径、厚径)3.腎機能(eGFR)、4.身長、5.体重、6.BMIが選択された。高血圧有無や性別、出生週齢数、出生体重、腎疾患の家族歴には有意差はなく重回帰分析には用いないこととした。   As a result, when the correlation with renal cortex volume by MRI measurement was evaluated with each explanatory variable (single regression), the following variables were found to be significantly correlated. That is: Age, 2. 2. Renal ultrasound measurement values (long diameter, short diameter, thick diameter) 3. Renal function (eGFR) Height, 5. Weight, 6; BMI was selected. There was no significant difference in the presence or absence of hypertension, sex, birth age, birth weight, or family history of kidney disease, and it was decided not to use for multiple regression analysis.

腎臓超音波測定値において厚径は、重回帰分析から除外した。Kolmogorov-Smirnov の正規性の検定で、超音波測定腎厚径は正規分布しているとはいえないことが示され、検査誤差も大きいことが想定されたからである。また日常診療でも厚径は測定されている機会が少ないからである。   Thick diameter was excluded from multiple regression analysis in renal ultrasound measurements. This is because the Kolmogorov-Smirnov normality test showed that the ultrasonically measured kidney thickness was not normally distributed, and it was assumed that the inspection error was also large. This is also because there are few opportunities to measure the thickness in daily medical care.

またP=0.053と有意差はなかったものの、糖尿病があると皮質が大きい傾向があるという結果が得られ、これは臨床的にも合目性があり、P値も0.05に近いため、説明変数の候補として、被験者の糖尿病罹患の有無を重回帰分析に用いることとした。   Although there was no significant difference with P = 0.053, there was a tendency that cortex tends to be large when there is diabetes, which is clinically conspicuous and P value is close to 0.05, so the explanatory variable As candidates, the presence or absence of diabetes in the subject was used for multiple regression analysis.

よって、1.長径(USLL)、2.短径(USLS)、3.身長(height)、4.体重(weight)、5.BMI、6.腎機能(推定GFR: eGFR)、7.糖尿病有無(DM)、8.年齢(y)を重回帰分析に用いることとした。   Therefore, 1. Long diameter (USLL), 2. Minor axis (USLS), 3. Height, 4. Weight, 5. BMI, 6. Renal function (estimated GFR: eGFR), 7. Diabetes (DM) and 8. Age (y) were used for multiple regression analysis.

腎皮質体積は長径、短径の和よりも積に相関すると考えるほうが感覚的に合致する。また、糖尿病等の要因があると腎皮質体積に関わらず一定の増加をすると考察するよりも、腎皮質体積の一定の率で増加すると考察するのが妥当である。また、被説明変数c(腎皮質体積)の度数分布をみると、最頻値が小さい値に歪んでいる。以上から、腎皮質体積の算定式モデルとして指数関数、対数変換するのが妥当と考えられた。   It is more perceptually agreed that the renal cortex volume is more correlated with the product than the sum of the major and minor axes. In addition, it is appropriate to consider that there is a constant increase in the renal cortical volume rather than a constant increase regardless of the renal cortical volume if there is a factor such as diabetes. In addition, when looking at the frequency distribution of the explained variable c (renal cortex volume), the mode value is distorted to a small value. From the above, it is considered appropriate to perform exponential function and logarithmic transformation as a calculation formula model of renal cortex volume.

以下に、対数モデルを作成した重回帰分析の結果を示す。   The results of multiple regression analysis that created a logarithmic model are shown below.

Figure 0006371997
Figure 0006371997

Figure 0006371997
Figure 0006371997

上記表2において、モデル6はVIF>3であり多重共線性があると判断し、モデル5を採用した。また、身長、BMI、年齢は重回帰分析で棄却され、説明変数として採用されなかった。   In Table 2 above, Model 6 was determined to have VIF> 3 and multicollinearity, and Model 5 was adopted. Height, BMI, and age were rejected by multiple regression analysis and were not adopted as explanatory variables.

対数式では下記式が得られた。   In the logarithmic formula, the following formula was obtained.

Figure 0006371997
Figure 0006371997

ここで、RCVは腎皮質体積であり、USLLは超音波測定腎長軸長径であり、USLSは超音波測定腎長軸短径であり、eGFRは推定糸球体濾過量であり、WTは体重である(体積(cm3)、径(cm)、体重(kg)、推定糸球体濾過量(ml/min/1.73m2))。 Where RCV is the renal cortex volume, USLL is the ultrasound major axis long axis, USLS is the ultrasound major kidney major axis, eGFR is the estimated glomerular filtration rate, WT is the body weight (Volume (cm 3 ), diameter (cm), body weight (kg), estimated glomerular filtration rate (ml / min / 1.73 m 2 )).

ここから、上記式を展開し、そして、腎皮質体積との相関を喪失しない範囲で各説明変数の係数に幅を持たせた式を下記に示す。   From here, the above formula is developed, and the formula in which the coefficient of each explanatory variable is given a range within the range where the correlation with the renal cortex volume is not lost is shown below.

Figure 0006371997
Figure 0006371997

ここでK1は0.180〜0.210であり、xは1.070〜1.140であり、yは0.500〜0.520であり、zは0.200〜0.210であり、wは0.470〜0.490である。 Where K 1 is a 0.180-.210, x is 1.070-1.140, y is from .500 to .520, z is from 0.200 to 0.210, w is from 0.470 to 0.490.

好ましくは下記に示す式を使用する。   Preferably, the following formula is used.

Figure 0006371997
Figure 0006371997

また、被験者が糖尿病に罹患している場合、下記式を用いる。   Moreover, when a test subject suffers from diabetes, the following formula is used.

Figure 0006371997
Figure 0006371997

ここでK2は1.070〜1.090である。 Here K 2 is 1.070 to 1.090.

好ましくは下記に示す式を使用する。   Preferably, the following formula is used.

Figure 0006371997
Figure 0006371997

本発明において、日常診療で簡易に測定できる超音波で測定した腎臓の径(USLL,USLS)と血清クレアチニンの測定で得られるeGFR値と、体重WT、そして糖尿病の有無の情報があれば、腎皮質体積RCVがわかるという非常に便宜性の高い式が得られる。   In the present invention, if there is eGFR value obtained by measurement of the kidney diameter (USLL, USLS) and serum creatinine measured by ultrasound which can be easily measured in daily medical care, body weight WT, and information on the presence or absence of diabetes, A very convenient formula is obtained in which the cortical volume RCV is known.

本発明において説明変数をみると、エコーで測定した径(USLL,USLS)が大きいほど腎皮質体積RCVは大きく、その時点での腎機能が良い程腎皮質体積RCVは大きく、体重WTが大きい程腎皮質体積RCVは増えるということも示しており、理論上も正しい式といえる。   Looking at the explanatory variables in the present invention, the larger the diameter (USLL, USLS) measured by echo, the larger the renal cortical volume RCV, the better the renal function at that time, the larger the renal cortical volume RCV, and the larger the body weight WT, It also shows that the renal cortex volume RCV increases, which is theoretically correct.

さらに糖尿病がある際には腎サイズが大きくなることも過去報告されているが、本計算式でも糖尿病がある場合には腎皮質サイズが8.5%増すという結果が統計学的解析により導き出されており、この点においても理論上正しいといえる。また、表1に示されているように、相関係数R2が0.71であり非常に精度の高い式といえる。 In addition, it has been reported in the past that the kidney size increases when there is diabetes, but in this calculation formula, the result of statistical analysis has shown that the renal cortex size increases by 8.5% when there is diabetes. This point is also correct in theory. Further, as shown in Table 1, the correlation coefficient R 2 is 0.71, which can be said to be a highly accurate expression.

(1)交差検定
上記の式(3)につき、一つ抜き交差確認法(leave-one-out cross-validation;LOOCV)を行った。その結果、30%より小さな誤差で推定できる率が92.3%と高く、50%より大きな誤差がでてしまう可能性は1.6%と非常に低いことが判明した。これにより優れた式であることが確認された。
(1) Cross-validation With respect to the above formula (3), a single cross-validation method (leave-one-out cross-validation; LOOCV) was performed. As a result, it was found that the rate that can be estimated with an error smaller than 30% is as high as 92.3%, and the possibility of an error larger than 50% is very low as 1.6%. This confirmed that the formula was excellent.

(2)推算腎皮質体積の平均値±標準偏差
上記の式(3)につき、糸球体濾過量ごとの推算腎皮質体積の平均値±標準偏差を試算した。その結果、以下のように試算された。
eGFR>100ml/min/1.73m2の時、腎皮質体積RCVは108.3±19.7cm3
eGFR=60-100ml/min/1.73m2の時、腎皮質体積RCVは104.4±23.6cm3
eGFR=30-60ml/min/1.73m2の時、腎皮質体積RCVは93.8±25.5cm3
eGFR<30ml/min/1.73m2の時、腎皮質体積RCVは69.3±14.2cm3
これにより、実際の利用実例として、例えば、平均値-標準偏差よりも腎皮質体積RCVが小さい場合は、以下のように異常値を設定して危険因子と考えることが可能である。
eGFR>100ml/min/1.73m2の時、異常値は88.6cm3以下
eGFR=60-100ml/min/1.73m2の時、異常値は80.8cm3以下
eGFR=30-60ml/min/1.73m2の時、異常値は68.3cm3以下
eGFR<30ml/min/1.73m2の時、異常値は55.1cm3以下
(3)測定例
(3−1)31歳男性
eGFR74.0ml/min/1.73m2で腎皮質体積RCV79.7cm3:蛋白尿はない。血尿があり本人の希望で腎生検をしたが正常所見であった。すなわち既知の腎機能障害進行の所見はなく、唯一腎皮質体積が小さいのみである。にもかかわらず3年間の糸球体濾過量の推移を見ると、87ml/min、80.1ml/min、74.0ml/minと腎機能が低下していた。このことは腎皮質体積RCVでの計測値が小さいという所見が重要であることを示す。
(2) Mean value ± standard deviation of estimated renal cortex volume The average value ± standard deviation of estimated renal cortex volume for each glomerular filtration rate was estimated for the above formula (3). As a result, the following calculation was made.
eGFR> time of 100ml / min / 1.73m 2, the renal cortex volume RCV is 108.3 ± 19.7cm 3
When eGFR = 60-100ml / min / 1.73m 2 , the renal cortex volume RCV is 104.4 ± 23.6 cm 3
When eGFR = 30-60ml / min / 1.73m 2 , the renal cortex volume RCV is 93.8 ± 25.5cm 3
eGFR <When 30ml / min / 1.73m 2, the renal cortex volume RCV is 69.3 ± 14.2cm 3
Thus, as an actual usage example, for example, when the renal cortex volume RCV is smaller than the average value-standard deviation, an abnormal value can be set as follows and considered as a risk factor.
eGFR> time of 100ml / min / 1.73m 2, outliers 88.6cm 3 below
When eGFR = 60-100ml / min / 1.73m 2 , outliers 80.8Cm 3 or less
When eGFR = 30-60ml / min / 1.73m 2 , outliers 68.3Cm 3 or less
When eGFR <30ml / min / 1.73m 2 , the abnormal value is 55.1cm 3 or less (3) Measurement example (3-1) 31-year-old male
eGFR74.0ml / min / 1.73m 2 in the renal cortex volume RCV79.7cm 3: proteinuria not. He had hematuria, and a renal biopsy was performed at his request. That is, there is no known finding of progression of renal dysfunction, and only the renal cortex volume is small. Nevertheless, looking at the changes in the glomerular filtration rate over 3 years, the renal function decreased to 87 ml / min, 80.1 ml / min, and 74.0 ml / min. This indicates that the observation that the measured value in the renal cortex volume RCV is small is important.

(3−2)18歳女性
eGFR103.6ml/min/1.73m2で腎皮質体積RCV79.3cm3。腎生検でIgA腎症であった。しかし活動性は強くなく障害度も軽度であった。治療はステロイド等で行い2年が経過している。腎生検所見からは蛋白尿は著明に軽減するのが通例であるが、未だに尿蛋白が1.6g/gCreと非常に多い状態が続いている。本例で通常と違っていたのは腎皮質体積が小さいと言うことだけであり、腎皮質体積が小さいことが治療抵抗性を示す要因になったものと考えられる。
(3-2) 18-year-old woman
eGFR 103.6 ml / min / 1.73 m 2 and renal cortex volume RCV 79.3 cm 3 . A renal biopsy revealed IgA nephropathy. However, the activity was not strong and the disability was mild. Two years have passed since treatment was done with steroids. From the renal biopsy findings, proteinuria is usually remarkably reduced, but the urinary protein is still very high at 1.6g / gCre. The only difference from the usual in this example is that the renal cortex volume is small, and it is considered that the small renal cortex volume is a factor that indicates treatment resistance.

(3−3)30歳女性
eGFR48.2ml/min/1.73m2で腎皮質体積RCV67.7cm3。腎生検でIgA腎症であった。ステロイド等を含む積極的な治療を行っているが、5年が経過した現在においても未だに1.2g/gCreと治療困難症例となっている。
(3-3) 30-year-old woman
renal cortex volume RCV67.7cm 3 in eGFR48.2ml / min / 1.73m 2. A renal biopsy revealed IgA nephropathy. Although active treatment including steroids has been carried out, it is still difficult to treat with 1.2 g / gCre even after 5 years.

(3−4)60歳女性
eGFR50.9ml/min/1.73m2で腎皮質体積RCV 61.9cm3。腎生検の所見での異常は糸球体肥大のみであった。これは通常、肥満腎症の所見であるが、本人はむしろ痩せ型であり、腎皮質体積が小さいことで肥満腎症と同等の変化を来したと考えられる。50.9ml/min/1.73m2であったeGFRは3年後、38.7ml/min/1.73m2と急速に腎障害が進行していた。
(3-4) 60-year-old woman
eGFR50.9ml / min / 1.73m 2 in the renal cortex volume RCV 61.9cm 3. The only abnormality in renal biopsy findings was glomerular hypertrophy. This is usually a finding of obesity nephropathy, but the person is rather lean and is thought to have undergone changes equivalent to obesity nephropathy due to a small renal cortex volume. 50.9ml / min / 1.73m after 2 a was the eGFR 3 years, rapid renal failure and 38.7ml / min / 1.73m 2 was in progress.

(3−5)26歳女性
eGFR47.8ml/min/1.73m2で推算腎皮質体積67.6cm3。16歳から高血圧となり、20歳初診時には血圧163/108であった。高血圧を呈する内分泌系疾患につき精査を行ったがなし。腎皮質が小さく糸球体数が少ないことが高血圧の危険を高めたと考える。降圧剤(アンギオテンシン受容体拮抗薬)の効果が極めて高く、本剤中止により血圧は上がり高度の蛋白尿を呈する。またカルシウム拮抗薬や中枢性交感神経抑制薬といった降圧剤は全く効果がない。腎皮質が小さい場合、レニン・アンギオテンシン系阻害薬が適している可能性を示す。
(3-5) 26-year-old woman
eGFR47.8ml / min / 1.73m 2 in the estimated renal cortex volume 67.6cm 3. He became hypertensive at age 16 and had a blood pressure of 163/108 at the first visit of age 20. There was no detailed examination of endocrine diseases with high blood pressure. The small renal cortex and the low number of glomeruli are considered to have increased the risk of hypertension. Antihypertensive agents (angiotensin receptor antagonists) are extremely effective, and withdrawal of this drug raises blood pressure and presents a high degree of proteinuria. Antihypertensive drugs such as calcium antagonists and central sympathetic nerve inhibitors have no effect. When the renal cortex is small, the renin-angiotensin system inhibitor may be suitable.

腎予後の推定に利用でき、また降圧剤の選択にも利用できる。   It can be used to estimate renal prognosis, and can also be used to select antihypertensive agents.

Claims (4)

下記式(1)を用いる、被験者の腎皮質体積の算定方法。
Figure 0006371997
ここで、RCVは腎皮質体積であり、USLLは超音波測定腎長軸長径であり、USLSは超音波測定腎長軸短径であり、eGFRは推定糸球体濾過量であり、WTは体重である。また、K1は0.180〜0.210であり、xは1.070〜1.140であり、yは0.500〜0.520であり、zは0.200〜0.210であり、wは0.470〜0.490である。
A method for calculating the renal cortex volume of a subject using the following formula (1).
Figure 0006371997
Where RCV is the renal cortex volume, USLL is the ultrasound major axis long axis, USLS is the ultrasound major kidney major axis, eGFR is the estimated glomerular filtration rate, WT is the body weight is there. K 1 is 0.180 to 0.210, x is 1.070 to 1.140, y is 0.500 to 0.520, z is 0.200 to 0.210, and w is 0.470 to 0.490.
K1は0.187であり、xは1.131であり、yは0.509であり、zは0.201であり、wは0.480であり、下記式(3)を用いる請求項1記載の腎皮質体積の算定方法。
Figure 0006371997
K 1 is 0.187, x is 1.131, y is 0.509, z is 0.201, w is 0.480, the calculation method of the renal cortex volume according to claim 1, wherein using the following equation (3).
Figure 0006371997
前記被験者が糖尿病に罹患している場合、下記式(4)を用いる請求項1記載の腎皮質体積の算定方法。
Figure 0006371997
ここでK2は1.070〜1.090である。
The calculation method of the renal cortex volume according to claim 1, wherein the following formula (4) is used when the subject suffers from diabetes.
Figure 0006371997
Here K 2 is 1.070 to 1.090.
K1は0.187であり、xは1.131であり、yは0.509であり、zは0.201であり、wは0.480であり、K2は1.085であり、下記式(5)を用いる請求項3記載の腎皮質体積の算定方法。
Figure 0006371997
4. K 1 is 0.187, x is 1.131, y is 0.509, z is 0.201, w is 0.480, K 2 is 1.085, and the following formula (5) is used. Calculation method of renal cortex volume.
Figure 0006371997
JP2014141537A 2014-07-09 2014-07-09 Calculation method of renal cortex volume Expired - Fee Related JP6371997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141537A JP6371997B2 (en) 2014-07-09 2014-07-09 Calculation method of renal cortex volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141537A JP6371997B2 (en) 2014-07-09 2014-07-09 Calculation method of renal cortex volume

Publications (2)

Publication Number Publication Date
JP2016016170A JP2016016170A (en) 2016-02-01
JP6371997B2 true JP6371997B2 (en) 2018-08-15

Family

ID=55231901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141537A Expired - Fee Related JP6371997B2 (en) 2014-07-09 2014-07-09 Calculation method of renal cortex volume

Country Status (1)

Country Link
JP (1) JP6371997B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765908A4 (en) * 2011-10-10 2015-10-07 Univ Wake Forest Health Sciences Automated renal evaluation systems and methods using mri image data

Also Published As

Publication number Publication date
JP2016016170A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
Furtner et al. Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: translational imaging analysis of the EORTC 26101 trial
Panditharatna et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy
Staudacher et al. Use of endotypes, phenotypes, and inflammatory markers to guide treatment decisions in chronic rhinosinusitis
Furtner et al. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases
Nelson et al. Calvarium thinning in patients with spontaneous cerebrospinal fluid leak
George et al. Biopsychosocial influence on shoulder pain: risk subgroups translated across preclinical and clinical prospective cohorts
JP7336442B2 (en) Preoperative risk stratification based on PDE4D7 expression and preoperative clinical variables
Castro et al. Ventriculoperitoneal shunting for glioblastoma: risk factors, indications, and efficacy
Dos Santos et al. Lipodystrophy diagnosis in people living with HIV/AIDS: prediction and validation of sex-specific anthropometric models
Mitobe et al. Clinical effects of calcium channel blockers and renin-angiotensin-aldosterone system inhibitors on changes in the estimated glomerular filtration rate in patients with polycystic kidney disease
KR20170062478A (en) Method for predicting depression treatment drug alternatives
WO2021127065A1 (en) Method of measuring cell-free dna in surgical drain fluid to select adjuvant therapy
Hunter et al. Tumor progression following petroclival meningioma subtotal resection: a volumetric study
Lattouf et al. Structured assessment and followup for patients with hereditary kidney tumour syndromes
EP2492691A1 (en) Method of predicting the evolution of a patient suffering of a neurovascular disease
JP6371997B2 (en) Calculation method of renal cortex volume
Rangaraju et al. P14. 19 Preclinical and clinical efficacy of entrectinib in primary and metastatic brain tumors harboring NTRK, ROS1, or ALK gene fusions
Oleszowsky et al. Synovial inflammation analyzed by 3-T magnetic resonance imaging in etanercept-treated patients with rheumatoid arthritis indicates persistent disease activity despite of clinical remission: A pilot study
JP2016080672A (en) Detection method of malignant lymphoma
Jandaghi et al. Evaluation of hemodynamic properties of cerebral venous drainage in patients with multiple sclerosis: a case-control study
Palma-Sanchez et al. AB1473-HPR Quality of referral letters received in rheumatology
Öhman Visualizing congestion with ultrasound: diagnostic and therapeutic implications
Ivanova et al. Comparative characteristics of patients with non-radiographic axial spondyloarthritis and ankylosing spondylitis
Krajick et al. Postoperative Opioids After Laparoscopic Hysterectomy With Transversus Abdominis Plane Block [2D]
Dabilgou et al. Epidemiology and clinical characteristics of lacunar ischemic stroke in Burkina Faso

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

LAPS Cancellation because of no payment of annual fees
R150 Certificate of patent or registration of utility model

Ref document number: 6371997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 6371997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees