JP6367417B2 - Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus - Google Patents

Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus Download PDF

Info

Publication number
JP6367417B2
JP6367417B2 JP2017082805A JP2017082805A JP6367417B2 JP 6367417 B2 JP6367417 B2 JP 6367417B2 JP 2017082805 A JP2017082805 A JP 2017082805A JP 2017082805 A JP2017082805 A JP 2017082805A JP 6367417 B2 JP6367417 B2 JP 6367417B2
Authority
JP
Japan
Prior art keywords
substrate
processing
mask blank
main surface
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082805A
Other languages
Japanese (ja)
Other versions
JP2017156762A (en
Inventor
和宏 浜本
和宏 浜本
敏彦 折原
敏彦 折原
笑喜 勉
勉 笑喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2017082805A priority Critical patent/JP6367417B2/en
Publication of JP2017156762A publication Critical patent/JP2017156762A/en
Application granted granted Critical
Publication of JP6367417B2 publication Critical patent/JP6367417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板の製造方法、多層膜付き反射基板の製造方法、マスクブランク用基板または多層反射膜付き基板を用いたマスクブランクの製造方法、マスクブランクを用いた転写用マスクの製造方法、及び基板製造装置に係わり、特に、平坦度が高く、且つ欠陥密度の低い基板の製造方法、多層膜付き反射基板の製造方法、マスクブランク用基板または多層反射膜付き基板を用いたマスクブランクの製造方法、マスクブランクを用いた転写用マスクの製造方法、及びそれらの製造を行うための基板製造装置に関するものである。   The present invention relates to a method for manufacturing a substrate, a method for manufacturing a reflective substrate with a multilayer film, a method for manufacturing a mask blank using a mask blank substrate or a substrate with a multilayer reflective film, a method for manufacturing a transfer mask using a mask blank, and The present invention relates to a substrate manufacturing apparatus, and in particular, a method for manufacturing a substrate with high flatness and low defect density, a method for manufacturing a reflective substrate with a multilayer film, and a method for manufacturing a mask blank using a mask blank substrate or a substrate with a multilayer reflective film The present invention relates to a method for manufacturing a transfer mask using a mask blank, and a substrate manufacturing apparatus for performing the manufacturing.

近年、半導体デバイスでは、高集積回路の高密度化、高精度化が一段と進められている。その結果、回路パターン転写に用いるマスクブランク用基板や転写用マスクに対し、一段の平坦化、平滑化、及び、より微細なサイズでの低欠陥化が求められている。   In recent years, in semiconductor devices, the density and accuracy of highly integrated circuits have been further increased. As a result, there is a demand for flattening, smoothing, and reducing defects at a finer size for mask blank substrates and transfer masks used for circuit pattern transfer.

例えば、半導体デザインルール1xnm世代(ハーフピッチ(hp)14nm、10nm等)で使用されるマスクブランクとして、EUV露光用の反射型マスクブランク、ArFエキシマレーザー露光用のバイナリーマスクブランク及び位相シフトマスクブランク、並びにナノインプリント用マスクブランクなどがあるが、これらの世代で使用されるマスクブランクでは、30nm級の欠陥(SEVD(Sphere Equivalent Volume Diameter)が23nm以上34nm以下の欠陥)が問題となる。このため、マスクブランクに使用される基板の主表面(すなわち、転写パターンを形成する側の表面)においては、30nm級の欠陥数が極力少ないことが好ましい。また、30nm級の欠陥の欠陥検査を行う高感度の欠陥検査装置において、表面粗さはバックグランドノイズに影響する。すなわち、平滑性が不十分であると、表面粗さ起因の疑似欠陥が多数検出され、欠陥検査を行うことができない。このため、半導体デザインルール1xnm世代で使用されるマスクブランクに用いられる基板の主表面は、二乗平均平方根粗さ(Rms)で0.08nm以下の平滑性が求められている。   For example, as a mask blank used in the semiconductor design rule 1 × nm generation (half pitch (hp) 14 nm, 10 nm, etc.), a reflective mask blank for EUV exposure, a binary mask blank for ArF excimer laser exposure, and a phase shift mask blank, In addition, there are nanoimprint mask blanks and the like, but in the mask blanks used in these generations, a defect of 30 nm class (SEVD (Sphere Equivalent Volume Diameter) of 23 nm or more and 34 nm or less) becomes a problem. For this reason, it is preferable that the number of defects of the 30 nm class is as small as possible on the main surface of the substrate used for the mask blank (that is, the surface on the transfer pattern forming side). Further, in a high-sensitivity defect inspection apparatus that performs defect inspection of 30 nm-class defects, the surface roughness affects background noise. That is, if the smoothness is insufficient, a large number of pseudo defects due to surface roughness are detected, and defect inspection cannot be performed. For this reason, the main surface of the substrate used for the mask blank used in the semiconductor design rule 1 × nm generation is required to have a smoothness of not more than 0.08 nm in terms of root mean square roughness (Rms).

また、近年、ハードディスクドライブ(HDD)においては、磁気記録媒体の記録容量が高密度化してきていることに伴い、磁気記録媒体に対する記録読取り用ヘッドの浮上量(フライングハイト)をより減少させたものとなっている。そのようなヘッドとして、DFH(Dynamic Flying Height)機構を搭載したヘッドも普及している。DFH機構は、磁気ヘッドに設けられた発熱素子の発熱によって磁気ヘッドが熱膨張し、磁気ヘッドが浮上面方向にわずかに突出するように動作させるものであり、これによりフライングハイトを一定に保つことができる。このようなDFH機構を搭載したヘッドは、フライングハイトが数nm程度であるため、磁気記録媒体を使用したときにヘッドクラッシュなどの不良が生じやすい。このような不良を減少するために、磁気記録媒体用基板の表面としては、平滑性が高く、実質的に突起のない低欠陥な表面が要求されている。   Further, in recent years, in the hard disk drive (HDD), the flying height of the recording / reading head with respect to the magnetic recording medium is further reduced as the recording capacity of the magnetic recording medium is increased. It has become. As such a head, a head mounted with a DFH (Dynamic Flying Height) mechanism is also widespread. The DFH mechanism operates so that the magnetic head thermally expands due to the heat generated by the heating element provided in the magnetic head, and the magnetic head projects slightly in the direction of the air bearing surface, thereby keeping the flying height constant. Can do. A head equipped with such a DFH mechanism has a flying height of about several nanometers, and thus a defect such as a head crash tends to occur when a magnetic recording medium is used. In order to reduce such defects, the surface of the magnetic recording medium substrate is required to have a low defect surface with high smoothness and substantially no protrusions.

磁気記録媒体用基板としては、アルミなどの金属基板があるが、金属基板に比べて塑性変形しにくく、基板主表面を鏡面研磨したときに、高い表面平滑性が得られるケイ素を含んだガラス基板が好適に用いられている。   As a substrate for a magnetic recording medium, there is a metal substrate such as aluminum, but a glass substrate containing silicon that is less likely to be plastically deformed than a metal substrate and has high surface smoothness when the main surface of the substrate is mirror-polished. Are preferably used.

これまで、マスクブランク用基板や磁気記録媒体用基板の主表面を、高平滑性で、低欠陥で、実質的に突起のない状態にするために、さまざまな加工方法が提案されているが、所望の特性を満たす主表面を有する基板を実現することは困難であった。   Until now, various processing methods have been proposed in order to make the main surface of the mask blank substrate and the magnetic recording medium substrate have a high smoothness, a low defect, and substantially no protrusions. It has been difficult to realize a substrate having a main surface that satisfies desired characteristics.

近年、主表面について実質的に突起のない低欠陥で高平滑な状態が求められる基板の加工方法として、触媒基準エッチング(Catalyst Referred Etching:以下CAREとも言う)による加工方法が提案されている。触媒基準エッチング(CARE)加工では、触媒物質から形成される加工基準面に吸着している処理液中の分子から水酸基が活性種として生成し、この活性種によって加工基準面と接近又は接触する基板表面上の微細な凸部が加水分解反応し、当該微細な凸部が選択的に除去されると考えられる。特許文献1には、金属触媒を用いた触媒基準エッチングによる加工方法が記載されている。   2. Description of the Related Art In recent years, a processing method using catalyst-based etching (hereinafter also referred to as “CARE”) has been proposed as a processing method for a substrate that requires a low defect and high smoothness with substantially no protrusions on the main surface. In catalyst-based etching (CARE) processing, a hydroxyl group is generated as an active species from a molecule in a processing solution adsorbed on a processing reference surface formed from a catalyst material, and the active species approaches or contacts the processing reference surface. It is considered that the fine convex portions on the surface undergo a hydrolysis reaction and the fine convex portions are selectively removed. Patent Document 1 describes a processing method by catalyst-based etching using a metal catalyst.

特許文献1では、水の存在下で、触媒物質の加工基準面を、ガラスなどの固体酸化物からなる被加工物表面に接触又は接近させ、加工基準面と被加工物表面とを相対運動させて、加水分解による分解生成物を被加工物表面から除去し、被加工物表面を加工する固体酸化物の加工方法が記載されている(以降、当該固体酸化物の加工方法もCARE加工方法と称する)。触媒物質としては、金属元素を含み、当該金属元素の電子のd軌道がフェルミレベル近傍のものが用いられ、具体的な金属元素としては、例えば、白金(Pt)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)が挙げられている。触媒物質としては、バルクである必要はなく、安価で形状安定性のよい母材の表面に、金属、あるいは遷移金属をスパッタリング等によって形成した薄膜であってもよい旨記載されている。また、触媒物質を表面に成膜する母材としては、硬質の弾性材でも良く、例えば、フッ素系ゴムを用いることができる旨記載されている。   In Patent Document 1, in the presence of water, the processing reference surface of the catalyst substance is brought into contact with or close to the surface of the workpiece made of a solid oxide such as glass, and the processing reference surface and the surface of the workpiece are moved relative to each other. In addition, a solid oxide processing method is described in which a hydrolysis product is removed from the surface of the workpiece, and the surface of the workpiece is processed (hereinafter, the solid oxide processing method is also referred to as a CARE processing method). Called). As the catalyst material, a material containing a metal element and having an electron d orbit near the Fermi level is used. Specific metal elements include, for example, platinum (Pt), gold (Au), silver ( Ag), copper (Cu), nickel (Ni), chromium (Cr), and molybdenum (Mo). It is described that the catalyst material does not need to be bulk, and may be a thin film in which a metal or a transition metal is formed by sputtering or the like on the surface of a base material that is inexpensive and has good shape stability. In addition, the base material on which the catalyst material is formed may be a hard elastic material, and for example, it is described that a fluorine-based rubber can be used.

国際公開第2013/084934号International Publication No. 2013/084934

背景のところで述べているように、先端品のマスクブランク用基板などでは、30nm級の欠陥の低欠陥化と、二乗平均平方根粗さ(Rms)で0.08nm以下という高い平滑性の両方が求められている。
ArFエキシマレーザー露光用のマスクブランク基板材料である合成石英ガラスや、EUV(Extreme Ultra Violet)露光用のマスクブランク基板材料であるSiO−TiOガラス基板などの基板では、表面がケイ素酸化物を含む材料よりなる基板が主流となっている。表面がケイ素酸化物を含む材料よりなる基板をCARE加工すると、例えば特許文献1に記載があるように、オルトケイ酸(HSiO)、メタケイ酸(HSiO)、メタ二ケイ酸(HSiO)等のケイ酸が生成されることが知られている。これらのケイ酸は、基板の材料とその組成が類似しているため、基板に残留したケイ酸を、その周りの基板表面に影響を及ぼさずに除去することが、非常に困難となる。このため、表面がケイ素酸化物を含む材料よりなる基板の従来法によるCARE加工には、オルトケイ酸等のケイ酸起因による異物欠陥の発生という問題があり、これが低欠陥化のための大きな課題になるということに、本発明者は着目した。
本発明は、上述のような課題を解決するためになされたもので、ケイ酸起因の異物発生を、特にオルトケイ酸異物発生を抑えて、低欠陥で且つ高平滑の主表面を有する、表面がケイ素酸化物を含む材料よりなる基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及びその製造を行うための基板製造装置を提供することを目的とする。
As described in the background, for advanced mask blank substrates and the like, both a reduction in defects of 30 nm class and high smoothness with a root mean square roughness (Rms) of 0.08 nm or less are required. It has been.
For substrates such as synthetic quartz glass, which is a mask blank substrate material for ArF excimer laser exposure, and SiO 2 —TiO 2 glass substrate, which is a mask blank substrate material for EUV (Extreme Ultra Violet) exposure, the surface is made of silicon oxide. Substrates made of the materials they contain are the mainstream. When a substrate made of a material containing a silicon oxide on the surface is CARE processed, for example, as described in Patent Document 1, orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), metadisilicic acid ( It is known that silicic acid such as H 2 SiO 2 ) is produced. Since these silicic acids are similar in composition to the material of the substrate, it is very difficult to remove the silicic acid remaining on the substrate without affecting the surrounding substrate surface. For this reason, the conventional CARE processing of a substrate made of a material containing silicon oxide has a problem of generation of foreign matter defects due to silicic acid such as orthosilicic acid, which is a big problem for reducing defects. The present inventors paid attention to the fact that
The present invention has been made in order to solve the above-described problems, and suppresses the generation of foreign substances caused by silicic acid, particularly the generation of orthosilicate foreign substances, and has a surface having a low defect and a high smooth main surface. An object of the present invention is to provide a method for producing a substrate made of a material containing silicon oxide, a method for producing a substrate with a multilayer film, a method for producing a mask blank, a method for producing a transfer mask, and a substrate production apparatus for carrying out the production. And

本発明者は、処理液の温度を調整することにより、必要な表面粗さに低減しつつ、ケイ酸起因の欠陥を低減可能なことを見出した。本発明は以下の構成を有する。   The present inventor has found that the defects due to silicic acid can be reduced while reducing the required surface roughness by adjusting the temperature of the treatment liquid. The present invention has the following configuration.

(構成1)
少なくとも主表面がケイ素酸化物を含む材料よりなる基板を準備する基板準備工程と、
触媒物質の加工基準面を前記主表面に接触又は接近させ、前記加工基準面と前記主表面との間に処理液を介在させた状態で前記主表面と前記加工基準面とを相対運動させることにより前記主表面を触媒基準エッチングする工程と、
を有する基板の製造方法において、
前記処理液は前記基板主表面で加水分解を起こす液体であり、前記触媒基準エッチング中の前記処理液の温度は、常温を超える温度であることを特徴とする基板の製造方法。
(構成2)
前記基板の少なくとも主表面は、前記触媒基準エッチング工程中、常温を超える温度に加温されていることを特徴とする構成1記載の基板の製造方法。
(構成3)
前記処理液は、前記主表面に吹き付けて供給されることを特徴とする構成1又は2に記載の基板の製造方法。
(構成4)
前記触媒基準エッチング工程終了後、前記処理液を洗浄液に連続的に置換した後、前記基板主表面を前記洗浄液にて洗浄することを特徴とする構成1及至3のいずれか一に記載の基板の製造方法。
(構成5)
前記洗浄工程において、前記洗浄液の温度を、開始時における常温を超える温度から、少なくとも終了時には常温にするように経過時間に応じて温度調整することを特徴とする構成1及至4のいずれか一に記載の基板の製造方法。
(構成6)
前記処理液と前記洗浄液は同一の物質であることを特徴とする構成1及至5のいずれか一に記載の基板の製造方法。
(構成7)
前記処理液は純水であることを特徴とする構成1及至6のいずれか一に記載の基板の製造方法。
(構成8)
前記処理液の温度は、40℃から80℃の範囲であることを特徴とする構成7に記載の基板の製造方法。
(構成9)
前記基板は、マスクブランク用基板であることを特徴とする、構成1乃至8のいずれか一に記載の基板の製造方法。
(構成10)
構成9に記載の基板の製造方法によって製造された基板の主表面上に、多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。
(構成11)
構成9に記載の基板の製造方法によって得られた基板の主表面上、又は、構成10記載の多層反射膜付き基板の製造方法によって得られた多層反射膜付き基板の多層反射膜上に、転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。
(構成12)
構成11に記載のマスクブランクの製造方法によって得られたマスクブランクの転写パターン用薄膜をパターニングして、転写パターンを形成することを特徴とする転写用マスクの製造方法。
(構成13)
基板の主表面を触媒基準エッチングにより加工して基板を製造する基板製造装置であって、
基板を支持する基板支持手段と、
該基板支持手段により支持された前記基板の主表面に対向して配置される触媒物質の加工基準面を有する基板表面創製手段と、
前記加工基準面と前記主表面とを接触又は接近させた状態で相対運動させる相対運動手段と、
前記加工基準面と前記主表面との間に、処理液を供給する処理液供給手段と、
前記処理液の温度を常温より高くする温度調整手段とを備えていることを特徴とする基板製造装置。
(構成14)
洗浄液を供給する手段と、前記洗浄液の温度を前記処理液の温度から常温まで調整する温度調整手段とを備えていることを特徴とする構成13に記載の基板製造装置。
(Configuration 1)
A substrate preparing step of preparing a substrate made of a material containing at least a main surface of silicon oxide;
A processing reference surface of a catalytic substance is brought into contact with or close to the main surface, and the main surface and the processing reference surface are moved relative to each other in a state where a processing liquid is interposed between the processing reference surface and the main surface. A step of performing catalyst-based etching of the main surface by:
In a method of manufacturing a substrate having
The process liquid is a liquid that causes hydrolysis on the main surface of the substrate, and the temperature of the process liquid during the catalyst-based etching is a temperature exceeding room temperature.
(Configuration 2)
At least the main surface of the substrate is heated to a temperature exceeding room temperature during the catalyst-based etching step.
(Configuration 3)
3. The method for manufacturing a substrate according to Configuration 1 or 2, wherein the treatment liquid is supplied by spraying on the main surface.
(Configuration 4)
After the completion of the catalyst-based etching step, the substrate main surface is cleaned with the cleaning liquid after continuously replacing the processing liquid with a cleaning liquid. Production method.
(Configuration 5)
In the cleaning step, the temperature of the cleaning liquid is adjusted according to the elapsed time so that the temperature of the cleaning liquid is higher than normal temperature at the start time and at least at normal temperature at the end time. The manufacturing method of the board | substrate of description.
(Configuration 6)
6. The substrate manufacturing method according to any one of Structures 1 to 5, wherein the treatment liquid and the cleaning liquid are the same substance.
(Configuration 7)
7. The method for manufacturing a substrate according to any one of Structures 1 to 6, wherein the treatment liquid is pure water.
(Configuration 8)
8. The method for manufacturing a substrate according to Configuration 7, wherein the temperature of the treatment liquid is in the range of 40 ° C. to 80 ° C.
(Configuration 9)
9. The method of manufacturing a substrate according to any one of configurations 1 to 8, wherein the substrate is a mask blank substrate.
(Configuration 10)
A method for producing a substrate with a multilayer reflective film, comprising: forming a multilayer reflective film on a main surface of the substrate produced by the method for producing a substrate according to Configuration 9.
(Configuration 11)
Transfer onto the main surface of the substrate obtained by the method for producing a substrate according to Configuration 9, or onto the multilayer reflective film of the substrate with a multilayer reflective film obtained by the method for producing a substrate with a multilayer reflective film according to Configuration 10. A method for manufacturing a mask blank, comprising forming a pattern thin film.
(Configuration 12)
A method for producing a transfer mask, comprising: patterning a thin film for a transfer pattern of a mask blank obtained by the method for producing a mask blank according to Configuration 11 to form a transfer pattern.
(Configuration 13)
A substrate manufacturing apparatus for manufacturing a substrate by processing the main surface of the substrate by catalyst-based etching,
Substrate support means for supporting the substrate;
A substrate surface creation means having a processing reference surface of a catalytic substance disposed opposite to the main surface of the substrate supported by the substrate support means;
Relative motion means for relatively moving the processing reference surface and the main surface in contact with or approaching each other,
A treatment liquid supply means for supplying a treatment liquid between the processing reference surface and the main surface;
A substrate manufacturing apparatus comprising temperature adjusting means for raising the temperature of the processing liquid from room temperature.
(Configuration 14)
14. The substrate manufacturing apparatus according to Configuration 13, comprising means for supplying a cleaning liquid and temperature adjusting means for adjusting the temperature of the cleaning liquid from the temperature of the processing liquid to room temperature.

この発明によれば、CARE加工の処理液の温度を常温より高くすることにより、CARE加工で生成されたオルトケイ酸等のケイ酸起因成分(以下、適宜「オルトケイ酸等」という)は処理液に容易に溶解して異物として残留しにくくなり、低欠陥化を図ることが可能になる。また、詳細な検討の結果、基板表面の表面粗さ、すなわち平滑度に関しても、要求値を十分に満たすことがわかった。このため、低欠陥で高平滑な主表面を有する表面がケイ素酸化物を含む材料よりなる基板の製造方法を提供することが可能となる。   According to the present invention, by increasing the temperature of the CARE processing liquid from room temperature, silicic acid-derived components such as orthosilicic acid generated by CARE processing (hereinafter referred to as “orthosilicic acid, etc.” as appropriate) It is easily dissolved and hardly remains as a foreign substance, and it becomes possible to reduce defects. As a result of detailed examination, it was found that the required value was sufficiently satisfied with respect to the surface roughness of the substrate surface, that is, the smoothness. For this reason, it becomes possible to provide the manufacturing method of the board | substrate which the surface which has a high smooth main surface with a low defect consists of a material containing a silicon oxide.

また、本発明に係る多層反射膜付き基板の製造方法によれば、上述した基板の製造方法により得られた基板を用いて多層反射膜付き基板を製造するので、所望の特性をもった多層反射膜付き基板を製造することができる。   In addition, according to the method for manufacturing a substrate with a multilayer reflective film according to the present invention, since the substrate with the multilayer reflective film is manufactured using the substrate obtained by the above-described substrate manufacturing method, the multilayer reflective with desired characteristics is produced. A substrate with a film can be manufactured.

また、本発明に係るマスクブランクの製造方法によれば、上述した基板の製造方法により得られた基板または上述した多層反射膜付き基板の製造方法によって得られた多層反射膜付き基板を用いてマスクブランクを製造するので、所望の特性をもったマスクブランクを製造することができる。   Further, according to the mask blank manufacturing method of the present invention, the mask is obtained using the substrate obtained by the above-described substrate manufacturing method or the substrate with the multilayer reflective film obtained by the above-described method of manufacturing the substrate with the multilayer reflective film. Since a blank is manufactured, a mask blank having desired characteristics can be manufactured.

また、本発明に係る転写用マスクの製造方法によれば、上述したマスクブランクの製造方法により得られたマスクブランクを用いて転写用マスクを製造するので、所望の特性をもった転写用マスクを製造することができる。   Further, according to the transfer mask manufacturing method of the present invention, a transfer mask is manufactured using the mask blank obtained by the above-described mask blank manufacturing method. Can be manufactured.

マスクブランク用基板に対して触媒基準エッチングによる局所加工を施す局所的触媒基準エッチング加工装置の構成を示す部分断面図である。It is a fragmentary sectional view showing composition of a local catalyst standard etching processing device which performs local processing by catalyst standard etching to a mask blank substrate. マスクブランク用基板に対して触媒基準エッチングによる局所加工を施す局所的触媒基準エッチング加工装置の構成を示す平面図である。It is a top view which shows the structure of the local catalyst reference | standard etching processing apparatus which performs the local process by a catalyst reference | standard etching with respect to the mask blank board | substrate. 触媒基準エッチングによる欠陥発生数と表面粗さの処理液温度依存性を示す特性図である。It is a characteristic view which shows the process liquid temperature dependence of the defect generation number and surface roughness by catalyst reference | standard etching.

以下、本発明の実施の形態に係る基板の製造方法、この基板を用いた多層反射膜付き基板の製造方法、この基板または多層反射膜付き基板を用いたマスクブランクの製造方法、及びこのマスクブランクを用いた転写用マスクの製造方法を、適時図を参照しながら、詳細に説明する。尚、図中、同一又は相当する部分には同一の符号を付してその説明を簡略化ないし省略することがある。   Hereinafter, a method for manufacturing a substrate according to an embodiment of the present invention, a method for manufacturing a substrate with a multilayer reflective film using the substrate, a method for manufacturing a mask blank using the substrate or the substrate with a multilayer reflective film, and the mask blank A method of manufacturing a transfer mask using the above will be described in detail with reference to timely drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof may be simplified or omitted.

実施の形態1.
実施の形態1では、基板の製造方法及び基板加工装置について説明する。
Embodiment 1 FIG.
In Embodiment 1, a substrate manufacturing method and a substrate processing apparatus will be described.

この実施の形態1では、主表面がケイ素酸化物を含む材料よりなる基板を準備する基板準備工程と、触媒物質の加工基準面を基板の主表面に接触又は接近させ、加工基準面と主表面との間に処理液を介在させた状態で、基板の主表面を触媒基準エッチングにより加工する基板加工工程とにより、基板を製造する。
以下、各工程を詳細に説明する。
In the first embodiment, a substrate preparation step for preparing a substrate whose main surface is made of a material containing silicon oxide, and a processing reference surface of the catalytic substance is brought into contact with or close to the main surface of the substrate, so that the processing reference surface and the main surface are obtained. A substrate is manufactured by a substrate processing step in which the main surface of the substrate is processed by catalyst-based etching with a treatment liquid interposed therebetween.
Hereinafter, each process will be described in detail.

1.基板準備工程
基板の製造方法では、先ず、主表面がケイ素酸化物を含む材料よりなる基板を準備する。
1. Substrate Preparation Step In the substrate manufacturing method, first, a substrate whose main surface is made of a material containing silicon oxide is prepared.

準備する基板は、例えば、基板全体がケイ素酸化物を含む材料からなる基板や、主表面として用いる上面にケイ素酸化物を含む材料からなる薄膜が形成された基板や、主表面として用いる上面及び下面の両方にケイ素酸化物を含む材料からなる薄膜が形成された基板である。
薄膜が形成された基板は、ケイ素酸化物を含む材料からなる基板本体の主表面として用いる上面や下面に、ケイ素酸化物を含む材料からなる薄膜が形成された基板であってもよいし、ケイ素酸化物を含む材料以外からなる基板本体(基体)の主表面として用いる上面や下面に、ケイ素酸化物を含む材料からなる薄膜が形成された基板であってもよい。
The substrate to be prepared includes, for example, a substrate made of a material containing silicon oxide as a whole, a substrate on which a thin film made of a material containing silicon oxide is formed on the upper surface used as the main surface, and upper and lower surfaces used as the main surface. Both are substrates on which a thin film made of a material containing silicon oxide is formed.
The substrate on which the thin film is formed may be a substrate in which a thin film made of a material containing silicon oxide is formed on an upper surface or a lower surface used as a main surface of a substrate body made of a material containing silicon oxide, or silicon. The board | substrate with which the thin film which consists of a material containing a silicon oxide was formed in the upper surface and lower surface used as a main surface of the board | substrate body (base | substrate) consisting of other than the material containing an oxide may be sufficient.

ケイ素酸化物を含む材料からなる基板や基板本体の材料として、例えば、合成石英ガラス、ソーダライムガラス、ボロシリケートガラス、アルミノシリケートガラス、SiO−TiO系ガラス等のガラスや、ガラスセラミックスが挙げられる。また、ケイ素酸化物を含む材料以外からなる基板本体(基体)の材料として、シリコン、カーボン、金属が挙げられる。
薄膜を形成するケイ素酸化物として、具体的には、シリコン酸化物(SiO、(x>0))や、金属とシリコンを含む金属シリサイド酸化物(MeSi、(Me:金属、x>0、y>0、及びz>0))が挙げられる。このようなケイ素酸化物を含む材料からなる薄膜は、例えば、蒸着、スパッタリング、電気めっきによって形成することができる。
また、上述したケイ素酸化物には、本発明の効果を逸脱しない範囲で、窒素、炭素、水素、フッ素等の元素が含まれていてもよい。
準備する基板は、好ましくは、塑性変形しにくく、高平滑性の主表面が得られやすいガラス基板や、ガラス基板本体の主表面である上面や下面に、シリコン酸化物(SiO(x>0))からなる薄膜が形成された基板である。
Examples of the material of the substrate or substrate body made of a material containing silicon oxide include synthetic quartz glass, soda lime glass, borosilicate glass, aluminosilicate glass, SiO 2 —TiO 2 glass, and glass ceramics. It is done. Moreover, silicon, carbon, and a metal are mentioned as a material of the board | substrate body (base | substrate) consisting of other than the material containing a silicon oxide.
Specifically, as the silicon oxide forming the thin film, silicon oxide (SiO x , (x> 0)) or metal silicide oxide containing metal and silicon (Me x Si y O z , (Me: metal) X> 0, y> 0, and z> 0)). Such a thin film made of a material containing silicon oxide can be formed by, for example, vapor deposition, sputtering, or electroplating.
Further, the above-described silicon oxide may contain elements such as nitrogen, carbon, hydrogen, fluorine and the like without departing from the effects of the present invention.
The substrate to be prepared is preferably made of a silicon substrate (SiO x (x> 0) on the upper surface and the lower surface, which are the main surfaces of the glass substrate main body and the main surface of the glass substrate main body, which is difficult to plastically deform and easily obtain a high smoothness main surface. )).

準備する基板は、マスクブランク用基板であっても、磁気記録媒体用基板であってもよい。マスクブランク用基板は、反射型マスクブランク、バイナリーマスクブランク、位相シフトマスクブランク、ナノインプリント用マスクブランクのいずれの製造に使用するものであってもよい。バイナリーマスクブランクは、遮光膜の材料が、MoSi系、Ta系、Cr系のいずれであってもよい。位相シフトマスクブランクは、ハーフトーン型位相シフトマスクブランク、レベンソン型位相シフトマスクブランク、クロムレス型位相シフトマスクブランクのいずれであってもよい。反射型マスクブランクに使用する基板材料は、低熱膨張性を有する材料である必要がある。このため、EUV露光用の反射型マスクブランクに使用する基板材料は、例えば、SiO−TiO系ガラスが好ましい。また、透過型マスクブランクに使用する基板材料は、使用する露光波長に対して透光性を有する材料である必要がある。このため、ArFエキシマレーザー露光用のバイナリーマスクブランク及び位相シフトマスクブランクに使用する基板材料は、例えば、合成石英ガラスが好ましい。また、磁気記録媒体用基板に使用する基板材料は、耐衝撃性や強度・剛性を高めるために、研磨工程後に化学強化を行う必要がある。このため、磁気ディスク用基板に使用する基板材料は、例えば、ボロシリケートガラスやアルミノシリケートガラスなどの多成分系ガラスが好ましい。 The substrate to be prepared may be a mask blank substrate or a magnetic recording medium substrate. The mask blank substrate may be used for manufacturing any of a reflective mask blank, a binary mask blank, a phase shift mask blank, and a nanoimprint mask blank. In the binary mask blank, the material of the light shielding film may be any of MoSi, Ta, and Cr. The phase shift mask blank may be any of a halftone type phase shift mask blank, a Levenson type phase shift mask blank, and a chromeless type phase shift mask blank. The substrate material used for the reflective mask blank needs to be a material having low thermal expansion. For this reason, the substrate material used for the reflective mask blank for EUV exposure is preferably, for example, SiO 2 —TiO 2 glass. Further, the substrate material used for the transmissive mask blank needs to be a material having translucency with respect to the exposure wavelength to be used. For this reason, as a substrate material used for the binary mask blank and the phase shift mask blank for ArF excimer laser exposure, for example, synthetic quartz glass is preferable. In addition, the substrate material used for the magnetic recording medium substrate needs to be chemically strengthened after the polishing step in order to improve impact resistance, strength and rigidity. For this reason, the substrate material used for the magnetic disk substrate is preferably, for example, a multicomponent glass such as borosilicate glass or aluminosilicate glass.

準備する基板は、固定砥粒や遊離砥粒などを用いて主表面が研磨された基板であることが好ましい。例えば、所定の平滑性、平坦性を有するように、以下のような加工方法を用いて主表面として用いる上面や下面を研磨しておく。尚、下面を主表面として用いない場合であっても、必要に応じて、所定の平滑性、平坦性を有するように、以下のような加工方法を用いて下面も研磨しておく。ただし、以下の加工方法はすべて行う必要はなく、所定の平滑性、平坦性を有するように、適宜選択して行う。   The substrate to be prepared is preferably a substrate whose main surface has been polished using fixed abrasive grains, loose abrasive grains, or the like. For example, the upper and lower surfaces used as the main surface are polished using the following processing method so as to have predetermined smoothness and flatness. Even when the lower surface is not used as the main surface, the lower surface is also polished using the following processing method as necessary so as to have predetermined smoothness and flatness. However, it is not necessary to perform all the following processing methods, and it is performed by selecting appropriately so as to have predetermined smoothness and flatness.

表面粗さを低減するための加工方法として、例えば、酸化セリウムやコロイダルシリカなどの研磨砥粒を用いたポリッシングやラッピングがある。
平坦度を改善するための加工方法として、例えば、磁気粘弾性流体研磨(Magnet Rheological Finishing:MRF)、局所化学機械研磨(Local Chemical Mechanical Polishing:LCMP)、ガスクラスターイオンビームエッチング(Gas Cluster Ion Beam etching:GCIB)、局所プラズマエッチングを用いたドライケミカル平坦化法(Dry Chemical Planarization:DCP)がある。
As a processing method for reducing the surface roughness, for example, there are polishing and lapping using abrasive grains such as cerium oxide and colloidal silica.
As processing methods for improving the flatness, for example, magneto-rheological fluid polishing (MRF), local chemical mechanical polishing (LCMP), gas cluster ion beam etching (Gas Cluster Ion Beam Etching). : GCIB), and dry chemical planarization (DCP) using local plasma etching.

MRFは、磁性流体に研磨スラリーを混合させた磁性研磨スラリーを、被加工物に高速で接触させるとともに、接触部分の滞留時間をコントロールすることにより、局所的に研磨を行う局所加工方法である。
LCMPは、小径研磨パッド及びコロイダルシリカなどの研磨砥粒を含有する研磨スラリーを用い、小径研磨パッドと被加工物との接触部分の滞留時間をコントロールすることにより、主に被加工物表面の凸部分を研磨加工する局所加工方法である。
GCIBは、常温常圧で気体の反応性物質(ソースガス)を、真空装置内に断熱膨張させつつ噴出させてガスクラスタを生成し、これに電子線を照射してイオン化させることにより生成したガスクラスタイオンを、高電界で加速してガスクラスターイオンビームとし、これを被加工物に照射してエッチング加工する局所加工方法である。
MRF is a local processing method in which a magnetic polishing slurry obtained by mixing a polishing slurry in a magnetic fluid is brought into contact with a workpiece at high speed and polishing is performed locally by controlling the residence time of the contact portion.
In LCMP, a polishing slurry containing abrasive grains such as a small-diameter polishing pad and colloidal silica is used. By controlling the residence time of the contact portion between the small-diameter polishing pad and the workpiece, the surface of the workpiece is mainly projected. This is a local processing method for polishing a portion.
GCIB is a gas produced by ejecting a gas reactive substance (source gas) at normal temperature and pressure while adiabatically expanding into a vacuum apparatus to generate a gas cluster, and irradiating it with an electron beam to ionize it. This is a local processing method in which cluster ions are accelerated by a high electric field to form a gas cluster ion beam, which is irradiated to a workpiece to be etched.

DCPは、局所的にプラズマエッチングし、凸度に応じてプラズマエッチング量をコントロールすることにより、局所的にドライエッチングを行う局所加工方法である。
上述した平坦度を改善するための加工方法によって損なわれた表面粗さを改善するために、平坦度を極力維持しつつ、表面粗さを改善する加工方法として、例えば、フロートポリッシング、EEM(Elastic Emission Machining)、ハイドロプレーンポリッシングがある。
DCP is a local processing method in which dry etching is locally performed by locally performing plasma etching and controlling the amount of plasma etching according to the degree of convexity.
In order to improve the surface roughness damaged by the above-described processing method for improving the flatness, as a processing method for improving the surface roughness while maintaining the flatness as much as possible, for example, float polishing, EEM (Elastic) Emission Machining) and hydroplane polishing.

触媒基準エッチングによる加工時間を短くするため、準備する基板の主表面は、0.3nm以下、より好ましくは0.15nm以下の二乗平均平方根粗さ(Rms)を有することが好ましい。   In order to shorten the processing time by the catalyst reference etching, it is preferable that the main surface of the substrate to be prepared has a root mean square roughness (Rms) of 0.3 nm or less, more preferably 0.15 nm or less.

2.基板加工工程
次に、触媒物質の加工基準面を基板の主表面に接触又は接近させ、加工基準面と主表面との間に処理液を介在させた状態で、主表面を触媒基準エッチング(CARE)により加工する。
基板の上面及び下面の両面を主表面として用いる場合には、上面のCARE加工後に下面のCARE加工を行ってもよいし、下面のCARE加工後に上面のCARE加工を行ってもよいし、上面及び下面の両面のCARE加工を同時に行ってもよい。尚、下面を主表面として用いない場合であっても、必要に応じて、下面も触媒基準エッチングにより加工する。主表面として用いない下面にもCARE加工を行う場合には、主表面として用いる上面には欠陥品質の点で高い品質が要求されるため、下面の加工を行った後に、主表面として用いる上面の加工を行う方が好ましい。
2. Substrate processing step Next, the processing reference surface of the catalyst material is brought into contact with or close to the main surface of the substrate, and the main surface is subjected to catalyst reference etching (CARE) with the processing liquid interposed between the processing reference surface and the main surface. )
When both the upper surface and the lower surface of the substrate are used as the main surface, the lower surface CARE processing may be performed after the upper surface CARE processing, or the upper surface CARE processing may be performed after the lower surface CARE processing. CARE processing on both sides of the lower surface may be performed simultaneously. Even if the lower surface is not used as the main surface, the lower surface is also processed by catalyst-based etching as necessary. When CARE processing is also performed on the lower surface that is not used as the main surface, the upper surface used as the main surface is required to have high quality in terms of defect quality. It is preferable to perform processing.

この場合、先ず、触媒物質からなる加工基準面を、基板の主表面に対向するように配置する。そして、加工基準面と主表面との間に処理液を供給し、加工基準面と主表面との間に処理液を介在させた状態で、加工基準面を、主表面に接触又は接近させ、基板に所定の荷重(加工圧力)を加えながら、加工基準面と主表面とを相対運動させる。加工基準面と主表面との間に処理液を介在させた状態で、加工基準面と主表面とを相対運動させると、加工基準面上に吸着している処理液中の分子から生成した活性種と主表面が反応して、主表面が加工される。ここで、この反応は、基板表面がケイ素酸化物あるいはケイ素酸化物を含む場合、加水分解反応である。活性種は加工基準面上にのみ生成し、加工基準面付近から離れると失活することから、加工基準面が接触又は接近する主表面以外ではほとんど活性種との反応が起こらない。このようにして、主表面に対して触媒基準エッチングによる加工を施す。触媒基準エッチングによる加工では、研磨剤を用いないため、マスクブランク用基板に対するダメージが極めて少なく、新たな欠陥の生成を防止することができる。   In this case, first, a processing reference surface made of a catalyst material is disposed so as to face the main surface of the substrate. And, with the processing liquid supplied between the processing reference surface and the main surface, with the processing liquid interposed between the processing reference surface and the main surface, the processing reference surface is brought into contact with or close to the main surface, While applying a predetermined load (processing pressure) to the substrate, the processing reference surface and the main surface are moved relative to each other. When the processing reference surface and the main surface are moved relative to each other with the processing liquid interposed between the processing reference surface and the main surface, the activity generated from the molecules in the processing liquid adsorbed on the processing reference surface The seed and the main surface react and the main surface is processed. Here, this reaction is a hydrolysis reaction when the substrate surface contains silicon oxide or silicon oxide. The active species are generated only on the processing reference surface and deactivated when they are separated from the vicinity of the processing reference surface. Therefore, there is almost no reaction with the active species other than the main surface with which the processing reference surface contacts or approaches. In this way, the main surface is processed by catalyst-based etching. In the processing based on catalyst-based etching, since no abrasive is used, damage to the mask blank substrate is extremely small, and generation of new defects can be prevented.

加工基準面と主表面との相対運動は、加工基準面と主表面とが相対的に移動する運動であれば、特に制限されない。基板を固定し加工基準面を移動する場合、加工基準面を固定し基板を移動する場合、加工基準面と基板の両方を移動する場合のいずれであってもよい。加工基準面が移動する場合、その運動は、基板の主表面に垂直な方向の軸を中心として回転する場合や、基板の主表面と平行な方向に往復運動する場合などである。同様に、基板が移動する場合、その運動は、基板の主表面に垂直な方向の軸を中心として回転する場合や、基板の主表面と平行な方向に往復運動する場合などである。
基板に加える荷重(加工圧力)は、例えば、5〜350hPaである。
触媒基準エッチングによる加工における加工取り代は、例えば、5nm〜100nmである。基板の主表面に当該主表面から突出する突起が存在する場合、加工取り代は、突起の高さより大きい値にすることが好ましい。加工取り代を突起の高さより大きい値にすることにより、CARE加工により突起を除去することができる。
The relative motion between the processing reference surface and the main surface is not particularly limited as long as the processing reference surface and the main surface move relative to each other. When the substrate is fixed and the processing reference surface is moved, the processing reference surface is fixed and the substrate is moved, or both the processing reference surface and the substrate are moved. When the processing reference plane moves, the movement may be a case where the machining reference plane rotates around an axis in a direction perpendicular to the main surface of the substrate or a case where the processing reference plane reciprocates in a direction parallel to the main surface of the substrate. Similarly, when the substrate moves, the movement may be when the substrate rotates about an axis perpendicular to the main surface of the substrate or when the substrate reciprocates in a direction parallel to the main surface of the substrate.
The load (processing pressure) applied to the substrate is, for example, 5 to 350 hPa.
The machining allowance in the process by the catalyst reference etching is, for example, 5 nm to 100 nm. When there is a protrusion protruding from the main surface on the main surface of the substrate, the machining allowance is preferably set to a value larger than the height of the protrusion. By setting the machining allowance to a value larger than the height of the protrusion, the protrusion can be removed by CARE processing.

加工基準面を形成する触媒物質としては、処理液に対して基板表面を加水分解する活性種を生む材料であればよく、金属元素、好ましくは遷移金属元素を含む材料が好ましい。例えば、周期率表の4族、6族、8族、9族、10族、11族に属する元素のうちの少なくとも一つの金属やそれらを含む合金が、好ましくは、用いられる。具体的には、白金(Pt)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、ルテニウム(Ru)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、銀(Ag)、及びオスミウム(Os)のうちの少なくとも一つの金属やそれらを含む合金、並びにこの合金に酸素(O)、窒素(N)、及び炭素(C)のうちの少なくとも一つの成分が含まれた合金化合物が挙げられる。上述した合金化合物として、例えば、上述した合金の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物、及び酸化窒化炭化物が挙げられる。このような合金や合金化合物を用いると、加工基準面の機械的耐久性や化学的安定性を向上させることができる。そして、これらの触媒物質は、フッ素系ゴムなどからなるパッドの上に形成される。   The catalyst substance that forms the processing reference surface may be any material that generates active species that hydrolyze the substrate surface with respect to the processing liquid, and a material containing a metal element, preferably a transition metal element, is preferable. For example, at least one metal of elements belonging to Group 4, Group 6, Group 8, Group 9, Group 10, Group 11 and Group 11 of the periodic table and alloys containing them are preferably used. Specifically, platinum (Pt), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), At least one metal selected from tungsten (W), iron (Fe), ruthenium (Ru), copper (Cu), cobalt (Co), nickel (Ni), silver (Ag), and osmium (Os). And an alloy compound containing at least one component of oxygen (O), nitrogen (N), and carbon (C). Examples of the alloy compound described above include oxides, nitrides, carbides, oxynitrides, oxycarbides, nitride carbides, and oxynitride carbides of the above-described alloys. When such an alloy or alloy compound is used, the mechanical durability and chemical stability of the processing reference surface can be improved. These catalyst substances are formed on a pad made of fluorine rubber or the like.

加工基準面の面積は、基板の主表面の面積よりも小さく、例えば、100mm〜10000mmである。加工基準面を小型化することにより、基板加工装置を小型化できる他、高精度の加工を確実に行うことができる。
また、加工基準面の面積は、基板の主表面の面積より大きくても構わない。基板全面を加工できるので加工時間が短縮でき、また、加工基準面のエッジによる傷等の欠陥の発生を抑えることができる。
Area of the working reference plane is smaller than the area of the main surface of the substrate, for example, a 100mm 2 ~10000mm 2. By downsizing the processing reference surface, the substrate processing apparatus can be downsized and high-precision processing can be performed reliably.
Further, the area of the processing reference plane may be larger than the area of the main surface of the substrate. Since the entire surface of the substrate can be processed, the processing time can be shortened, and the occurrence of defects such as scratches due to the edge of the processing reference surface can be suppressed.

処理液は、表面がケイ素酸化物を含む材料からなる基板に対して常態では溶解性を示さないもので、加水分解を誘起するものであれば、特に制限されない。このような処理液を使用することにより、基板が処理液によって溶解せず、不必要な基板の変形を防止することができる。例えば、純水、オゾン水、炭酸水、水素水、KOH水溶液などの低濃度のアルカリ性水溶液、HNO水溶液などの低濃度の酸性水溶液を使用することができる。また、基板表面が、常態ではハロゲンを含む分子が溶けた溶液によって溶解しない場合には、ハロゲンを含む分子が溶けた溶液を使用することもできる。ここで、特に純水は、コスト、加工特性、及び洗浄時の扱い易さなどの観点から処理液として好適である。 The treatment liquid is not particularly limited as long as it does not exhibit solubility in a normal state with respect to a substrate made of a material containing silicon oxide and induces hydrolysis. By using such a processing solution, the substrate is not dissolved by the processing solution, and unnecessary deformation of the substrate can be prevented. For example, pure water, ozone water, carbonated water, hydrogen water, low concentration alkaline aqueous solution such as KOH aqueous solution, or low concentration acidic aqueous solution such as HNO 3 aqueous solution can be used. In the case where the substrate surface is not normally dissolved by a solution containing halogen-containing molecules, a solution containing halogen-containing molecules can also be used. Here, in particular, pure water is suitable as a treatment liquid from the viewpoints of cost, processing characteristics, ease of handling during cleaning, and the like.

CARE加工中の処理液の温度は、欠陥を低減するために、常温より高い温度に設定しておく。ここが本発明の特徴である。常温より温度を高くすると、オルトケイ酸等の処理液への溶解度が高くなるため、この処理液温度設定により、析出などによって生じるオルトケイ酸等によるケイ酸起因の欠陥が減少する。ここで、常温とは、CARE加工処理を行う時の外部環境の温度のことで、クリーンルームやクリーンブース内にCARE加工装置が置かれている時は、そのクリーンルームやクリーンブース内の温度のことである。半導体関連では、多くのクリーンルームやクリーンブースは23℃で運用されていることが多く、半導体製造装置を中心に環境温度を23℃として、処理条件や品質管理を行っていることが多い。レジストや現像液などの薬液も23℃をデフォルトとして、その特性の最適化や品質管理を行っていることが多い。よって、常温を23℃とする場合が多いが、その温度に限定されるものではない。   The temperature of the processing liquid during CARE processing is set to a temperature higher than normal temperature in order to reduce defects. This is a feature of the present invention. When the temperature is raised from room temperature, the solubility of orthosilicic acid or the like in the treatment liquid is increased. Therefore, by setting the treatment liquid temperature, defects due to silicic acid due to orthosilicic acid or the like caused by precipitation or the like are reduced. Here, normal temperature is the temperature of the external environment when CARE processing is performed, and when the CARE processing device is placed in a clean room or clean booth, it is the temperature in the clean room or clean booth. is there. In the semiconductor-related field, many clean rooms and clean booths are often operated at 23 ° C., and processing conditions and quality control are often performed at an environmental temperature of 23 ° C. mainly in semiconductor manufacturing equipment. In many cases, chemicals such as resist and developer are also optimized for quality and quality control with 23 ° C. as a default. Therefore, although the normal temperature is often 23 ° C., it is not limited to that temperature.

CARE加工の処理液として純水を用いた場合は、大気圧での処理の場合、40℃から80℃が好適であり、60℃から80℃だとさらに望ましく、75℃から80℃ではさらに一層望ましい。ケイ酸起因の欠陥は、常温処理の時に比べ、処理液の温度を40℃に上げるとおよそ半減し、60℃に上げると約1/3に減り、75℃に上げるとほぼ0個になる。一方で、80℃を超えて温度を上げると、脱水縮合反応が起こり、CARE加工が阻害されるようになる。また、処理液中に気泡が発生しやすくなって加工不均一性が発生しやすくなる。また、大気圧より減圧下でCARE加工処理を行うと、最適温度範囲は全体的に下がり、高圧下でCARE加工処理を行うと、最適温度範囲は全体的に上がる。CARE加工製造装置の構造の簡易化、メンテナンスの容易性を考慮すると、大気圧処理が望ましい。   When pure water is used as a CARE processing solution, 40 to 80 ° C. is preferable for processing at atmospheric pressure, more preferably 60 to 80 ° C., and much more at 75 to 80 ° C. desirable. The defects due to silicic acid are approximately halved when the temperature of the treatment liquid is raised to 40 ° C., reduced to about 1/3 when raised to 60 ° C., and almost zero when raised to 75 ° C. On the other hand, when the temperature is raised above 80 ° C., a dehydration condensation reaction occurs and CARE processing is inhibited. In addition, bubbles are easily generated in the processing liquid, and processing non-uniformity is easily generated. Further, when the CARE processing is performed under a reduced pressure from the atmospheric pressure, the optimum temperature range is lowered as a whole, and when the CARE processing is performed under a high pressure, the optimum temperature range is raised as a whole. Considering simplification of the structure of the CARE processing and manufacturing apparatus and ease of maintenance, atmospheric pressure processing is desirable.

CARE加工の処理液は、基板の乾燥工程を挟まずに、洗浄液に連続的に置換されることが好ましい。これにより、基板表面上の処理液中に溶解していたオルトケイ酸等のケイ酸が、連続的に置換された洗浄液によって希釈されて除去されるため、処理液の中に溶解していたオルトケイ酸等のケイ酸をより確実に基板表面から除去することができ、更なる低欠陥化を図ることができる。尚、処理液を洗浄液に連続して置換することから、処理液は洗浄液と同じ物質としておくことが望ましい。この意味からも、処理液を純水としておくことは好適である。   It is preferable that the CARE processing liquid is continuously replaced with a cleaning liquid without interposing a substrate drying step. As a result, since the silicic acid such as orthosilicic acid dissolved in the processing liquid on the substrate surface is diluted and removed by the cleaning liquid continuously replaced, the orthosilicic acid dissolved in the processing liquid is removed. It is possible to more reliably remove silicic acid such as from the substrate surface, and to further reduce defects. Since the processing liquid is continuously replaced with the cleaning liquid, it is desirable that the processing liquid be the same substance as the cleaning liquid. From this point of view, it is preferable to use pure water as the treatment liquid.

次に、CARE加工用の基板製造装置(基板加工装置)について述べる。図1及び図2は基板の主表面に対して触媒基準エッチングによる加工を施す基板加工装置の一例を示す。図1は基板加工装置の部分断面図であり、図2は基板加工装置の平面図である。尚、これ以降、図1及び図2に示す基板加工装置を用いて、基板Mの主表面として用いる上面M1をCARE加工する場合について説明するが、基板Mの下面M2も主表面として用いる場合には、上面M1と下面M2を入れ替えて、下面M2もCARE加工する。尚、下面M2を主表面として用いない場合であっても、必要に応じて、下面M2もCARE加工する。その場合には、下面M2のCARE加工後に上面M1のCARE加工を行う。   Next, a substrate manufacturing apparatus (substrate processing apparatus) for CARE processing will be described. 1 and 2 show an example of a substrate processing apparatus that performs processing by catalyst-based etching on the main surface of the substrate. FIG. 1 is a partial cross-sectional view of the substrate processing apparatus, and FIG. 2 is a plan view of the substrate processing apparatus. In the following, the case where the upper surface M1 used as the main surface of the substrate M is CARE processed using the substrate processing apparatus shown in FIGS. 1 and 2 will be described. However, when the lower surface M2 of the substrate M is also used as the main surface. The upper surface M1 and the lower surface M2 are interchanged, and the lower surface M2 is also CARE processed. Even if the lower surface M2 is not used as the main surface, the lower surface M2 is also CARE processed as necessary. In that case, CARE processing of the upper surface M1 is performed after CARE processing of the lower surface M2.

基板加工装置1は、酸化物を含む材料からなる主表面を有する基板Mを支持する基板支持手段2と、触媒物質の加工基準面33を有する基板表面創製手段3と、基板温度調整液及び洗浄液を供給する洗浄液供給手段4と、加工基準面33と主表面との間に処理液を供給する処理液供給手段9と、加工基準面33と主表面との間に処理液が介在する状態で、加工基準面33を主表面に接触又は接近させる駆動手段5とを備えている。   The substrate processing apparatus 1 includes a substrate supporting means 2 for supporting a substrate M having a main surface made of an oxide-containing material, a substrate surface creating means 3 having a processing reference surface 33 for a catalytic substance, a substrate temperature adjusting liquid, and a cleaning liquid. In the state where the processing liquid is interposed between the processing reference surface 33 and the main surface, the cleaning liquid supply means 4 for supplying the processing liquid, the processing liquid supply means 9 for supplying the processing liquid between the processing reference surface 33 and the main surface, And a driving means 5 for bringing the processing reference surface 33 into contact with or approaching the main surface.

基板支持手段2は、円筒形のチャンバー6内に配置される。チャンバー6は、後述する相対運動手段7の軸部71をチャンバー6内に配置するために、チャンバー6の底部63の中央に形成された開口部61と、基板温度調整液兼洗浄液供給手段4から供給された基板温度調整液と洗浄液、及び処理液供給手段9から供給された処理液を排出するために、チャンバー6の底部63の、開口部61より外周寄りに形成された排出口62とを備えている。図1では、排出口62から基板温度調整液、洗浄液及び処理液が排出される様子が矢印で示されている。   The substrate support means 2 is disposed in a cylindrical chamber 6. The chamber 6 includes an opening 61 formed in the center of the bottom 63 of the chamber 6 and a substrate temperature adjusting liquid / cleaning liquid supply means 4 in order to arrange a shaft portion 71 of the relative motion means 7 described later in the chamber 6. In order to discharge the supplied substrate temperature adjustment liquid, the cleaning liquid, and the processing liquid supplied from the processing liquid supply means 9, a discharge port 62 formed on the bottom 63 of the chamber 6 closer to the outer periphery than the opening 61 is provided. I have. In FIG. 1, the state in which the substrate temperature adjusting liquid, the cleaning liquid, and the processing liquid are discharged from the discharge port 62 is indicated by arrows.

基板支持手段2は、基板Mを支える支持部21と、支持部21を固定する平面部22とを備えている。支持部21は、基板加工装置1を上から見たとき、矩形状であり、基板Mの下面M2周縁の四辺を支える収容部21aを備えている。平面部22は、基板加工装置1を上から見たとき、円形状である。   The substrate support means 2 includes a support portion 21 that supports the substrate M and a flat portion 22 that fixes the support portion 21. The support portion 21 has a rectangular shape when the substrate processing apparatus 1 is viewed from above, and includes a receiving portion 21a that supports four sides of the periphery of the lower surface M2 of the substrate M. The planar portion 22 has a circular shape when the substrate processing apparatus 1 is viewed from above.

基板表面創製手段3は、触媒定盤31を備えている。触媒定盤31は、後述する相対運動手段7の触媒定盤取付部72に取り付けられている。触媒定盤31は、定盤本体32と、定盤本体を覆うように定盤本体の表面全面に形成される基材とその表面に触媒が被着された加工基準面33とを備えている。したがって、加工基準面33上の触媒物質は、基板Mと対向する。   The substrate surface creation means 3 includes a catalyst surface plate 31. The catalyst surface plate 31 is attached to a catalyst surface plate mounting portion 72 of the relative motion means 7 described later. The catalyst surface plate 31 includes a surface plate body 32, a base material formed on the entire surface of the surface plate body so as to cover the surface plate body, and a processing reference surface 33 on which the catalyst is deposited. . Therefore, the catalyst material on the processing reference surface 33 faces the substrate M.

触媒定盤の全体形状は、特に制限されない。例えば、円盤、球、円柱、円錐、角錐の外形のものを使用することができる。加工基準面が形成される触媒定盤の部分の表面形状も、特に制限されない。例えば、平面、半球、丸みを帯びた形状のものを使用することができる。   The overall shape of the catalyst platen is not particularly limited. For example, the outer shape of a disk, a sphere, a cylinder, a cone, or a pyramid can be used. The surface shape of the portion of the catalyst surface plate on which the processing reference surface is formed is not particularly limited. For example, a flat, hemispherical, or rounded shape can be used.

処理液供給手段9は、触媒定盤31の中央に形成された処理液供給孔と、触媒定盤取付部72内に配置され、処理液供給孔に処理液を供給する処理液供給ノズル91と、アーム部51内に配置され、処理液供給ノズル91に処理液を供給する配管(図示せず)とを備えている。処理液は、アーム部51内の配管を通って触媒定盤取付部72内の処理液供給ノズル91に供給され、触媒定盤31の中央に形成された処理液供給孔から基板Mの主表面M1上に供給される。ここで、処理液は温度調整器(図示せず)を通って供給されるが、処理液温度の昇降速度を速めるため、アーム部51内にも温度調整機構(図示せず)を備えておくことが望ましい。   The processing liquid supply means 9 includes a processing liquid supply hole formed in the center of the catalyst surface plate 31, a processing liquid supply nozzle 91 that is disposed in the catalyst surface plate mounting portion 72, and supplies the processing liquid to the processing liquid supply hole. And a pipe (not shown) for supplying the processing liquid to the processing liquid supply nozzle 91. The processing liquid is supplied to the processing liquid supply nozzle 91 in the catalyst surface plate mounting portion 72 through the piping in the arm portion 51, and the main surface of the substrate M from the processing liquid supply hole formed in the center of the catalyst surface plate 31. Supplied on M1. Here, the processing liquid is supplied through a temperature regulator (not shown), but a temperature adjusting mechanism (not shown) is also provided in the arm portion 51 in order to increase the ascending / descending speed of the processing liquid temperature. It is desirable.

温度調整液兼洗浄液供給手段4は、チャンバー6の外側から支持部21に載置される基板Mの主表面に向かって延在する供給管41と、この供給管41の下端部先端に設けられ、支持部21に載置される基板Mの主表面に向けて温度調整液と洗浄液を噴射する噴射ノズル42とを備えている。供給管41は、例えば、チャンバー6の外側に設けられた処理液貯留タンク(図示せず)、温度調整器(図示せず)、及び加圧ポンプ(図示せず)に接続されている。温度調整液及び洗浄液は、供給管41を通って噴射ノズル42に供給され、噴射ノズル42から支持部21に載置される基板Mの主表面上に供給される。尚、ここでは、温度調整液と洗浄液を同一の物質とした時の例を示していて、供給管41と噴射ノズル42を各々1つとした場合を示したが、両者で別の物質を用いる場合には、温度調整液用と洗浄液用の2つを設ける。尚、基板Mの主表面の温度調整を液体によらず、ヒーターやランプなどの別の手段を使って行う場合は、手段4、供給管41、及び噴射ノズル42は洗浄液供給専用の手段とする。   The temperature adjusting liquid / cleaning liquid supply means 4 is provided at the tip of the lower end of the supply pipe 41 and the supply pipe 41 extending from the outside of the chamber 6 toward the main surface of the substrate M placed on the support portion 21. And a spray nozzle 42 that sprays the temperature adjusting liquid and the cleaning liquid toward the main surface of the substrate M placed on the support portion 21. The supply pipe 41 is connected to, for example, a processing liquid storage tank (not shown), a temperature regulator (not shown), and a pressure pump (not shown) provided outside the chamber 6. The temperature adjustment liquid and the cleaning liquid are supplied to the injection nozzle 42 through the supply pipe 41, and are supplied from the injection nozzle 42 onto the main surface of the substrate M placed on the support portion 21. Here, an example in which the temperature adjusting liquid and the cleaning liquid are made the same substance is shown, and the case where the supply pipe 41 and the injection nozzle 42 are one each is shown, but the case where different substances are used for both. Are provided with a temperature adjusting liquid and a cleaning liquid. In the case where the temperature of the main surface of the substrate M is adjusted using another means such as a heater or a lamp without using the liquid, the means 4, the supply pipe 41, and the spray nozzle 42 are dedicated means for supplying the cleaning liquid. .

駆動手段5は、後述する相対運動手段7の触媒定盤取付部72の上端に接続され、チャンバー6の周囲まで、支持部21に載置される基板Mの主表面と平行な方向に延びるアーム部51と、アーム部51のチャンバー6の周囲まで延びた端部を支え、支持部21に載置される基板Mの主表面と垂直な方向に延びる軸部52と、軸部52の下端を支持する土台部53と、チャンバー6の周囲に配置され、土台部53の移動経路を定めるガイド54とを備えている。アーム部51は、その長手方向に移動することができる(図1,2中の両矢印Cを参照)。軸部52は、その長手方向に移動することにより、アーム部51を上下動させることができる(図1中の両矢印Dを参照)。土台部53は、支持部21に載置された基板Mの主表面と垂直な方向の軸を回転中心として所定の角度だけ回転することにより、アーム部51を旋回させることができる(図1,2中の両矢印Eを参照)。ガイド54は、支持部21に載置される基板Mの隣り合う二辺と平行な方向(第1の方向と第2の方向)に配置され、土台部53のL字形の移動経路を形成する。土台部53は、第1の方向のガイド54に沿って移動することにより、アーム部51を第1の方向に移動させ(図2中の両矢印Fを参照)、第2の方向のガイド54に沿って移動することにより、アーム部51を第2の方向に移動させることができる(図2中の両矢印Gを参照)。このようなアーム部51の移動により、支持部21に載置された基板Mの主表面の所定の位置に触媒定盤31を配置することができる。   The drive means 5 is connected to the upper end of a catalyst platen mounting portion 72 of the relative motion means 7 described later, and extends to the periphery of the chamber 6 in a direction parallel to the main surface of the substrate M placed on the support portion 21. A shaft portion 52 extending in a direction perpendicular to the main surface of the substrate M placed on the support portion 21, and a lower end of the shaft portion 52. The base part 53 to support is provided, and the guide 54 which is arrange | positioned around the chamber 6 and defines the movement path | route of the base part 53 is provided. The arm portion 51 can move in the longitudinal direction (see a double arrow C in FIGS. 1 and 2). The shaft part 52 can move the arm part 51 up and down by moving in the longitudinal direction (see a double-headed arrow D in FIG. 1). The base portion 53 can turn the arm portion 51 by rotating a predetermined angle about an axis in a direction perpendicular to the main surface of the substrate M placed on the support portion 21 (FIG. 1, FIG. 1). (See double arrow E in 2). The guide 54 is disposed in a direction (first direction and second direction) parallel to two adjacent sides of the substrate M placed on the support portion 21, and forms an L-shaped movement path of the base portion 53. . The base portion 53 moves along the guide 54 in the first direction, thereby moving the arm portion 51 in the first direction (see the double arrow F in FIG. 2), and the guide 54 in the second direction. The arm portion 51 can be moved in the second direction by moving along (see the double arrow G in FIG. 2). By such movement of the arm portion 51, the catalyst surface plate 31 can be disposed at a predetermined position on the main surface of the substrate M placed on the support portion 21.

基板加工装置1は、加工基準面33と主表面とを相対運動させる相対運動手段7を備えている。相対運動手段7は、平面部22を支え、開口部61を通ってチャンバー6の外部まで延在する軸部71と、軸部71を回転させる回転駆動手段(図示せず)とを備えている。軸部71は、支持部21に載置される基板Mの主表面と垂直な方向に延在し、回転駆動手段(図示せず)により、支持部21に載置される基板Mの主表面と垂直な方向の軸を回転中心として回転することができる(図1中の矢印Aを参照)。軸部71の回転中心の延長方向に、平面部22の中心と支持部21に載置される基板Mの中心とが位置する。軸部71が回転することにより、軸部71に支えられている平面部22がその中心を回転中心として回転し、さらに、平面部22に固定されている支持部21に載置される基板Mがその中心を回転中心として回転する。また、相対運動手段7は、触媒定盤31が取り付けられる触媒定盤取付部72と、駆動手段5のアーム部51に設けられた回転駆動手段(図示せず)とを備えている。触媒定盤取付部72は、回転駆動手段(図示せず)により、支持部21に載置される基板Mの主表面と垂直な方向の軸を回転中心として回転することができる(図1,2中の矢印Bを参照)。   The substrate processing apparatus 1 includes relative motion means 7 that relatively moves the processing reference surface 33 and the main surface. The relative motion means 7 includes a shaft portion 71 that supports the flat surface portion 22 and extends to the outside of the chamber 6 through the opening portion 61, and a rotation drive means (not shown) that rotates the shaft portion 71. . The shaft portion 71 extends in a direction perpendicular to the main surface of the substrate M placed on the support portion 21, and the main surface of the substrate M placed on the support portion 21 by rotation driving means (not shown). And an axis perpendicular to the axis of rotation (see arrow A in FIG. 1). The center of the flat surface portion 22 and the center of the substrate M placed on the support portion 21 are positioned in the extending direction of the rotation center of the shaft portion 71. By rotating the shaft portion 71, the flat surface portion 22 supported by the shaft portion 71 rotates around the center thereof, and the substrate M placed on the support portion 21 fixed to the flat surface portion 22. Rotates around the center of rotation. The relative motion means 7 includes a catalyst surface plate mounting portion 72 to which the catalyst surface plate 31 is mounted, and a rotation drive means (not shown) provided on the arm portion 51 of the drive means 5. The catalyst surface plate mounting portion 72 can be rotated by a rotation driving means (not shown) around an axis in a direction perpendicular to the main surface of the substrate M placed on the support portion 21 (FIG. 1, FIG. 1). (See arrow B in 2).

基板加工装置1は、基板Mに加える荷重(加工圧力)を制御する荷重制御手段8を備えている。荷重制御手段8は、触媒定盤取付部72内に設けられ、触媒定盤31に荷重を加えるエアシリンダ81と、エアシリンダ81により触媒定盤31に加えられる荷重を測定し、所定の荷重を超えないようにエアバルブをオン・オフして、エアシリンダ81によって触媒定盤31に加えられる荷重を制御するロードセル82とを備えている。触媒基準エッチングによる加工を行うとき、荷重制御手段8により、基板Mに加える荷重(加工圧力)を制御する。   The substrate processing apparatus 1 includes load control means 8 that controls a load (processing pressure) applied to the substrate M. The load control means 8 is provided in the catalyst surface plate mounting portion 72, measures an air cylinder 81 for applying a load to the catalyst surface plate 31, and a load applied to the catalyst surface plate 31 by the air cylinder 81, and applies a predetermined load. A load cell 82 is provided for controlling the load applied to the catalyst platen 31 by the air cylinder 81 by turning on and off the air valve so as not to exceed. When processing by catalyst reference etching is performed, the load (processing pressure) applied to the substrate M is controlled by the load control means 8.

加工取り代を設定どおりに確保するための制御方法としては、例えば、予め別に用意した基板Mに対して、種々の局所加工条件(加工圧力、回転数(触媒定盤、基板)、処理液の流量)、加工時間と加工取り代との関係を求めておき、所望の加工取り代となる加工条件と加工時間を決定し、当該加工時間を管理することで、加工取り代を制御することができる。これに限定されるものではなく、加工取り代を設定どおりに確保できる方法であれば、種々の方法を選択してもよい。   As a control method for securing the machining allowance as set, for example, various local processing conditions (processing pressure, rotation speed (catalyst platen, substrate), processing liquid of the substrate M prepared separately) Flow rate), machining time and machining allowance are determined, the machining condition and machining time to be the desired machining allowance are determined, and the machining allowance is controlled by controlling the machining time. it can. The method is not limited to this, and various methods may be selected as long as the machining allowance can be ensured as set.

図1及び図2に示す基板加工装置を用いて、触媒基準エッチングによる加工を行う場合、先ず、基板Mを、主表面として用いる上面M1を上側に向けて支持部21に載置して固定する。
その後、アーム部51の長手方向移動(両矢印C)、アーム部51の旋回移動(両矢印E)、アーム部51の第1方向移動(両矢印F)、アーム部51の第2方向移動(両矢印G)により、基板表面創製手段3の加工基準面33を、基板Mの上面M1に対向するように配置する。
When performing processing by catalyst-based etching using the substrate processing apparatus shown in FIGS. 1 and 2, first, the substrate M is placed and fixed on the support portion 21 with the upper surface M1 used as the main surface facing upward. .
Thereafter, the arm part 51 moves in the longitudinal direction (double arrow C), the arm part 51 pivots (double arrow E), the arm part 51 moves in the first direction (double arrow F), and the arm part 51 moves in the second direction ( By the double arrow G), the processing reference surface 33 of the substrate surface creation means 3 is disposed so as to face the upper surface M1 of the substrate M.

その後、軸部71及び触媒定盤取付部72を所定の回転速度で回転させることによって、加工基準面33及び上面M1を所定の回転速度で回転させながら、温度調整液を噴射ノズル42から上面M1上に供給して基板Mの上面M1の温度を所望の温度になるように制御するとともに、処理液供給ノズル91から上面M1上に処理液を供給し、上面M1と加工基準面33との間に処理液を介在させる。処理液と温度調整液は両者混じり合うことになるので同じ物質であることが望ましい。温度調整液を処理液とは別の手段で供給することにより、均一性高く、所望の温度でCARE加工を行うことができる。その状態で、加工基準面33を、アーム部51の上下移動(両矢印D)により、基板Mの上面M1に接触又は接近させる。その際、荷重制御手段8により、基板Mに加えられる荷重が所定の値に制御される。
その後、所定の加工取り代になった時点で、処理液の供給並びに触媒定盤取付部72の回転を止める。一方で、温度調整液を兼ねた洗浄液の供給は続ける。そして、アーム部51の上下移動(両矢印D)により、加工基準面33を、上面M1から所定の距離だけ離す。一定時間、洗浄液を供給し続けながら軸部71回転を行って洗浄を行った後、洗浄液の供給を止めて軸部71回転によるスピン乾燥を行う。その後、基板Mを取り出す。
このような基板準備工程と基板加工工程とにより、基板Mが製造される。
Thereafter, by rotating the shaft portion 71 and the catalyst surface plate mounting portion 72 at a predetermined rotation speed, the temperature adjustment liquid is supplied from the injection nozzle 42 to the upper surface M1 while rotating the processing reference surface 33 and the upper surface M1 at a predetermined rotation speed. The temperature of the upper surface M1 of the substrate M is controlled so as to become a desired temperature, and the processing liquid is supplied onto the upper surface M1 from the processing liquid supply nozzle 91, and between the upper surface M1 and the processing reference surface 33. A processing solution is interposed between the two. Since the treatment liquid and the temperature adjustment liquid are mixed together, it is desirable that they are the same substance. By supplying the temperature adjusting liquid by means different from the processing liquid, CARE processing can be performed at a desired temperature with high uniformity. In this state, the processing reference surface 33 is brought into contact with or brought close to the upper surface M1 of the substrate M by the vertical movement of the arm portion 51 (double arrow D). At that time, the load applied to the substrate M is controlled to a predetermined value by the load control means 8.
Thereafter, when the predetermined machining allowance is reached, the supply of the processing liquid and the rotation of the catalyst surface plate mounting portion 72 are stopped. On the other hand, the supply of the cleaning liquid that also serves as the temperature adjustment liquid continues. Then, the machining reference surface 33 is separated from the upper surface M1 by a predetermined distance by the vertical movement of the arm portion 51 (double arrow D). Washing is performed by rotating the shaft 71 while supplying the cleaning liquid for a certain time, and then the cleaning liquid is stopped and spin drying is performed by rotating the shaft 71. Thereafter, the substrate M is taken out.
The substrate M is manufactured through the substrate preparation process and the substrate processing process.

洗浄液の温度に関しては、最初は常温より高い温度として、その後温度を変化させていって最終的に常温とするのが好ましい。これは、最終的に基板Mの温度を常温にすると、基板処理の運用が容易になるからである。尚、この温度変化は段階的に変化させても良いし、連続的に変化させても良い。また、洗浄開始当初は、CARE加工中の処理液の温度より洗浄液の温度を高くしておくと、洗浄液へのオルトケイ酸等のケイ酸の溶解度が高まるため、欠陥低減に効果的である。   Regarding the temperature of the cleaning liquid, it is preferable that the temperature is initially higher than normal temperature, and then the temperature is changed to finally be normal temperature. This is because the substrate processing operation becomes easier when the temperature of the substrate M is finally set to room temperature. The temperature change may be changed stepwise or may be changed continuously. Further, at the beginning of cleaning, if the temperature of the cleaning liquid is set higher than the temperature of the processing liquid during CARE processing, the solubility of silicic acid such as orthosilicic acid in the cleaning liquid increases, which is effective in reducing defects.

この実施の形態では、噴射ノズル42から供給される温度調整液によって基板Mの上面M1の温度を均一に制御する方法を示したが、これに限らずヒーターやランプなどを用いてもよい。すなわち、熱輻射や気流及び環境温度の調整によって温度調整を行っても良い。上記温度調整液を用いる方法は、温度調整液が洗浄液も兼ねているので装置の機構を簡素化出来るという特長がある。一方で、熱輻射や気流を用いる方法は、一般に、高速な昇降温特性を有するという特長がある。   In this embodiment, the method of uniformly controlling the temperature of the upper surface M1 of the substrate M by the temperature adjustment liquid supplied from the injection nozzle 42 is shown, but the present invention is not limited to this, and a heater, a lamp, or the like may be used. That is, temperature adjustment may be performed by adjusting heat radiation, airflow, and environmental temperature. The method using the temperature adjusting liquid has a feature that the mechanism of the apparatus can be simplified because the temperature adjusting liquid also serves as a cleaning liquid. On the other hand, the method using heat radiation or airflow generally has a feature of having a high-speed temperature rising / falling characteristic.

尚、この実施の形態では、基板Mの主表面上に、基板表面創製手段3の加工基準面33を押し当てるタイプの基板加工装置について本発明を適用したが、基板表面創製手段の加工基準面上に、基板の主表面を押し当てるタイプの基板加工装置にも本発明を適用できる。
また、この実施の形態では、基板の片面を加工するタイプの基板加工装置について本発明を適用したが、基板の両面を同時に加工するタイプの基板加工装置にも本発明を適用できる。この場合、基板支持手段として、基板の側面を保持する部材であるキャリアを使用する。
また、この実施の形態では、基板表面創製手段に処理液供給手段を設け、処理液供給手段から処理液を供給するタイプの基板加工装置について本発明を適用したが、チャンバーの外側から基板Mの主表面に向かって処理液を供給する場合や、基板支持手段に処理液供給手段を設け、基板支持手段から処理液を供給する場合にも本発明を適用できる。また、チャンバーに処理液を貯め、処理液中に基板表面創製手段と基板支持手段とを入れた状態で触媒基準エッチングによる加工を行う場合にも本発明を適用できる。
In this embodiment, the present invention is applied to a substrate processing apparatus of a type in which the processing reference surface 33 of the substrate surface creation means 3 is pressed against the main surface of the substrate M. However, the processing reference surface of the substrate surface creation means is used. Furthermore, the present invention can also be applied to a substrate processing apparatus that presses the main surface of the substrate.
In this embodiment, the present invention is applied to a substrate processing apparatus that processes one side of a substrate. However, the present invention can also be applied to a substrate processing apparatus that processes both surfaces of a substrate simultaneously. In this case, a carrier that is a member that holds the side surface of the substrate is used as the substrate support means.
Further, in this embodiment, the present invention is applied to a substrate processing apparatus of a type in which a processing liquid supply means is provided in the substrate surface creation means and the processing liquid is supplied from the processing liquid supply means. The present invention can also be applied to the case where the processing liquid is supplied toward the main surface, or the case where the processing liquid supply means is provided in the substrate support means and the processing liquid is supplied from the substrate support means. Further, the present invention can also be applied to the case where the processing liquid is stored in the chamber and the processing based on the catalyst reference etching is performed in a state where the substrate surface creation means and the substrate support means are placed in the processing liquid.

また、この実施の形態では、加工基準面33と主表面の両方を回転させることにより加工基準面33と主表面とを相対運動させるタイプの基板加工装置について本発明を適用したが、それ以外の方法により、加工基準面33と主表面とを相対運動させるタイプの基板加工装置にも本発明を適用できる。
また、この実施の形態では、基板を一枚ごとに加工する枚様式の基板加工装置について本発明を適用したが、複数枚の基板を同時に加工するバッチ式の基板加工装置にも本発明を適用できる。また、ここでは基板の主表面全面に亘って加工する場合を示したが、必要に応じて、予め定めた局部のみを加工する局部加工のみを行っても良く、これらの加工を併用してもよい。
In this embodiment, the present invention is applied to a substrate processing apparatus of a type that relatively moves the processing reference surface 33 and the main surface by rotating both the processing reference surface 33 and the main surface. The present invention can also be applied to a substrate processing apparatus of a type in which the processing reference surface 33 and the main surface are moved relative to each other by a method.
Further, in this embodiment, the present invention is applied to a substrate type processing apparatus that processes substrates one by one. However, the present invention is also applied to a batch type substrate processing apparatus that processes a plurality of substrates simultaneously. it can. Moreover, although the case where it processed over the main surface whole surface of a board | substrate was shown here, if necessary, only the local processing which processes only a predetermined local part may be performed, and these processing may be used together. Good.

実施の形態2.
実施の形態2では、多層反射膜付き基板の製造方法を説明する。
Embodiment 2. FIG.
In Embodiment 2, a method for manufacturing a substrate with a multilayer reflective film will be described.

この実施の形態2では、実施の形態1の基板の製造方法で説明した方法により製造した基板Mの主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を形成し、多層反射膜付き基板を製造するか、さらに、この多層反射膜上に保護膜を形成して、多層反射膜付き基板を製造する。   In the second embodiment, a multilayer reflective film in which high refractive index layers and low refractive index layers are alternately laminated on the main surface of the substrate M manufactured by the method described in the substrate manufacturing method of the first embodiment. Then, a substrate with a multilayer reflective film is produced, or a protective film is formed on the multilayer reflective film to produce a substrate with a multilayer reflective film.

この実施の形態2による多層反射膜付き基板の製造方法によれば、実施の形態1の基板の製造方法により得られた基板Mを用いて多層反射膜付き基板を製造するので、基板要因による特性の悪化を防止することができ、所望の特性をもった多層反射膜付き基板を製造することができる。すなわち、多層膜面の欠陥が少なく、且つその表面平滑度の高い多層反射膜付き基板を製造することができる。   According to the method for manufacturing a substrate with a multilayer reflective film according to the second embodiment, a substrate with a multilayer reflective film is manufactured using the substrate M obtained by the method for manufacturing a substrate according to the first embodiment. Can be prevented, and a substrate with a multilayer reflective film having desired characteristics can be manufactured. That is, it is possible to manufacture a substrate with a multilayer reflective film having few defects on the multilayer film surface and high surface smoothness.

EUVリソグラフィ用多層膜付き基板の場合は、基板表面のピットやバンプによる凹凸及び多層膜中の欠陥による位相欠陥に留意する必要がある。この位相欠陥の検査感度は、基板段階より多層膜成膜後の段階で検査した方が検査感度は高い。この際、基板表面に表面荒れがあって表面平滑度が低いと、多層膜成膜後の検査であっても、位相欠陥検査の時のバックグラウンドノイズとなって検査感度が低下してしまう。本発明の実施形態によれば、基板表面に加え、多層膜表面を含めて必要にして十分な表面平滑度が得られるため、十分な位相欠陥検査感度となり、位相欠陥管理品質の高い多層反射膜付き基板を製造することが可能となる。   In the case of a substrate with a multilayer film for EUV lithography, it is necessary to pay attention to unevenness due to pits and bumps on the substrate surface and phase defects due to defects in the multilayer film. The inspection sensitivity of the phase defect is higher when the inspection is performed at the stage after the multilayer film is formed than at the substrate stage. At this time, if the surface of the substrate is rough and the surface smoothness is low, even if the inspection is performed after the multilayer film is formed, it becomes a background noise at the time of phase defect inspection and the inspection sensitivity is lowered. According to the embodiment of the present invention, since sufficient surface smoothness can be obtained including the surface of the multilayer film in addition to the substrate surface, sufficient phase defect inspection sensitivity is obtained, and the multilayer reflection film having high phase defect management quality. An attached substrate can be manufactured.

実施の形態3.
実施の形態3では、マスクブランクの製造方法を説明する。
Embodiment 3 FIG.
In Embodiment 3, a mask blank manufacturing method will be described.

この実施の形態3では、実施の形態1の基板の製造方法で説明した方法により製造した基板Mの主表面上に、転写パターン用薄膜としての遮光膜を形成してバイナリーマスクブランクを製造し、又は転写パターン用薄膜としての光半透過膜を形成してハーフトーン型位相シフトマスクブランクを製造し、又は転写パターン用薄膜として光半透過膜、遮光膜を順次形成してハーフトーン型位相シフトマスクブランクを製造する。   In this third embodiment, a binary mask blank is manufactured by forming a light shielding film as a transfer pattern thin film on the main surface of the substrate M manufactured by the method described in the substrate manufacturing method of the first embodiment. Alternatively, a half-tone phase shift mask blank is manufactured by forming a light semi-transmissive film as a transfer pattern thin film, or a half-tone phase shift mask by sequentially forming a light semi-transmissive film and a light-shielding film as a transfer pattern thin film. A blank is manufactured.

また、この実施の形態3では、実施の形態2の多層反射膜付き基板の製造方法で説明した方法により製造した多層反射膜付き基板の保護膜上に転写パターン用薄膜としての吸収体膜を形成し、又は多層反射膜付き基板の多層反射膜上に保護膜及び転写パターン用薄膜としての吸収体膜を形成し、さらに多層反射膜を形成していない裏面に裏面導電膜を形成して、反射型マスクブランクを製造する。   In the third embodiment, an absorber film as a transfer pattern thin film is formed on the protective film of the multilayer reflective film-coated substrate manufactured by the method described for the multilayer reflective film-coated substrate of the second embodiment. Alternatively, a protective film and an absorber film as a transfer pattern thin film are formed on the multilayer reflective film of the substrate with the multilayer reflective film, and a back conductive film is formed on the back surface on which the multilayer reflective film is not formed. A mold mask blank is manufactured.

この実施の形態3によれば、実施の形態1の基板の製造方法により得られた基板M又は実施の形態2の多層反射膜付き基板の製造方法によって得られた多層反射膜付き基板を用いてマスクブランクを製造するので、基板要因による特性の悪化を防止することができ、所望の特性をもったマスクブランクを製造することができる。   According to the third embodiment, the substrate M obtained by the substrate manufacturing method of the first embodiment or the substrate with the multilayer reflective film obtained by the method of manufacturing the substrate with the multilayer reflective film of the second embodiment is used. Since the mask blank is manufactured, it is possible to prevent deterioration of characteristics due to substrate factors, and it is possible to manufacture a mask blank having desired characteristics.

実施の形態4.
実施の形態4では、転写用マスクの製造方法を説明する。
Embodiment 4 FIG.
In the fourth embodiment, a method for manufacturing a transfer mask will be described.

この実施の形態4では、実施の形態3のマスクブランクの製造方法で説明した方法により製造したバイナリーマスクブランク、位相シフトマスクブランク、又は反射型マスクブランクの転写パターン用薄膜上に、露光・現像処理を行ってレジストパターンを形成する。このレジストパターンをマスクにして転写パターン用薄膜をエッチング処理して、転写パターンを形成して転写用マスクを製造する。   In the fourth embodiment, an exposure / development process is performed on the transfer pattern thin film of the binary mask blank, phase shift mask blank, or reflective mask blank manufactured by the method described in the mask blank manufacturing method of the third embodiment. To form a resist pattern. Using this resist pattern as a mask, the transfer pattern thin film is etched to form a transfer pattern to manufacture a transfer mask.

この実施の形態4によれば、実施の形態3のマスクブランクの製造方法により得られたマスクブランクを用いて転写用マスクを製造するので、基板要因による特性の悪化を防止することができ、所望の特性をもったマスクブランクを製造することができる。   According to the fourth embodiment, since the transfer mask is manufactured using the mask blank obtained by the mask blank manufacturing method of the third embodiment, it is possible to prevent the deterioration of the characteristics due to the substrate factor. A mask blank having the following characteristics can be manufactured.

以下、実施例に基づいて本発明をより具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated more concretely.

実施例1.
A.ガラス基板の製造
1.基板準備工程
主表面及び裏面が研磨された6025サイズ(152mm×152mm×6.35mm)のSiO−TiOガラス基板である低熱膨張ガラス基板を準備した。材料組成から明らかなように、このガラス基板の表面はケイ素を含む酸化物からなる。尚、SiO−TiOガラス基板は、以下の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程、局所加工工程、及びタッチ研磨工程を経て得られたものである。
Example 1.
A. Production of glass substrate Substrate Preparation Step A low thermal expansion glass substrate, which is a 6025 size (152 mm × 152 mm × 6.35 mm) SiO 2 —TiO 2 glass substrate whose main surface and back surface were polished, was prepared. As apparent from the material composition, the surface of the glass substrate is made of an oxide containing silicon. The SiO 2 —TiO 2 glass substrate is obtained through the following rough polishing process, precision polishing process, ultra-precision polishing process, local processing process, and touch polishing process.

(1)粗研磨加工工程
端面面取加工及び研削加工を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で粗研磨を行った。10枚セットを2回行い合計20枚のガラス基板の粗研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径2〜3μm)を含有する水溶液
研磨パッド:硬質ポリシャ(ウレタンパッド)
粗研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
(1) Rough polishing process Step 10 glass substrates that have undergone end chamfering and grinding were set in a double-side polishing apparatus, and rough polishing was performed under the following polishing conditions. A set of 10 sheets was performed twice, and a total of 20 glass substrates were roughly polished. The processing load and polishing time were adjusted as appropriate.
Polishing slurry: Aqueous solution containing cerium oxide (average particle size 2 to 3 μm) Polishing pad: Hard polisher (urethane pad)
After the rough polishing, in order to remove the abrasive grains adhering to the glass substrate, the glass substrate was immersed in a cleaning tank and cleaned by applying ultrasonic waves.

(2)精密研磨加工工程
粗研磨を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の精密研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径1μm)を含有する水溶液
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
(2) Precision polishing process step Ten glass substrates after rough polishing were set in a double-side polishing apparatus, and precision polishing was performed under the following polishing conditions. A 10-sheet set was performed twice, and a total of 20 glass substrates were precisely polished. The processing load and polishing time were adjusted as appropriate.
Polishing slurry: Aqueous solution containing cerium oxide (average particle size 1 μm) Polishing pad: Soft polisher (suede type)
After the precision polishing, in order to remove abrasive grains adhering to the glass substrate, the glass substrate was immersed in a cleaning tank and cleaned by applying ultrasonic waves.

(3)超精密研磨加工工程
精密研磨を終えたガラス基板を再び両面研磨装置に10枚セットし、以下の研磨条件で超精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の超精密研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:コロイダルシリカを含有するアルカリ性水溶液(pH10.2)
(コロイダルシリカ含有量50wt%)
研磨パッド:超軟質ポリシャ(スウェードタイプ)
超精密研磨後、ガラス基板を水酸化ナトリウムのアルカリ洗浄液が入った洗浄槽に浸漬し、超音波を印加して洗浄を行った。
(3) Ultra-precision polishing process Step 10 glass substrates that had been subjected to precision polishing were again set in a double-side polishing apparatus, and ultra-precision polishing was performed under the following polishing conditions. A set of 10 sheets was performed twice and a total of 20 glass substrates were subjected to ultra-precision polishing. The processing load and polishing time were adjusted as appropriate.
Polishing slurry: alkaline aqueous solution (pH 10.2) containing colloidal silica
(Colloidal silica content 50wt%)
Polishing pad: Super soft polisher (suede type)
After ultra-precision polishing, the glass substrate was immersed in a cleaning tank containing an alkali cleaning solution of sodium hydroxide and cleaned by applying ultrasonic waves.

(4)局所加工工程
粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程後のガラス基板の主表面及び裏面の平坦度を、平坦度測定装置(トロペル社製 UltraFlat200)を用いて測定した。平坦度測定は、ガラス基板の周縁領域を除外した148mm×148mmの領域に対して、1024×1024の地点で行った。ガラス基板の主表面及び裏面の平坦度の測定結果を、測定点ごとに仮想絶対平面に対する高さの情報(凹凸形状情報)としてコンピュータに保存した。仮想絶対平面は、仮想絶対平面から基板表面までの距離を、平坦度測定領域全体に対して二乗平均したときに最小の値となる面である。
その後、取得された凹凸形状情報とガラス基板に要求される主表面及び裏面の平坦度の基準値とを比較し、その差分を、ガラス基板の主表面及び裏面の所定領域ごとにコンピュータで算出した。この差分が、局所的な表面加工における各所定領域の必要除去量(加工取り代)となる。
(4) Local processing step The flatness of the main surface and the back surface of the glass substrate after the rough polishing processing step, the precision polishing processing step, and the ultraprecision polishing processing step was measured using a flatness measuring device (UltraFlat200 manufactured by Tropel). . The flatness measurement was performed at a point of 1024 × 1024 with respect to an area of 148 mm × 148 mm excluding the peripheral area of the glass substrate. The measurement results of the flatness of the main surface and the back surface of the glass substrate were stored in a computer as height information (uneven shape information) with respect to the virtual absolute plane for each measurement point. The virtual absolute plane is a plane having a minimum value when the distance from the virtual absolute plane to the substrate surface is squared with respect to the entire flatness measurement region.
After that, the obtained uneven shape information was compared with the standard values of the flatness of the main surface and the back surface required for the glass substrate, and the difference was calculated by a computer for each predetermined region of the main surface and the back surface of the glass substrate. . This difference becomes a necessary removal amount (processing allowance) of each predetermined region in local surface processing.

その後、ガラス基板の主表面及び裏面の所定領域ごとに、必要除去量に応じた局所的な表面加工の加工条件を設定した。設定方法は以下の通りである。事前にダミー基板を用いて、実際の加工と同じようにダミー基板を、一定時間基板移動させずにある地点(スポット)で加工し、その形状を平坦度測定装置(トロペル社製 UltraFlat200)にて測定し、単位時間当たりにおけるスポットでの加工体積を算出した。そして、単位時間当たりにおけるスポットでの加工体積と上述したように算出した各所定領域の必要除去量に従い、ガラス基板をラスタ走査する際の走査スピードを決定した。
その後、ガラス基板の主表面及び裏面を、基板仕上げ装置を用いて、磁気粘弾性流体研磨(Magnet Rheological Finishing:MRF)により、所定領域ごとに設定した加工条件に従い、局所的に表面加工した。尚、このとき、酸化セリウムの研磨粒子を含有する磁性研磨スラリーを使用した。
Then, the processing conditions of the local surface processing according to the required removal amount were set for every predetermined area | region of the main surface and back surface of a glass substrate. The setting method is as follows. Using a dummy substrate in advance, the dummy substrate is processed at a certain point (spot) without moving the substrate for a certain period of time in the same manner as in actual processing, and the shape thereof is measured with a flatness measuring device (UltraFlat 200 manufactured by Tropel). Measurement was performed, and the processing volume at the spot per unit time was calculated. Then, the scanning speed for raster scanning of the glass substrate was determined according to the processing volume at the spot per unit time and the necessary removal amount of each predetermined area calculated as described above.
Then, the main surface and the back surface of the glass substrate were locally surface-treated by a magnet viscoelastic fluid polishing (MRF) using a substrate finishing device according to the processing conditions set for each predetermined region. At this time, a magnetic polishing slurry containing cerium oxide polishing particles was used.

その後、ガラス基板を、濃度約10%の塩酸水溶液(温度約25℃)が入った洗浄槽に約10分間浸漬させ、続いて、純水によるリンス、イソプロピルアルコール(IPA)による乾燥を行った。   Thereafter, the glass substrate was immersed in a cleaning tank containing an aqueous hydrochloric acid solution having a concentration of about 10% (temperature: about 25 ° C.) for about 10 minutes, followed by rinsing with pure water and drying with isopropyl alcohol (IPA).

(5)タッチ研磨工程
局所加工工程によって荒れたガラス基板の主表面及び裏面の平滑性を高めるために、研磨スラリーを用いて行う低荷重の機械的研磨により微小量だけガラス基板の主表面及び裏面を研磨した。この研磨は、基板の大きさよりも大きい研磨パッドが張り付けられた上下の研磨定盤の間にキャリアで保持されたガラス基板をセットし、コロイダルシリカ砥粒(平均粒子径50nm)を含有する研磨スラリーを供給しながら、ガラス基板を、上下の研磨定盤内で自転しながら公転することによって行った。
その後、ガラス基板を、水酸化ナトリウムのアルカリ洗浄液に浸漬し、超音波を印加して洗浄を行った。
(5) Touch polishing process In order to improve the smoothness of the main surface and back surface of the glass substrate that has been roughened by the local processing process, the main surface and back surface of the glass substrate are only minute amounts by low-load mechanical polishing using a polishing slurry. Polished. This polishing is performed by setting a glass substrate held by a carrier between upper and lower polishing surface plates to which a polishing pad larger than the size of the substrate is attached, and containing a colloidal silica abrasive grain (average particle diameter of 50 nm). The glass substrate was revolved while rotating in the upper and lower polishing surface plates while feeding.
Thereafter, the glass substrate was immersed in an alkali cleaning solution of sodium hydroxide and cleaned by applying ultrasonic waves.

2.基板加工工程
次に、図1及び図2に示す基板加工装置を用いて、タッチ研磨工程後のガラス基板の主表面に対して、触媒基準エッチングによる加工を施した。この基板加工装置はクリーンルームに設置されており、クリーンルーム内の室温は23℃とした。したがってこの場合の常温は23℃である。
2. Substrate Processing Step Next, using the substrate processing apparatus shown in FIGS. 1 and 2, the main surface of the glass substrate after the touch polishing step was processed by catalyst-based etching. This substrate processing apparatus was installed in a clean room, and the room temperature in the clean room was 23 ° C. Therefore, the normal temperature in this case is 23 ° C.

この実施例では、ステンレス鋼(SUS)製の円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたフッ素系ゴムパッドと、ガラス基板と対向する側のフッ素系ゴムパッドの表面全面にアルゴン(Ar)ガス中で白金(Pt)ターゲットを用いてスパッタリング法によって形成された白金薄膜からなる加工基準面33とを備えた触媒定盤31を使用した。ここで、触媒定盤の直径は100mmであり、フッ素系ゴムパッド上に形成されたPt薄膜の膜厚は100nmである。
加工、洗浄条件は以下の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:40℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
In this embodiment, a disk-shaped surface plate main body 32 made of stainless steel (SUS), a fluorine rubber pad formed on the entire surface of the surface plate main body 32 so as to cover the surface plate main body 32, and a glass substrate are opposed to each other. A catalyst surface plate 31 having a processing reference surface 33 made of a platinum thin film formed by sputtering using a platinum (Pt) target in an argon (Ar) gas on the entire surface of the fluorine-based rubber pad on the side was used. Here, the diameter of the catalyst surface plate is 100 mm, and the film thickness of the Pt thin film formed on the fluorine rubber pad is 100 nm.
Processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 40 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

まず、ガラス基板を、主表面を上側に向けて支持部21に載置して固定した。
その後、アーム部51の長手方向移動(両矢印C)、アーム部51のスイング移動(両矢印E)、アーム部51の第1方向移動(両矢印F)、アーム部51の第2方向移動(両矢印G)により、触媒定盤31の加工基準面33がガラス基板の主表面に対向して配置された状態で、触媒定盤31を配置した。触媒定盤31の配置位置は、ガラス基板及び触媒定盤31を回転させたときに、触媒定盤31の加工基準面33が、ガラス基板の主表面全体に接触又は接近することが可能な位置である。
First, the glass substrate was placed and fixed on the support portion 21 with the main surface facing upward.
Thereafter, the longitudinal movement of the arm 51 (double arrow C), the swing movement of the arm 51 (double arrow E), the first movement of the arm 51 (double arrow F), and the second movement of the arm 51 ( By the double arrow G), the catalyst surface plate 31 was disposed in a state where the processing reference surface 33 of the catalyst surface plate 31 was disposed to face the main surface of the glass substrate. The arrangement position of the catalyst surface plate 31 is a position where the processing reference surface 33 of the catalyst surface plate 31 can contact or approach the entire main surface of the glass substrate when the glass substrate and the catalyst surface plate 31 are rotated. It is.

その後、ガラス基板を10.3回転/分の回転速度及び触媒定盤31を10回転/分の回転速度で回転させる。ここで、ガラス基板の回転方向と触媒定盤31の回転方向とが、互いに逆になるようにガラス基板及び触媒定盤31を回転させる。これにより、両者間に周速差をとり、触媒基準エッチングによる加工の効率を高めることができる。また、両者の回転数は、僅かに異なるように設定される。これにより、触媒定盤31の加工基準面33がガラス基板の主表面上に対して異なる軌跡を描くように相対運動させることができ、触媒基準エッチングによる加工の効率を高めることができる。   Thereafter, the glass substrate is rotated at a rotation speed of 10.3 rotations / minute and the catalyst surface plate 31 is rotated at a rotation speed of 10 rotations / minute. Here, the glass substrate and the catalyst platen 31 are rotated so that the rotation direction of the glass substrate and the rotation direction of the catalyst platen 31 are opposite to each other. Thereby, a peripheral speed difference can be taken between them, and the processing efficiency by catalyst reference | standard etching can be improved. Moreover, both rotation speeds are set to be slightly different. Thereby, the processing reference surface 33 of the catalyst surface plate 31 can be moved relative to the main surface of the glass substrate so as to draw different trajectories, and the processing efficiency by the catalyst reference etching can be increased.

ガラス基板及び触媒定盤31を回転させながら、噴射ノズル42から基板温度を調整するための温度調整液を基板に吹き付け、また、処理液供給ノズル91から処理液を基板表面に供給した。温度調整液も処理液も40℃の純水である。常温、すなわち、この時の環境温度であるクリーンルームの室温は23℃であって、温度調整液も処理液も常温より高い温度の設定になっている。このようにしてガラス基板Mの主表面M1上に40℃の純水を供給し、ガラス基板の主表面の温度を均一に高めるとともに、加工基準面33との間に40℃の純水を介在させた。その状態で、触媒定盤31の加工基準面33を、アーム部51の上下移動(両矢印D)により、ガラス基板の表面に接触又は接近させた。その際、ガラス基板に加えられる荷重(加工圧力)が100hPaに制御された。
その後、加工取り代が10nmとなった時点で、40℃の処理液の供給を止め、アーム部51の上下移動(両矢印D)により、触媒定盤31を、ガラス基板の主表面から所定の距離だけ離した。温度調整液は23℃の純水である洗浄液に連続的に切り替えて洗浄水を噴射ノズル42から供給し続けた。この間、ガラス基板及び触媒定盤31の回転は続けて、常温の純水によるスピン洗浄を行った。その後、洗浄水の供給を止めて、スピン乾燥を行った。しかる後、支持部21から常温のガラス基板Mを取り外して、ガラス基板を作製した。
While rotating the glass substrate and the catalyst surface plate 31, a temperature adjusting liquid for adjusting the substrate temperature was sprayed from the spray nozzle 42 to the substrate, and the processing liquid was supplied from the processing liquid supply nozzle 91 to the substrate surface. Both the temperature adjusting solution and the treatment solution are 40 ° C. pure water. The room temperature of the clean room, which is the ambient temperature at this time, is 23 ° C., and the temperature adjustment liquid and the treatment liquid are set to a temperature higher than the normal temperature. In this way, 40 ° C. pure water is supplied onto the main surface M 1 of the glass substrate M to uniformly increase the temperature of the main surface of the glass substrate, and 40 ° C. pure water is interposed between the processing reference surface 33. I let you. In that state, the processing reference surface 33 of the catalyst surface plate 31 was brought into contact with or brought close to the surface of the glass substrate by the vertical movement of the arm portion 51 (double arrow D). At that time, the load (processing pressure) applied to the glass substrate was controlled to 100 hPa.
Thereafter, when the machining allowance reaches 10 nm, the supply of the treatment liquid at 40 ° C. is stopped, and the catalyst surface plate 31 is moved from the main surface of the glass substrate to a predetermined level by moving the arm portion 51 up and down (double arrow D). Just a distance away. The temperature adjustment liquid was continuously switched to a cleaning liquid that was 23 ° C. pure water, and the cleaning water was continuously supplied from the spray nozzle 42. During this time, the glass substrate and the catalyst surface plate 31 continued to rotate, and spin cleaning with pure water at room temperature was performed. Thereafter, the supply of washing water was stopped and spin drying was performed. Thereafter, the glass substrate M at room temperature was removed from the support portion 21 to produce a glass substrate.

3.評価
触媒基準エッチングによる加工前後のガラス基板の主表面の表面粗さを、基板の中心の1μm×1μmの領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.049nmと、要求値の0.08nmを大幅に下回る良好なものであった。
3. Evaluation The surface roughness of the main surface of the glass substrate before and after processing by catalyst-based etching was measured using an atomic force microscope (AFM) for a 1 μm × 1 μm region at the center of the substrate.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing was 0.049 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm.

触媒基準エッチングによる加工後のガラス基板の主表面の欠陥検査を、基板の周辺領域を除外した132mm×132mmの領域に対して、欠陥検査装置(KLA−Tencor社製 マスク/ブランク欠陥検査装置 Teron610)を用いて行った。欠陥検査は、SEVD(Sphere Equivalent Volume Diameter)換算で21.5nmサイズの欠陥が検出可能な感度で行った。SEVDは、欠陥を半球状のものと仮定したときの直径の長さである。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は72個であった。この検出された凸欠陥をエネルギー分散型X線分光法(EDX)により調べたところ、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は13個であった。ちなみに、後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は24個であった。40℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数をほぼ半減することができた。
また、実施例1の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.051nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も15個以下と少なかった。
実施例1の方法により、低欠陥、且つ高い平滑性の主表面を有するガラス基板が安定して得られた。
A defect inspection apparatus (mask / blank defect inspection apparatus Teron 610 manufactured by KLA-Tencor) is used for a defect inspection of the main surface of the glass substrate after processing by catalyst-based etching, for a 132 mm × 132 mm area excluding the peripheral area of the substrate. It was performed using. The defect inspection was performed with a sensitivity capable of detecting a 21.5 nm size defect in terms of SEVD (Sphere Equivalent Volume Diameter). SEVD is the length of the diameter when the defect is assumed to be hemispherical.
The number of convex defects detected on the main surface after processing (including fatal defects and pseudo defects) was 72. When the detected convex defects were examined by energy dispersive X-ray spectroscopy (EDX), there were 13 defects due to silicic acid (including fatal defects and pseudo defects). Incidentally, as described in the comparative example described later, in the conventional method in which the temperature of the processing liquid is set to room temperature (23 ° C.) and the temperature adjusting liquid for heating the substrate is not used, the number of detected convex defects on the main surface after processing. The number of defects (including fatal defects and pseudo defects) was 80, and the number of defects caused by silicic acid (including fatal defects and pseudo defects) was 24. According to this example in which CARE processing was performed at 40 ° C., the number of defects (including fatal defects and pseudo defects) caused by silicic acid could be almost halved.
Further, when 20 glass substrates were produced by the method of Example 1, the total number and the surface roughness were good, with a root mean square roughness (Rms) of 0.051 nm or less, and defects caused by silicic acid (fatal) The number of defects (including defects and pseudo defects) was as small as 15 or less.
By the method of Example 1, a glass substrate having a low-defect and high smooth main surface was stably obtained.

B.多層反射膜付き基板の製造
次に、このようにして作製されたガラス基板の主表面上に、イオンビームスパッタ法により、シリコン膜(Si)からなる高屈折率層(膜厚4.2nm)とモリブデン膜(Mo)からなる低屈折率層(2.8nm)とを交互に、高屈折率層と低屈折率層とを1ペアとし、40ペア積層して、多層反射膜(膜厚280nm)を形成した。
その後、この多層反射膜上に、イオンビームスパッタ法により、ルテニウム(Ru)からなる保護膜(膜厚2.5nm)を形成した。尚、イオンビームスパッタリングにおけるガラス基板主表面の法線に対するMo、Si、Ruのスパッタ粒子の入射角度は、それぞれ、Moが50度、Siが45度、Ruが40度とした。
このようにして、多層反射膜付き基板を作製した。
B. Next, a high refractive index layer (film thickness: 4.2 nm) made of a silicon film (Si) is formed on the main surface of the glass substrate thus produced by ion beam sputtering. A multilayer reflective film (thickness: 280 nm) is formed by alternately stacking 40 pairs of low refractive index layers (2.8 nm) made of a molybdenum film (Mo) alternately with one pair of high refractive index layer and low refractive index layer. Formed.
Thereafter, a protective film (thickness 2.5 nm) made of ruthenium (Ru) was formed on the multilayer reflective film by ion beam sputtering. The incident angles of the sputtered particles of Mo, Si, and Ru with respect to the normal of the main surface of the glass substrate in ion beam sputtering were set to 50 degrees for Mo, 45 degrees for Si, and 40 degrees for Ru, respectively.
In this way, a substrate with a multilayer reflective film was produced.

得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率をEUV反射率測定装置により測定した。
ガラス基板主表面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsで0.17nm)、反射率は64%と高反射率であった。
得られた多層反射膜付き基板の保護膜表面の欠陥検査を、ガラス基板の欠陥検査と同様に行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で17,504個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、50個(疑似欠陥は含まず)と少なかった。位相欠陥検査も合わせて行ったが、高い平滑性を持つため、検査時のバックグラウンドノイズが少なく、高感度な位相欠陥検査を行うことができた。
実施例1の方法により、低欠陥、且つ高い平滑性の保護膜表面を有する多層反射膜付き基板が得られた。
About the obtained board | substrate with a multilayer reflective film, the reflectance of EUV light (wavelength 13.5nm) was measured with the EUV reflectance measuring apparatus.
Due to the high smoothness of the main surface of the glass substrate, the surface of the protective film was also kept smooth (Rms 0.17 nm), and the reflectance was as high as 64%.
The defect inspection of the protective film surface of the obtained multilayer reflective film-coated substrate was performed in the same manner as the defect inspection of the glass substrate.
The number of defects detected on the surface of the protective film was 17,504 (including fatal defects and pseudo defects) with a sensitivity capable of detecting 21.5 nm size defects (convex defects) in terms of SEVD. In defect inspection, pseudo defects dominate. When the defect inspection was performed with a sensitivity capable of detecting a 25 nm size defect (convex defect) in terms of SEVD, the number was as small as 50 (not including pseudo defects). The phase defect inspection was also performed. However, because of the high smoothness, the background noise at the time of inspection was small, and the phase defect inspection with high sensitivity could be performed.
By the method of Example 1, a multilayer reflective film-coated substrate having a low-defect and high-smooth protective film surface was obtained.

C.反射型マスクブランクの製造
次に、このようにして作製された多層反射膜付き基板の保護膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素窒化物(TaBN)からなる下層吸収体層(膜厚50nm)を形成し、さらに、下層吸収体膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと酸素(O)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素酸化物(TaBO)からなる上層吸収体層(膜厚20nm)を形成することにより、下層吸収体層と上層吸収体層とからなる層吸収体膜(膜厚70nm)を形成した。
その後、多層反射膜付き基板の多層反射膜を形成していない裏面上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N)ガスとの混合ガス雰囲気中での反応性スパッタリングにより、クロム窒化物(CrN)からなる裏面導電膜(膜厚20nm)を形成した。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランクを作製した。
C. Production of Reflective Mask Blank Next, a tantalum boride (TaB) target is used on the protective film of the multilayer reflective film substrate thus produced, and argon (Ar) gas and nitrogen (N 2 ) gas are used. Reactive sputtering is performed in a mixed gas atmosphere to form a lower absorber layer (film thickness 50 nm) made of tantalum boron nitride (TaBN), and tantalum boride (TaB) is further formed on the lower absorber film. Using a target, reactive sputtering is performed in a mixed gas atmosphere of argon (Ar) gas and oxygen (O 2 ) gas to form an upper absorber layer (thickness 20 nm) made of tantalum boron oxide (TaBO). As a result, a layer absorber film (film thickness 70 nm) composed of a lower absorber layer and an upper absorber layer was formed.
Thereafter, a reaction in a mixed gas atmosphere of argon (Ar) gas and nitrogen (N 2 ) gas using a chromium (Cr) target on the back surface of the substrate with the multilayer reflective film on which the multilayer reflective film is not formed. A back conductive film (thickness 20 nm) made of chromium nitride (CrN) was formed by reactive sputtering.
In this way, a reflective mask blank for EUV exposure, in which a surface state with low defects and high smoothness was maintained, was produced.

D.反射型マスクの製造
次に、このようにして作製された反射型マスクブランクの吸収体膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、吸収体膜のドライエッチングを行って、保護膜上に吸収体膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl)ガスを用いた。
その後、残存するレジストパターンを剥離し、洗浄を行なった。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクを作製した。
D. Production of Reflective Mask Next, a chemically amplified resist for electron beam drawing (exposure) is applied onto the absorber film of the thus produced reflective mask blank by a spin coating method, and heating and cooling steps are performed. Then, a resist film having a thickness of 150 nm was formed.
Thereafter, a desired pattern was drawn on the formed resist film using an electron beam drawing apparatus, and then developed with a predetermined developer to form a resist pattern.
Thereafter, using this resist pattern as a mask, the absorber film was dry-etched to form an absorber film pattern on the protective film. As a dry etching gas, chlorine (Cl 2 ) gas was used.
Thereafter, the remaining resist pattern was peeled off and washed.
In this way, a reflective mask for EUV exposure that maintains a surface state with low defects and high smoothness was produced.

実施例2.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から60℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Example 2
In this embodiment, in the CARE processing in the first embodiment, only the temperature of the treatment liquid made of pure water and the temperature of the substrate temperature adjustment liquid are changed from 40 ° C. to 60 ° C., and the rest is changed from the substrate material and the pretreatment to the reflective mask. A glass substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were produced in the same manner as in Example 1 until production of the above. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 60 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.053nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を60℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.053nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は55個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は8個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。60℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥数を1/3に減らすことができた。
また、実施例2の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.056nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も10個以下と少なかった。
実施例2の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
In the same manner as in Example 1, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing was 0.053 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm. The surface roughness of the upper surface was improved from 0.157 nm to 0.053 nm in terms of root mean square roughness (Rms) by CARE processing in which the temperature of pure water as the treatment liquid was 60 ° C.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 1.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 55, and of these, 8 defects (including fatal defects and pseudo defects) were caused by silicic acid. As described in the comparative example described later, in the conventional method in which the temperature of the processing liquid is set to room temperature (23 ° C.) and the temperature adjusting liquid for heating the substrate is not used, the number of detected convex defects on the main surface after processing (fatal) There were 80 defects (including defects and pseudo defects), and 24 defects (including fatal defects and pseudo defects) due to silicic acid. According to this example in which CARE processing was performed at 60 ° C., the number of defects caused by silicic acid could be reduced to 1/3.
Further, when 20 glass substrates were produced by the method of Example 2, the total number and the surface roughness were good, with a root mean square roughness (Rms) of 0.056 nm or less, and defects caused by silicic acid (fatal) The number of defects (including defects and pseudo defects) was as small as 10 or less.
By the method of Example 2, a glass substrate having a main surface made of silicon oxide having high smoothness and low defects was stably obtained.

実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5mnサイズの欠陥(凸欠陥)が検出可能な感度で16,211(個致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度欠陥検査を行ったところ、47個(疑似欠陥は含まず)と少なかった。
実施例2の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例2の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
In the same manner as in Example 1, the reflectance of EUV light (wavelength: 13.5 nm) was measured for the obtained substrate with a multilayer reflective film.
Due to the high smoothness of the upper surface of the glass substrate, the surface of the protective film was also kept smooth (Rms was 0.17 nm), and the reflectance was as high as 64%.
Moreover, the defect inspection of the protective film surface of the obtained board | substrate with a multilayer reflective film was performed similarly to Example 1. FIG.
The number of defects detected on the surface of the protective film was 16,211 (including individual fatal defects and pseudo defects) with a sensitivity capable of detecting defects (convex defects) of 21.5 mn size in terms of SEVD. In defect inspection, pseudo defects dominate. When a sensitivity defect inspection capable of detecting a 25 nm size defect (convex defect) in terms of SEVD was performed, the number was 47 (not including pseudo defects), and the number was small.
By the method of Example 2, a substrate with a multilayer reflection film having high smoothness and low defects was obtained.
Moreover, the reflective mask blank and reflective mask for EUV exposure which maintained the surface state of the low defect and high smoothness by the method of Example 2 were obtained.

実施例3.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から75℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:75℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Example 3
In this embodiment, in the CARE processing in the first embodiment, only the temperature of the treatment liquid made of pure water and the temperature of the substrate temperature adjustment liquid are changed from 40 ° C. to 75 ° C., and the rest is changed from the substrate material and the pretreatment to the reflective mask. A glass substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were produced in the same manner as in Example 1 until production of the above. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 75 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.059nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を75℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.059nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は47個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は0個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。75℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を0個とすることができた。
また、実施例3の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.061nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も1個以下と少なかった。
実施例3の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
In the same manner as in Example 1, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing was 0.059 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm. The surface roughness of the upper surface was improved from 0.157 nm to 0.059 nm in terms of root mean square roughness (Rms) by CARE processing in which the temperature of pure water as the treatment liquid was 75 ° C.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 1.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 47, and of these, the number of defects caused by silicic acid (including fatal defects and pseudo defects) was zero. As described in the comparative example described later, in the conventional method in which the temperature of the processing liquid is set to room temperature (23 ° C.) and the temperature adjusting liquid for heating the substrate is not used, the number of detected convex defects on the main surface after processing (fatal) There were 80 defects (including defects and pseudo defects), and 24 defects (including fatal defects and pseudo defects) due to silicic acid. In this example in which CARE processing was performed at 75 ° C., the number of defects (including fatal defects and pseudo defects) caused by silicic acid could be reduced to zero.
Further, when 20 glass substrates were produced by the method of Example 3, the total number and the surface roughness were as good as 0.061 nm or less in root mean square roughness (Rms), and defects caused by silicic acid (fatal) The number of defects (including defects and pseudo defects) was as small as 1 or less.
By the method of Example 3, a glass substrate having a main surface made of silicon oxide having high smoothness and low defects was stably obtained.

実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で16,549個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、39個(疑似欠陥は含まず)と少なかった。
実施例3の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例3の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
In the same manner as in Example 1, the reflectance of EUV light (wavelength: 13.5 nm) was measured for the obtained substrate with a multilayer reflective film.
Due to the high smoothness of the upper surface of the glass substrate, the surface of the protective film was also kept smooth (Rms was 0.17 nm), and the reflectance was as high as 64%.
Moreover, the defect inspection of the protective film surface of the obtained board | substrate with a multilayer reflective film was performed similarly to Example 1. FIG.
The number of defects detected on the surface of the protective film was 16,549 (including fatal defects and pseudo defects) with a sensitivity capable of detecting 21.5 nm size defects (convex defects) in terms of SEVD. In defect inspection, pseudo defects dominate. When the defect inspection was performed with a sensitivity capable of detecting a 25 nm size defect (convex defect) in terms of SEVD, the number was as small as 39 (not including pseudo defects).
By the method of Example 3, a substrate with a multilayer reflection film having high smoothness and low defects was obtained.
Moreover, the reflective mask blank and reflective mask for EUV exposure which maintained the surface state of the low defect and high smoothness by the method of Example 3 were obtained.

実施例4.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から80℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:80℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Example 4
In this embodiment, in the CARE processing in the first embodiment, only the temperature of the treatment liquid made of pure water and the temperature of the substrate temperature adjustment liquid are changed from 40 ° C. to 80 ° C., and the rest is changed from the substrate material and the pre-treatment to the reflective mask. A glass substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were produced in the same manner as in Example 1 until production of the above. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 80 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.06nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を80℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.06nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は46個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は0個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は24個であった。80℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を0個とすることができた。
また、実施例4の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.063nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も1個以下と少なかった。
実施例4の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
In the same manner as in Example 1, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after the processing was 0.06 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm. The surface roughness of the upper surface was improved from 0.157 nm to 0.06 nm in terms of root mean square roughness (Rms) by CARE processing in which the temperature of pure water as the treatment liquid was 80 ° C.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 1.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 46, of which 0 defects (including fatal defects and pseudo defects) were caused by silicic acid. As described in the comparative example described later, in the conventional method in which the temperature of the processing liquid is set to room temperature (23 ° C.) and the temperature adjusting liquid for heating the substrate is not used, the number of detected convex defects on the main surface after processing (fatal) There were 80 defects (including defects and pseudo defects), and the number of defects caused by silicic acid (including fatal defects and pseudo defects) was 24. In this example in which CARE processing was performed at 80 ° C., the number of defects (including fatal defects and pseudo defects) caused by silicic acid could be reduced to zero.
Further, when 20 glass substrates were produced by the method of Example 4, the total number and the surface roughness were as good as 0.063 nm or less in root mean square roughness (Rms), and defects due to silicic acid (fatal) The number of defects (including defects and pseudo defects) was as small as 1 or less.
By the method of Example 4, a glass substrate having a main surface made of silicon oxide having high smoothness and low defects was stably obtained.

CARE加工における、ガラス基板表面の欠陥数と表面粗さの、処理液及び基板温度調整液の温度依存性を図3に示す。ここで、処理液と基板温度調整液は同じ温度の純水としている。同図中のAは凸欠陥数(致命欠陥、疑似欠陥含む)、Bはケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)、そしてCは表面粗さ(Rms)を表す。常温の23℃に比べ、処理液及び基板温度調整液の温度を上げると凸欠陥数(致命欠陥、疑似欠陥含む)が減少し、その減少量はほぼケイ酸起因欠陥(致命欠陥、疑似欠陥含む)の減少量に一致している。ケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は、常温処理(23℃)の従来法の場合に比べ、処理液及び基板温度調整液の温度を40℃とするとほぼ半減、60℃とすると1/3になり、75℃以上で0個となる。一方で、表面粗さは温度の上昇とともに単調に増加するが、80℃の場合でも0.06nmであり、要求値の0.08nmを大幅に下回る良好なものである。尚、より一層小さな表面粗さが要求される場合は、使用する触媒定盤の触媒材料、パッド硬度、及び加工圧力などを最適化することによって改善可能である。   FIG. 3 shows the temperature dependency of the number of defects on the surface of the glass substrate and the surface roughness in the CARE processing of the processing liquid and the substrate temperature adjusting liquid. Here, the treatment liquid and the substrate temperature adjustment liquid are pure water at the same temperature. In the figure, A represents the number of convex defects (including fatal defects and pseudo defects), B represents the number of defects caused by silicic acid (including fatal defects and pseudo defects), and C represents the surface roughness (Rms). The number of convex defects (including fatal defects and pseudo defects) decreases when the temperature of the processing solution and the substrate temperature adjusting solution is raised compared to the normal temperature of 23 ° C. ). The number of defects due to silicic acid (including fatal defects and pseudo-defects) is almost halved at 60 ° C when the temperature of the processing solution and the substrate temperature adjusting solution is 40 ° C compared to the conventional method of room temperature processing (23 ° C). Then, it becomes 1/3 and becomes zero at 75 ° C. or higher. On the other hand, the surface roughness monotonously increases as the temperature rises, but it is 0.06 nm even at 80 ° C., which is well below the required value of 0.08 nm. When a smaller surface roughness is required, it can be improved by optimizing the catalyst material, pad hardness, processing pressure, etc. of the catalyst surface plate to be used.

実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で20,310個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、32個(疑似欠陥は含まず)と少なかった。
実施例4の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例4の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
In the same manner as in Example 1, the reflectance of EUV light (wavelength: 13.5 nm) was measured for the obtained substrate with a multilayer reflective film.
Due to the high smoothness of the upper surface of the glass substrate, the surface of the protective film was also kept smooth (Rms was 0.17 nm), and the reflectance was as high as 64%.
Moreover, the defect inspection of the protective film surface of the obtained board | substrate with a multilayer reflective film was performed similarly to Example 1. FIG.
The number of defects detected on the surface of the protective film was 20,310 (including fatal defects and pseudo defects) with a sensitivity capable of detecting 21.5 nm size defects (convex defects) in terms of SEVD. In defect inspection, pseudo defects dominate. When the defect inspection was performed with a sensitivity capable of detecting a 25 nm size defect (convex defect) in terms of SEVD, there were as few as 32 (not including pseudo defects).
By the method of Example 4, a substrate with a multilayer reflection film having high smoothness and low defects was obtained.
Moreover, the reflective mask blank and reflective mask for EUV exposure which maintained the surface state of the low defect and high smoothness by the method of Example 4 were obtained.

実施例5.
この実施例では、実施例2におけるCARE加工において、純水からなる洗浄水の温度のみ23℃固定から、80℃から40℃を経て23℃に3段階に変化するように変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例2と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:第1段階80℃、第2段階40℃、第3段階23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Example 5 FIG.
In this example, in the CARE processing in Example 2, only the temperature of the cleaning water composed of pure water was changed from 23 ° C. fixing to 80 ° C. through 40 ° C. to 23 ° C. in three stages, otherwise A glass substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were produced in the same manner as in Example 2 from the substrate material and its pretreatment to the production of the reflective mask. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 60 ° C
Cleaning liquid temperature: first stage 80 ° C., second stage 40 ° C., third stage 23 ° C.
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute
Processing allowance: 10nm

実施例2と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.052nmであり、実施例2の0.053nmとほぼ同じで、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、本CARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.052nmに向上した。
また、実施例2と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は48個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は3個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を従来法に比べ1/8に減らすことができた。また、洗浄液の温度を23℃と一定にした実施例2の場合のケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は8個である。洗浄液の温度を当初80℃とし、段階的に常温の23℃に下げることにより、23℃に固定した場合に対して、ケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)をほぼ1/3に減らすことができた。高温の洗浄液により、オルトケイ酸等の洗浄液への溶解度が高まり、洗浄液に溶出したオルトケイ酸等のケイ酸が十分に希釈排除された段階で、常温洗浄へ移行したため、上記効果が得られたものと考えられる。
また、実施例5の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.053nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も13個以下と少なかった。
実施例5の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
In the same manner as in Example 2, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing is 0.052 nm in terms of root mean square roughness (Rms), which is almost the same as 0.053 nm in Example 2 and is well below the required value of 0.08 nm. It was a thing. The surface roughness of the upper surface was improved from 0.157 nm to 0.052 nm in terms of root mean square roughness (Rms) by this CARE processing.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 2.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 48, and among these, the number of defects caused by silicic acid (including fatal defects and pseudo defects) was three. As described in the comparative example described later, in the conventional method in which the temperature of the processing liquid is set to room temperature (23 ° C.) and the temperature adjusting liquid for heating the substrate is not used, the number of detected convex defects on the main surface after processing (fatal) There were 80 defects (including defects and pseudo defects), and 24 defects (including fatal defects and pseudo defects) due to silicic acid. By this example, the number of defects (including fatal defects and pseudo defects) caused by silicic acid could be reduced to 1/8 compared with the conventional method. Further, in the case of Example 2 in which the temperature of the cleaning liquid is kept constant at 23 ° C., the number of defects due to silicic acid (including fatal defects and pseudo defects) is eight. The temperature of the cleaning solution is initially set to 80 ° C., and is gradually reduced to 23 ° C., so that the number of defects caused by silicic acid (including fatal defects and pseudo defects) is almost 1/3 compared to the case where the temperature is fixed at 23 ° C. We were able to reduce it. The high temperature cleaning liquid increases the solubility of orthosilicic acid in the cleaning liquid, and when the silicic acid such as orthosilicic acid eluted in the cleaning liquid is sufficiently diluted and removed, the above effect is obtained. Conceivable.
Further, when 20 glass substrates were produced by the method of Example 5, the total number and the surface roughness were good, with a root mean square roughness (Rms) of 0.053 nm or less, and defects caused by silicic acid (fatal) The number of defects (including defects and pseudo defects) was as small as 13 or less.
By the method of Example 5, a glass substrate having a main surface composed of silicon oxide having high smoothness and low defects was stably obtained.

実施例2と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例2と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で18,436個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、42個(疑似欠陥は含まず)と少なかった。
実施例5の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例5の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
In the same manner as in Example 2, the reflectance of EUV light (wavelength: 13.5 nm) was measured for the obtained substrate with a multilayer reflective film.
Due to the high smoothness of the upper surface of the glass substrate, the surface of the protective film was also kept smooth (Rms was 0.17 nm), and the reflectance was as high as 64%.
Moreover, the defect inspection of the protective film surface of the obtained board | substrate with a multilayer reflective film was performed similarly to Example 2. FIG.
The number of defects detected on the surface of the protective film was 18,436 (including fatal defects and pseudo defects) with a sensitivity capable of detecting 21.5 nm size defects (convex defects) in terms of SEVD, but the 21.5 nm size defect was detected. In defect inspection, pseudo defects dominate. When the defect inspection was performed with a sensitivity capable of detecting a 25 nm size defect (convex defect) in terms of SEVD, the number was as small as 42 (not including pseudo defects).
By the method of Example 5, a substrate with a multilayer reflection film having high smoothness and low defects was obtained.
Moreover, the reflective mask blank and reflective mask for EUV exposure which maintained the surface state of the low defect and high smoothness by the method of Example 5 were obtained.

実施例6.
A.ガラス基板の製造
この実施例では、上面及び下面が研磨された6025サイズ(152mm×152mm×6.35mm)の合成石英ガラス基板を準備した。材料組成から明らかなように、合成石英ガラス基板の表面はケイ素酸化物である。尚、合成石英ガラス基板は、上述の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたものである。
それ以外は、実施例2と同様の方法により、ガラス基板を作製した。すなわち、処理液及び基板温度調整液である純水の温度を60℃としたCARE加工により、表面がケイ素酸化物からなるガラス基板の製造を行った。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Example 6
A. Production of Glass Substrate In this example, a synthetic quartz glass substrate of 6025 size (152 mm × 152 mm × 6.35 mm) whose upper and lower surfaces were polished was prepared. As is clear from the material composition, the surface of the synthetic quartz glass substrate is silicon oxide. The synthetic quartz glass substrate is obtained through the above-described rough polishing process, precision polishing process, and ultraprecision polishing process.
Otherwise, a glass substrate was produced in the same manner as in Example 2. That is, a glass substrate having a surface made of silicon oxide was manufactured by CARE processing in which the temperature of pure water as the treatment liquid and the substrate temperature adjusting liquid was 60 ° C. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Substrate temperature adjustment and cleaning liquid: Pure water Clean room room temperature: 23 ° C
Temperature of processing solution and substrate temperature adjusting solution: 60 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

実施例2と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.127nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.052nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を60℃とした触媒基準エッチングにより、二乗平均平方根粗さ(Rms)で0.127nmから0.052nmに向上した。
また、実施例2と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は42個であり、このうちケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は7個であった。
また、実施例6の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.054nm以下と良好であり、ケイ酸起因の欠陥個数も11個以下と少なかった。
実施例6の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
In the same manner as in Example 2, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.127 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing was 0.052 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm. The surface roughness of the upper surface was improved from 0.127 nm to 0.052 nm in terms of root mean square roughness (Rms) by catalyst-based etching with the temperature of pure water as the treatment liquid being 60 ° C.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 2.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 42, and among these, the number of defects due to silicic acid (including fatal defects and pseudo defects) was 7.
Further, when 20 glass substrates were produced by the method of Example 6, the total number and the surface roughness were good, the root mean square roughness (Rms) being 0.054 nm or less, and the number of defects due to silicic acid was also Less than 11 pieces.
By the method of Example 6, a glass substrate having a main surface made of silicon oxide having high smoothness and low defects was stably obtained.

B.ハーフトーン型位相シフトマスクブランクの製造
次に、このようにして作製されたガラス基板の上面上に、モリブデンシリサイド(MoSi)ターゲットを使用し、アルゴン(Ar)と窒素(N)と酸素(O)との混合ガス雰囲気中で反応性スパッタリングを行い、モリブデンシリサイド酸化窒化物(MoSiON)からなる光半透過膜(膜厚88nm)を形成した。ラザフォード後方散乱分析法で分析した光半透過膜の膜組成は、Mo:5原子%、Si:30原子%、O:39原子%、N:26原子%であった。光半透過膜の露光光に対する透過率は6%であり、露光光が光半透過膜を透過することにより生じる位相差は180度であった。
B. Production of Halftone Phase Shift Mask Blank Next, a molybdenum silicide (MoSi) target is used on the upper surface of the glass substrate thus produced, and argon (Ar), nitrogen (N 2 ), and oxygen (O 2 ) reactive sputtering was performed in a mixed gas atmosphere to form a light semi-transmissive film (film thickness: 88 nm) made of molybdenum silicide oxynitride (MoSiON). The film composition of the light translucent film analyzed by Rutherford backscattering analysis was Mo: 5 atomic%, Si: 30 atomic%, O: 39 atomic%, and N: 26 atomic%. The transmittance of the light semi-transmissive film with respect to the exposure light was 6%, and the phase difference caused by the exposure light passing through the light semi-transmissive film was 180 degrees.

その後、光半透過膜上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と二酸化炭素(CO)と窒素(N)とヘリウム(He)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム酸化炭化窒化物(CrOCN)層(膜厚30nm)を形成し、さらに、その上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と窒素(N)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム窒化物(CrN)層(膜厚4nm)を形成し、クロム酸化炭化窒化物(CrOCN)層とクロム窒化物(CrN)層との積層からなる遮光層を形成した。さらに、この遮光層上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と二酸化炭素(CO)と窒素(N)とヘリウム(He)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム酸化炭化窒化物(CrOCN)からなる表面反射防止層(膜厚14nm)を形成した。このようにして、遮光層と表面反射防止層とからなる遮光膜を形成した。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したArFエキシマレーザー露光用のハーフトーン型位相シフトマスクブランクを作製した。
Then, using a chromium (Cr) target on the light semi-transmissive film, reactive sputtering is performed in a mixed gas atmosphere of argon (Ar), carbon dioxide (CO 2 ), nitrogen (N 2 ), and helium (He). To form a chromium oxycarbonitride (CrOCN) layer (thickness 30 nm), and further, using a chromium (Cr) target, a mixed gas of argon (Ar) and nitrogen (N 2 ) Reactive sputtering is performed in an atmosphere to form a chromium nitride (CrN) layer (film thickness: 4 nm), and a light-shielding layer comprising a laminate of a chromium oxycarbonitride (CrOCN) layer and a chromium nitride (CrN) layer Formed. Further, a chromium (Cr) target is used on the light shielding layer, and reactive sputtering is performed in a mixed gas atmosphere of argon (Ar), carbon dioxide (CO 2 ), nitrogen (N 2 ), and helium (He). Then, a surface antireflection layer (film thickness: 14 nm) made of chromium oxycarbonitride (CrOCN) was formed. In this way, a light shielding film composed of the light shielding layer and the surface antireflection layer was formed.
In this way, a half-tone phase shift mask blank for ArF excimer laser exposure that maintains a surface state with low defects and high smoothness was produced.

C.ハーフトーン型位相シフトマスクの製造
次に、このようにして作製されたハーフトーン型位相シフトマスクブランクの遮光膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、遮光膜のドライエッチングを行って、光半透過膜上に遮光膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl)と酸素(O)との混合ガスを用いた。
C. Production of halftone phase shift mask Next, a chemical amplification resist for electron beam drawing (exposure) is applied onto the light-shielding film of the halftone phase shift mask blank produced in this way by a spin coating method. Through a heating and cooling process, a resist film having a thickness of 150 nm was formed.
Thereafter, a desired pattern was drawn on the formed resist film using an electron beam drawing apparatus, and then developed with a predetermined developer to form a resist pattern.
Thereafter, using this resist pattern as a mask, the light shielding film was dry etched to form a light shielding film pattern on the light semi-transmissive film. As a dry etching gas, a mixed gas of chlorine (Cl 2 ) and oxygen (O 2 ) was used.

その後、レジストパターン及び遮光膜パターンをマスクにして、光半透過膜のドライエッチングを行って、光半透過膜パターンを形成した。ドライエッチングガスとしては、六フッ化硫黄(SF)とヘリウム(He)との混合ガスを用いた。
その後、残存するレジストパターンを剥離し、再度レジスト膜を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、このレジスト膜を現像してレジストパターンを形成した。
その後、ウェットエッチングを行って、不要な遮光膜パターンを除去した。
その後、残存するレジストパターンを剥離し、洗浄を行った。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したArFエキシマレーザー露光用のハーフトーン型位相シフトマスクを作製した。
Thereafter, using the resist pattern and the light shielding film pattern as a mask, the light semi-transmissive film was dry-etched to form a light semi-transmissive film pattern. As the dry etching gas, a mixed gas of sulfur hexafluoride (SF 6 ) and helium (He) was used.
Thereafter, the remaining resist pattern is peeled off, a resist film is applied again, pattern exposure is performed to remove an unnecessary light-shielding film pattern in the transfer region, and then the resist film is developed to form a resist pattern. .
Thereafter, wet etching was performed to remove an unnecessary light shielding film pattern.
Thereafter, the remaining resist pattern was peeled off and washed.
In this way, a halftone phase shift mask for ArF excimer laser exposure, which maintains a surface state with low defects and high smoothness, was produced.

尚、この実施例では、モリブデンシリサイド酸化窒化物(MoSiON)からなるからなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについて本発明を適用したが、モリブデンシリサイド窒化物(MoSiN)からなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、単層の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、多層構造の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、多層構造の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、単層の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、ハーフトーン型位相シフトマスクブランクや位相シフトマスクブランクに限らず、レベンソン型位相シフトマスクブランクや位相シフトマスクブランク、クロムレス型位相シフトマスクブランクや位相シフトマスクブランクについても、本発明を適用できる。   In this embodiment, the present invention is applied to a halftone phase shift mask and a phase shift mask blank having a light semi-transmissive film made of molybdenum silicide oxynitride (MoSiON). However, molybdenum silicide nitride (MoSiN) is used. The present invention can also be applied to a halftone phase shift mask or a phase shift mask blank having a light semi-transmissive film made of The present invention is not limited to halftone phase shift masks and phase shift mask blanks having a single-layer light semi-transmissive film, but also to halftone phase shift masks and phase shift mask blanks having a multi-layered light semi-transmissive film. The invention can be applied. Further, the present invention can be applied not only to a halftone phase shift mask and a phase shift mask blank having a multi-layered light shielding film, but also to a halftone phase shift mask and a phase shift mask blank having a single-layer light shielding film. . Further, the present invention can be applied not only to the halftone phase shift mask blank and the phase shift mask blank but also to a Levenson type phase shift mask blank, a phase shift mask blank, a chromeless type phase shift mask blank, and a phase shift mask blank.

また、この実施例では、粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたガラス基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、実施例1で行った局所加工工程およびタッチ研磨工程を経て得られたガラス基板の主表面に対して触媒基準エッチングによる加工を施す場合についても、本発明を適用することができる。   In this example, the present invention was applied to the case where the main surface of the glass substrate obtained through the rough polishing process, the precision polishing process, and the ultraprecision polishing process was subjected to processing by catalyst-based etching. However, the present invention can also be applied to the case where the main surface of the glass substrate obtained through the local processing step and the touch polishing step performed in Example 1 is processed by catalyst-based etching.

比較例.
この比較例では、実施例1におけるCARE加工において、純水からなる処理液の温度を40℃から常温の23℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。尚、基板温度調整液は用いていない。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
洗浄液:純水
クリーンルームの室温:23℃
処理液の温度:23℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
Comparative example.
In this comparative example, in the CARE processing in Example 1, the temperature of the treatment liquid made of pure water was changed from 40 ° C. to 23 ° C. of room temperature, and other than that, the substrate material and its pre-treatment were used to manufacture a reflective mask. A glass substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were produced in the same manner as in Example 1. The substrate temperature adjusting liquid is not used. Therefore, the processing and cleaning conditions are as follows.
Treatment liquid: Pure water Cleaning liquid: Pure water Clean room room temperature: 23 ° C
Treatment liquid temperature: 23 ° C
Cleaning liquid temperature: 23 ° C
Number of rotations of the shaft portion 71 (number of rotations of the glass substrate): 10.3 rotations / minute Number of rotations of the catalyst surface plate mounting portion 72 (number of rotations of the catalyst surface plate 31): 10 rotations / minute Processing pressure: 100 hPa
Processing allowance: 10nm

実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.04nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を23℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.04nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個であり、このうちケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は24個であった。
また、この方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.046nm以下と良好であったが、ケイ酸起因の欠陥個数は24〜45個と多かった。
比較例の方法では、高い平滑性は得られたものの、主表面に欠陥が多いガラス基板が製造された。
In the same manner as in Example 1, the surface roughness of the upper surface used as the main surface of the glass substrate before and after processing by CARE processing was measured.
The surface roughness of the main surface before processing was 0.157 nm in terms of root mean square roughness (Rms).
The surface roughness of the main surface after processing was 0.04 nm in terms of root mean square roughness (Rms), which was well below the required value of 0.08 nm. The surface roughness of the upper surface was improved from 0.157 nm to 0.04 nm in root mean square roughness (Rms) by CARE processing in which the temperature of pure water as the treatment liquid was 23 ° C.
Moreover, the defect inspection of the upper surface of the glass substrate after processing by CARE processing was performed similarly to Example 1.
The number of detected convex defects (including fatal defects and pseudo defects) on the main surface after processing was 80, and among these, the number of defects due to silicic acid (including fatal defects and pseudo defects) was 24.
Moreover, when 20 glass substrates were produced by this method, the total number and the surface roughness were as good as 0.046 nm or less in root mean square roughness (Rms), but the number of defects due to silicic acid was 24. There were as many as ~ 45.
In the method of the comparative example, although a high smoothness was obtained, a glass substrate having many defects on the main surface was produced.

実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsで0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で17,872個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、103個(疑似欠陥は含まず)と多かった。
比較例の方法では、高い平滑性は得られたものの、欠陥の多い多層反射膜付き基板が製造された。
また、比較例の方法では、高い平滑性は得られたものの、欠陥の多い表面状態のEUV露光用の反射型マスクブランク及び反射型マスクが製造された。
In the same manner as in Example 1, the reflectance of EUV light (wavelength: 13.5 nm) was measured for the obtained substrate with a multilayer reflective film.
Due to the high smoothness of the upper surface of the glass substrate, the surface of the protective film was also kept smooth (Rms 0.17 nm), and the reflectance was as high as 64%.
Moreover, the defect inspection of the protective film surface of the obtained board | substrate with a multilayer reflective film was performed similarly to Example 1. FIG.
The number of defects detected on the surface of the protective film was 17,872 (including fatal defects and pseudo defects) with a sensitivity capable of detecting 21.5 nm size defects (convex defects) in terms of SEVD. In defect inspection, pseudo defects dominate. When defect inspection was performed with a sensitivity capable of detecting a 25 nm size defect (convex defect) in terms of SEVD, there were as many as 103 (not including pseudo defects).
In the method of the comparative example, although a high smoothness was obtained, a substrate with a multilayer reflective film having many defects was produced.
Moreover, in the method of the comparative example, although high smoothness was obtained, the reflective mask blank and reflective mask for EUV exposure of the surface state with many defects were manufactured.

尚、上述した実施例では、反射型マスクブランク用基板や位相シフトマスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、バイナリーマスクブランクやナノインプリント用マスクブランクの主表面に対して、触媒基準エッチングによる加工を施す場合についても、本発明を適用できる。
また、上述した実施例では、マスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、磁気記録媒体用基板の主表面に対して、触媒基準エッチングによる加工を施す場合にも、本発明を適用できる。
In the above-described embodiment, the present invention is applied to the case where the main surface of the reflective mask blank substrate or the phase shift mask blank substrate is processed by catalyst-based etching. However, for binary mask blanks and nanoimprints. The present invention can also be applied to a case where the main surface of the mask blank is processed by catalyst-based etching.
In the above-described embodiment, the present invention is applied to the case where the main surface of the mask blank substrate is processed by the catalyst reference etching. However, the catalyst reference etching is performed on the main surface of the magnetic recording medium substrate. The present invention can also be applied when processing according to the above.

1…基板加工装置、2…基板支持手段、3…基板表面創製手段、4…温度調整液、洗浄液供給手段、5…駆動手段、6…チャンバー、7…相対運動手段、8…荷重制御手段、9…処理液供給手段、21…支持部、22…平面部、22a…収容部、31…触媒定盤、32…定盤本体、33…加工基準面、41…供給管、42…噴射ノズル、51…アーム部、52…軸部、53…土台部、54…ガイド、61…開口部、62…排出口、63…底部、71…軸部71、72…触媒定盤取付部、81…エアシリンダ、82…ロードセル、91…処理液供給ノズル、M…基板、M1…上面、M2…下面。 DESCRIPTION OF SYMBOLS 1 ... Substrate processing apparatus, 2 ... Substrate support means, 3 ... Substrate surface creation means, 4 ... Temperature adjustment liquid, cleaning liquid supply means, 5 ... Drive means, 6 ... Chamber, 7 ... Relative motion means, 8 ... Load control means, DESCRIPTION OF SYMBOLS 9 ... Process liquid supply means, 21 ... Support part, 22 ... Plane part, 22a ... Accommodating part, 31 ... Catalyst surface plate, 32 ... Surface plate body, 33 ... Processing reference plane, 41 ... Supply pipe, 42 ... Injection nozzle, DESCRIPTION OF SYMBOLS 51 ... Arm part, 52 ... Shaft part, 53 ... Base part, 54 ... Guide, 61 ... Opening part, 62 ... Discharge port, 63 ... Bottom part, 71 ... Shaft part 71, 72 ... Catalyst surface plate attaching part, 81 ... Air Cylinder, 82 ... load cell, 91 ... treatment liquid supply nozzle, M ... substrate, M1 ... upper surface, M2 ... lower surface.

Claims (13)

マスクブランク用基板の製造方法であって、
少なくとも主表面がケイ素酸化物を含む材料よりなるマスクブランク用基板を準備する基板準備工程と、
触媒物質の加工基準面を前記基板の主表面に接触又は接近させ、前記加工基準面又は前記基板のいずれか一方、もしくは両方を、前記基板の主表面に垂直な方向の軸を中心として回転させながら前記主表面に向かって処理液が供給されることにより、前記加工基準面と前記主表面との間に処理液を介在させた状態で前記主表面と前記加工基準面とを相対運動させて前記主表面を触媒基準エッチングする工程と、を有し、
前記触媒基準エッチングする工程は、クリーンルーム又はクリーンブース内で行われ、
前記処理液は、純水、オゾン水、炭酸水、水素水、アルカリ性水溶液及び酸性水溶液の中から選択される液体であり、前記触媒基準エッチング中の前記処理液の温度は、前記クリーンルーム又はクリーンブース内の室温を超える温度であり、
前記加工基準面は、前記基板の上方に位置していることを特徴とするマスクブランク用基板の製造方法。
A method for manufacturing a mask blank substrate,
A substrate preparation step of preparing a mask blank substrate made of a material containing at least a main surface of silicon oxide;
The processing reference surface of the catalytic material is brought into contact with or close to the main surface of the substrate, and either one or both of the processing reference surface and the substrate are rotated about an axis perpendicular to the main surface of the substrate. While the processing liquid is supplied toward the main surface, the main surface and the processing reference surface are moved relative to each other in a state where the processing liquid is interposed between the processing reference surface and the main surface. And a step of performing catalyst-based etching on the main surface,
The catalyst-based etching step is performed in a clean room or a clean booth,
The treatment liquid is a liquid selected from pure water, ozone water, carbonated water, hydrogen water, alkaline aqueous solution, and acidic aqueous solution, and the temperature of the treatment liquid during the catalyst-based etching is the clean room or clean booth. temperature der above room temperature of the inner is,
The working reference plane is a manufacturing method of a substrate for a mask blank, it characterized that you have positioned above the substrate.
前記基板の少なくとも主表面は、前記触媒基準エッチング工程中、前記室温を超える温度に加温されていることを特徴とする請求項1記載のマスクブランク用基板の製造方法。   2. The method for manufacturing a mask blank substrate according to claim 1, wherein at least a main surface of the substrate is heated to a temperature exceeding the room temperature during the catalyst-based etching step. 前記触媒基準エッチング工程終了後、前記処理液を洗浄液に連続的に置換した後、前記基板の主表面を前記洗浄液にて洗浄する洗浄工程を有することを特徴とする請求項1又は2に記載のマスクブランク用基板の製造方法。   3. The method according to claim 1, further comprising a cleaning step of cleaning the main surface of the substrate with the cleaning liquid after the treatment liquid is continuously replaced with a cleaning liquid after the catalyst reference etching process is completed. A method for manufacturing a mask blank substrate. 前記洗浄工程において、前記洗浄液の温度を、開始時における前記室温を超える温度から、少なくとも終了時には前記室温にするように経過時間に応じて温度調整することを特徴とする請求項3に記載のマスクブランク用基板の製造方法。   4. The mask according to claim 3, wherein, in the cleaning step, the temperature of the cleaning liquid is adjusted according to an elapsed time so that the temperature of the cleaning liquid is higher than the room temperature at the start time and at least at the end time. A method for manufacturing a blank substrate. 前記処理液と前記洗浄液は同一の物質であることを特徴とする請求項3又は4に記載のマスクブランク用基板の製造方法。   5. The method for manufacturing a mask blank substrate according to claim 3, wherein the treatment liquid and the cleaning liquid are the same substance. 前記処理液の温度は、40℃から80℃の範囲であることを特徴とする請求項1乃至5のいずれか一に記載のマスクブランク用基板の製造方法。   The method for manufacturing a mask blank substrate according to any one of claims 1 to 5, wherein the temperature of the treatment liquid is in the range of 40 ° C to 80 ° C. 前記加工基準面は、前記基板よりも小さいサイズを有していることを特徴とする請求項1乃至6のいずれか一に記載のマスクブランク用基板の製造方法。  The method for manufacturing a mask blank substrate according to claim 1, wherein the processing reference surface has a size smaller than that of the substrate. 請求項1乃至のいずれか一に記載のマスクブランク用基板の製造方法によって製造されたマスクブランク用基板の主表面上に、多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。 A multilayer reflective film is formed on a main surface of a mask blank substrate manufactured by the method for manufacturing a mask blank substrate according to any one of claims 1 to 7 . Production method. 請求項1乃至のいずれか一に記載のマスクブランク用基板の製造方法によって得られたマスクブランク用基板の主表面上、又は、請求項記載の多層反射膜付き基板の製造方法によって得られた多層反射膜付き基板の多層反射膜上に、転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。 It is obtained by the manufacturing method of the board | substrate with a multilayer reflective film of Claim 8 on the main surface of the mask blank board | substrate obtained by the manufacturing method of the mask blank board | substrate as described in any one of Claims 1 thru | or 7. A method for producing a mask blank, comprising: forming a transfer pattern thin film on a multilayer reflective film of the substrate with the multilayer reflective film. 請求項に記載のマスクブランクの製造方法によって得られたマスクブランクの転写パターン用薄膜をパターニングして、転写パターンを形成することを特徴とする転写用マスクの製造方法。 A method for producing a transfer mask, comprising: patterning a thin film for transfer pattern of a mask blank obtained by the method for producing a mask blank according to claim 9 to form a transfer pattern. マスクブランク用基板の主表面を触媒基準エッチングにより加工してマスクブランク用基板を製造するマスクブランク用基板製造装置であって、
前記基板を支持する基板支持手段と、
該基板支持手段により支持された前記基板の主表面に対向して配置される触媒物質の加工基準面を有する基板表面創製手段と、
前記加工基準面と前記主表面とを接触又は接近させた状態で、前記加工基準面又は前記基板のいずれか一方、もしくは両方を、前記基板の主表面に垂直な方向の軸を中心として回転させながら相対運動させる相対運動手段と、
前記主表面に向かって処理液を供給することによって前記加工基準面と前記主表面との間に、処理液を介在させる処理液供給手段と、
前記処理液の温度を、前記触媒基準エッチングが行われるクリーンルーム又はクリーンブース内の室温より高くする温度調整手段とを備え、
前記処理液は、純水、オゾン水、炭酸水、水素水、アルカリ性水溶液及び酸性水溶液の中から選択される液体であり、
前記加工基準面は、前記基板の上方に位置していることを特徴とするマスクブランク用基板製造装置。
A mask blank substrate manufacturing apparatus for manufacturing a mask blank substrate by processing the main surface of a mask blank substrate by catalyst-based etching,
Substrate support means for supporting the substrate;
A substrate surface creation means having a processing reference surface of a catalytic substance disposed opposite to the main surface of the substrate supported by the substrate support means;
In a state where the processing reference surface and the main surface are in contact with or close to each other, either the processing reference surface or the substrate or both are rotated around an axis in a direction perpendicular to the main surface of the substrate. Relative motion means for relative motion,
A processing liquid supply means for interposing a processing liquid between the processing reference surface and the main surface by supplying a processing liquid toward the main surface;
A temperature adjusting means for making the temperature of the treatment liquid higher than room temperature in a clean room or a clean booth where the catalyst-based etching is performed,
Said processing liquid is pure water, ozone water, carbonated water, hydrogen water, Ri liquid der selected from among the alkaline aqueous solution and an acidic aqueous solution,
The working reference plane, the substrate manufacturing apparatus for a mask blank, characterized that you have positioned above the substrate.
洗浄液を供給する手段と、前記洗浄液の温度を前記処理液の温度から前記室温まで調整する温度調整手段とを備えていることを特徴とする請求項1に記載のマスクブランク用基板製造装置。 Means for supplying a cleaning liquid, a substrate manufacturing apparatus for a mask blank according to claim 1 1, characterized in that it comprises a temperature adjusting means for adjusting the temperature from the temperature of the treatment liquid to the room temperature of the cleaning solution. 前記加工基準面は、前記基板よりも小さいサイズを有していることを特徴とする請求項11又は12に記載のマスクブランク用基板製造装置。  13. The mask blank substrate manufacturing apparatus according to claim 11, wherein the processing reference surface has a size smaller than that of the substrate.
JP2017082805A 2017-04-19 2017-04-19 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus Active JP6367417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082805A JP6367417B2 (en) 2017-04-19 2017-04-19 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082805A JP6367417B2 (en) 2017-04-19 2017-04-19 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013211713A Division JP6133189B2 (en) 2013-10-09 2013-10-09 Manufacturing method of substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and substrate manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2017156762A JP2017156762A (en) 2017-09-07
JP6367417B2 true JP6367417B2 (en) 2018-08-01

Family

ID=59810108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082805A Active JP6367417B2 (en) 2017-04-19 2017-04-19 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6367417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154572B2 (en) * 2018-09-12 2022-10-18 Hoya株式会社 MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508779B2 (en) * 2004-08-23 2010-07-21 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
JP5007384B2 (en) * 2006-10-18 2012-08-22 株式会社荏原製作所 Catalyst-assisted chemical processing method and apparatus
JP4887266B2 (en) * 2007-10-15 2012-02-29 株式会社荏原製作所 Flattening method
US11220757B2 (en) * 2011-12-06 2022-01-11 Osaka Uiversity Method for manufacturing solid oxide and device therefor
KR102055992B1 (en) * 2012-03-28 2019-12-13 호야 가부시키가이샤 Mask blank substrate, substrate with multilayer reflection film, transparent mask blank, reflecting mask, transparent mask, and reflecting mask and semiconductor fabrication method

Also Published As

Publication number Publication date
JP2017156762A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6262165B2 (en) Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device
JP6309579B2 (en) Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
KR102228638B1 (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JP6147514B2 (en) Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP6279476B2 (en) Manufacturing method of substrate with multilayer reflective film
JP6444680B2 (en) Manufacturing method of substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP6400370B2 (en) Substrate manufacturing method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and substrate manufacturing apparatus
JP6297512B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP6133189B2 (en) Manufacturing method of substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and substrate manufacturing apparatus
JP6873758B2 (en) A method for manufacturing a substrate, a method for manufacturing a substrate with a multilayer reflective film, a method for manufacturing a mask blank, and a method for manufacturing a transfer mask.
JP6367417B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and mask blank substrate manufacturing apparatus
JP6297321B2 (en) Manufacturing method of substrate with functional film, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP6534506B2 (en) Method of manufacturing substrate, method of manufacturing substrate with multilayer reflective film, method of manufacturing mask blank, method of manufacturing transfer mask, and substrate processing apparatus
JP6577071B2 (en) Substrate manufacturing method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and substrate manufacturing apparatus
JP6407582B2 (en) Manufacturing method of substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of mask blank, manufacturing method of transfer mask, and substrate processing apparatus
JP6161913B2 (en) Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP6400360B2 (en) Substrate manufacturing method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and substrate manufacturing apparatus
JP6534507B2 (en) Method of manufacturing substrate, method of manufacturing substrate with multilayer reflective film, method of manufacturing mask blank, method of manufacturing transfer mask, and substrate processing apparatus
JP2014109670A (en) Method of producing member for lithography, method of producing reflection type mask blank, method of producing mask blank, method of producing reflection type mask, method of producing mask and washing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250