JP6371051B2 - Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element - Google Patents

Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element Download PDF

Info

Publication number
JP6371051B2
JP6371051B2 JP2013228628A JP2013228628A JP6371051B2 JP 6371051 B2 JP6371051 B2 JP 6371051B2 JP 2013228628 A JP2013228628 A JP 2013228628A JP 2013228628 A JP2013228628 A JP 2013228628A JP 6371051 B2 JP6371051 B2 JP 6371051B2
Authority
JP
Japan
Prior art keywords
group
atom
optionally substituted
photoelectric conversion
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013228628A
Other languages
Japanese (ja)
Other versions
JP2014111742A (en
Inventor
峰樹 長谷川
峰樹 長谷川
亮 谷内
亮 谷内
矢野 亨
亨 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2013228628A priority Critical patent/JP6371051B2/en
Publication of JP2014111742A publication Critical patent/JP2014111742A/en
Application granted granted Critical
Publication of JP6371051B2 publication Critical patent/JP6371051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、特定の構造を有する新規なp型有機半導体材料並びにこれを用いた光電変換材料及び光電変換素子に関する。   The present invention relates to a novel p-type organic semiconductor material having a specific structure, a photoelectric conversion material and a photoelectric conversion element using the same.

近年、持続的に利用でき、資源が枯渇せず、環境汚染が小さい太陽電池(太陽光発電)が盛んに検討されている。太陽電池は、Si系や非Si系の無機系太陽電池と、色素増感型や有機薄膜型の有機系太陽電池とに大別される。無機系太陽電池は、概して光電変換効率が高いが、高真空が必要であったり、高温熱処理が必要であったりするため製造コストが高くなるという欠点がある。一方、有機系太陽電池は、塗布法や印刷法等での製膜が可能であるため、製造コストは低く、大面積での製膜が可能である。また、有機系太陽電池は、無機系太陽電池に比べ素子を軽くできることも利点として挙げられる。特に、有機薄膜型の太陽電池は、印刷法に優れ、フィルム等への製膜も容易であるためフレキシブルな太陽電池の製造も容易であるとされている。
しかし、有機系太陽電池の光電変換効率は低いものが多いため、高光電変換効率化が課題となっている。
In recent years, solar cells (solar power generation) that can be used continuously, do not deplete resources, and have low environmental pollution have been actively studied. Solar cells are roughly classified into Si-based and non-Si-based inorganic solar cells, and dye-sensitized and organic thin-film organic solar cells. Inorganic solar cells generally have high photoelectric conversion efficiency, but have a drawback of high manufacturing cost because high vacuum is required or high-temperature heat treatment is required. On the other hand, since the organic solar cell can be formed by a coating method, a printing method, or the like, the manufacturing cost is low and the film can be formed in a large area. Another advantage of organic solar cells is that they can be lighter than inorganic solar cells. In particular, an organic thin film type solar cell is said to be excellent in a printing method and easy to form a film or the like, so that it is easy to manufacture a flexible solar cell.
However, since many organic solar cells have low photoelectric conversion efficiency, increasing the photoelectric conversion efficiency is a problem.

現在、有機薄膜型の太陽電池における高い光電変換効率が得られている材料として、p型有機半導体材料のP3HT〔ポリ(3−ヘキシルチオフェン)〕とn型有機半導体材料のPCBM〔[6,6]−フェニル−C61−ブチル酸メチルエステル〕との混合材料からなるバルクへテロ接合が挙げられる(非特許文献1等参照)。また、p型有機半導体材料として、ペンタセン等の低分子化合物を用いる場合もあるが、一般に高分子型の材料の方が塗布による素子製造に適しているとされ、低コスト化や大画面化が容易であると考えられている。   Currently, P3HT [poly (3-hexylthiophene)], which is a p-type organic semiconductor material, and PCBM [[6, 6], which is an n-type organic semiconductor material, as materials having high photoelectric conversion efficiency in organic thin-film solar cells. ] -Phenyl-C61-butyric acid methyl ester] and a bulk heterojunction made of a mixed material (see Non-Patent Document 1, etc.). In addition, a low molecular compound such as pentacene may be used as the p-type organic semiconductor material. However, it is generally considered that a high molecular weight material is more suitable for device manufacturing by coating, which can reduce cost and increase the screen size. It is considered easy.

p型有機半導体材料に求められる特徴として、材料中に平面性の高いπ共役平面を有していることが挙げられる。これは、高いπ−π相互作用や高いキャリア輸送効率が期待できるためであり、結果として高い光起電力を提供できる。
特許文献1〜3には、高分子型のp型有機半導体に関する開示がなされている。
しかしながら、有機系太陽電池のより一層の光電変換効率向上が要望されている。
A characteristic required for the p-type organic semiconductor material is that the material has a highly planar π-conjugated plane. This is because high π-π interaction and high carrier transport efficiency can be expected, and as a result, high photovoltaic power can be provided.
Patent Documents 1 to 3 disclose a polymer-type p-type organic semiconductor.
However, further improvement in photoelectric conversion efficiency of organic solar cells is desired.

特開2008−042107号公報JP 2008-042107 A 特開2009−158921号公報JP 2009-155891 A 特表2011−116962号公報Special table 2011-116962 gazette

F. Padinger, et al., Adv. Funct. Mater., 13, 85 (2003)F. Padinger, et al., Adv. Funct. Mater., 13, 85 (2003)

従って、本発明の目的は、製造が容易であり、高分子骨格内に高い平面性を有する、p型有機半導体材料を提供することにある。
また本発明の目的は、上記p型有機半導体材料を用いた高い光電変換効率を有する光電変換材料、光電変換層、光電変換素子及び有機薄膜太陽電池を提供することにある。
Accordingly, an object of the present invention is to provide a p-type organic semiconductor material that is easy to manufacture and has high planarity in a polymer skeleton.
Moreover, the objective of this invention is providing the photoelectric conversion material which has the high photoelectric conversion efficiency using the said p-type organic-semiconductor material, a photoelectric conversion layer, a photoelectric conversion element, and an organic thin-film solar cell.

本発明者は、鋭意検討を重ねた結果、特定の構造を有するアントラキノン誘導体は、製造が容易で製造コストが小さく、しかも、溶解性に優れるため、p型有機半導体材料として使用すると、光電変換層を容易に製造できることを知見した。さらに検討を進めた結果、該光電変換層を有する光電変換素子は、高いキャリア移動度を示し、上記目的を達成し得ることを知見した。   As a result of intensive studies, the present inventors have found that an anthraquinone derivative having a specific structure is easy to manufacture, has a low manufacturing cost, and is excellent in solubility. Therefore, when used as a p-type organic semiconductor material, the photoelectric conversion layer It was found that can be easily manufactured. As a result of further investigation, it has been found that a photoelectric conversion element having the photoelectric conversion layer exhibits high carrier mobility and can achieve the above object.

本発明は、上記知見に基づいてなされたもので、下記一般式(1)で表される構成単位を少なくとも1つと、下記群Zから選ばれる構成単位を少なくとも1つ有することを特徴とするアントラキノン誘導体(以下、第一のアントラキノン誘導体ともいう)を提供するものである。   The present invention has been made based on the above knowledge, and has an anthraquinone characterized by having at least one structural unit represented by the following general formula (1) and at least one structural unit selected from the following group Z: A derivative (hereinafter also referred to as a first anthraquinone derivative) is provided.

(式中、X1及びX2は、酸素原子又は硫黄原子を表し、構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表す。) (In the formula, X 1 and X 2 represent an oxygen atom or a sulfur atom, and a hydrogen atom in the structural unit is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group may be substituted, and R 4 and R 5 may be an optionally substituted hydrocarbon group. Represents.)

(式中、X3はS又はNR6を表し、X4はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、kは1〜4の整数を表し、群Zで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。) Wherein X 3 represents S or NR 6 , X 4 represents S, NR 6 , CR 7 R 8 or SiR 7 R 8 , X 5 represents S, O or NR 6 , R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group, k represents an integer of 1 to 4, and the hydrogen atom in the structural unit represented by group Z is a fluorine atom, a chlorine atom, or a bromine atom , An iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, a —NR 9 R 10 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, 9 and R 10 each represents an optionally substituted hydrocarbon group.)

また、本発明は、下記一般式(2)で表されることを特徴とする前記アントラキノン誘導体を提供するものである。   The present invention also provides the anthraquinone derivative represented by the following general formula (2).

(式中、R1及びR2は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、X1及びX2は、酸素原子又は硫黄原子を表し、Y1及びY2は、単結合又は下記(Y−1)〜(Y−4)から選ばれる基を1〜5個組み合わせて連結した基であり、Z1及びZ2は、単結合又は下記(Z−1)〜(Z−25)から選ばれる基を表し(但し、Z1及びZ2の少なくとも一つは単結合ではない)、nは1以上1000以下の整数を表す。尚、式中のアントラキノン環の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基により置換されていてもよい。) (Wherein R 1 and R 2 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and X 1 And X 2 represents an oxygen atom or a sulfur atom, and Y 1 and Y 2 are a single bond or a group connected by combining 1 to 5 groups selected from the following (Y-1) to (Y-4). And Z 1 and Z 2 represent a single bond or a group selected from the following (Z-1) to (Z-25) (provided that at least one of Z 1 and Z 2 is not a single bond), and n Represents an integer of 1 to 1000. The hydrogen atom of the anthraquinone ring in the formula is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group, or an optionally substituted hydrocarbon group. (It may be substituted by a heterocyclic group.)

(式中、X6はS、O又はNR3を表し、(Y−1)〜(Y−3)で表される基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R3、R4及びR5は、置換されていてもよい炭化水素基を表す。) (In the formula, X 6 represents S, O or NR 3, and the hydrogen atom in the groups represented by (Y-1) to (Y-3) is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, It may be substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, an —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 And R 5 represents an optionally substituted hydrocarbon group.)

(式中、X3はS又はNR6を表し、X4はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、kは1〜4の整数を表し、(Z−1)〜(Z−25)で表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。) Wherein X 3 represents S or NR 6 , X 4 represents S, NR 6 , CR 7 R 8 or SiR 7 R 8 , X 5 represents S, O or NR 6 , R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group, k represents an integer of 1 to 4, and hydrogen atoms in the structural units represented by (Z-1) to (Z-25) are , Fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group, —NR 9 R 10 group, optionally substituted hydrocarbon group or optionally substituted heterocyclic group And R 9 and R 10 each represents an optionally substituted hydrocarbon group.)

また、本発明は、前記アントラキノン誘導体を少なくとも一種含有してなるp型有機半導体材料を提供するものである。   The present invention also provides a p-type organic semiconductor material containing at least one kind of the anthraquinone derivative.

また、本発明は、(A)前記のp型有機半導体材料、及び(B)n型有機半導体材料を含有してなる光電変換材料を提供するものである。   Moreover, this invention provides the photoelectric conversion material formed by containing (A) said p-type organic-semiconductor material and (B) n-type organic-semiconductor material.

また、本発明は、前記光電変換材料を製膜して得られる光電変換層を提供するものである。   Moreover, this invention provides the photoelectric converting layer obtained by forming into a film the said photoelectric converting material.

また、本発明は、上記光電変換層を有してなる光電変換素子を提供するものである。   Moreover, this invention provides the photoelectric conversion element which has the said photoelectric converting layer.

また、本発明は、上記光電変換素子を有してなる有機薄膜太陽電池を提供するものである。   Moreover, this invention provides the organic thin film solar cell which has the said photoelectric conversion element.

また、本発明は、第一のアントラキノン誘導体の中間体として有用な、下記一般式(4)で表される新規アントラキノン誘導体(以下、第二のアントラキノン誘導体ともいう)を提供するものである。   The present invention also provides a novel anthraquinone derivative (hereinafter also referred to as a second anthraquinone derivative) represented by the following general formula (4), which is useful as an intermediate for the first anthraquinone derivative.

(式中、R17、R18、R19、R20、R21、R22、R23及びR24は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、R17、R18、R19、R20、R21、R22、R23及びR24の少なくとも2つは、−Y−Rで表される基であり、
1及びX2は、酸素原子又は硫黄原子を表し、
Yはそれぞれ独立に、下記(Y−1)〜(Y−4)から選ばれる基を2〜5個組み合わせた基を表し、
Rはそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表す。)
(In the formula, R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23, and R 24 are a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or may be substituted. Represents a hydrocarbon group or an optionally substituted heterocyclic group, and at least two of R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 and R 24 are —Y—R; A group represented by
X 1 and X 2 represent an oxygen atom or a sulfur atom,
Y represents each independently the group which combined 2-5 groups chosen from the following (Y-1)-(Y-4),
Each R independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. )

(式中、X6はS、O又はNR3を表し、(Y−1)〜(Y−3)で表される基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R3、R4及びR5は、置換されていてもよい炭化水素基を表す。) (In the formula, X 6 represents S, O or NR 3, and the hydrogen atom in the groups represented by (Y-1) to (Y-3) is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, It may be substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, an —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 And R 5 represents an optionally substituted hydrocarbon group.)

本発明によれば、低コストで製造可能で、しかも溶解性及び塗工性に優れる、有機半導体材料として有用な新規アントラキノン誘導体を提供することができる。該誘導体を含有する本発明の光電変換材料を用いれば、優れた溶解性により、半導体製造における塗工プロセスが容易になり、且つ、高いキャリア移動度により、素子の高性能化を実現できる。   According to the present invention, it is possible to provide a novel anthraquinone derivative useful as an organic semiconductor material that can be produced at low cost and is excellent in solubility and coatability. If the photoelectric conversion material of the present invention containing the derivative is used, the coating process in semiconductor production is facilitated by excellent solubility, and high performance of the device can be realized by high carrier mobility.

図1(a)は、本発明の光電変換素子の構成の一例を示す断面図であり、図1(b)は、本発明の光電変換素子の構成の別の一例を示す断面図であり、図1(c)は、本発明の光電変換素子の構成の別の一例を示す断面図である。FIG. 1A is a cross-sectional view showing an example of the configuration of the photoelectric conversion element of the present invention, FIG. 1B is a cross-sectional view showing another example of the configuration of the photoelectric conversion element of the present invention, FIG.1 (c) is sectional drawing which shows another example of a structure of the photoelectric conversion element of this invention.

以下、本発明のアントラキノン誘導体及びその中間体、並びに、該アントラキノン誘導体を用いた光電変換材料、光電変換層、光電変換層及び有機薄膜太陽電池について、好ましい実施形態に基づき詳細に説明する。   Hereinafter, an anthraquinone derivative of the present invention and an intermediate thereof, and a photoelectric conversion material, a photoelectric conversion layer, a photoelectric conversion layer, and an organic thin-film solar cell using the anthraquinone derivative will be described in detail based on preferred embodiments.

<第一のアントラキノン誘導体>
第一のアントラキノン誘導体は、上記一般式(1)で表される構成単位を少なくとも1つと、上記群Zから選ばれる構成単位を少なくとも1つ有することを特徴とするものである。尚、上記式(1)中の*は、これらの式で表される基が、*部分で、隣接する基と結合することを意味する(以下同様)。
<First anthraquinone derivative>
The first anthraquinone derivative has at least one constitutional unit represented by the general formula (1) and at least one constitutional unit selected from the group Z. In addition, * in the said Formula (1) means that group represented by these formulas couple | bonds with adjacent group in * part (the following is same).

第一のアントラキノン誘導体の中でも、上記一般式(1)で表される構成単位を2以上、100以下有し、上記群Zから選ばれる構成単位を2以上、100以下有するものは製膜性に優れるため好ましい。また、本発明の第一のアントラキノン誘導体において、上記一般式(1)で表される構成単位と、群Zから選ばれる構成単位の比率としては、上記一般式(1)の構成単位が5〜90モル%であることが好ましく、10〜80モル%であることが更に好ましく、20〜70モル%であることが特に好ましい。   Among the first anthraquinone derivatives, those having 2 or more and 100 or less of the structural unit represented by the general formula (1) and having 2 or more and 100 or less of the structural unit selected from the group Z have a film forming property. It is preferable because it is excellent. In the first anthraquinone derivative of the present invention, the ratio of the structural unit represented by the general formula (1) and the structural unit selected from the group Z is 5 to 5 in the structural unit of the general formula (1). It is preferably 90 mol%, more preferably 10 to 80 mol%, and particularly preferably 20 to 70 mol%.

上記一般式(1)で表される構成単位及び群Zから選ばれる構成単位中の水素原子を置換してもよい炭化水素基並びにR4及びR5が表す置換されていてもよい炭化水素基としては、芳香族炭化水素基、脂肪族炭化水素基で置換された芳香族炭化水素基、脂肪族炭化水素基が挙げられ、炭素原子数1〜40、特に4〜22であるものが好ましい。
前記芳香族炭化水素基としては、例えば、フェニル、ナフチル、シクロヘキシルフェニル、ビフェニル、ターフェニル、フルオレイル、チオフェニルフェニル、フラニルフェニル、2’−フェニル−プロピルフェニル、ベンジル、ナフチルメチル等が挙げられ、
前記脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、イソブチル、アミル、イソアミル、t−アミル、ヘキシル、ヘプチル、イソヘプチル、t−ヘプチル、n−オクチル、イソオクチル、t−オクチル、ノニル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル等の直鎖、分岐及び環状のアルキル基が挙げられ、これら脂肪族炭化水素基は、−O−、−COO−、−OCO−、−CO−、−S−、−SO−、−SO2−、−NR15−、−HC=CH−又は−C≡C−で
中断されていてもよく(尚、該中断は脂肪族炭化水素基の結合する部分を中断していてもよい)、R15は、置換されていてもよい炭化水素基を表し、置換されていてもよい炭化水素基としては、R4及びR5が表す置換されていてもよい炭化水素基と同様の基が挙げられ、中でもパーフルオロアルキルが好ましい。
前記脂肪族炭化水素基で置換された芳香族炭化水素基としては、上記脂肪族炭化水素基により置換されたフェニル、ナフチル、ベンジル等が挙げられる。
これらの炭化水素基を置換してもよい基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR’R”基等が挙げられ、R’及びR”は、置換されていてもよい炭化水素基を表し、置換されていてもよい炭化水素基としては、R4及びR5が表す置換されていてもよい炭化水素基と同様の基が挙げられる。
The structural unit represented by the general formula (1) and the hydrocarbon group which may be substituted with a hydrogen atom in the structural unit selected from the group Z, and the optionally substituted hydrocarbon group represented by R 4 and R 5 Examples thereof include an aromatic hydrocarbon group, an aromatic hydrocarbon group substituted with an aliphatic hydrocarbon group, and an aliphatic hydrocarbon group, and those having 1 to 40 carbon atoms, particularly 4 to 22 carbon atoms are preferred.
Examples of the aromatic hydrocarbon group include phenyl, naphthyl, cyclohexylphenyl, biphenyl, terphenyl, fluoryl, thiophenylphenyl, furanylphenyl, 2′-phenyl-propylphenyl, benzyl, naphthylmethyl, and the like.
Examples of the aliphatic hydrocarbon group include methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, isobutyl, amyl, isoamyl, t-amyl, hexyl, heptyl, isoheptyl, t-heptyl, n. -Linear, branched and cyclic alkyl groups such as octyl, isooctyl, t-octyl, nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, etc., and these aliphatic hydrocarbon groups Is interrupted by —O—, —COO—, —OCO—, —CO—, —S—, —SO—, —SO 2 —, —NR 15 —, —HC═CH— or —C≡C—. (Note that the interruption may interrupt the portion to which the aliphatic hydrocarbon group is bonded), and R 15 is substituted. Examples of the optionally substituted hydrocarbon group may include the same groups as the optionally substituted hydrocarbon group represented by R 4 and R 5 , among which perfluoroalkyl is preferable.
Examples of the aromatic hydrocarbon group substituted with the aliphatic hydrocarbon group include phenyl, naphthyl, benzyl and the like substituted with the aliphatic hydrocarbon group.
Examples of the group that may substitute these hydrocarbon groups include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, and a —NR′R ″ group. 'And R ″ represent an optionally substituted hydrocarbon group, and the optionally substituted hydrocarbon group is the same group as the optionally substituted hydrocarbon group represented by R 4 and R 5. Is mentioned.

上記一般式(1)で表される構成単位及び群Zから選ばれる構成単位中の水素原子を置換してよい複素環基としては、チアゾリル、イミダゾリル、オキサゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、チオフェニル、フラニル、ビチオフェニル、ターチオフェニル等の複素環が挙げられ、炭素原子数1〜40、特に4〜22であるものが好ましい。
これらの複素環基を置換してもよい基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR’R”基等が挙げられ、R’及びR”は、置換されていてもよい炭化水素基を表し、置換されていてもよい炭化水素基としては、上記置換されていてもよい炭化水素基と同様の基が挙げられる。
Examples of the heterocyclic group that may substitute a hydrogen atom in the structural unit represented by the general formula (1) and the structural unit selected from group Z include thiazolyl, imidazolyl, oxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, thiophenyl , Furanyl, bithiophenyl, terthiophenyl and the like, and those having 1 to 40 carbon atoms, particularly 4 to 22 carbon atoms are preferred.
Examples of the group that may substitute these heterocyclic groups include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, and a —NR′R ″ group. 'And R ″ represent an optionally substituted hydrocarbon group, and examples of the optionally substituted hydrocarbon group include the same groups as the optionally substituted hydrocarbon group.

上記群Z中の式で用いられるR6、R7、R8、R9及びR10が表す置換されていてもよい炭化水素基としては、R4及びR5が表す置換されていてもよい炭化水素基と同様の基が挙げられる。 The optionally substituted hydrocarbon group represented by R 6 , R 7 , R 8 , R 9 and R 10 used in the formula in the group Z may be substituted represented by R 4 and R 5. The same group as a hydrocarbon group is mentioned.

本発明の第一のアントラキノン誘導体は、上記一般式(1)で表される構成単位及び群Zから選ばれる構成単位が必須のものであるが、更に下記群Yから選ばれる構成単位を含んでいてもよい。群Yから選ばれる構成単位を有することは、溶解性の向上や共役拡張の点で好ましい。   In the first anthraquinone derivative of the present invention, the structural unit represented by the general formula (1) and the structural unit selected from the group Z are essential, but further includes a structural unit selected from the following group Y. May be. Having a structural unit selected from Group Y is preferable in terms of improving solubility and conjugation extension.

(式中、X6はS、O又はNR3を表し、群Yで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R3、R4及びR5は、置換されていてもよい炭化水素基を表す。) (In the formula, X 6 represents S, O or NR 3, and the hydrogen atom in the structural unit represented by group Y is a fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, It may be substituted with a thiol group, —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 and R 5 are substituted. Represents an optionally hydrocarbon group.)

上記群Y中の式で用いられるR3、R4及びR5が表す置換されていてもよい炭化水素基としては、上記一般式(1)におけるR4及びR5が表す置換されていてもよい炭化水素基と同様の基が挙げられる。 The optionally substituted hydrocarbon group represented by R 3 , R 4 and R 5 used in the formula in the group Y may be substituted represented by R 4 and R 5 in the general formula (1). The group similar to a good hydrocarbon group is mentioned.

第一のアントラキノン誘導体の好ましい例として、下記一般式(2)で表される化合物が挙げられる。   A preferred example of the first anthraquinone derivative is a compound represented by the following general formula (2).

(式中、R1及びR2は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、X1及びX2は、酸素原子又は硫黄原子を表し、Y1及びY2は、単結合又は上記(Y−1)〜(Y−4)から選ばれる基を1〜5個組み合わせて連結した基であり、Z1及びZ2は、Z1及びZ2は、単結合又は上記(Z−1)〜(Z−25)から選ばれる基を表し(但し、Z1及びZ2の少なくとも一つは単結合ではない)、nは1以上1000以下の整数を表す。尚、式中のアントラキノン環の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基により置換されていてもよい。) (Wherein R 1 and R 2 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and X 1 And X 2 represents an oxygen atom or a sulfur atom, and Y 1 and Y 2 are a single bond or a group connected by combining 1 to 5 groups selected from the above (Y-1) to (Y-4). There, Z 1 and Z 2, Z 1 and Z 2 represents a group selected from a single bond or the (Z-1) ~ (Z -25) ( provided that at least one of Z 1 and Z 2 N is an integer of 1 to 1000. The hydrogen atom of the anthraquinone ring in the formula is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an optionally substituted hydrocarbon group. Alternatively, it may be substituted with an optionally substituted heterocyclic group.)

上記一般式(2)で表されるアントラキノン環中の水素原子を置換してもよい炭化水素基及び複素環基並びにR1及びR2が表す置換されていてもよい炭化水素基、及び置換されていてもよい複素環基としては、上記一般式(1)で表される構成単位の水素原子を置換してよい炭化水素及び複素環基として例示したものが挙げられる。 The hydrocarbon group and heterocyclic group which may substitute the hydrogen atom in the anthraquinone ring represented by the general formula (2), the optionally substituted hydrocarbon group represented by R 1 and R 2 , and the substituted Examples of the heterocyclic group which may be included include those exemplified as the hydrocarbon and heterocyclic group which may substitute the hydrogen atom of the structural unit represented by the general formula (1).

上記一般式(2)におけるアントラキノン環を置換する二つの基(−Y1−Z1−R1及び−Y2−Z2−R2)の位置としては、特に限定されないが、製造工程の簡略化及び素子特性向上の点から下記一般式(2−1)〜(2−4)で表される置換位置のものが好ましく、下記一般式(2−1)又は(2−3)で表される置換位置のものが特に好ましい。 The position of the two groups (—Y 1 —Z 1 —R 1 and —Y 2 —Z 2 —R 2 ) substituting the anthraquinone ring in the general formula (2) is not particularly limited, but the production process is simplified. From the viewpoints of improving the device characteristics and improving the device characteristics, those at the substitution positions represented by the following general formulas (2-1) to (2-4) are preferable, and represented by the following general formula (2-1) or (2-3). Particularly preferred are those at the substitution positions.

(式中、R1、R2、X1、X2、Y1、Y2、Z1、Z2及びnは、上記一般式(2)と同様の基を表し、アントラキノン環の水素原子は、上記一般式(2)と同様に置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよい。) (In the formula, R 1 , R 2 , X 1 , X 2 , Y 1 , Y 2 , Z 1 , Z 2 and n represent the same groups as in the general formula (2), and the hydrogen atom of the anthraquinone ring is In the same manner as in the general formula (2), it may be substituted with an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group.

上記一般式(2)で表されるアントラキノン誘導体の中でも、Y1、Y2又はZ1の少なくとも一つが単結合ではない化合物は、製造が容易であるため好ましい。 Among the anthraquinone derivatives represented by the general formula (2), a compound in which at least one of Y 1 , Y 2, or Z 1 is not a single bond is preferable because it is easy to produce.

また、上記一般式(2)で表されるアントラキノン誘導体の中でも、R1又はR2が置換されていてもよい芳香族炭化水素又は置換されていてもよい芳香族複素環であるものが好ましく、R1及びR2の両方が、置換されていてもよい芳香族炭化水素又は置換されていてもよい芳香族複素環であるものがより好ましい。
また、Y1又はY2が単結合、(Y−2)又は(Y−3)であるものが好ましく、Y1又はY2の少なくとも一つが(Y−2)又は(Y−3)の構成単位を有するものがより好ましい。
また、Z1又はZ2が(Z−2)、(Z−8)、(Z−9)、(Z−10)、(Z−13)、(Z−15)、(Z−22)、(Z−23)又は(Z−24)であるものが好ましい。
Among the anthraquinone derivatives represented by the general formula (2), those in which R 1 or R 2 is an optionally substituted aromatic hydrocarbon or an optionally substituted aromatic heterocyclic ring are preferable, More preferably, both R 1 and R 2 are an optionally substituted aromatic hydrocarbon or an optionally substituted aromatic heterocycle.
Further, Y 1 or Y 2 is preferably a single bond, (Y-2) or (Y-3), and at least one of Y 1 or Y 2 is (Y-2) or (Y-3). What has a unit is more preferable.
Z 1 or Z 2 is (Z-2), (Z-8), (Z-9), (Z-10), (Z-13), (Z-15), (Z-22), What is (Z-23) or (Z-24) is preferable.

第一のアントラキノン誘導体の具体例としては、下記化合物No.1〜No.32が挙げられるが、これらの化合物に制限されない。尚、下記各化合物におけるR1、R2及びnは上記一般式(2)と同様である。 Specific examples of the first anthraquinone derivative include the following compound No. 1-No. 32, but is not limited to these compounds. In the following compounds, R 1 , R 2 and n are the same as those in the general formula (2).

第一のアントラキノン誘導体は、何れも、その製造方法に制限されず、周知一般の反応を利用した方法で得ることができる。上記一般式(2)で表されるアントラキノン誘導体の製造方法の一例を下記反応式に基づいて説明する。   Any of the first anthraquinone derivatives is not limited to the production method thereof, and can be obtained by a method using a known general reaction. An example of a method for producing the anthraquinone derivative represented by the general formula (2) will be described based on the following reaction formula.

ジハロゲン化アントラキノン(A)に、対応するY1−又はY2−を有するボロン酸ピナコールエステル誘導体(Y1−Bpin又はY2−Bpin)をカップリングさせ中間体(B)とした後、1,3−ジヨード−5,5−ジメチルヒダントイン(DIH)にてヨウ素化して中間体(C)とし、対応するZ1−又はZ2−を有するビスボロン酸ピナコールエステル誘導体(pinB−Z1−Bpin又はpinB−Z2−Bpin)にて高分子量化して中間体(D)とし、末端をキャッピングすることにより上記一般式(2)で表わされる化合物を得ることが出来る。尚、中間体(D)の生成後にクエンチした場合、R1及びR2は水素原子となる。 A boronic acid pinacol ester derivative (Y 1 -Bpin or Y 2 -Bpin) having a corresponding Y 1 -or Y 2 -is coupled to a dihalogenated anthraquinone (A) to form an intermediate (B), Bisboronic acid pinacol ester derivatives (pinB-Z 1 -Bpin or pinB) having the corresponding Z 1 — or Z 2 — by iodination with 3-diiodo-5,5-dimethylhydantoin (DIH) The compound represented by the above general formula (2) can be obtained by increasing the molecular weight with -Z 2 -Bpin) to obtain an intermediate (D) and capping the terminal. In addition, when it quenches after the production | generation of an intermediate body (D), R < 1 > and R < 2 > becomes a hydrogen atom.

(式中、R1、R2、Y1、Y2、Z1、Z2及びnは上記一般式(2)と同様である。) (In the formula, R 1 , R 2 , Y 1 , Y 2 , Z 1 , Z 2 and n are the same as those in the general formula (2).)

上記反応式において、中間体(C)とビスボロン酸ピナコールエステル誘導体との反応において、中間体(C)が過剰である場合には下記ヨウ素置換体(D’)も生成すると考えられるが、そのままの臭素置換体(D’)であっても、更にボロン酸ピナコールエステル誘導体と反応させて下記化合物(2’)とした場合であっても、本発明において同様の効果を奏するため特に制限されない。   In the above reaction formula, when the intermediate (C) is excessive in the reaction between the intermediate (C) and the bisboronic acid pinacol ester derivative, it is considered that the following iodine-substituted product (D ′) is also produced. Even if it is a bromine-substituted product (D ′) or is further reacted with a boronic acid pinacol ester derivative to obtain the following compound (2 ′), there is no particular limitation because the same effect is exhibited in the present invention.

(式中、R1、R2、Y1、Y2、Z1、Z2及びnは上記一般式(2)と同様である。) (In the formula, R 1 , R 2 , Y 1 , Y 2 , Z 1 , Z 2 and n are the same as those in the general formula (2).)

上記反応式において、種々カップリング反応を行う際、中間体(A)、(B)及び(C)の結合する官能基は臭素及びヨウ素以外に、対応するハロゲン化合物、トリフラート体、ホウ素化合物、ケイ素化合物、亜鉛化合物、スズ化合物へと変換したビベンゾフラン誘導体を使用しても良い。また上記中間体に対応して、R1−Br、R2−Br、Bpin−Z1−Bpin、Bpin−Z2−Bpinにおいては、使用する中間体(A)、(B)及び(C)に対応して、ハロゲン化合物、トリフラート体、ホウ素化合物、ケイ素化合物、亜鉛化合物、スズ化合物へと変換した各々中間体にて、目的ビベンゾフラン誘導体を合成した場合であっても本発明に対して同様の効果を奏するため、特に制限されるものではない。 In the above reaction formula, when performing various coupling reactions, the functional groups to which the intermediates (A), (B) and (C) are bonded are not only bromine and iodine, but also corresponding halogen compounds, triflates, boron compounds, silicon Bibenzofuran derivatives converted into compounds, zinc compounds, and tin compounds may be used. Corresponding to the above intermediates, R 1 -Br, R 2 -Br, Bpin-Z 1 -Bpin and Bpin-Z 2 -Bpin are intermediates (A), (B) and (C) used. Corresponding to the present invention even when the target bibenzofuran derivative is synthesized with each intermediate converted to a halogen compound, triflate, boron compound, silicon compound, zinc compound, and tin compound In order to produce the effect of, it is not particularly limited.

本発明の第一のアントラキノン誘導体が示す重量平均分子量(Mw)としては、1000〜200000程度が好ましく用いられる。Mwが1000以下の場合、製膜不良が発生することがあり、200000以上の場合、化合物の溶解性が低下することがあるため好ましくない。   As a weight average molecular weight (Mw) which the 1st anthraquinone derivative of this invention shows, about 1000-200000 are used preferably. When Mw is 1000 or less, film formation failure may occur, and when it is 200000 or more, the solubility of the compound may decrease, which is not preferable.

本発明の第一のアントラキノン誘導体は、以下に説明する有機半導体材料として好適なほか、酸化防止剤等の用途にも使用することができる。   The first anthraquinone derivative of the present invention is suitable as an organic semiconductor material described below, and can also be used for applications such as antioxidants.

<光電変換材料>
本発明の光電変換材料は、(A)第一のアントラキノン誘導体を少なくとも一種含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有するものである。
<Photoelectric conversion material>
The photoelectric conversion material of the present invention contains (A) a p-type organic semiconductor material containing at least one first anthraquinone derivative, and (B) an n-type organic semiconductor material.

(A)p型有機半導体材料としては、第一のアントラキノン誘導体を少なくとも一種含んでいればよく、その他の公知材料を合わせて用いることが出来る。例えば、フタロシアニン系顔料、インジゴ又はチオインジゴ系顔料、キナクリドン系顔料、トリアリールメタン誘導体、トリアリールアミン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導体、ポリシラン誘導体、ポリフェニレンビニレン及びその誘導体(例えば、ポリ[2−メトキシ−5−(2−エチルヘキシロキシ)−1,4−フェニレンビニレン]:MEH−PPV、ポリ[2−メトキシ−5−(3’,7’−ジメチルオ
クチロキシ)−1,4−フェニレンビニレン])、ポリチオフェン及びその誘導体(例えば、ポリ(3−ドデシルチオフェン)、ポリ(3−ヘキシルチオフェン):P3HT、ポリ(3−オクチルチオフェン))、ポリ−N−ビニルカルバゾール誘導体等が挙げられる。
(A) As a p-type organic-semiconductor material, what is necessary is just to contain at least 1 type of the 1st anthraquinone derivative, and it can use it combining another well-known material. For example, phthalocyanine pigments, indigo or thioindigo pigments, quinacridone pigments, triarylmethane derivatives, triarylamine derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, pyrazoline derivatives, polysilane derivatives, polyphenylene vinylene and derivatives thereof (for example, polyphenylene vinylene) [2-Methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene]: MEH-PPV, poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4 -Phenylene vinylene]), polythiophene and derivatives thereof (for example, poly (3-dodecylthiophene), poly (3-hexylthiophene): P3HT, poly (3-octylthiophene)), poly-N-vinylcarbazole derivatives, and the like. It is done.

(A)p型有機半導体材料として、その他の公知材料を用いる場合、第一のアントラキノン誘導体の含有量は、(A)p型有機半導体材料中、好ましくは1〜99質量%、より好ましくは1〜80質量%である。   (A) When other known materials are used as the p-type organic semiconductor material, the content of the first anthraquinone derivative is preferably 1 to 99% by mass, more preferably 1 in the (A) p-type organic semiconductor material. -80 mass%.

(B)n型有機半導体材料としては、ペリレン系顔料、ペリノン系顔料、多環キノン系顔料、アゾ系顔料、C60フラーレンやC70フラーレン及びその誘導体等を用いることができ、また、有機金属錯体〔例えば、トリス(8−キノリノラート)アルミニウム、ビス(10−ベンゾ[h]キノリノラート)ベリリウム、5−ヒドロキシフラボンのベリリウム塩、5−ヒドロキシフラボンのアルミニウム塩〕、オキサジアゾール誘導体〔例えば、1,3−ビス[5'−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2'−イル]ベンゼン〕、トリアゾール誘導体〔例えば、3−(4'−tert−ブチルフェニル)−4−フェニル−5−(4''−ビフェニル)−1,2,4−トリアゾール〕、フェナントロリン誘導体[例えば、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン、BCP)]、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体等を用いることもできる。(B)n型有機半導体材料の中でも、n型材料として高いキャリヤ移動度を有し、及び/又は電荷分離効率が高い点から、C60フラーレンやC70フラーレン及びその誘導体が好ましい。尚、n型有機半導体材料として例に挙げた化合物は、単独で使用してもよく、あるいは複数併用してもよい。   (B) As an n-type organic semiconductor material, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, an azo pigment, C60 fullerene, C70 fullerene, and a derivative thereof can be used. For example, tris (8-quinolinolato) aluminum, bis (10-benzo [h] quinolinolato) beryllium, beryllium salt of 5-hydroxyflavone, aluminum salt of 5-hydroxyflavone], oxadiazole derivative [for example, 1,3- Bis [5 ′-(p-tert-butylphenyl) -1,3,4-oxadiazol-2′-yl] benzene], triazole derivatives [eg 3- (4′-tert-butylphenyl) -4 -Phenyl-5- (4 ''-biphenyl) -1,2,4-triazole], phenanthroline derivatives [e.g. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, BCP)], triazine derivatives, quinoline derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, etc. It can also be used. (B) Among n-type organic semiconductor materials, C60 fullerene, C70 fullerene, and derivatives thereof are preferable because they have high carrier mobility as n-type materials and / or high charge separation efficiency. In addition, the compound quoted as an example as an n-type organic-semiconductor material may be used independently, or may be used together.

上記のC60フラーレンやC70フラーレン及びその誘導体としては、以下のC1〜C6の化合物が例に挙げられ、中でも、電子準位の整合性に優れ、入手が容易である点から、C1のPCBM(フェニル−C61−ブチル酸メチルエステル)が好ましく用いられる。   Examples of the C60 fullerene, C70 fullerene, and derivatives thereof include the following C1 to C6 compounds. Among them, C1 PCBM (phenyl) is preferable because it has excellent electronic level matching and is easily available. -C61-butyric acid methyl ester) is preferably used.

本発明の光電変換材料において、(A)成分と(B)成分の重量比率(前者:後者)は10:90〜90:10であり、好ましくは10:90〜70:30であり、さらに好ましくは20:80〜50:50である。   In the photoelectric conversion material of the present invention, the weight ratio of the component (A) to the component (B) (the former: the latter) is 10:90 to 90:10, preferably 10:90 to 70:30, and more preferably Is 20: 80-50: 50.

また、本発明の光電変換材料は、必要に応じて一種又は二種以上の溶媒を含有してもよい。   Moreover, the photoelectric conversion material of this invention may contain a 1 type, or 2 or more types of solvent as needed.

上記溶媒としては、(A)成分及び(B)成分を溶解又は分散可能なものであれば特に制限されないが、例えば、水、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族又は脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素溶剤、ハロゲン化炭化水素系溶剤、その他の溶剤等が挙げられる。溶媒を用いた光電変換材料は、塗布液として用いることができる。   The solvent is not particularly limited as long as it can dissolve or disperse the component (A) and the component (B). For example, water, alcohol solvent, diol solvent, ketone solvent, ester solvent, ether Examples thereof include an aliphatic solvent, an aliphatic or alicyclic hydrocarbon solvent, an aromatic hydrocarbon solvent, a hydrocarbon solvent having a cyano group, a halogenated hydrocarbon solvent, and other solvents. A photoelectric conversion material using a solvent can be used as a coating solution.

上記アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−ブタノール、イソブタノール、2−ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2−ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2−ヘキサノール、ヘプタノール、2−ヘプタノール、オクタノール、2―エチルヘキサノール、2−オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、2−(N,N−ジメチルアミノ)エタノール、3(N,N−ジメチルアミノ)プロパノール等が挙げられる。   Examples of the alcohol solvent include methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, and third. Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcycloheptanol , Benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, 2- (N, N-dimethylamino) ethanol, 3 (N, N-dimethylamino) propanol, etc. Can be mentioned.

上記ジオール系溶剤としては、例えば、エチレングリコール、プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3−メチル−1,3−ブタンジオール)、1,2−ヘキサンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、1,2−オクタンジオール、オクタンジオール(2−エチル−1,3−ヘキサンジオール)、2−ブチル−2−エチル−1,3−プロパンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。   Examples of the diol solvent include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol ( 3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl) -1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol 1,4-cyclohexanedimethanol and the like.

上記ケトン系溶剤としては、例えば、アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルヘキシルケトン、エチルブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。   Examples of the ketone solvent include acetone, ethyl methyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, ethyl butyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, and methyl. Examples include amyl ketone, cyclohexanone, and methylcyclohexanone.

上記エステル系溶剤としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2−エチルヘキサン酸メチル、2−エチルヘキサン酸エチル、2−エチルヘキサン酸プロピル、2−エチルヘキサン酸イソプロピル、2−エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ−ラクトン、マロン酸ジメチル、コハク酸ジメチル、プロピレングリコールジアセテート、δ−ラクトン等が挙げられる。   Examples of the ester solvent include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, second butyl acetate, third butyl acetate, amyl acetate, isoamyl acetate, and third amyl acetate. , Phenyl acetate, methyl propionate, ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, sec-butyl propionate, tert-butyl propionate, amyl propionate, isoamyl propionate, amyl propionate, Phenyl propionate, methyl 2-ethylhexanoate, ethyl 2-ethylhexanoate, propyl 2-ethylhexanoate, isopropyl 2-ethylhexanoate, butyl 2-ethylhexanoate, methyl lactate, ethyl lactate, methyl methoxypropionate Methyl ethoxypropionate, ethyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monoisopropyl ether acetate, ethylene glycol mono Butyl ether acetate, ethylene glycol mono secondary butyl ether acetate, ethylene glycol mono isobutyl ether acetate, ethylene glycol mono tertiary butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl Pyrether acetate, Propylene glycol monoisopropyl ether acetate, Propylene glycol monobutyl ether acetate, Propylene glycol mono secondary butyl ether acetate, Propylene glycol monoisobutyl ether acetate, Propylene glycol mono tertiary butyl ether acetate, Butylene glycol monomethyl ether acetate, Butylene glycol monoethyl Ether acetate, butylene glycol monopropyl ether acetate, butylene glycol monoisopropyl ether acetate, butylene glycol monobutyl ether acetate, butylene glycol mono sec-butyl ether acetate, butylene glycol monoisobutyl ether acetate, butylene glycol mono Examples include tertiary butyl ether acetate, methyl acetoacetate, ethyl acetoacetate, methyl oxobutanoate, ethyl oxobutanoate, γ-lactone, dimethyl malonate, dimethyl succinate, propylene glycol diacetate, and δ-lactone.

上記エーテル系溶剤としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。   Examples of the ether solvent include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, and dioxane.

上記脂肪族又は脂環族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ、テレピン油、D−リモネン、ピネン、ミネラルスピリット、スワゾール#310(コスモ松山石油(株)、ソルベッソ#100(エクソン化学(株))等が挙げられる。   Examples of the aliphatic or alicyclic hydrocarbon solvents include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and minerals. Spirit, Swazol # 310 (Cosmo Matsuyama Oil Co., Ltd., Solvesso # 100 (Exxon Chemical Co., Ltd.)) and the like.

上記芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリン等が挙げられる。   Examples of the aromatic hydrocarbon solvent include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene, and tetralin.

上記シアノ基を有する炭化水素溶剤としては、例えば、アセトニトリル、1−シアノプロパン、1−シアノブタン、1−シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3−ジシアノプロパン、1,4−ジシアノブタン、1,6−ジシアノヘキサン、1,4−ジシアノシクロヘキサン、1,4−ジシアノベンゼン等が挙げられる。   Examples of the hydrocarbon solvent having a cyano group include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, , 6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.

上記ハロゲン化炭化水素系溶媒としては、例えば、四塩化炭素、クロロホルム、ジクロロメタン、トリクロロエチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。   Examples of the halogenated hydrocarbon solvent include carbon tetrachloride, chloroform, dichloromethane, trichloroethylene, chlorobenzene, dichlorobenzene, and trichlorobenzene.

上記その他の有機溶剤としては、例えば、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、アニリン、トリエチルアミン、ピリジン、2硫化炭素等が挙げられる。   Examples of the other organic solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, aniline, triethylamine, pyridine, and carbon disulfide.

これらの中でも、好ましい溶媒としては、クロロホルム、ジクロロメタン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。   Among these, preferable solvents include chloroform, dichloromethane, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene and the like.

本発明の光電変換材料に上記溶媒を含有させる場合、その含有量は、該光電変換材料を用いた光電変換層の形成に支障が生じない限り特に制限されるものではないが、例えば、溶媒を100重量部としたときに(A)成分及び(B)成分の総量が0.1〜20重量部となる範囲から適宜選択することが好ましく、更に好ましくは1〜10重量部であり、特に好ましくは3〜7重量部の範囲から選択することが望ましい。   When the above-described solvent is contained in the photoelectric conversion material of the present invention, the content is not particularly limited as long as it does not hinder the formation of a photoelectric conversion layer using the photoelectric conversion material. It is preferable that the total amount of the component (A) and the component (B) is 0.1 to 20 parts by weight when it is 100 parts by weight, more preferably 1 to 10 parts by weight, particularly preferably. Is preferably selected from the range of 3 to 7 parts by weight.

<光電変換層>
次に、本発明の光電変換層について説明する。本発明の光電変換層は、本発明の光電変換材料を製膜して得られる。製膜方法に関しては特に限定するものではないが、例えば、蒸着法、物理気相成長法(PVD)、化学気相成長法(CVD)、原子層堆積法(ALD)、原子層エピタキシー法(ALE)、分子線エピタキシー法(MBE)、気相エピタキシー法(VPE)、スパッタ法、プラズマ重合法等のドライプロセス;ディップコート法、キャスト法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スピンコート法、LB法、オフセット印刷法、スクリーン印刷法、フレキソ印刷法、ディスペンサ印刷法、インクジェット法、エクストルージョンコート法等のウェットプロセスによって支持体上に塗膜形成する方法が挙げられる。
<Photoelectric conversion layer>
Next, the photoelectric conversion layer of the present invention will be described. The photoelectric conversion layer of the present invention is obtained by forming the photoelectric conversion material of the present invention into a film. The film forming method is not particularly limited. For example, vapor deposition method, physical vapor deposition method (PVD), chemical vapor deposition method (CVD), atomic layer deposition method (ALD), atomic layer epitaxy method (ALE). ), Dry processes such as molecular beam epitaxy (MBE), vapor phase epitaxy (VPE), sputtering, plasma polymerization, etc .; dip coating, casting, air knife coating, curtain coating, roller coating, wire Forming a coating on a support by wet processes such as bar coating, gravure coating, spin coating, LB, offset printing, screen printing, flexographic printing, dispenser printing, ink jet, and extrusion coating The method of doing is mentioned.

上記光電変換層の膜厚は、特に限定するものではないが、一般に、5nm〜5μm程度に設定することが好ましく、アニーリング等の加熱処理をしてもよい。   Although the film thickness of the said photoelectric converting layer is not specifically limited, Generally, it is preferable to set to about 5 nm-5 micrometers, and heat processing, such as annealing, may be performed.

上記光電変換層は、p型とn型の有機半導体材料を混在させる素子に用いられ、好ましい実施形態である有機バルクヘテロ接合素子の他、超階層ナノ構造接合素子、ハイブリッドヘテロ接合型、p−i−n接合型素子におけるi層等に用いられる。   The photoelectric conversion layer is used for an element in which p-type and n-type organic semiconductor materials are mixed. In addition to the organic bulk heterojunction element which is a preferred embodiment, a super hierarchical nanostructure junction element, a hybrid heterojunction type, pi Used for the i layer and the like in an -n junction type element.

<光電変換素子及び有機薄膜太陽電池>
本発明の光電変換素子は、本発明の光電変換層を少なくとも一つ有する以外は、従来公知の光電変換素子と同様に構成される。例えば、図1(a)を例にとって示すと、支持体1、電極2、電荷移動層3、光電変換層4、及び電極5が順次積層された構造を有する。また、図1(b)に示すように電荷移動層3を除いた構造であってもよく、図1(c)に示すように電荷移動層6を更に有する構造であってもよい。
<Photoelectric conversion element and organic thin film solar cell>
The photoelectric conversion element of this invention is comprised similarly to a conventionally well-known photoelectric conversion element except having at least one photoelectric conversion layer of this invention. For example, taking FIG. 1A as an example, the support 1, the electrode 2, the charge transfer layer 3, the photoelectric conversion layer 4, and the electrode 5 are sequentially stacked. Further, a structure excluding the charge transfer layer 3 as shown in FIG. 1B or a structure further having a charge transfer layer 6 as shown in FIG. 1C may be used.

本発明の光電変換素子においては、支持体1から光電変換層4へ光が到達する必要がある。支持体1、電極2及び電荷移動層3から光電変換層4へ照射光を到達させるためには、支持体1、電極2及び電荷移動層3を光透過性の材料で形成し、光透過率が70%以上となるように設定することが好ましい。   In the photoelectric conversion element of the present invention, light needs to reach the photoelectric conversion layer 4 from the support 1. In order to allow irradiation light to reach the photoelectric conversion layer 4 from the support 1, the electrode 2 and the charge transfer layer 3, the support 1, the electrode 2 and the charge transfer layer 3 are formed of a light transmissive material, and the light transmittance Is preferably set to be 70% or more.

支持体1は電極2を表面に安定して保持することが可能であれば、材質や厚みには制限されないが透明性を有する必要が有る。そのため、支持体の形状は板状でもフィルム状でもよい。透明性とは、光電変換素子において使用される所定波長領域、例えば可視光領域の光を高率で透過する性質をいう。支持体1には、例えば、ガラス、透明ポリマーフィルム(ポリエチレンテレフタレート(PET)、テトラアセチルセルロース(TAC)、ポリカーボネート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリエステルスルフォン、シンジオタクチックポリスチレン)等が使用できる。尚、本発明の光電変換素子は、支持体1の表面に形成されることが好ましいが、電極2自体にある程度の硬度があり、自立性を有する場合は、電極2が支持体1を兼ねる構造としてもよく、この場合、支持体1は省略されてもよい。   As long as the support 1 can stably hold the electrode 2 on the surface, the support 1 is not limited by the material and thickness, but needs to have transparency. Therefore, the shape of the support may be plate or film. Transparency refers to the property of transmitting light in a predetermined wavelength region used in a photoelectric conversion element, for example, visible light region at a high rate. For the support 1, for example, glass, transparent polymer film (polyethylene terephthalate (PET), tetraacetyl cellulose (TAC), polycarbonate, polyethylene naphthalate, polyphenylene sulfide, polyester sulfone, syndiotactic polystyrene) or the like can be used. The photoelectric conversion element of the present invention is preferably formed on the surface of the support 1. However, when the electrode 2 itself has a certain degree of hardness and is self-supporting, the structure in which the electrode 2 also serves as the support 1. In this case, the support 1 may be omitted.

本発明において、対向配置される一対の電極(電極2及び電極5)の仕事関数は、相互に相対的に大小関係を有する(即ち互いに仕事関数の異なる)ものとすればよい。従って、電極2の仕事関数が電極5よりも相対的に大きければよい。この場合、両電極間の仕事関数の差は0.5V以上であることが好ましい。尚、各電極と半導体層の間にバッファー層を設置し、電極上のバッファー層の化合物と電極とが化学結合している場合は、これらの制約が緩和されることがある。   In the present invention, the work functions of a pair of electrodes (electrode 2 and electrode 5) arranged opposite to each other may have a relatively large relationship with each other (that is, the work functions are different from each other). Therefore, it is sufficient that the work function of the electrode 2 is relatively larger than that of the electrode 5. In this case, the work function difference between the two electrodes is preferably 0.5 V or more. In addition, when a buffer layer is provided between each electrode and the semiconductor layer and the compound of the buffer layer on the electrode and the electrode are chemically bonded, these restrictions may be relaxed.

電極2及び電極5としては、例えば、金、白金、銀等の貴金属類、酸化亜鉛、酸化インジウム、酸化錫(NESA)、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)等の金属酸化物、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、カルシウム、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、アルミニウム、アルミニウム−リチウム合金、アルミニウム−カルシウム合金、アルミニウム−マグネシウム合金、クロミウム、グラファイト薄膜の他PEDOT−PSS等の有機導電性化合物等を適宜用いることができる。これらの電極物質は、単独で使用してもよく、或いは複数併用してもよい。電極2は、透明性を有する必要が有るため、酸化亜鉛、NESA、ITO、FTO及びPEDOT−PSS等の透明性を有する材料が用いられる。電極2及び電極5は、これらの電極物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、ゾルゲル法等により焼成して形成してもよい。また、電極の厚みは、使用する電極物質の材料にもよるが、電極2及び電極5とも、一般的に5〜1000nm程度、更に好ましくは10〜500nm程度に設定する。   Examples of the electrodes 2 and 5 include noble metals such as gold, platinum, and silver, metals such as zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO). Oxide, lithium, lithium-indium alloy, sodium, sodium-potassium alloy, calcium, magnesium, magnesium-silver alloy, magnesium-indium alloy, indium, ruthenium, titanium, manganese, yttrium, aluminum, aluminum-lithium alloy, aluminum- In addition to calcium alloys, aluminum-magnesium alloys, chromium, graphite thin films, organic conductive compounds such as PEDOT-PSS can be used as appropriate. These electrode materials may be used alone or in combination. Since the electrode 2 needs to have transparency, a transparent material such as zinc oxide, NESA, ITO, FTO, and PEDOT-PSS is used. The electrode 2 and the electrode 5 can be formed by using a dry process or a wet process using these electrode materials in the same manner as the photoelectric conversion layer 4. Further, it may be formed by firing by a sol-gel method or the like. Moreover, although the thickness of an electrode is based also on the material of the electrode substance to be used, both the electrode 2 and the electrode 5 are generally set to about 5-1000 nm, More preferably, about 10-500 nm.

電荷移動層3及び6は、電極材料が光電変換層へ侵入・反応するのを防止したり、光電変換層で分離された電荷の再結合を防止し効率的に電極2及び5へ電荷を移動させる等の役割がある。材料としては、PEDOT:PSS、PEO、V25、酸化亜鉛、フッ化リチウム、TiOx、ナフタレンテトラカルボン酸無水物等の電荷移動物質が挙げられる。電荷移動層3は、透明性を有する必要が有る。光電変換層4がP3HT:PCBMのバルクヘテロ型である場合、電荷移動層3はPEDOT:PSSがよく用いられ、電荷移動層6はLiFがよく用いられる。電荷移動層3及び6は、これらの電荷移動物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、電荷移動層3及び6の厚みは、一般的に0.01〜100nm、更に好ましくは0.1〜50nm程度に設定する。 The charge transfer layers 3 and 6 prevent the electrode material from entering and reacting with the photoelectric conversion layer, and prevent recombination of charges separated by the photoelectric conversion layer, thereby efficiently transferring the charge to the electrodes 2 and 5. There is a role such as letting. Examples of the material include charge transfer materials such as PEDOT: PSS, PEO, V 2 O 5 , zinc oxide, lithium fluoride, TiOx, and naphthalenetetracarboxylic acid anhydride. The charge transfer layer 3 needs to have transparency. When the photoelectric conversion layer 4 is a P3HT: PCBM bulk hetero type, PEDOT: PSS is often used for the charge transfer layer 3, and LiF is often used for the charge transfer layer 6. The charge transfer layers 3 and 6 can be formed using these charge transfer materials by a dry process method or a wet process method in the same manner as the photoelectric conversion layer 4. The thickness of the charge transfer layers 3 and 6 is generally set to 0.01 to 100 nm, more preferably about 0.1 to 50 nm.

本発明の光電変換素子は、本発明の有機薄膜太陽電池の他、フォトダイオード、光検出器等に用いることができる。   The photoelectric conversion element of this invention can be used for a photodiode, a photodetector, etc. other than the organic thin-film solar cell of this invention.

<第二のアントラキノン誘導体>
第二のアントラキノン誘導体は、上記一般式(4)で表される。
尚、特に説明しない部分については、第一のアントラキノン誘導体における説明が適宜適用される。
<Second anthraquinone derivative>
The second anthraquinone derivative is represented by the general formula (4).
In addition, about the part which is not demonstrated especially, the description in a 1st anthraquinone derivative is applied suitably.

上記一般式(4)におけるR17、R18、R19、R20、R21、R22、R23及びR24が表す置換されていてもよい炭化水素基及び置換されていてもよい複素環基としては、上記一般式(1)で表される構成単位の水素原子を置換してよい置換されていてもよい炭化水素及び置換されていてもよい複素環基として例示したものが挙げられる。
また、(Y−1)〜(Y−4)から選ばれる基中のR3、R4及びR5が表す置換されていてもよい炭化水素基としては、上記一般式(1)におけるR4及びR5が表す置換されていてもよい炭化水素基と同様の基が挙げられる。
R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 and R 24 in the above general formula (4) may be substituted hydrocarbon groups and optionally substituted heterocycles. Examples of the group include those exemplified as the optionally substituted hydrocarbon and optionally substituted heterocyclic group which may substitute the hydrogen atom of the structural unit represented by the general formula (1).
Further, (Y-1) ~ The R 3, R 4 and optionally substituted hydrocarbon group represented by R 5 in the group selected from (Y-4), R 4 in the general formula (1) And a group similar to the optionally substituted hydrocarbon group represented by R 5 .

第二のアントラキノン誘導体の好ましい例として、下記一般式(5)で表される化合物が挙げられる。
(式中、R25及びR26は、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表し、R27、R28、R29、R30、R31及びR32は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、X1及びX2は、酸素原子又は硫黄原子を表し、Y3及びY4は上記(Y−1)〜(Y−4)から選ばれる基を2〜5個組み合わせた基を表す。)
Preferable examples of the second anthraquinone derivative include a compound represented by the following general formula (5).
(In the formula, R 25 and R 26 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and R 27 , R 28 , R 29 , R 30 , R 31 and R 32 are a hydrogen atom, Represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, X 1 and X 2 represent an oxygen atom or a sulfur atom, Y 3 and Y 4 represent a group in which 2 to 5 groups selected from the above (Y-1) to (Y-4) are combined.

上記一般式(5)におけるR27、R28、R29、R30、R31、R32及びR34が表す置換されていてもよい炭化水素基及び置換されていてもよい複素環基としては、上記一般式(1)で表される構成単位の水素原子を置換してよい置換されていてもよい炭化水素及び置換されていてもよい複素環基として例示したものが挙げられる。 As the optionally substituted hydrocarbon group and optionally substituted heterocyclic group represented by R 27 , R 28 , R 29 , R 30 , R 31 , R 32 and R 34 in the general formula (5), And those exemplified as the optionally substituted hydrocarbon and the optionally substituted heterocyclic group which may substitute the hydrogen atom of the structural unit represented by the general formula (1).

第二のアントラキノン誘導体は、何れも、その製造方法に制限されず、周知一般の反応を利用した方法で得ることができるが、第二のアントラキノン誘導体は、第一のアントラキノン誘導体の製造方法の途中で生成する中間体(B)又は中間体(C)に対応するので、第一のアントラキノン誘導体の製造方法における中間体(B)又は中間体(C)と同様の方法で製造することができる。   The second anthraquinone derivative is not limited to its production method, and can be obtained by a method using a well-known general reaction. However, the second anthraquinone derivative is in the middle of the production method of the first anthraquinone derivative. Since it corresponds to the intermediate (B) or intermediate (C) produced in step 1, it can be produced by the same method as the intermediate (B) or intermediate (C) in the production method of the first anthraquinone derivative.

第二のアントラキノン誘導体は、第一のアントラキノン誘導体の中間体として好適なほか、酸化防止剤等の用途にも使用することができる。   The second anthraquinone derivative is suitable as an intermediate for the first anthraquinone derivative and can also be used for applications such as an antioxidant.

以下、中間体合成例、実施例及び比較例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。   Hereinafter, the present invention will be described in more detail with reference to intermediate synthesis examples, examples and comparative examples. However, the present invention is not limited by the following examples.

中間体合成例1〜5は、第一のアントラキノン誘導体の合成に必要な中間体(第二のアントラキノン誘導体)の合成例を示し、実施例1〜15は、第一のアントラキノン誘導体の合成例である。実施例16〜37及び比較例1〜7においては、得られた第一のアントラキノン誘導体又は比較化合物を用いて本発明の光電変換材料を調製し、該光電変換材料を用いて光電変換層及び光電変換素子を作製し、光電変換素子の評価を行った。   Intermediate synthesis examples 1 to 5 show synthesis examples of an intermediate (second anthraquinone derivative) necessary for the synthesis of the first anthraquinone derivative, and Examples 1 to 15 are synthesis examples of the first anthraquinone derivative. is there. In Examples 16 to 37 and Comparative Examples 1 to 7, the photoelectric conversion material of the present invention was prepared using the obtained first anthraquinone derivative or the comparative compound, and the photoelectric conversion layer and the photoelectric conversion were prepared using the photoelectric conversion material. A conversion element was produced and the photoelectric conversion element was evaluated.

〔中間体合成例1〕AQN−4Tの合成
<ステップ1>AQN−2T(下記〔化19〕に示す化合物)の合成
反応容器に、2,6−ジブロモアントラキノン10.0g(27.3mmol)、3−ヘキシル−2−チオフェンボロン酸ピナコールエステル24.1g(82.0mmol)、炭酸カリウム水溶液69ml(2.0M 136.6mmol)及び、テトラヒドロフラン(THF)2200mlを仕込み、窒素にて置換した。この雰囲気下においてテトラキス(トリフェニルホスフィン)パラジウム〔Pd(PPh34〕947mg(0.82mmol)を加え、80℃で4時間反応させた。さらにPd(PPh34 500mg(0.43mmol)を加え、80℃で6時間反応させ、ラヂオライトで濾過した後、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、さらにメタノールにて洗浄し、減圧濃縮することで、淡黄色粉末物を15.2g得た(粗収率:102%)。得られた淡黄色粉末物が目的のAQN−2Tであることは1H-NMR及び13C-NMRで確認した。分析結果を次に示す。尚、AQN−2Tは精製することなく、次の反応に使用した。
1H-NMR (CDCl3) δ: 8.40 (2H、 s)、 8.36 (2H、 d、 J = 7.9 Hz)、 7.86 (2H、 d、J = 7.9 Hz)、 7.36 (2H、 d、 J = 4.9 Hz)、 7.05 (2H、 d、 J = 4.9 Hz)、 2.75 (4H、 t、 J = 7.9 Hz)、 1.65 (2H、 m)、 1.31 (12H、 m)、 0.86 (6H、 t、 J = 6.7 Hz).
13C-NMR (CDCl3) δ: 182.61、 141.15、 140.83、 135.65、 134.17、 133.73、 131.80、130.18、 127.73、 127.35、 125.59、 31.60、 30.88、 29.15、 28.99、 22.59、 14.07
[Intermediate Synthesis Example 1] Synthesis of AQN-4T <Step 1> Synthesis of AQN-2T (compound shown in [Chemical Formula 19] below) In a reaction vessel, 10.0 g (27.3 mmol) of 2,6-dibromoanthraquinone, 3-hexyl-2-thiopheneboronic acid pinacol ester 24.1 g (82.0 mmol), potassium carbonate aqueous solution 69 ml (2.0 M 136.6 mmol) and tetrahydrofuran (THF) 2200 ml were charged and replaced with nitrogen. Under this atmosphere, 947 mg (0.82 mmol) of tetrakis (triphenylphosphine) palladium [Pd (PPh 3 ) 4 ] was added and reacted at 80 ° C. for 4 hours. Further, 500 mg (0.43 mmol) of Pd (PPh 3 ) 4 was added, reacted at 80 ° C. for 6 hours, filtered through radiolite, separated into oil and water by adding ultrapure water and toluene, and the organic layer was washed with ultrapure water. did. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, further washed with methanol, and concentrated under reduced pressure to obtain 15.2 g of a pale yellow powder (crude yield: 102%). It was confirmed by 1 H-NMR and 13 C-NMR that the obtained pale yellow powder was the target AQN-2T. The analysis results are shown below. AQN-2T was used in the next reaction without purification.
1 H-NMR (CDCl 3 ) δ: 8.40 (2H, s), 8.36 (2H, d, J = 7.9 Hz), 7.86 (2H, d, J = 7.9 Hz), 7.36 (2H, d, J = 4.9 Hz), 7.05 (2H, d, J = 4.9 Hz), 2.75 (4H, t, J = 7.9 Hz), 1.65 (2H, m), 1.31 (12H, m), 0.86 (6H, t, J = 6.7 Hz).
13 C-NMR (CDCl 3 ) δ: 182.61, 141.15, 140.83, 135.65, 134.17, 133.73, 131.80, 130.18, 127.73, 127.35, 125.59, 31.60, 30.88, 29.15, 28.99, 22.59, 14.07

<ステップ2>AQN−2TI2(下記〔化20〕に示す化合物)の合成
反応容器に、<ステップ1>で得られたAQN−2Tを14.7g(27.0mmol) とTHF 213mlを仕込み、0℃まで冷却した後、1,3−ジヨード−5,5−ジメチルヒダントイン(DIH) 25.6g(67.4mmol)を加え、攪拌した。濃硫酸11mlを滴下し、氷冷した状態で1時間、室温で1時間反応させた後、メタノールを加え、濾過をすることで黄色固体物を得た。この黄色固体物を減圧下にて乾燥させ、メタノール/超純水の混合溶液で洗浄し、これを減圧下にて乾燥し、黄色粉末物を21.5g得た(粗収率:100%)。得られた黄色粉末物が目的のAQN−2TI2であることは1H−NMR及び13C−NMRで確認した。分析結果を次に示す。尚、AQN−2TI2は精製することなく、次の反応に使用した。
1H-NMR (CDCl3) δ: 8.35 (2H、 d、 J = 7.9 Hz)、 8.32 (2H、 d、 J = 1.8 Hz)、 7.79 (2H、 dd、 J = 7.9、 1.8 Hz)、 7.19 (2H、 s)、 2.69 (4H、 t、 J = 7.9 Hz)、 1.66-1.59 (4H、 m)、 1.34-1.26 (12H、 m)、 0.85 (6H、 t、 J = 6.7 Hz).
13C-NMR (CDCl3) δ: 182.31、 142.64、 141.64、 139.86、 139.85、 133.98、 133.70、 132.01、 127.86、127.19、 73.97、 31.52、 30.77、 29.03、 28.59、 22.50、 14.04
<Step 2> Synthesis of AQN-2TI 2 (compound shown in [Chemical Formula 20] below) A reaction vessel was charged with 14.7 g (27.0 mmol) of AQN-2T obtained in <Step 1> and 213 ml of THF, After cooling to 0 ° C., 25.6 g (67.4 mmol) of 1,3-diiodo-5,5-dimethylhydantoin (DIH) was added and stirred. Concentrated sulfuric acid (11 ml) was added dropwise, and the mixture was reacted for 1 hour in an ice-cooled state and at room temperature for 1 hour. Methanol was added, followed by filtration to obtain a yellow solid. This yellow solid was dried under reduced pressure, washed with a mixed solution of methanol / ultra pure water, and dried under reduced pressure to obtain 21.5 g of a yellow powder (crude yield: 100%). . It was confirmed by 1 H-NMR and 13 C-NMR that the obtained yellow powder was the target AQN-2TI 2 . The analysis results are shown below. AQN-2TI 2 was used in the next reaction without purification.
1 H-NMR (CDCl 3 ) δ: 8.35 (2H, d, J = 7.9 Hz), 8.32 (2H, d, J = 1.8 Hz), 7.79 (2H, dd, J = 7.9, 1.8 Hz), 7.19 ( 2H, s), 2.69 (4H, t, J = 7.9 Hz), 1.66-1.59 (4H, m), 1.34-1.26 (12H, m), 0.85 (6H, t, J = 6.7 Hz).
13 C-NMR (CDCl 3 ) δ: 182.31, 142.64, 141.64, 139.86, 139.85, 133.98, 133.70, 132.01, 127.86, 127.19, 73.97, 31.52, 30.77, 29.03, 28.59, 22.50, 14.04

<ステップ3>AQN−4T(下記〔化21〕に示す化合物)の合成
反応容器に、<ステップ2>で得られたAQN−2TI2を3.4g(4.3mmol)、3−ヘキシル−2−チオフェンボロン酸ピナコールエステル3.8g(12.9mmol)、炭酸カリウム水溶液11ml(2.0M 21.5mmol)、及びTHF 600mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 150mg(0.14mmol)を加え、90℃で5時間反応させた。さらにPd(PPh34 450mg(0.42mmol)を加え、100℃で20時間反応させ、ラヂオライトで濾過した後、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮、さらにメタノールにて洗浄し、減圧乾燥、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン−トルエン)、橙色粉末物を2.6g得た(収率:69%)。得られた橙色粉末物が目的のAQN−4Tであることは1H−NMR及び13C−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 8.43 (2H、 d、 J = 1.8 Hz)、 8.37 (2H、 d、 J = 7.9 Hz)、 7.89 (2H、 dd、 J = 7.9、 1.8 Hz)、 7.20 (2H、 d、 J = 5.5 Hz)、 7.06 (2H、 s)、 6.96 (2H、 d、 J = 5.5 Hz)、 2.79 (8H、 m)、 1.74-1.64 (8H、 m)、 1.35 (24H、 m)、 0.88 (12H、 q、 J = 7.3 Hz).
13C-NMR (CDCl3) δ:182.59、 141.31、 140.81、 140.07、 136.57、 135.35、 133.88、133.86、 131.74、130.25、 130.20、 128.93、 127.88、 127.11、 124.02、 31.76、 31.67、 30.85、 30.72、 29.39、 29.38、 29.30、 29.22、 22.69、 22.65、 14.17、 14.14
<Step 3> Synthesis of AQN-4T (compound shown in the following [Chemical Formula 21]) In a reaction vessel, 3.4 g (4.3 mmol) of AQN-2TI 2 obtained in <Step 2>, 3-hexyl-2 -Thiophenboronic acid pinacol ester 3.8g (12.9mmol), potassium carbonate aqueous solution 11ml (2.0M 21.5mmol), and THF 600ml were prepared, and it substituted by nitrogen. Under this atmosphere, 150 mg (0.14 mmol) of Pd (PPh 3 ) 4 was added and reacted at 90 ° C. for 5 hours. Further, 450 mg (0.42 mmol) of Pd (PPh 3 ) 4 was added, reacted at 100 ° C. for 20 hours, filtered through radiolite, separated into oil and water by adding ultrapure water and toluene, and the organic layer was washed with ultrapure water. did. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, further washed with methanol, dried under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane-toluene) to obtain 2.6 g of an orange powder. Obtained (yield: 69%). It was confirmed by 1 H-NMR and 13 C-NMR that the obtained orange powder was the target AQN-4T. The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 8.43 (2H, d, J = 1.8 Hz), 8.37 (2H, d, J = 7.9 Hz), 7.89 (2H, dd, J = 7.9, 1.8 Hz), 7.20 ( 2H, d, J = 5.5 Hz), 7.06 (2H, s), 6.96 (2H, d, J = 5.5 Hz), 2.79 (8H, m), 1.74-1.64 (8H, m), 1.35 (24H, m ), 0.88 (12H, q, J = 7.3 Hz).
13 C-NMR (CDCl 3 ) δ: 182.59, 141.31, 140.81, 140.07, 136.57, 135.35, 133.88, 133.86, 131.74, 130.25, 130.20, 128.93, 127.88, 127.11, 124.02, 31.76, 31.67, 30.85, 30.72, 29.39, 29.38, 29.30, 29.22, 22.69, 22.65, 14.17, 14.14

〔中間体合成例2〕AQN−4TBr2(下記〔化22〕に示す化合物)の合成
反応容器に、中間体合成例1で得られたAQN−4Tを10.0g(11.4mmol)とTHF 115mlを仕込み、この溶液にTHF 54mlに溶解したトリメチルフェニルアンモニウムブロミド(PTMA−Br3) 21.5g(57.2mmol)を30分かけて滴下し、4時間攪拌した。さらにTHF 22mlに溶解したPTMA−Br3 8.6g(22.9mmol)を滴下し、1時間反応させ、チオ硫酸ナトリウム水溶液、及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン−トルエン)、赤色粉末物を8.8g得た(収率:74%)。得られた赤色粉末物が目的のAQN−4TBr2であることは1H−NMR及び13C−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 8.41 (2H、 d、 J = 1.8 Hz)、 8.37 (2H、 d、 J = 7.9 Hz)、 7.87 (2H、 dd、 J = 7.9、 1.8 Hz)、 7.00 (2H、 s)、 6.92 (2H、 s)、 2.75 (8H、 t、J = 7.6 Hz)、 1.65 (8H、 m)、 1.39-1.27 (24H、 m)、 0.91-0.85 (12H、 m).
13C-NMR (CDCl3) δ:182.41、 141.29、 140.56、 140.49、 135.7、 135.07、 133.82、 133.77、132.74、131.76、 131.68、 129.17、 127.83、 127.08、 110.75、 31.63、31.59、 30.77、30.51、 29.26、 29.15、 29.12、 29.10、 22.61、 22.60、 14.10、 14.07
[Intermediate Synthesis Example 2] Synthesis of AQN-4TBr 2 (compound shown in [Chemical Formula 22] below) In a reaction vessel, 10.0 g (11.4 mmol) of AQN-4T obtained in Intermediate Synthesis Example 1 and THF 115 ml was charged, and 21.5 g (57.2 mmol) of trimethylphenylammonium bromide (PTMA-Br 3 ) dissolved in 54 ml of THF was added dropwise to the solution over 30 minutes, followed by stirring for 4 hours. Further, 8.6 g (22.9 mmol) of PTMA-Br 3 dissolved in 22 ml of THF was added dropwise and reacted for 1 hour. An aqueous sodium thiosulfate solution and toluene were added to separate the oil and water, and the organic layer was washed with ultrapure water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane-toluene) to obtain 8.8 g of a red powder (yield: 74%). It was confirmed by 1 H-NMR and 13 C-NMR that the obtained red powder was the target AQN-4TBr 2 . The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 8.41 (2H, d, J = 1.8 Hz), 8.37 (2H, d, J = 7.9 Hz), 7.87 (2H, dd, J = 7.9, 1.8 Hz), 7.00 ( 2H, s), 6.92 (2H, s), 2.75 (8H, t, J = 7.6 Hz), 1.65 (8H, m), 1.39-1.27 (24H, m), 0.91-0.85 (12H, m).
13 C-NMR (CDCl 3 ) δ: 182.41, 141.29, 140.56, 140.49, 135.7, 135.07, 133.82, 133.77, 132.74, 131.76, 131.68, 129.17, 127.83, 127.08, 110.75, 31.63, 31.59, 30.77, 30.51, 29.26, 29.15, 29.12, 29.10, 22.61, 22.60, 14.10, 14.07

〔中間体合成例3〕AQN−2TI2(dihexyl)の合成
<ステップ1>AQN−2T(dihexyl)(下記〔化22−1〕に示す化合物)の合成
反応容器に、2,6−ジブロモアントラキノン190mg(0.53mmol)、3,4−ジヘキシル−2−チオフェンボロン酸ピナコールエステル500mg(1.33mmol)、炭酸カリウム水溶液1.4ml(2.0M 2.64mmol)及び、THF38mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 61mg(0.05mmol)を加え、100℃で5時間反応させた。さらにPd(PPh34 30mg(0.03mmol)を加え、100℃で3時間反応させ、ラヂオライトで濾過した後、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、さらにメタノールにて洗浄し、減圧濃縮することで、淡黄色粉末物を320mg得た(粗収率:85%)。得られた淡黄色粉末物が目的のAQN−2T(dihexyl)であることは1H−NMRで確認した。分析結果を次に示す。なおAQN−2T(dihexyl)は精製することなく、次の反応に使用した。
1H-NMR(CDCl3) δ: 8.39 (2H, d, J = 1.8 Hz), 8.35 (1H, s), 8.33 (1H, s), 7.85 (2H, dd, J = 7.9, 1.8 Hz), 7.03 (2H, s), 2.66 (4H, t, J = 8.2 Hz), 2.58 (4H, t, J = 7.6 Hz), 1.73-1.65 (4H, m), 1.52 (4H, dd, J = 8.5, 6.7 Hz), 1.43 (4H, d, J = 6.1 Hz), 1.37-1.33 (12H, m), 1.26 (12H, m), 0.92 (6H, t, J = 7.0 Hz), 0.85 (6H, t, J = 7.0 Hz)
[Intermediate Synthesis Example 3] Synthesis of AQN-2TI 2 (dihexyl) <Step 1> Synthesis of AQN-2T (dihexyl) (compound shown in [Chemical Formula 22-1] below) In a reaction vessel, 2,6-dibromoanthraquinone 190 mg (0.53 mmol), 3,4-dihexyl-2-thiopheneboronic acid pinacol ester 500 mg (1.33 mmol), potassium carbonate aqueous solution 1.4 ml (2.0 M 2.64 mmol) and THF 38 ml were charged with nitrogen. Replaced. Under this atmosphere, 61 mg (0.05 mmol) of Pd (PPh 3 ) 4 was added and reacted at 100 ° C. for 5 hours. Further, 30 mg (0.03 mmol) of Pd (PPh 3 ) 4 was added, reacted at 100 ° C. for 3 hours, filtered through radiolite, separated into oil and water by adding ultrapure water and toluene, and the organic layer was washed with ultrapure water. did. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, further washed with methanol, and concentrated under reduced pressure to obtain 320 mg of a pale yellow powder (crude yield: 85%). It was confirmed by 1 H-NMR that the obtained pale yellow powder was the target AQN-2T (dihexyl). The analysis results are shown below. AQN-2T (dihexyl) was used in the next reaction without purification.
1 H-NMR (CDCl 3 ) δ: 8.39 (2H, d, J = 1.8 Hz), 8.35 (1H, s), 8.33 (1H, s), 7.85 (2H, dd, J = 7.9, 1.8 Hz), 7.03 (2H, s), 2.66 (4H, t, J = 8.2 Hz), 2.58 (4H, t, J = 7.6 Hz), 1.73-1.65 (4H, m), 1.52 (4H, dd, J = 8.5, 6.7 Hz), 1.43 (4H, d, J = 6.1 Hz), 1.37-1.33 (12H, m), 1.26 (12H, m), 0.92 (6H, t, J = 7.0 Hz), 0.85 (6H, t, (J = 7.0 Hz)

<ステップ2>AQN−2TI2(dihexyl)(下記〔化22−2〕に示す化合物)の合成
反応容器に、ステップ1で得られたAQN−2T(dihexyl)を100mg(0.14mmol)とTHF 6mlを仕込み、0℃まで冷却した後、1,3−ジヨード−5,5−ジメチルヒダントイン160mg(0.42mmol)を加え、攪拌した。濃硫酸を4滴滴下し、氷冷した状態で1時間、室温で1時間反応させた後、メタノールを加え、濾過をすることで黄色固体物を得た。この黄色固体物を減圧下にて乾燥させ、メタノール−超純水の混合溶液で洗浄し、これを減圧下にて乾燥し、黄色粉末物を120mg得た(粗収率:89%)。得られた黄色粉末物が目的のAQN−2TI2(dihexyl)であることは1H−NMRで確認した。分析結果を次に示す。なおAQN−2TI2(dihexyl)は精製することなく、次の反応に使用した。
1H-NMR (CDCl3) δ: 8.34 (2H, d, J = 6.1 Hz), 8.33 (2H, s), 7.79 (2H, d, J = 7.9 Hz) , 2.69 (4H, t, J = 7.9 Hz), 2.57 (4H, t, J = 7.9 Hz), 1.50-1.24 (32H, m), 0.88 (12H,m)
<Step 2> Synthesis of AQN-2TI 2 (dihexyl) (compound shown in [Chemical Formula 22-2] below) In a reaction vessel, 100 mg (0.14 mmol) of AQN-2T (dihexyl) obtained in Step 1 and THF After charging 6 ml and cooling to 0 ° C., 160 mg (0.42 mmol) of 1,3-diiodo-5,5-dimethylhydantoin was added and stirred. Four drops of concentrated sulfuric acid were added dropwise, and the mixture was reacted for 1 hour in an ice-cooled state and at room temperature for 1 hour, and then methanol was added and filtered to obtain a yellow solid. This yellow solid was dried under reduced pressure, washed with a mixed solution of methanol-ultra pure water, and dried under reduced pressure to obtain 120 mg of a yellow powder (crude yield: 89%). It was confirmed by 1 H-NMR that the obtained yellow powder was the target AQN-2TI 2 (dihexyl). The analysis results are shown below. AQN-2TI 2 (dihexyl) was used in the next reaction without purification.
1H-NMR (CDCl3) δ: 8.34 (2H, d, J = 6.1 Hz), 8.33 (2H, s), 7.79 (2H, d, J = 7.9 Hz), 2.69 (4H, t, J = 7.9 Hz) , 2.57 (4H, t, J = 7.9 Hz), 1.50-1.24 (32H, m), 0.88 (12H, m)

〔中間体合成例4〕1,4−AQN−2TBr2の合成
<ステップ1>1,4−AQN−OTf(下記〔化22−3〕に示す化合物)の合成
反応容器に、キニザリン2.0g(8.3mmol)及びジメチルアミノピリジン100mg(0.83mmol)を仕込み、窒素にて置換した。この雰囲気下で脱水クロロホルム25ml及びジイソプロピルエチルアミン2.8g(19.1mmol)を加え、氷冷下で30分撹拌した。さらにトリフルオロメタンスルホニルクロリド2.9g(17.4mmol)を加え、氷冷下で2時間、さらに室温で3時間反応させた。1.2M−塩酸を加えて反応を停止し、メタノールで洗浄、濾過し、減圧乾燥することで、淡黄粉末物を3.6g(粗収率:83%)得た。得られた淡黄色粉末物が目的の1,4−AQN−OTfであることは1H−NMRで確認した。分析結果を次に示す。なお1,4−AQN−OTfは精製することなく、次の反応に使用した。
1H-NMR (CDCl3) δ: 8.31 (2H, td, J = 6.4, 3.7 Hz), 7.85 (2H, dq, J = 16.8, 4.4 Hz), 7.68 (2H, d, J = 17.1 Hz).
[Intermediate Synthesis Example 4] Synthesis of 1,4-AQN-2TBr 2 <Step 1> Synthesis of 1,4-AQN-OTf (compound shown in the following [Chemical Formula 22-3]) In a reaction vessel, 2.0 g of quinizarin (8.3 mmol) and 100 mg (0.83 mmol) of dimethylaminopyridine were charged and replaced with nitrogen. Under this atmosphere, 25 ml of dehydrated chloroform and 2.8 g (19.1 mmol) of diisopropylethylamine were added, and the mixture was stirred for 30 minutes under ice cooling. Further, 2.9 g (17.4 mmol) of trifluoromethanesulfonyl chloride was added, and the mixture was reacted for 2 hours under ice cooling and further for 3 hours at room temperature. The reaction was stopped by adding 1.2 M-hydrochloric acid, washed with methanol, filtered, and dried under reduced pressure to obtain 3.6 g (crude yield: 83%) of a pale yellow powder. It was confirmed by 1 H-NMR that the obtained pale yellow powder was the desired 1,4-AQN-OTf. The analysis results are shown below. 1,4-AQN-OTf was used for the next reaction without purification.
1 H-NMR (CDCl 3 ) δ: 8.31 (2H, td, J = 6.4, 3.7 Hz), 7.85 (2H, dq, J = 16.8, 4.4 Hz), 7.68 (2H, d, J = 17.1 Hz).

<ステップ2>1,4−AQN−2T(下記〔化22−4〕に示す化合物)の合成
反応容器に、ステップ1で得られた1,4−AQN−OTf 300mg(0.59mmol)、3−ヘキシル−2−チオフェンボロン酸ピナコールエステル520mg(1.77mmol) 、炭酸カリウム水溶液1.5ml(2.0M 3.00mmol)及び、THF 43mlを仕込み、窒素にて置換した。この雰囲気下において、Pd(PPh34 68mg(0.06mmol)を加え、80℃で5時間反応させ、ラヂオライトで濾過した後、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、カラム精製することで、橙色油状物を300mg得た(収率:93%)。得られた橙色油状物が目的の1,4−AQN−2Tであることは1H−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 8.07 (2H, dd, J = 5.8, 3.4 Hz), 7.69 (2H, dd, J = 5.8, 3.4 Hz), 7.62 (2H, s), 7.35 (2H, d, J = 5.5 Hz), 7.03 (2H, d, J = 4.9 Hz), 2.36 (4H, t, J = 6.7 Hz), 1.50 (4H, t, J = 7.3 Hz), 1.14 (12H, m), 0.77 (6H, t, J = 7.0 Hz).
<Step 2> Synthesis of 1,4-AQN-2T (compound shown in [Chemical Formula 22-4] below) In a reaction vessel, 1,4-AQN-OTf 300 mg (0.59 mmol) obtained in Step 1 and 3 -Hexyl-2-thiopheneboronic acid pinacol ester (520 mg, 1.77 mmol), potassium carbonate aqueous solution (1.5 ml, 2.0 M, 3.00 mmol) and THF (43 ml) were charged and the solution was replaced with nitrogen. Under this atmosphere, 68 mg (0.06 mmol) of Pd (PPh 3 ) 4 was added, reacted at 80 ° C. for 5 hours, filtered through radiolite, ultrapure water and toluene were added, and oil-water separation was performed. Washed with pure water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and purified by column to obtain 300 mg of an orange oil (yield: 93%). It was confirmed by 1 H-NMR that the obtained orange oil was the desired 1,4-AQN-2T. The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 8.07 (2H, dd, J = 5.8, 3.4 Hz), 7.69 (2H, dd, J = 5.8, 3.4 Hz), 7.62 (2H, s), 7.35 (2H, d , J = 5.5 Hz), 7.03 (2H, d, J = 4.9 Hz), 2.36 (4H, t, J = 6.7 Hz), 1.50 (4H, t, J = 7.3 Hz), 1.14 (12H, m), 0.77 (6H, t, J = 7.0 Hz).

<ステップ3>1,4−AQN−2TBr2(下記〔化22−5〕に示す化合物)の合成
反応容器に、ステップ2で得られた1,4−AQN−2Tを100mg(0.18mmol)とTHF 1.8mlを仕込み、この溶液にTHF 0.4mlに溶解したトリメチルフェニルアンモニウムブロミド(PTMA−Br3)210mg(0.54mmol)を滴下しながら加え、攪拌した。濃硫酸を3滴滴下し、室温で3時間反応させた。さらにTHFに溶解したPTMA−Br3を210mg(0.54mmol)滴下し、4時間反応させ、チオ硫酸ナトリウム水溶液、及びヘキサンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、カラム精製することで、橙色油状物を110mg得た(収率:85%)。得られた橙色油状物が目的の1,4−AQN−2TBr2であることは1H−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 8.09 (2H, dd, J = 5.5, 3.0 Hz), 7.73 (2H, dd, J = 5.8, 3.4 Hz), 7.60 (2H, s), 6.97 (2H, s), 2.29 (4H, t, J = 7.0 Hz), 1.46 (4H, t, J = 6.4 Hz), 1.13 (12H, m), 0.77 (6H, t, J = 7.0 Hz).
<Step 3> Synthesis of 1,4-AQN-2TBr 2 (compound shown in [Chemical Formula 22-5] below) In a reaction vessel, 100 mg (0.18 mmol) of 1,4-AQN-2T obtained in Step 2 was added. And 1.8 ml of THF were charged, and 210 mg (0.54 mmol) of trimethylphenylammonium bromide (PTMA-Br 3 ) dissolved in 0.4 ml of THF was added dropwise to this solution and stirred. 3 drops of concentrated sulfuric acid was added dropwise and reacted at room temperature for 3 hours. Further, 210 mg (0.54 mmol) of PTMA-Br 3 dissolved in THF was added dropwise and reacted for 4 hours. An aqueous sodium thiosulfate solution and hexane were added to separate the oil and water, and the organic layer was washed with ultrapure water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and purified by column to obtain 110 mg of an orange oil (yield: 85%). It was confirmed by 1 H-NMR that the resulting orange oil was the desired 1,4-AQN-2TBr 2 . The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 8.09 (2H, dd, J = 5.5, 3.0 Hz), 7.73 (2H, dd, J = 5.8, 3.4 Hz), 7.60 (2H, s), 6.97 (2H, s ), 2.29 (4H, t, J = 7.0 Hz), 1.46 (4H, t, J = 6.4 Hz), 1.13 (12H, m), 0.77 (6H, t, J = 7.0 Hz).

〔中間体合成例5〕1,4−AQN−Cl2−2TBr2の合成
<ステップ1>1,4−AQN−Cl2−OTf(下記〔化22−6〕に示す化合物)の合成
反応容器に、5,8−ジクロロ−1,4−ジヒドロキシアントラキノン0.5g (1.61mmol)を仕込み、窒素にて置換した。この雰囲気下で脱水クロロホルム40ml及び脱水ピリジン20mlを加え、氷冷下で10分撹拌した。さらにトリフルオロメタンスルホン酸無水物1.4g(4.83mmol)を加え、氷冷下で3時間、さらに室温で1時間反応させた。これを1.2M−塩酸、及びヘキサンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、カラム精製することで、橙色油状物を580mg得た(収率:63%)。得られた橙色油状物が目的の1,4−AQN−Cl2−OTfであることは1H−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 1H-NMR (CD2Cl2) δ: 7.72 (2H, s), 7.69 (2H, s)
[Intermediate Synthesis Example 5] Synthesis of 1,4-AQN-Cl 2 -2TBr 2 <Step 1> Synthesis of 1,4-AQN-Cl 2 -OTf (compound shown in [Chemical Formula 22-6] below) Reaction vessel Into this, 0.5 g (1.61 mmol) of 5,8-dichloro-1,4-dihydroxyanthraquinone was charged and replaced with nitrogen. Under this atmosphere, 40 ml of dehydrated chloroform and 20 ml of dehydrated pyridine were added, and the mixture was stirred for 10 minutes under ice cooling. Further, 1.4 g (4.83 mmol) of trifluoromethanesulfonic anhydride was added, and the mixture was reacted for 3 hours under ice cooling and further for 1 hour at room temperature. 1.2M-hydrochloric acid and hexane were added thereto for oil / water separation, and the organic layer was washed with ultrapure water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and column purified to obtain 580 mg of an orange oil (yield: 63%). It was confirmed by 1 H-NMR that the obtained orange oil was the desired 1,4-AQN-Cl 2 -OTf. The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 1 H-NMR (CD 2 Cl 2 ) δ: 7.72 (2H, s), 7.69 (2H, s)

<ステップ2>1,4−AQN−Cl2−2T(下記〔化22−7〕に示す化合物)の合成
反応容器に、ステップ1で得られた1,4−AQN−Cl2−OTf 200mg(0.35mmol)、3−ヘキシル−2−チオフェンボロン酸ピナコールエステル300mg(1.05mmol)、炭酸カリウム水溶液0.7ml(2.0M 1.75mmol)及び、THF 25mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 40mg(0.04mmol)を加え、85℃で6時間反応させ、ラヂオライトで濾過した後、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、カラム精製することで、橙色油状物を200mg得た(収率:94%)。得られた橙色油状物が目的の1,4−AQN−Cl2−2Tであることは1H−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 7.59 (2H, s), 7.54 (2H, s), 7.35 (2H, d, J
= 4.9 Hz), 7.00 (2H, d, J = 4.9 Hz), 2.46 (4H, t, J = 7.9 Hz), 1.53 (4H, t, J = 7.6 Hz), 1.16 (12H, s), 0.80 (6H, t, J = 7.0 Hz).
<Step 2> Synthesis of 1,4-AQN-Cl 2 -2T (compound shown in [Chemical Formula 22-7] below) In a reaction vessel, 1,4-AQN-Cl 2 -OTf 200 mg obtained in Step 1 ( 0.35 mmol), 300 mg (1.05 mmol) of 3-hexyl-2-thiopheneboronic acid pinacol ester, 0.7 ml of potassium carbonate aqueous solution (2.0M 1.75 mmol), and 25 ml of THF were charged and replaced with nitrogen. Under this atmosphere, 40 mg (0.04 mmol) of Pd (PPh 3 ) 4 was added, reacted at 85 ° C. for 6 hours, filtered through radiolite, separated into oil and water by adding ultrapure water and toluene, and the organic layer was separated from ultrapure. Washed with water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and purified by column to obtain 200 mg of an orange oil (yield: 94%). It was confirmed by 1 H-NMR that the obtained orange oil was the desired 1,4-AQN-Cl 2 -2T. The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 7.59 (2H, s), 7.54 (2H, s), 7.35 (2H, d, J
= 4.9 Hz), 7.00 (2H, d, J = 4.9 Hz), 2.46 (4H, t, J = 7.9 Hz), 1.53 (4H, t, J = 7.6 Hz), 1.16 (12H, s), 0.80 ( (6H, t, J = 7.0 Hz).

<ステップ3>1,4−AQN−Cl2−2TBr2(下記〔化22−8〕に示す化合物)の合成
反応容器に、ステップ2で得られた1,4−AQN−Cl2−2Tを90mg(0.15mmol)とTHF 1.8mlを仕込み、この溶液にTHF 0.4mlに溶解したトリメチルフェニルアンモニウムブロミド(PTMA−Br3)160mg(0.45mmol)を滴下しながら加え、攪拌した。濃硫酸を3滴滴下し、室温で5時間反応させた。さらにTHFに溶解したPTMA−Br3を160mg(0.45mmol)滴下し、一晩室温で反応させ、チオ硫酸ナトリウム水溶液、及びヘキサンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濾過、減圧濃縮し、カラム精製することで、橙色油状物を90mg得た(収率:79%)。得られた橙色油状物が目的の1,4−AQN−Cl2−2TBr2であることは1H−NMRで確認した。分析結果を次に示す。
1H-NMR (CDCl3) δ: 1H-NMR (CDCl3) δ: 7.57 (2H, s), 7.56 (2H, s), 6.95 (2H, s), 2.37 (4H, t, J = 6.7 Hz), 1.49 (4H, t, J = 7.9 Hz), 1.14 (12H, s), 0.79 (6H, t, J = 7.0 Hz).
<Step 3> Synthesis of 1,4-AQN-Cl 2 -2TBr 2 (compound shown in [Chemical Formula 22-8] below) In a reaction vessel, 1,4-AQN-Cl 2 -2T obtained in Step 2 was added. 90 mg (0.15 mmol) and 1.8 ml of THF were charged, and 160 mg (0.45 mmol) of trimethylphenylammonium bromide (PTMA-Br 3 ) dissolved in 0.4 ml of THF was added dropwise to this solution and stirred. 3 drops of concentrated sulfuric acid was added dropwise and reacted at room temperature for 5 hours. Further, 160 mg (0.45 mmol) of PTMA-Br 3 dissolved in THF was added dropwise and reacted overnight at room temperature. An aqueous sodium thiosulfate solution and hexane were added to separate the oil and water, and the organic layer was washed with ultrapure water. The organic layer was dried over magnesium sulfate, filtered, concentrated under reduced pressure, and purified by column to obtain 90 mg of an orange oil (yield: 79%). It was confirmed by 1 H-NMR that the obtained orange oil was the desired 1,4-AQN-Cl 2 -2TBr 2 . The analysis results are shown below.
1 H-NMR (CDCl 3 ) δ: 1 H-NMR (CDCl 3 ) δ: 7.57 (2H, s), 7.56 (2H, s), 6.95 (2H, s), 2.37 (4H, t, J = 6.7 Hz), 1.49 (4H, t, J = 7.9 Hz), 1.14 (12H, s), 0.79 (6H, t, J = 7.0 Hz).

〔実施例1〕化合物No.7の合成(R1及びR2がフェニル)
反応容器に、中間体合成例1の<ステップ2>で合成したAQN−2TI2を260mg(0.33mmol)、9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステル 230mg(0.35mmol)、Aliquat 13mg、炭酸ナトリウム水溶液13ml(2.0M 26.0mmol)、及びトルエン26mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 38mg(0.03mmol)を加え、110℃で16時間反応させた。Pd(PPh34 38mg(0.03mmol)を加え、110℃で8時間反応させた。フェニルボロン酸400mg(3.3mmol)、及びPd(PPh34 38mg(0.03mmol)を加え、110℃で4時間反応させた後、更にフェニルボロン酸をフェニルブロミド520mg(3.3mmol)に変更し、同様の反応を行なった。室温まで冷却し、メタノールを加え、得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをTHFに溶解させ、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールにて分散し、濾別して得られた残渣を、真空乾燥することで、黒色粉末物である化合物No.7を178mg得た(収率:53%)。
得られた化合物No.7の数平均分子量(Mn)は11663、重量平均分子量(Mw)は20609であり、Mw/Mnは1.77であった。
Example 1 Compound No. 1 Synthesis of 7 (R 1 and R 2 are phenyl)
In a reaction vessel, 260 mg (0.33 mmol) of AQN-2TI 2 synthesized in <Step 2> of Intermediate Synthesis Example 1 and 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester 230 mg (0.35 mmol), Aliquat 13 mg, sodium carbonate aqueous solution 13 ml (2.0 M 26.0 mmol), and toluene 26 ml were charged and replaced with nitrogen. Under this atmosphere, 38 mg (0.03 mmol) of Pd (PPh 3 ) 4 was added and reacted at 110 ° C. for 16 hours. 38 mg (0.03 mmol) of Pd (PPh 3 ) 4 was added and reacted at 110 ° C. for 8 hours. After adding 400 mg (3.3 mmol) of phenylboronic acid and 38 mg (0.03 mmol) of Pd (PPh 3 ) 4 and reacting at 110 ° C. for 4 hours, phenylboronic acid was further added to 520 mg (3.3 mmol) of phenylbromide. The same reaction was performed after changing. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. This residue was washed with acetone for 8 hours using a Soxhlet extractor, dissolved in THF, and filtered through radiolite. This was concentrated under reduced pressure, then dispersed in methanol, and the residue obtained by filtration was dried in vacuo to give compound No. 1 which was a black powder. 7 (yield: 53%) was obtained.
The obtained Compound No. 7 had a number average molecular weight (Mn) of 11,663, a weight average molecular weight (Mw) of 20,609, and Mw / Mn of 1.77.

〔実施例2〕化合物No.の合成(R1及びR2がフェニル)
反応容器に、中間体合成例2で合成したAQN−4TBr2を300mg(0.29mmol)、9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステル180mg(0.32mmol)、Aliquat 20mg、炭酸ナトリウム水溶液15ml(2.0M 40.3mmol)、及びトルエン30mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 34mg(0.03mmol)を加え、120℃で20時間反応させた。フェニルボロン酸350mg(2.9mmol)、及びPd(PPh34 34mg(0.03mmol)を加え、120℃で4時間反応させた後、更にフェニルボロン酸をフェニルブロミド460mg(2.9mmol) に変更し、同様の反応を行なった。室温まで冷却し、メタノールを加え、得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをクロロホロムに溶解させ、濾過を行い、不溶性画分を取り除いた後、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールにて分散し、濾別して得られた残渣を、真空乾燥することで、暗赤色薄片状物である化合物No.を70mg得た(収率:19%)。
得られた化合物No.の数平均分子量(Mn)は9277、重量平均分子量(Mw)は11760であり、Mw/Mnは1.27であった。
Example 2 Compound No. Synthesis of 9 (R 1 and R 2 are phenyl)
In a reaction vessel, 300 mg (0.29 mmol) of AQN-4TBr 2 synthesized in Intermediate Synthesis Example 2, 180 mg of 9,9-dioctylfluorene-2,7-diboronic acid bis (1,3-propanediol) ester (0 .32 mmol), Aliquat 20 mg, aqueous sodium carbonate solution 15 ml (2.0 M 40.3 mmol), and toluene 30 ml were charged and replaced with nitrogen. Under this atmosphere, 34 mg (0.03 mmol) of Pd (PPh 3 ) 4 was added and reacted at 120 ° C. for 20 hours. After 350 mg (2.9 mmol) of phenylboronic acid and 34 mg (0.03 mmol) of Pd (PPh 3 ) 4 were added and reacted at 120 ° C. for 4 hours, phenylboronic acid was further added to 460 mg (2.9 mmol) of phenylbromide. The same reaction was performed after changing. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. This residue was washed with acetone using a Soxhlet extractor for 8 hours, dissolved in chloroholom, filtered, and the insoluble fraction was removed, followed by filtration with radiolite. This was concentrated under reduced pressure, dispersed in methanol, and the residue obtained by filtration was dried under vacuum to obtain compound No. 1 which was a dark red flake. 70 mg of 9 was obtained (yield: 19%).
The obtained Compound No. 9 had a number average molecular weight (Mn) of 9277, a weight average molecular weight (Mw) of 11,760, and Mw / Mn of 1.27.

〔実施例3〕化合物No.の合成(R1及びR2がフェニル)
反応容器に、中間体合成例2で合成したAQN−4TBr2を200mg(0.19mmol)、9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステル140mg(0.21mmol)、Aliquat 20mg、炭酸ナトリウム水溶液10ml(2.0M 20.0mmol)、及びトルエン20mlを仕込み、窒素にて置換した。この雰囲気下においてPd(PPh34 22mg(0.02mmol)を加え、120℃で22時間反応させた。フェニルボロン酸240mg(1.9mmol)、及びPd(PPh34 22mg(0.02mmol)を加え、120℃で4時間反応させた後、更にフェニルボロン酸をフェニルブロミド300mg(1.9mmol)に変更し、同様の反応を行なった。室温まで冷却し、メタノールを加え、得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをクロロホロムに溶解させ、濾過を行い、不溶性画分を取り除いた後、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールにて分散し、濾別して得られた残渣を、真空乾燥することで、暗赤色薄片状物である化合物No.を200mg得た(収率:80%)。
得られた化合物No.の数平均分子量(Mn)は14564、重量平均分子量(Mw)は28072であり、Mw/Mnは1.93であった。
Example 3 Compound no. Synthesis of 8 (R 1 and R 2 are phenyl)
In a reaction vessel, 200 mg (0.19 mmol) of AQN-4TBr 2 synthesized in Intermediate Synthesis Example 2, 140 mg (0.21 mmol) of 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester ), Aliquat 20 mg, sodium carbonate aqueous solution 10 ml (2.0 M 20.0 mmol), and toluene 20 ml were charged and replaced with nitrogen. Under this atmosphere, 22 mg (0.02 mmol) of Pd (PPh 3 ) 4 was added and reacted at 120 ° C. for 22 hours. After 240 mg (1.9 mmol) of phenylboronic acid and 22 mg (0.02 mmol) of Pd (PPh 3 ) 4 were added and reacted at 120 ° C. for 4 hours, phenylboronic acid was further added to 300 mg (1.9 mmol) of phenylbromide. The same reaction was performed after changing. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. The residue was washed with acetone using a Soxhlet extractor for 8 hours, dissolved in chloroholom, filtered, and the insoluble fraction was removed, followed by filtration with radiolite. This was concentrated under reduced pressure, dispersed in methanol, and the residue obtained by filtration was dried under vacuum to obtain compound No. 1 which was a dark red flake. 200 mg of 8 was obtained (yield: 80%).
The obtained Compound No. The number average molecular weight of 8 (Mn) is 14564, weight average molecular weight (Mw) of 28 072, Mw / Mn was 1.93.

〔実施例4〕化合物No.16の合成(R1及びR2がフェニル)
実施例3の合成で用いた9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステルを対応するボロン酸エステル140mg(0.16mmol)に変更し、それぞれのモル比を変更した以外は実施例3の合成と同様の手順で暗赤色薄片状物である化合物No.16を68mg得た(収率:30%)。
得られた化合物No.16の数平均分子量(Mn)は5392、重量平均分子量(Mw)は7417であり、Mw/Mnは1.38であった。
Example 4 Compound no. Synthesis of 16 (R 1 and R 2 are phenyl)
The 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester used in the synthesis of Example 3 was changed to the corresponding boronic acid ester 140 mg (0.16 mmol), and the respective molar ratios were changed. Except that the compound No. 1 was a dark red flake in the same procedure as the synthesis of Example 3. 68 mg of 16 was obtained (yield: 30%).
The obtained Compound No. The number average molecular weight (Mn) of 16 was 5392, the weight average molecular weight (Mw) was 7417, and Mw / Mn was 1.38.

〔実施例5〕化合物No.17の合成(R1及びR2がフェニル)
実施例3の合成で用いた9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステルを対応するボロン酸エステル17mg(0.04mmol)に変更し、それぞれのモル比を変更した以外は実施例3の合成と同様の手順で暗赤色薄片状物である化合物No.17を16mg得た(収率:40%)。
得られた化合物No.17の数平均分子量(Mn)は3154、重量平均分子量(Mw)は5090であり、Mw/Mnは1.61であった。
Example 5 Compound no. Synthesis of 17 (R 1 and R 2 are phenyl)
The 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester used in the synthesis of Example 3 was changed to the corresponding boronic ester 17 mg (0.04 mmol), and the respective molar ratios were changed. Except that the compound No. 1 was a dark red flake in the same procedure as the synthesis of Example 3. 16 mg of 17 was obtained (yield: 40%).
The obtained Compound No. The number average molecular weight (Mn) of 17 was 3154, the weight average molecular weight (Mw) was 5090, and Mw / Mn was 1.61.

〔実施例6〕化合物No.18の合成(R1及びR2がフェニル)
実施例3の合成で用いた9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステルを対応するボロン酸エステル25mg(0.04mmol)に変更し、それぞれのモル比を変更した以外は実施例3の合成と同様の手順で暗赤色薄片状物である化合物No.18を32mg得た(収率:78%)。
得られた化合物No.18の数平均分子量(Mn)は30038、重量平均分子量(Mw)は140439であり、Mw/Mnは4.68であった。
Example 6 Compound no. Synthesis of 18 (R 1 and R 2 are phenyl)
The 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester used in the synthesis of Example 3 was changed to the corresponding boronic acid ester 25 mg (0.04 mmol), and the respective molar ratios were changed. Except that the compound No. 1 was a dark red flake in the same procedure as the synthesis of Example 3. 32 mg of 18 was obtained (yield: 78%).
The obtained Compound No. The number average molecular weight (Mn) of 18 was 30038, the weight average molecular weight (Mw) was 140439, and Mw / Mn was 4.68.

〔実施例7〕化合物No.25の合成(R1及びR2がフェニル)
実施例3の合成で用いた9−(9−ヘプタデカニル)−9H−カルバゾール−2,7−ジボロン酸ビスピナコールエステルを対応するボロン酸エステル25mg(0.04mmol)に変更し、それぞれのモル比を変更した以外は実施例3の合成と同様の手順で朱色薄片状物である化合物No.25を30mg得た(収率:58%)。
得られた化合物No.25の数平均分子量(Mn)は6493、重量平均分子量(Mw)は8655であり、Mw/Mnは1.33であった。
Example 7 Compound no. Synthesis of 25 (R 1 and R 2 are phenyl)
The 9- (9-heptadecanyl) -9H-carbazole-2,7-diboronic acid bispinacol ester used in the synthesis of Example 3 was changed to the corresponding boronic acid ester 25 mg (0.04 mmol), and the respective molar ratios were changed. Except that the compound No. 1 was a vermilion flake in the same procedure as the synthesis of Example 3. 30 mg of 25 was obtained (yield: 58%).
The obtained Compound No. The number average molecular weight (Mn) of 25 was 6493, the weight average molecular weight (Mw) was 8655, and Mw / Mn was 1.33.

〔実施例8〕化合物No.9の合成(R1及びR2がナフチル)
実施例3の合成で用いたフェニルブロミドを対応する2−ブロモナフタレン39mg(0.19mmol)に変更し、それぞれのモル比を変更した以外は実施例3の合成と同様の手順で暗赤色薄片状物である化合物No.9を17mg得た(収率:68%)。
得られた化合物No.9の数平均分子量(Mn)は13975、重量平均分子量(Mw)は26228であり、Mw/Mnは1.87であった。
Example 8 Compound no. Synthesis of 9 (R 1 and R 2 are naphthyl)
Dark red flakes were prepared in the same manner as in the synthesis of Example 3 except that the phenyl bromide used in the synthesis of Example 3 was changed to 39 mg (0.19 mmol) of the corresponding 2-bromonaphthalene and the respective molar ratios were changed. Compound No. 17 mg of 9 was obtained (yield: 68%).
The obtained Compound No. 9 had a number average molecular weight (Mn) of 13975, a weight average molecular weight (Mw) of 26228, and Mw / Mn of 1.87.

〔実施例9〕化合物No.26の合成(R1及びR2がフェニル)
反応容器に、中間体合成例3で合成したAQN−2TI2(dihexyl)を100mg(0.11mmol)、9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステル60mg(0.12mmol)、Pd(PPh34 1.3mg(0.01mol)、テトラブチルアンモニウムブロミド3.4mg(0.01mol)、炭酸ナトリウム水溶液3.3ml(2.0M 0.66mmol)、及びトルエン10mlを仕込み、マイクロウェーブ合成装置にて150℃で2時間反応させた。フェニルボロン酸130mg(1.1mmol)、及びPd(PPh34 1.2mg(0.01mmol)を加え、同装置にて120℃で2時間反応させた後、更にフェニルボロン酸をフェニルブロミド170mg(1.1mmol)に変更し、同様の反応をした。室温まで冷却し、メタノールを加え得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをクロロホロムに溶解させ、濾過を行い、不溶性画分を取り除いた後、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールを加え、分散後に回収した。真空乾燥することで、朱色薄片状物である化合物No.26を89mg得た(収率:74%)。
化合物No.26の数平均分子量(Mn)は、10124であり、重量平均分子量(Mw)は16590であり、Mw/Mnは1.64であった。
Example 9 Compound no. Synthesis of 26 (R 1 and R 2 are phenyl)
In a reaction vessel, 100 mg (0.11 mmol) of AQN-2TI 2 (dihexyl) synthesized in Intermediate Synthesis Example 3, 9,9-dioctylfluorene-2,7-diboronic acid bis (1,3-propanediol) ester 60 mg (0.12 mmol), Pd (PPh 3 ) 4 1.3 mg (0.01 mol), tetrabutylammonium bromide 3.4 mg (0.01 mol), sodium carbonate aqueous solution 3.3 ml (2.0 M 0.66 mmol), And 10 ml of toluene were charged and reacted at 150 ° C. for 2 hours in a microwave synthesizer. After adding 130 mg (1.1 mmol) of phenylboronic acid and 1.2 mg (0.01 mmol) of Pd (PPh 3 ) 4 , the mixture was reacted at 120 ° C. for 2 hours, and then phenylboronic acid was added to 170 mg of phenylbromide. (1.1 mmol), and the same reaction was performed. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. The residue was washed with acetone using a Soxhlet extractor for 8 hours, dissolved in chloroholom, filtered, and the insoluble fraction was removed, followed by filtration with radiolite. This was concentrated under reduced pressure, methanol was added, and the mixture was recovered after dispersion. By vacuum drying, compound no. 89 mg of 26 was obtained (yield: 74%).
Compound No. The number average molecular weight (Mn) of 26 was 10124, the weight average molecular weight (Mw) was 16590, and Mw / Mn was 1.64.

〔実施例10〕化合物No.20の合成(R1及びR2がフェニル)
反応容器に、中間体合成例4で合成した1,4−AQN−2TBr2を70mg(0.10mmol)、9−(9−ヘプタデカニル)−2,7−ビス(ボロン酸ビスピナコールエステル)9H−カルバゾール69mg(0.11mmol)、Pd(PPh341.2mg(0.01mol)、テトラブチルアンモニウムブロミド3.2mg(0.01mol)、炭酸ナトリウム水溶液3.2ml(2.0M 0.64mmol)、及びトルエン9.8mlを仕込み、マイクロウェーブ合成装置にて150℃で2時間反応させた。フェニルボロン酸120mg(1.0mmol)、及びPd(PPh34 1.2mg(0.01mmol)を加え、同装置にて120℃で2時間反応させた後、更にフェニルボロン酸をフェニルブロミド160mg(1.0mmol)に変更し、同様の反応をした。室温まで冷却し、メタノールを加え得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをクロロホロムに溶解させ、濾過を行い、不溶性画分を取り除いた後、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールを加え、分散後に回収した。真空乾燥することで、朱色薄片状物である化合物No.20を13mg得た(収率:19%)。
化合物No.20の数平均分子量(Mn)は、13988であり、重量平均分子量(Mw)は15537であり、Mw/Mnは1.11であった。
Example 10 Compound no. Synthesis of 20 (R 1 and R 2 are phenyl)
In a reaction vessel, 70 mg (0.10 mmol) of 1,4-AQN-2TBr 2 synthesized in Intermediate Synthesis Example 4 and 9- (9-heptadecanyl) -2,7-bis (boronic acid bispinacol ester) 9H- Carbazole 69 mg (0.11 mmol), Pd (PPh 3 ) 4 1.2 mg (0.01 mol), tetrabutylammonium bromide 3.2 mg (0.01 mol), sodium carbonate aqueous solution 3.2 ml (2.0 M 0.64 mmol) , And 9.8 ml of toluene were allowed to react at 150 ° C. for 2 hours in a microwave synthesizer. After 120 mg (1.0 mmol) of phenylboronic acid and 1.2 mg (0.01 mmol) of Pd (PPh 3 ) 4 were added and reacted at 120 ° C. for 2 hours in the same apparatus, further phenylboronic acid was added to 160 mg of phenylbromide. (1.0 mmol) and the same reaction was carried out. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. The residue was washed with acetone using a Soxhlet extractor for 8 hours, dissolved in chloroholom, filtered, and the insoluble fraction was removed, followed by filtration with radiolite. This was concentrated under reduced pressure, methanol was added, and the mixture was recovered after dispersion. By vacuum drying, compound no. 13 mg of 20 was obtained (yield: 19%).
Compound No. The number average molecular weight (Mn) of 20 was 13988, the weight average molecular weight (Mw) was 15537, and Mw / Mn was 1.11.

〔実施例11〕化合物No.28の合成(R1及びR2がフェニル)
実施例10の合成で用いた9−(9−ヘプタデカニル)−2,7−ビス(ボロン酸ビスピナコールエステル)9H−カルバゾールを対応するボロン酸エステル44mg(0.11mmol)に変更し、それぞれのモル比を変更した以外は実施例10と同様の手順で、朱色薄片状物である化合物No.28を13mg得た(収率:19%)。
化合物No.28の数平均分子量(Mn)は、7296であり、重量平均分子量(Mw)は9031であり、Mw/Mnは1.24であった。
Example 11: Compound no. Synthesis of 28 (R 1 and R 2 are phenyl)
9- (9-Heptadecanyl) -2,7-bis (boronic acid bispinacol ester) 9H-carbazole used in the synthesis of Example 10 was changed to 44 mg (0.11 mmol) of the corresponding boronic acid ester, Except for changing the ratio, the same procedure as in Example 10 was repeated, except that compound No. 1 was a vermilion flake. 13 mg of 28 was obtained (yield: 19%).
Compound No. The number average molecular weight (Mn) of 28 was 7296, the weight average molecular weight (Mw) was 9031, and Mw / Mn was 1.24.

〔実施例12〕化合物No.29の合成(R1及びR2がフェニル)
実施例10の合成で用いた9−(9−ヘプタデカニル)−2,7−ビス(ボロン酸ビスピナコールエステル)9H−カルバゾールを対応するボロン酸エステル67mg(0.15mmol)に変更し、それぞれのモル比を変更した以外は実施例10と同様の手順で、朱色薄片状物である化合物No.29を20mg得た(収率:20%)。
化合物No.29の数平均分子量(Mn)は、1233であり、重量平均分子量(Mw)は1700であり、Mw/Mnは1.44であった。
[Example 12] Compound No. Synthesis of 29 (R 1 and R 2 are phenyl)
9- (9-Heptadecanyl) -2,7-bis (boronic acid bispinacol ester) 9H-carbazole used in the synthesis of Example 10 was changed to 67 mg (0.15 mmol) of the corresponding boronic acid ester, Except for changing the ratio, the same procedure as in Example 10 was repeated, except that compound No. 1 was a vermilion flake. 20 mg of 29 was obtained (yield: 20%).
Compound No. The number average molecular weight (Mn) of 29 was 1233, the weight average molecular weight (Mw) was 1700, and Mw / Mn was 1.44.

〔実施例13〕化合物No.30の合成(R1及びR2がフェニル)
反応容器に、中間体合成例5で合成した1,4−AQN−Cl2−2TBr2を90mg(0.11mmol)、9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステル69mg(0.12mmol)、Pd(PPh34 1.4mg(0.01mol)、テトラブチルアンモニウムブロミド3.7mg(0.01mol)、炭酸ナトリウム水溶液4.0ml(2.0M 0.80mmol)、及びトルエン12mlを仕込み、マイクロウェーブ合成装置にて150℃で2時間反応させた。フェニルボロン酸140mg(1.1mmol)、及びPd(PPh34 1.4mg(0.01mmol)を加え、同装置にて120℃で2時間反応させた後、更にフェニルボロン酸をフェニルブロミド180mg(1.0mmol)に変更し、同様の反応をした。室温まで冷却し、メタノールを加え得られた残渣をメタノール、超純水にて洗浄した。この残渣をソックスレー抽出器を用いてアセトンで8時間洗浄し、これをクロロホロムに溶解させ、濾過を行い、不溶性画分を取り除いた後、ラヂオライトで濾過した。これを減圧濃縮した後、メタノールを加え、分散後に回収した。真空乾燥することで、朱色薄片状物である化合物No.30を58mg得た(収率:49%)。
得られた化合物No.30の数平均分子量(Mn)は、6266であり、重量平均分子量(Mw)は8913であり、Mw/Mnは1.42であった。
[Example 13] Compound No. Synthesis of 30 (R 1 and R 2 are phenyl)
In a reaction vessel, 90 mg (0.11 mmol) of 1,4-AQN-Cl 2 -2TBr 2 synthesized in Intermediate Synthesis Example 5 and 9,9-dioctylfluorene-2,7-diboronic acid bis (1,3- Propanediol) ester 69 mg (0.12 mmol), Pd (PPh 3 ) 4 1.4 mg (0.01 mol), tetrabutylammonium bromide 3.7 mg (0.01 mol), sodium carbonate aqueous solution 4.0 ml (2.0M 0 .80 mmol), and 12 ml of toluene were charged and reacted at 150 ° C. for 2 hours in a microwave synthesizer. After 140 mg (1.1 mmol) of phenylboronic acid and 1.4 mg (0.01 mmol) of Pd (PPh 3 ) 4 were added and reacted at 120 ° C. for 2 hours in the same apparatus, phenylboronic acid was further added to 180 mg of phenylbromide. (1.0 mmol) and the same reaction was carried out. The mixture was cooled to room temperature, methanol was added, and the resulting residue was washed with methanol and ultrapure water. The residue was washed with acetone using a Soxhlet extractor for 8 hours, dissolved in chloroholom, filtered, and the insoluble fraction was removed, followed by filtration with radiolite. This was concentrated under reduced pressure, methanol was added, and the mixture was recovered after dispersion. By vacuum drying, compound no. 58 mg of 30 was obtained (yield: 49%).
The obtained Compound No. The number average molecular weight (Mn) of 30 was 6266, the weight average molecular weight (Mw) was 8913, and Mw / Mn was 1.42.

〔実施例14〕化合物No.31の合成(R1及びR2がフェニル)
実施例13で用いた9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステルを対応するボロン酸エステル54mg(0.07mmol)に変更し、それぞれのモル比を変更した以外は実施例13と同様の手順で、朱色薄片状物である化合物No.31を34mg得た(収率:44%)。
得られた化合物No.31の数平均分子量(Mn)は、27823であり、重量平均分子量(Mw)は149626であり、Mw/Mnは5.38であった。
[Example 14] Compound No. Synthesis of 31 (R 1 and R 2 are phenyl)
The 9,9-dioctylfluorene-2,7-diboronic acid bis (1,3-propanediol) ester used in Example 13 was changed to the corresponding boronic acid ester 54 mg (0.07 mmol), and the respective molar ratios were changed. Except for the change, the same procedure as in Example 13 was followed, except that compound No. 34 mg of 31 was obtained (yield: 44%).
The obtained Compound No. The number average molecular weight (Mn) of 31 was 27823, the weight average molecular weight (Mw) was 149626, and Mw / Mn was 5.38.

〔実施例15〕化合物No.32の合成(R1及びR2がフェニル)
実施例13で用いた9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステルを対応するボロン酸エステル40mg(0.10mmol)に変更し、それぞれのモル比を変更した以外は実施例13と同様の手順で、朱色薄片状物である化合物No.32を13mg得た(収率:18%)。
得られた化合物No.32の数平均分子量(Mn)は、7732であり、重量平均分子量(Mw)は9664であり、Mw/Mnは5.38であった。
[Example 15] Compound No. Synthesis of 32 (R 1 and R 2 are phenyl)
The 9,9-dioctylfluorene-2,7-diboronic acid bis (1,3-propanediol) ester used in Example 13 was changed to the corresponding boronic acid ester 40 mg (0.10 mmol), and the respective molar ratios were changed. Except for the change, the same procedure as in Example 13 was followed, except that compound No. 13 mg of 32 was obtained (yield: 18%).
The obtained Compound No. The number average molecular weight (Mn) of 32 was 7732, the weight average molecular weight (Mw) was 9664, and Mw / Mn was 5.38.

〔実施例16〕
図1(c)に示す層構成を有する光電変換素子を、以下の手順で作製した。電極2としてITOが150nm成膜してあるガラス基板(支持体1)をIPA煮沸洗浄及びUV−オゾン洗浄した後、電荷移動層3としてPEDOT:PSS(3,4−エチレンジオキシチオフェン:ポリスチレンスルホン酸)を20nmスピンコート法により成膜し、100℃、10分の条件で減圧乾燥した。1,2−ジクロロベンゼン2mLに(A)p型有機半導体として実施例1の化合物を20mg、及び(B)n型有機半導体としてPCBMを80mg溶解させて、実施例16の光電変換材料を調製した。調製した光電変換材料を、スピンコート法により成膜し、100℃、30分の条件で減圧乾燥して光電変換層4とした。こうして得られた有機薄膜層の上に、メタルマスクを用いてLiF0.5nm(電荷移動層6)、及びアルミニウム100nm(電極5)を逐次真空蒸着成膜して、実施例16の光電変換素子を作製した。
こうして得られた光電変換素子に対し、エアマス1.5G、100mW/cm2の擬似太陽光をITO電極側から照射して光電変換特性(効率(%))を測定した。結果を[表1]に示す。
Example 16
A photoelectric conversion element having the layer structure shown in FIG. 1C was produced by the following procedure. After the glass substrate (support 1) having a 150 nm ITO film formed as the electrode 2 was subjected to IPA boiling cleaning and UV-ozone cleaning, PEDOT: PSS (3,4-ethylenedioxythiophene: polystyrene sulfone) was formed as the charge transfer layer 3. Acid) was formed into a film by 20 nm spin coating method, and dried under reduced pressure at 100 ° C. for 10 minutes. A photoelectric conversion material of Example 16 was prepared by dissolving 20 mg of the compound of Example 1 as (A) p-type organic semiconductor and 80 mg of PCBM as (B) n-type organic semiconductor in 2 mL of 1,2-dichlorobenzene. . The prepared photoelectric conversion material was formed into a film by a spin coat method, and dried under reduced pressure at 100 ° C. for 30 minutes to obtain a photoelectric conversion layer 4. On the organic thin film layer thus obtained, LiF 0.5 nm (charge transfer layer 6) and aluminum 100 nm (electrode 5) were sequentially deposited by vacuum vapor deposition using a metal mask to obtain the photoelectric conversion element of Example 16. Produced.
The photoelectric conversion element thus obtained was irradiated with pseudo sunlight having an air mass of 1.5 G and 100 mW / cm 2 from the ITO electrode side, and the photoelectric conversion characteristics (efficiency (%)) were measured. The results are shown in [Table 1].

〔実施例17〜37〕
上記実施例16の光電変換素子の作製において、(A)成分、(B)成分及びそれらの組成比を〔表1〕に示すように変更する以外は、実施例16と同様にして、実施例17〜37の光電変換素子を作製した。また、実施例16と同様の操作で、実施例17〜37の光電変換素子の光電変換特性(効率(%))を測定した。結果を〔表1〕に示す。
[Examples 17 to 37]
In the production of the photoelectric conversion element of Example 16, the Example (A), the component (B), and the composition ratio thereof were changed as shown in [Table 1] in the same manner as Example 16, except that 17 to 37 photoelectric conversion elements were produced. In addition, the photoelectric conversion characteristics (efficiency (%)) of the photoelectric conversion elements of Examples 17 to 37 were measured in the same manner as in Example 16. The results are shown in [Table 1].

〔比較例1〜7〕
上記実施例16の光電変換素子の作製において、(A)成分として、本発明の化合物の代わりに、下記〔化23〕に示す比較化合物No.1〜5を用い、〔表1〕に記載の配合量に従い実施例16と同様の操作で、比較例1〜7の光電変換素子を作製し、実施例16と同様の操作で、比較例1〜7の光電変換素子の光電変換特性(効率(%))を測定した。結果を〔表1〕に示す。
[Comparative Examples 1-7]
In preparation of the photoelectric conversion element of the above Example 16, as the component (A), instead of the compound of the present invention, the comparative compound No. 1 to 5 were used, and the photoelectric conversion elements of Comparative Examples 1 to 7 were prepared in the same manner as in Example 16 according to the blending amounts described in [Table 1]. The photoelectric conversion characteristics (efficiency (%)) of the photoelectric conversion elements of 7 to 7 were measured. The results are shown in [Table 1].

比較化合物No.1:1−Material社製、数平均分子量55000
比較化合物No.2:自社合成品
比較化合物No.3:Aldrich社製、数平均分子量>20000
比較化合物No.4:Aldrich社製、数平均分子量10000〜2000
比較化合物No.5:自社合成品、数平均分子量(Mn):988、重量平均分子量(Mw):1373、Mw/Mn:1.39
Comparative Compound No. 1: 1-Material, number average molecular weight 55000
Comparative Compound No. 2: In-house synthesized product Comparative compound No. 3: Made by Aldrich, number average molecular weight> 20,000
Comparative Compound No. 4: Made by Aldrich, number average molecular weight 10000 to 2000
Comparative Compound No. 5: In-house synthesized product, number average molecular weight (Mn): 988, weight average molecular weight (Mw): 1373, Mw / Mn: 1.39

上記結果より、本発明のアントラキノン誘導体はp型有機半導体として用いた場合、高い光電変換効率を示すことが確認できた。
従って、本発明のアントラキノン誘導体を用いた光電変換材料は、光電変換素子及び有機薄膜太陽電池に有用である。
From the above results, it can be confirmed that the anthraquinone derivative of the present invention exhibits high photoelectric conversion efficiency when used as a p-type organic semiconductor.
Therefore, the photoelectric conversion material using the anthraquinone derivative of the present invention is useful for a photoelectric conversion element and an organic thin film solar cell.

1 支持体
2 電極
3 電荷移動層
4 光電変換層
5 電極
6 電荷移動層
DESCRIPTION OF SYMBOLS 1 Support body 2 Electrode 3 Charge transfer layer 4 Photoelectric conversion layer 5 Electrode 6 Charge transfer layer

Claims (8)

下記一般式(1)で表される構成単位を2以上100以下と、下記群Zから選ばれる構成単位を2以上100以下有することを特徴とするアントラキノン誘導体。
(式中、X及びXは、酸素原子又は硫黄原子を表し、構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R及びRは、置換されていてもよい炭化水素基を表す。)
(式中、XはS又はNRを表し、XはS、NR、CR又はSiRを表し、XはS、O又はNRを表し、R、R及びRは、置換されていてもよい炭化水素基を表し、kは1〜4の整数を表し、群Zで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR10基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R及びR10は、置換されていてもよい炭化水素基を表す。)
An anthraquinone derivative having 2 to 100 structural units represented by the following general formula (1) and 2 to 100 structural units selected from the following group Z:
(Wherein, X 1 and X 2 represent an oxygen atom or a sulfur atom, and a hydrogen atom in the structural unit is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group may be substituted, and R 4 and R 5 may be an optionally substituted hydrocarbon group. Represents.)
Wherein X 3 represents S or NR 6 , X 4 represents S, NR 6 , CR 7 R 8 or SiR 7 R 8 , X 5 represents S, O or NR 6 , R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group, k represents an integer of 1 to 4, and the hydrogen atom in the structural unit represented by group Z is a fluorine atom, a chlorine atom, or a bromine atom , An iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, a —NR 9 R 10 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, 9 and R 10 represent an optionally substituted hydrocarbon group.)
更に下記群Yから選ばれる構成単位を少なくとも一つ有することを特徴とする請求項1に記載のアントラキノン誘導体。
(式中、XはS、O又はNRを表し、群Yで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R、R及びRは、置換されていてもよい炭化水素基を表す。)
The anthraquinone derivative according to claim 1, further comprising at least one structural unit selected from the following group Y.
(In the formula, X 6 represents S, O or NR 3, and the hydrogen atom in the structural unit represented by group Y is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, It may be substituted with a thiol group, —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 and R 5 are substituted. Represents an optionally hydrocarbon group.)
下記一般式(2)で表される請求項1又は2に記載のアントラキノン誘導体。
(式中、R及びRは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、X及びXは、酸素原子又は硫黄原子を表し、Y及びYは、単結合又は下記(Y−1)〜(Y−4)から選ばれる基を1〜5個組み合わせて連結した基であり、Z及びZは、単結合又は下記(Z−1)及び(Z−3)〜(Z−25)から選ばれる基を表し(但し、Z及びZの少なくとも一つは単結合ではない)、nは2以上100以下の整数を表す。尚、式中のアントラキノン環の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基により置換されていてもよい。)
(式中、XはS、O又はNRを表し、(Y−1)〜(Y−3)で表される基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R、R及びRは、置換されていてもよい炭化水素基を表す。)
(式中、XはS又はNRを表し、XはS、NR、CR又はSiRを表し、XはS、O又はNRを表し、R、R及びRは、置換されていてもよい炭化水素基を表し、kは1〜4の整数を表し、(Z−1)及び(Z−3)〜(Z−25)で表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR10基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R及びR10は、置換されていてもよい炭化水素基を表す。)
The anthraquinone derivative according to claim 1 or 2 represented by the following general formula (2).
Wherein R 1 and R 2 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and X 1 And X 2 represents an oxygen atom or a sulfur atom, and Y 1 and Y 2 represent a single bond or a group connected by combining 1 to 5 groups selected from the following (Y-1) to (Y-4). There, Z 1 and Z 2 is a single bond or the following (Z-1) and (Z-3) ~ (Z -25) represents a group selected from (provided that at least one single of Z 1 and Z 2 N represents an integer of 2 to 100. The hydrogen atom of the anthraquinone ring in the formula is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or (It may be substituted with an optionally substituted heterocyclic group.)
(In the formula, X 6 represents S, O or NR 3, and the hydrogen atoms in the groups represented by (Y-1) to (Y-3) are a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, It may be substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, a —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 And R 5 represents an optionally substituted hydrocarbon group.)
Wherein X 3 represents S or NR 6 , X 4 represents S, NR 6 , CR 7 R 8 or SiR 7 R 8 , X 5 represents S, O or NR 6 , R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group, k represents an integer of 1 to 4, and is represented by (Z-1) and (Z-3) to (Z-25). The hydrogen atom in the unit is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, a —NR 9 R 10 group, an optionally substituted hydrocarbon group or a substituted group. And may be substituted with an optionally substituted heterocyclic group, and R 9 and R 10 each represents an optionally substituted hydrocarbon group.)
請求項1〜3の何れか1項に記載のアントラキノン誘導体を少なくとも一種含有してなるp型有機半導体材料。   A p-type organic semiconductor material comprising at least one anthraquinone derivative according to any one of claims 1 to 3. (A)請求項4に記載のp型有機半導体材料、及び(B)n型有機半導体材料を含有してなる光電変換材料。   (A) A photoelectric conversion material comprising the p-type organic semiconductor material according to claim 4 and (B) an n-type organic semiconductor material. 請求項5に記載の光電変換材料を製膜して得られる光電変換層。   A photoelectric conversion layer obtained by forming a film of the photoelectric conversion material according to claim 5. 請求項6に記載の光電変換層を有してなる光電変換素子。   A photoelectric conversion element comprising the photoelectric conversion layer according to claim 6. 下記一般式(4)で表されるアントラキノン誘導体。
(式中、R17、R18、R20、R21、R22及びR24は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、R19及びR23は、−Y−Rで表される基であるか、又は
18、R19、R21、R22、R23及びR24は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、R17及びR20は、−Y−Rで表される基であり、
及びXは、酸素原子又は硫黄原子を表し、
Yはそれぞれ独立に、下記(Y−1)〜(Y−4)から選ばれる基を2〜5個組み合わせた基を表し、
Rはそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表す。)
(式中、XはS、O又はNRを表し、(Y−1)〜(Y−3)で表される基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、−NR基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R、R及びRは、置換されていてもよい炭化水素基を表す。)
An anthraquinone derivative represented by the following general formula (4).
(In the formula, R 17 , R 18 , R 20 , R 21 , R 22 and R 24 are a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or a substituted group. An optionally substituted heterocyclic group, and R 19 and R 23 are groups represented by —Y—R, or R 18 , R 19 , R 21 , R 22 , R 23 and R 24 are A hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group is represented, and R 17 and R 20 are represented by —Y—R. Is a group to be
X 1 and X 2 represent an oxygen atom or a sulfur atom,
Y represents each independently the group which combined 2-5 groups chosen from the following (Y-1)-(Y-4),
Each R independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. )
(In the formula, X 6 represents S, O or NR 3, and the hydrogen atoms in the groups represented by (Y-1) to (Y-3) are a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, It may be substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, a —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 3 , R 4 And R 5 represents an optionally substituted hydrocarbon group.)
JP2013228628A 2012-11-06 2013-11-01 Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element Active JP6371051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228628A JP6371051B2 (en) 2012-11-06 2013-11-01 Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012244287 2012-11-06
JP2012244287 2012-11-06
JP2013228628A JP6371051B2 (en) 2012-11-06 2013-11-01 Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2014111742A JP2014111742A (en) 2014-06-19
JP6371051B2 true JP6371051B2 (en) 2018-08-08

Family

ID=51169079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228628A Active JP6371051B2 (en) 2012-11-06 2013-11-01 Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6371051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043590A (en) * 2015-08-28 2017-03-02 国立研究開発法人理化学研究所 Novel compound, novel polymer and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247344A (en) * 1994-03-14 1995-09-26 Tokyo Inst Of Technol Polyquinone, its production, and material for electrochromic element or for n-type semiconductor device containing the same
JP3698259B2 (en) * 2001-05-18 2005-09-21 日立マクセル株式会社 Ion conductive polymer electrolyte
JP2005050669A (en) * 2003-07-28 2005-02-24 Tdk Corp Electrode and electrochemical element using it
US7608679B2 (en) * 2006-03-31 2009-10-27 3M Innovative Properties Company Acene-thiophene copolymers
JP2008027903A (en) * 2006-06-20 2008-02-07 Sumitomo Chemical Co Ltd Condensed ring-containing polymer electrolyte, and its application
DE102009030847A1 (en) * 2009-06-26 2010-12-30 Merck Patent Gmbh Polymers containing substituted Anthracenyleinheiten, blends containing these polymers and devices containing these polymers or blends
WO2012090971A1 (en) * 2010-12-27 2012-07-05 住友化学株式会社 Photoelectric conversion element and composition used in same

Also Published As

Publication number Publication date
JP2014111742A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP2019536744A (en) Organic semiconductor compounds
JP5805438B2 (en) Novel compound, photoelectric conversion material and photoelectric conversion element
WO2012133793A1 (en) Block copolymer and photoelectric conversion element
JP6088954B2 (en) ORGANIC PHOTOELECTRIC CONVERSION ELEMENT, ORGANIC THIN FILM SOLAR CELL, COMPOSITION USED FOR THE SAME, COATING FILM AND COMPOUND USEFUL FOR THIS
JP5791995B2 (en) Novel compound, photoelectric conversion material and photoelectric conversion element
JP6625546B2 (en) Picene derivative, photoelectric conversion material and photoelectric conversion element
JP6284822B2 (en) Picene derivative, photoelectric conversion material and photoelectric conversion element
JP6095229B2 (en) Bibenzo [b] furan compound, photoelectric conversion material and photoelectric conversion element
KR20190064410A (en) Novel compound and organic electronic device using them
JP2012162514A (en) Dithienogermole polymer and organic semiconductor device containing the same
JP6371051B2 (en) Anthraquinone derivative, photoelectric conversion material and photoelectric conversion element
JP2013237813A (en) π-ELECTRON CONJUGATED POLYMER, AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
JP5476660B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
JP6051102B2 (en) Organic photoelectric conversion element and organic thin film solar cell
JP2015183127A (en) Polymer having benzo-dithiophene skeleton and organic thin-film solar battery material using the same
JP2015015462A (en) Photoelectric conversion element and organic thin-film solar cell using the same
JP2015105233A (en) Fullerene derivative
JP2015015461A (en) Photoelectric conversion element and organic thin-film solar cell using the same
JP5481911B2 (en) Fullerene derivatives
WO2014098094A1 (en) Organic photoelectric conversion element, organic thin-film solar cell, and composition,coating film, polymer, and compound used therein
CN118742173A (en) Perovskite solar cell and power utilization device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

R150 Certificate of patent or registration of utility model

Ref document number: 6371051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150