JP6366287B2 - Ammonia generator and ammonia generation method - Google Patents

Ammonia generator and ammonia generation method Download PDF

Info

Publication number
JP6366287B2
JP6366287B2 JP2014021110A JP2014021110A JP6366287B2 JP 6366287 B2 JP6366287 B2 JP 6366287B2 JP 2014021110 A JP2014021110 A JP 2014021110A JP 2014021110 A JP2014021110 A JP 2014021110A JP 6366287 B2 JP6366287 B2 JP 6366287B2
Authority
JP
Japan
Prior art keywords
ammonia
base material
light
metal body
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014021110A
Other languages
Japanese (ja)
Other versions
JP2015147707A (en
Inventor
三澤 弘明
弘明 三澤
友也 押切
友也 押切
貢生 上野
貢生 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2014021110A priority Critical patent/JP6366287B2/en
Publication of JP2015147707A publication Critical patent/JP2015147707A/en
Application granted granted Critical
Publication of JP6366287B2 publication Critical patent/JP6366287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニア発生装置及びアンモニア発生方法に関する。   The present invention relates to an ammonia generator and an ammonia generation method.

近年、地球規模で環境問題及びエネルギー問題が顕在化されつつあり、光触媒及び太陽電池などの光エネルギー変換系の構築に関する研究が注目されている。その中でも、アンモニアは燃料電池の水素担体として貯蔵性及び可搬性に優れているので、エネルギーキャリアとして盛んに研究されている。しかしながら、従来のアンモニア合成法であるハーバー・ボッシュ法は一般に200気圧、400゜C以上という極めて過酷な条件での反応であり、エネルギーキャリアとしてアンモニアを捉えた場合、生産に用いるエネルギーと得られるアンモニアの化学エネルギーとの収支としては採算が取れない。   In recent years, environmental problems and energy problems are becoming apparent on a global scale, and research on the construction of light energy conversion systems such as photocatalysts and solar cells has attracted attention. Among them, ammonia is excellently storable and portable as a hydrogen carrier for fuel cells, and is therefore actively studied as an energy carrier. However, the Harbor Bosch method, which is a conventional ammonia synthesis method, is generally a reaction under extremely severe conditions of 200 atm and 400 ° C., and when ammonia is regarded as an energy carrier, the energy used for production and the obtained ammonia As a balance with chemical energy, it is not profitable.

このような従来の熱化学反応に代わる反応機構として、半導体を用いた光触媒反応が研究されており、効率を高めるために光触媒の可視光化に関する研究が行われている(例えば、特許文献1)。   As a reaction mechanism that replaces such a conventional thermochemical reaction, a photocatalytic reaction using a semiconductor has been studied, and research on making a photocatalyst visible light has been conducted in order to increase efficiency (for example, Patent Document 1). .

また、特許文献2には、酸化チタンを含む半導体基板の表面の中央部に金属微細構造体が配列され、その半導体基板の裏面の全面に導電層が形成され、半導体基板を収容する容器内の金属微細構造体の配置領域が電解質溶液によって満たされた構造の光電変換装置が開示されている。このような光電変換装置によれば、可視光及び近赤外光照射に基づいてプラズモン共鳴波長において光電流が観測される。   Further, in Patent Document 2, a metal microstructure is arranged at the center of the surface of a semiconductor substrate containing titanium oxide, a conductive layer is formed on the entire back surface of the semiconductor substrate, and a container in which the semiconductor substrate is accommodated. A photoelectric conversion device having a structure in which an arrangement region of a metal microstructure is filled with an electrolyte solution is disclosed. According to such a photoelectric conversion device, a photocurrent is observed at a plasmon resonance wavelength based on irradiation with visible light and near infrared light.

特開2012−25985号公報JP 2012-25985 A 国際公開第2011/027830号International Publication No. 2011/027830

しかしながら、特許文献1に記載のアンモニア合成方法では、半導体光触媒の性質上、窒素の還元のようにエネルギー準位が負に大きい還元反応を達成するためには高エネルギーを有する短波長光を用いる必要があるので、可視光化への限界がある。一方、特許文献2に記載の光電変換装置によれば、可視光及び近赤外光照射に応じて水の酸化還元反応を誘起させて酸素や過酸化水素を発生させることが可能ではあるが、その場合には光電変換装置に電気化学測定装置を接続して外部から電圧を印加する必要がある。   However, in the ammonia synthesis method described in Patent Document 1, due to the nature of the semiconductor photocatalyst, it is necessary to use short wavelength light having high energy in order to achieve a reduction reaction having a negatively large energy level, such as nitrogen reduction. Because there is a limit to visible light. On the other hand, according to the photoelectric conversion device described in Patent Literature 2, it is possible to generate oxygen or hydrogen peroxide by inducing a redox reaction of water according to visible light and near infrared light irradiation, In that case, it is necessary to connect an electrochemical measurement device to the photoelectric conversion device and apply a voltage from the outside.

本発明は、外部装置を必要とせずにアンモニアを効率的に発生させることが可能なアンモニア発生装置及びアンモニア発生方法を提供する。   The present invention provides an ammonia generation apparatus and an ammonia generation method capable of efficiently generating ammonia without requiring an external device.

本発明の一態様に係るアンモニア発生装置は、光触媒材料を含む基材と、基材の表面または基材の内部に設けられ、複数領域に分離して配置された金属体と、基材に設けられたアンモニア発生触媒と、を備える。基材の少なくとも一部は、金属体とアンモニア発生触媒との間に配置されている。   An ammonia generator according to one embodiment of the present invention includes a base material including a photocatalytic material, a metal body provided on the surface of the base material or inside the base material, and arranged in a plurality of regions, and provided on the base material. And an ammonia generation catalyst. At least a part of the substrate is disposed between the metal body and the ammonia generating catalyst.

このようなアンモニア発生装置によれば、基材の金属体が設けられている側の一面に水を接触させ、基材のアンモニア発生触媒が設けられている側の他面に窒素を接触させた状態で、基材に光を照射することにより、基材の一面において水を酸化させて酸素を発生させるとともに、基材の他面において窒素を還元させてアンモニアを発生させることができる。この場合、金属体の微細構造によって決まるプラズモン共鳴の波長域において水の光電気分解が効率よく行われると同時に、アンモニア発生触媒によっても窒素の還元反応が効率的に行われる。その結果、外部装置による電圧の印加を必要とせずに、アンモニアを効率的に発生させることが可能となる。   According to such an ammonia generator, water is brought into contact with one surface of the base material on which the metal body is provided, and nitrogen is brought into contact with the other surface of the base material on which the ammonia generating catalyst is provided. In this state, by irradiating the base material with light, water can be oxidized on one surface of the base material to generate oxygen, and nitrogen can be reduced on the other surface of the base material to generate ammonia. In this case, photoelectrolysis of water is efficiently performed in the plasmon resonance wavelength range determined by the microstructure of the metal body, and at the same time, the reduction reaction of nitrogen is also efficiently performed by the ammonia generating catalyst. As a result, ammonia can be efficiently generated without the need for voltage application by an external device.

本発明の他の態様に係るアンモニア発生装置では、光触媒材料は金属酸化物であってもよい。この場合、プラズモン共鳴吸収によって励起された電子を光触媒材料の電子伝導帯に効率的に遷移させることができる。その結果、水の酸化反応及び窒素の還元反応をさらに活性化でき、アンモニアをさらに効率的に発生させることが可能となる。   In the ammonia generator according to another aspect of the present invention, the photocatalytic material may be a metal oxide. In this case, electrons excited by plasmon resonance absorption can be efficiently transferred to the electron conduction band of the photocatalytic material. As a result, water oxidation reaction and nitrogen reduction reaction can be further activated, and ammonia can be generated more efficiently.

本発明のさらに他の態様に係るアンモニア発生装置では、金属体は11族元素を含んでいてもよい。この場合、基材の金属体が設けられている側の一面において、光に対するプラズモン共鳴吸収性を高めることができる。その結果、水の酸化反応及び窒素の還元反応をさらに効率的に発生させることができ、アンモニアをさらに効率的に発生させることが可能となる。   In the ammonia generator according to still another aspect of the present invention, the metal body may contain a group 11 element. In this case, the plasmon resonance absorptivity with respect to light can be enhanced on one surface of the base on which the metal body is provided. As a result, water oxidation reaction and nitrogen reduction reaction can be generated more efficiently, and ammonia can be generated more efficiently.

本発明のさらに他の態様に係るアンモニア発生装置では、アンモニア発生触媒は遷移金属元素を含んでいてもよい。この場合、基材のアンモニア発生触媒が設けられている側の他面において、窒素の還元反応を活発化することができ、外部装置による電圧の印加を必要とせずにアンモニアをさらに効率的に発生させることが可能となる。   In the ammonia generator according to still another aspect of the present invention, the ammonia generating catalyst may contain a transition metal element. In this case, the reduction reaction of nitrogen can be activated on the other side of the substrate where the ammonia generation catalyst is provided, and ammonia is generated more efficiently without the need for voltage application by an external device. It becomes possible to make it.

本発明の一態様に係るアンモニア発生方法は、光触媒材料を含む基材と、基材の表面または基材の内部に設けられ、複数領域に分離して配置された金属体と、基材に設けられたアンモニア発生触媒と、を備え、基材の少なくとも一部が金属体とアンモニア発生触媒との間に配置されているアンモニア発生装置を用意し、アンモニア発生触媒に窒素を接触させて保持し、基材に光を照射する。   An ammonia generation method according to one embodiment of the present invention includes a base material including a photocatalytic material, a metal body provided on the surface of the base material or inside the base material, and arranged separately in a plurality of regions, and provided on the base material An ammonia generating device provided with at least a part of the base material disposed between the metal body and the ammonia generating catalyst, and holding the ammonia generating catalyst in contact with nitrogen; The substrate is irradiated with light.

このようなアンモニア発生方法によれば、基材の金属体が設けられている側の一面に水を接触させ、基材のアンモニア発生触媒が設けられている側の他面に窒素を接触させた状態で、基材に光を照射することにより、基材の一面において水を酸化させて酸素を発生させるとともに、基材の他面において窒素を還元させてアンモニアを発生させることができる。この場合、金属体の微細構造によって決まるプラズモン共鳴の波長域において水の光電気分解が効率よく行われると同時に、アンモニア発生触媒によっても窒素の還元反応が効率的に行われる。その結果、外部装置による電圧の印加を必要とせずに、アンモニアを効率的に発生させることが可能となる。   According to such an ammonia generation method, water is brought into contact with one surface of the base material on which the metal body is provided, and nitrogen is brought into contact with the other surface of the base material on which the ammonia generation catalyst is provided. In this state, by irradiating the base material with light, water can be oxidized on one surface of the base material to generate oxygen, and nitrogen can be reduced on the other surface of the base material to generate ammonia. In this case, photoelectrolysis of water is efficiently performed in the plasmon resonance wavelength range determined by the microstructure of the metal body, and at the same time, the reduction reaction of nitrogen is also efficiently performed by the ammonia generating catalyst. As a result, ammonia can be efficiently generated without the need for voltage application by an external device.

本発明の他の態様に係るアンモニア発生方法では、光の波長は400nm以上であってもよい。この場合、太陽光等の可視光領域または近赤外領域の波長を含む光を基材に照射するだけで、外部装置による電圧の印加を必要とせずに、アンモニアを効率的に発生させることができる。   In the ammonia generation method according to another aspect of the present invention, the wavelength of light may be 400 nm or more. In this case, ammonia can be efficiently generated by simply irradiating the substrate with light having a wavelength in the visible light region or near infrared region, such as sunlight, without requiring the application of a voltage by an external device. it can.

本発明によれば、外部装置を必要とせずにアンモニアを効率的に発生させることができる。   According to the present invention, ammonia can be generated efficiently without the need for an external device.

本発明の一実施形態に係るアンモニア発生装置の側面図である。It is a side view of the ammonia generator which concerns on one Embodiment of this invention. 図1の光触媒の構造を示す断面図である。It is sectional drawing which shows the structure of the photocatalyst of FIG. 図2の光触媒の表面の電子顕微鏡写真の一例を示す図である。It is a figure which shows an example of the electron micrograph of the surface of the photocatalyst of FIG. 図3に示す金属体のサイズ分布の一例を示すグラフである。It is a graph which shows an example of the size distribution of the metal body shown in FIG. 図2の光触媒の表面の消光スペクトルの一例を示す図である。It is a figure which shows an example of the quenching spectrum of the surface of the photocatalyst of FIG. 図2の光触媒の裏面のX線光電子分光スペクトルの一例を示す図である。It is a figure which shows an example of the X-ray photoelectron spectroscopy spectrum of the back surface of the photocatalyst of FIG. 図1の光触媒の変形例を示す図である。It is a figure which shows the modification of the photocatalyst of FIG. 図1の光触媒の変形例を示す図である。It is a figure which shows the modification of the photocatalyst of FIG. 特性測定に用いたアンモニア生成装置の概略図である。It is the schematic of the ammonia production | generation apparatus used for the characteristic measurement. 各アンモニア濃度における光の波長とサリチル酸二量化物の吸光度との関係を示す図である。It is a figure which shows the relationship between the wavelength of the light in each ammonia concentration, and the light absorbency of a salicylic acid dimer. 光の照射時間に対するアンモニア生成量を示す図である。It is a figure which shows the ammonia production amount with respect to the irradiation time of light. 入射光の波長範囲ごとのアンモニア生成量を示す図である。It is a figure which shows the ammonia production amount for every wavelength range of incident light. 入射光の波長範囲ごとの量子収率を示す図である。It is a figure which shows the quantum yield for every wavelength range of incident light.

以下、図面を参照しつつ本発明に係るアンモニア発生装置及びアンモニア発生方法の一実施形態が詳細に説明される。なお、図面の説明においては同一又は相当部分には同一符号が付され、重複する説明は省略される。また、各図面は説明のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。   Hereinafter, an embodiment of an ammonia generator and an ammonia generation method according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Each drawing is created for explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.

図1は、本発明の一実施形態に係るアンモニア発生装置の側面図である。このアンモニア発生装置は、広範囲の波長領域の光エネルギーを水の酸化反応及び窒素の還元反応によって化学エネルギーに変換する光電気化学セルである。   FIG. 1 is a side view of an ammonia generator according to an embodiment of the present invention. This ammonia generator is a photoelectrochemical cell that converts light energy in a wide wavelength range into chemical energy by water oxidation reaction and nitrogen reduction reaction.

図1に示されるように、アンモニア発生装置1は、略円柱状の密閉容器3と、密閉容器3の内部に収容された光触媒5と、を備えている。密閉容器3は、その内部中央に隔壁3cを有し、隔壁3cを隔てた一方の底面3a側の空間S1に水溶液7aを保持し、隔壁3cを隔てた他方の底面3b側の空間S2にガス7bを保持する。そして、光触媒5は、その両面5a,5bを密閉容器3の円形状の底面3a,3bにそれぞれ対向させるように、密閉容器3内の隔壁3cの中央部に固定されている。これにより、光触媒5は、その一方の面5aが水溶液7aに浸され(接触され)、また、その他方の面5bがガス7bに接触された状態で密閉容器3内に保持されることになる。密閉容器3の底面3aの中央に石英等からなる窓部3dが設けられている。外部から照射された光Lを、窓部3dを透過させることにより光触媒5の一方の面5aに向けて入射させることが可能に構成されている。さらに、密閉容器3の側面の底面3a側には排出口3eが設けられ、空間S1での酸化反応によって発生した酸素を外部に取り出し可能にされ、密閉容器3の側面の底面3b側には排出口3fが設けられ、空間S2での還元反応によって発生したアンモニア(アンモニウム塩)を外部に取り出し可能にされている。   As shown in FIG. 1, the ammonia generator 1 includes a substantially cylindrical sealed container 3 and a photocatalyst 5 accommodated in the sealed container 3. The sealed container 3 has a partition wall 3c in the center of the inside thereof, holds the aqueous solution 7a in the space S1 on one bottom surface 3a side separated by the partition wall 3c, and gas in the space S2 on the other bottom surface 3b side separated by the partition wall 3c. 7b is held. And the photocatalyst 5 is being fixed to the center part of the partition 3c in the airtight container 3 so that the both surfaces 5a and 5b may face the circular bottom surfaces 3a and 3b of the airtight container 3, respectively. As a result, the photocatalyst 5 is held in the sealed container 3 with one surface 5a immersed (contacted) in the aqueous solution 7a and the other surface 5b contacted with the gas 7b. . A window portion 3d made of quartz or the like is provided at the center of the bottom surface 3a of the sealed container 3. The light L irradiated from the outside is configured to be incident on one surface 5a of the photocatalyst 5 by transmitting through the window 3d. Further, a discharge port 3e is provided on the bottom surface 3a side of the side surface of the sealed container 3, so that oxygen generated by the oxidation reaction in the space S1 can be taken out to the outside. An outlet 3f is provided, and ammonia (ammonium salt) generated by the reduction reaction in the space S2 can be taken out to the outside.

アンモニア発生装置1の空間S1には、水溶液7aとして、例えば10体積%のエタノールを含む濃度0.1M、ph13.0の水酸化カリウム(KOH)溶液が収容される。アンモニア発生装置1の空間S2には、ガス7bとして、例えば水蒸気飽和窒素ガスが収容される。また、アンモニア発生装置1の空間S2には、ガス7bに加えて、例えば濃度0.01M、ph2.0、容量15μLの塩化水素(HCl)溶液が注入される。   In the space S1 of the ammonia generator 1, a potassium hydroxide (KOH) solution with a concentration of 0.1M and ph 13.0 containing 10% by volume of ethanol is accommodated as the aqueous solution 7a. In the space S2 of the ammonia generator 1, for example, steam saturated nitrogen gas is accommodated as the gas 7b. In addition to the gas 7b, for example, a hydrogen chloride (HCl) solution having a concentration of 0.01 M, ph 2.0, and a capacity of 15 μL is injected into the space S2 of the ammonia generator 1.

外部から照射される光Lは、可視光領域または近赤外光領域の波長を含む光であり、例えば太陽光である。光Lの波長は、例えば400nm以上である。   The light L irradiated from the outside is light including a wavelength in the visible light region or near-infrared light region, for example, sunlight. The wavelength of the light L is, for example, 400 nm or more.

図2は、光触媒5の詳細構造を示す断面図である。図3は、図1の光触媒5の表面の走査型電子顕微鏡(SEM)像の一例を示す図である。図4は、図3に示す金属体のサイズの分布の一例を示すグラフである。図5は、図2の光触媒5の面5aの消光スペクトルの一例を示す図である。図6は、図2の光触媒5の面5bのX線光電子分光(XPS)スペクトルの一例を示す図である。   FIG. 2 is a cross-sectional view showing the detailed structure of the photocatalyst 5. FIG. 3 is a diagram showing an example of a scanning electron microscope (SEM) image of the surface of the photocatalyst 5 of FIG. FIG. 4 is a graph showing an example of the size distribution of the metal body shown in FIG. FIG. 5 is a diagram showing an example of the extinction spectrum of the surface 5a of the photocatalyst 5 of FIG. FIG. 6 is a diagram showing an example of an X-ray photoelectron spectroscopy (XPS) spectrum of the surface 5b of the photocatalyst 5 of FIG.

図2に示されるように、光触媒5は、基材9と、金属体11と、アンモニア発生触媒13と、を備えている。基材9は、可視光の照射に対してアンモニア及び酸素生成に関して活性な光触媒材料を含んでいる。光触媒材料は、例えば金属酸化物である。このような光触媒材料として、チタン酸ストロンチウム(SrTiO)または酸化チタン(TiO)等が挙げられる。基材9としては、例えば、0.05wt%でニオブ(Nb)がドープされたチタン酸ストロンチウム基板が用いられる。この場合、基材9の表面9aは、例えばチタン酸ストロンチウムの(110)面である。基材9のサイズは、例えば10mm×10mmである。この基材9の表面9aが光触媒5の面5aに対応し、基材9の裏面9bが光触媒5の面5bに対応する。 As shown in FIG. 2, the photocatalyst 5 includes a base material 9, a metal body 11, and an ammonia generation catalyst 13. The base material 9 contains a photocatalytic material that is active with respect to ammonia and oxygen generation with respect to irradiation with visible light. The photocatalytic material is, for example, a metal oxide. Examples of such a photocatalytic material include strontium titanate (SrTiO 3 ) and titanium oxide (TiO 2 ). As the base material 9, for example, a strontium titanate substrate doped with niobium (Nb) at 0.05 wt% is used. In this case, the surface 9a of the base material 9 is, for example, a (110) surface of strontium titanate. The size of the base material 9 is, for example, 10 mm × 10 mm. The surface 9 a of the base material 9 corresponds to the surface 5 a of the photocatalyst 5, and the back surface 9 b of the base material 9 corresponds to the surface 5 b of the photocatalyst 5.

金属体11は、基材9に接するように設けられており、例えば基材9の表面9a上に沿って複数領域に分離して配列されている。金属体11は、例えば11族元素を含んでいる。11族元素としては、金(Au)等が挙げられる。図3及び図4に示されるように、金属体11は、その直径が10nm〜100nmの範囲であり、平均直径が例えば52nmの略円形状の金属膜である。図5に示されるように、光触媒5は、面5aに金属体11の微細構造(ナノ構造)を有することにより、可視光領域または近赤外領域の波長の光に応答する(金属体11のプラズモン共鳴による光アンテナ効果)。つまり、金属体11の微細構造(サイズ及び形状)は、可視光領域または近赤外領域の波長において応答可能なよう構成されている。この光アンテナ効果により捕集された可視光または近赤外光は金属体11の電荷分離を引き起こし、生成された電子が基材9の光触媒材料に移動することによりアンモニアの還元反応が引き起こされる。   The metal bodies 11 are provided so as to be in contact with the base material 9. For example, the metal bodies 11 are arranged in a plurality of regions along the surface 9 a of the base material 9. The metal body 11 contains a group 11 element, for example. Examples of the group 11 element include gold (Au). As shown in FIGS. 3 and 4, the metal body 11 is a substantially circular metal film having a diameter in the range of 10 nm to 100 nm and an average diameter of, for example, 52 nm. As shown in FIG. 5, the photocatalyst 5 has a fine structure (nanostructure) of the metal body 11 on the surface 5a, thereby responding to light having a wavelength in the visible light region or near infrared region (of the metal body 11). Optical antenna effect by plasmon resonance). That is, the fine structure (size and shape) of the metal body 11 is configured to be responsive at wavelengths in the visible light region or near infrared region. Visible light or near-infrared light collected by the optical antenna effect causes charge separation of the metal body 11, and the generated electrons move to the photocatalytic material of the substrate 9, thereby causing ammonia reduction reaction.

ここで、金属体11の材料としては、金以外にも、サイズや形状により様々な波長の入射光に対してプラズモン共鳴吸収性を有する金属材料であってもよい。このような金属材料としては、銀、銅、白金、アルミニウム及びこれらの合金等の金属材料が挙げられる。プラズモン共鳴吸収性とは、入射光と共鳴してその光を局在化して電場を増強させ、いわゆる局在表面プラズモンと言われる現象を引き起こす性質である。金属体11の材料としてこのような金属材料を使用することで、光触媒5の面5aにおける可視光領域及び近赤外光領域における応答波長を、金属体11のサイズ及び形状によって制御することができる。   Here, the material of the metal body 11 may be a metal material having plasmon resonance absorptivity for incident light with various wavelengths depending on the size and shape, in addition to gold. Examples of such a metal material include metal materials such as silver, copper, platinum, aluminum, and alloys thereof. The plasmon resonance absorptivity is a property that resonates with incident light and localizes the light to enhance the electric field, thereby causing a phenomenon called so-called localized surface plasmon. By using such a metal material as the material of the metal body 11, the response wavelengths in the visible light region and the near-infrared light region on the surface 5 a of the photocatalyst 5 can be controlled by the size and shape of the metal body 11. .

アンモニア発生触媒13は、基材9に接するように設けられており、例えば基材9の表面9aの反対側の裏面9b上に配置されている。つまり、金属体11、基材9及びアンモニア発生触媒13の順に配列され、金属体11及びアンモニア発生触媒13は、基材9を挟むように配置されている。アンモニア発生触媒13は、例えば遷移金属元素を含んでいる。アンモニア発生触媒13が遷移金属元素としてルテニウム(Ru)を含む場合、光触媒5の面5b側では図6に示されるようなX線光電子分光スペクトルが得られる。   The ammonia generating catalyst 13 is provided in contact with the base material 9 and is disposed on the back surface 9b opposite to the front surface 9a of the base material 9, for example. That is, the metal body 11, the base material 9, and the ammonia generation catalyst 13 are arranged in this order, and the metal body 11 and the ammonia generation catalyst 13 are arranged so as to sandwich the base material 9. The ammonia generation catalyst 13 contains a transition metal element, for example. When the ammonia generating catalyst 13 contains ruthenium (Ru) as a transition metal element, an X-ray photoelectron spectrum as shown in FIG. 6 is obtained on the surface 5 b side of the photocatalyst 5.

ここで、アンモニア発生触媒13の材料としては、ルテニウム以外にも、アンモニア発生効率を増大させる材料であってもよい。このようなアンモニア発生触媒としては窒素の吸着性の観点から遷移金属元素を含むことが好ましく、窒素還元性の観点からモリブデン、鉄、コバルト、レニウム、ジルコニウムを含むことが特に好ましい。   Here, the material of the ammonia generation catalyst 13 may be a material that increases the efficiency of ammonia generation in addition to ruthenium. Such an ammonia generating catalyst preferably contains a transition metal element from the viewpoint of nitrogen adsorption, and particularly preferably contains molybdenum, iron, cobalt, rhenium, and zirconium from the viewpoint of nitrogen reducibility.

次に、光触媒5の作製方法の一例について説明する。まず、基材9を用意する。そして、例えばスパッタリングにより基材9の表面9aに金属体11を3nm程度の厚さで成膜し、その後、基材9の表面9aを窒素雰囲気下の800°Cの温度で所定時間(例えば、1時間)アニール処理を施すことにより、複数領域に分離された金属体11を形成する。このような処理により、基材9の表面9a上で金属原子は温度上昇に伴って拡散し、表面拡散長の範囲内で粒径サイズが膜厚に対応してある程度制御された略円形状のアイランドが形成される。   Next, an example of a method for producing the photocatalyst 5 will be described. First, the base material 9 is prepared. Then, for example, the metal body 11 is formed to a thickness of about 3 nm on the surface 9a of the base material 9 by sputtering, and then the surface 9a of the base material 9 is heated at a temperature of 800 ° C. under a nitrogen atmosphere for a predetermined time (for example, 1 hour) An annealing treatment is performed to form the metal body 11 separated into a plurality of regions. By such treatment, the metal atoms diffuse on the surface 9a of the substrate 9 as the temperature rises, and the particle size is controlled to some extent in accordance with the film thickness within the range of the surface diffusion length. An island is formed.

なお、金属体11の材料としては金が用いられる場合、金属体11が基材9の表面9aを拡散しやすくアイランドが容易に形成される。また、スパッタリングした金属体11をアニール処理することにより、アイランド構造を容易に作成できる。   In addition, when gold is used as the material of the metal body 11, the metal body 11 is easy to diffuse the surface 9a of the base material 9, and an island is easily formed. Moreover, an island structure can be easily created by annealing the sputtered metal body 11.

続いて、例えば電子線蒸着により基材9の裏面9bにアンモニア発生触媒13を3nm程度の厚さで成膜する。このようにして、光触媒5が作製される。   Subsequently, the ammonia generating catalyst 13 is formed in a thickness of about 3 nm on the back surface 9b of the substrate 9 by, for example, electron beam evaporation. In this way, the photocatalyst 5 is produced.

次に、上述のように構成されたアンモニア発生装置1を用いたアンモニア発生方法について詳述する。まず、アンモニア発生装置1を用意する。そして、アンモニア発生装置1の密閉容器3の空間S1内に水溶液7aを注入し、空間S2内にガス7bを注入する。これによって、光触媒5の面5aに水溶液7aを接触させ、面5bにガス7bを接触させた状態で密閉容器3内に水溶液7a及びガス7bを保持させる。さらに、密閉容器3の空間S2に塩化水素溶液等の水溶液を注入する。そして、密閉容器3の窓部3dから光触媒5の面5aに向けて可視光領域または近赤外領域の波長を含む光Lを入射させる。   Next, an ammonia generation method using the ammonia generator 1 configured as described above will be described in detail. First, the ammonia generator 1 is prepared. And the aqueous solution 7a is inject | poured in space S1 of the airtight container 3 of the ammonia generator 1, and gas 7b is inject | poured in space S2. As a result, the aqueous solution 7a is brought into contact with the surface 5a of the photocatalyst 5 and the aqueous solution 7a and the gas 7b are held in the sealed container 3 in a state where the gas 7b is brought into contact with the surface 5b. Further, an aqueous solution such as a hydrogen chloride solution is injected into the space S2 of the sealed container 3. Then, light L including a wavelength in the visible light region or near-infrared region is incident from the window portion 3 d of the sealed container 3 toward the surface 5 a of the photocatalyst 5.

その結果、光触媒5の面5a(基材9の表面9a)において金属体11によるプラズモン増強により金属体11の電子が励起され、励起された電子が基材9の光触媒材料の電子伝導帯に移動させられる。この電子の移動により光触媒5の面5a側にホールが生成され、そのホールが基材9の光触媒材料の表面準位にトラップされる。そして、そのホールにより水溶液7a中の水酸化物イオン及びエタノールの酸化反応が引き起こされる。この水及びエタノールの酸化反応は、下記化学式;
4h+4OH→O+2H
2h+COH→CHCHO+2H
で表されるような反応であり、このような反応により空間S1の光触媒5の面5a近傍で酸素及びアセトアルデヒドが生成され、酸素は排出口3eから排出される。
As a result, the electrons of the metal body 11 are excited by the plasmon enhancement by the metal body 11 on the surface 5a of the photocatalyst 5 (the surface 9a of the base material 9), and the excited electrons move to the electron conduction band of the photocatalytic material of the base material 9. Be made. Due to the movement of the electrons, holes are generated on the surface 5 a side of the photocatalyst 5, and the holes are trapped in the surface level of the photocatalytic material of the substrate 9. And the oxidation reaction of the hydroxide ion and ethanol in the aqueous solution 7a is caused by the hole. This water and ethanol oxidation reaction has the following chemical formula:
4h + + 4OH → O 2 + 2H 2 O
2h + + C 2 H 5 OH → CH 3 CHO + 2H +
By this reaction, oxygen and acetaldehyde are generated in the vicinity of the surface 5a of the photocatalyst 5 in the space S1, and oxygen is discharged from the discharge port 3e.

また、基材9の光触媒材料の電子伝導帯に移動させられた電子は、アンモニア発生触媒13に到達する。そして、その電子により光触媒5の面5b(基材9の裏面9b)において、ガス7b中の窒素の還元反応が引き起こされる。この窒素の還元反応は、下記化学式;
+6H+6e→2NH
で表されるような反応であり、このような反応により空間S2中の光触媒5の面5b近傍でアンモニアが生成される。そして、生成されたアンモニアは空間S2内の塩酸と結合してアンモニウム塩(塩化アンモニウム:NHCl)となる。このアンモニウム塩を排出口3fから取り出して、水酸化ナトリウム等の強塩基と反応させることによりアンモニアが得られる。
Further, the electrons moved to the electron conduction band of the photocatalytic material of the base material 9 reach the ammonia generation catalyst 13. The electrons cause a reduction reaction of nitrogen in the gas 7b on the surface 5b of the photocatalyst 5 (the back surface 9b of the base material 9). This nitrogen reduction reaction has the following chemical formula:
N 2 + 6H + + 6e → 2NH 3
In such a reaction, ammonia is generated near the surface 5b of the photocatalyst 5 in the space S2. The produced ammonia is an ammonium salt (ammonium chloride: NH 4 Cl) in combination with hydrochloric acid in the space S2 and becomes. The ammonium salt is taken out from the outlet 3f and reacted with a strong base such as sodium hydroxide to obtain ammonia.

以上説明したアンモニア発生装置1及びアンモニア発生装置1を用いたアンモニア発生方法によれば、光触媒5の面5aに水溶液7aを接触させ、面5bにガス7bを接触させた状態で、金属体11が配置された光触媒5の面5aに光Lを照射することにより、光触媒5の面5aにおいて水溶液7aを酸化させて酸素を発生させるとともに、光触媒5の面5bにおいてガス7bを還元させてアンモニアを発生させることができる。この場合、金属体11の微細構造によって決まるプラズモン共鳴の波長域において水の光電気分解が効率よく行われると同時に、アンモニア発生触媒13によって窒素の還元反応が効率的に行われる。その結果、外部装置による電圧の印加を必要とせずに、アンモニアを効率的に発生させることができる。   According to the ammonia generation apparatus 1 and the ammonia generation method using the ammonia generation apparatus 1 described above, the metal body 11 is in a state where the aqueous solution 7a is in contact with the surface 5a of the photocatalyst 5 and the gas 7b is in contact with the surface 5b. By irradiating the surface 5a of the photocatalyst 5 with light L, the aqueous solution 7a is oxidized on the surface 5a of the photocatalyst 5 to generate oxygen, and the gas 7b is reduced on the surface 5b of the photocatalyst 5 to generate ammonia. Can be made. In this case, the photoelectrolysis of water is efficiently performed in the plasmon resonance wavelength range determined by the fine structure of the metal body 11, and at the same time, the reduction reaction of nitrogen is efficiently performed by the ammonia generation catalyst 13. As a result, ammonia can be generated efficiently without the need to apply a voltage from an external device.

アンモニア発生装置1では、金属体11が、様々な波長の入射光を捕集して、その光を局在化させて増幅させることが可能な光アンテナとして機能する。例えば、チタン酸ストロンチウム単体では600nm付近の光はほとんど透過してしまうが、金属体11の微細構造を制御して、金属体11のプラズモン共鳴波長を可視光領域または近赤外光領域とすることにより、当該波長領域でのアンモニア生成反応を進行させることができる。さらに、太陽エネルギーの波長帯域にプラズモン共鳴波長が一致するように金属体11の構造を制御すれば、太陽エネルギーを効率的に化学エネルギーに変換することができ、反応中心波長が680nm程度である植物の光合成にも劣らないシステムの構築が可能である。   In the ammonia generator 1, the metal body 11 functions as an optical antenna that can collect incident light of various wavelengths and localize and amplify the light. For example, although strontium titanate alone transmits almost 600 nm light, the fine structure of the metal body 11 is controlled to set the plasmon resonance wavelength of the metal body 11 to a visible light region or a near infrared light region. Thus, the ammonia generation reaction in the wavelength region can be advanced. Furthermore, if the structure of the metal body 11 is controlled so that the plasmon resonance wavelength matches the wavelength band of solar energy, the solar energy can be efficiently converted into chemical energy, and the reaction center wavelength is about 680 nm. It is possible to construct a system that is not inferior to photosynthesis.

また、アンモニア発生装置1では、基材9の光触媒材料として金属酸化物が用いられているので、プラズモン共鳴吸収によって励起された電子を光触媒材料の電子伝導帯に効率的に遷移させることができ、水溶液7aの酸化反応及びガス7bの還元反応をさらに活性させることができる。また、光触媒5に形成された金属体11は11族元素を材料としているので、基材9の表面9aにおいて光に対するプラズモン共鳴吸収性を高めることができる。このため、水溶液7aの酸化反応及びガス7bの還元反応をさらに効率的に発生させることができる。さらに、アンモニア発生触媒13は遷移金属元素によって構成されているので、基材9の裏面9bにおいてガス7bの還元反応を活発化することができ、外部装置による電圧の印加を必要とせずに水溶液7aの酸化反応及びガス7bの還元反応をさらに効率的に発生させることができる。その結果、アンモニアをさらに効率的に発生させることが可能となる。   Moreover, in the ammonia generator 1, since the metal oxide is used as the photocatalytic material of the base material 9, the electrons excited by the plasmon resonance absorption can be efficiently transferred to the electron conduction band of the photocatalytic material, The oxidation reaction of the aqueous solution 7a and the reduction reaction of the gas 7b can be further activated. Further, since the metal body 11 formed on the photocatalyst 5 is made of a group 11 element, the surface 9a of the base material 9 can enhance the plasmon resonance absorption with respect to light. For this reason, the oxidation reaction of the aqueous solution 7a and the reduction reaction of the gas 7b can be generated more efficiently. Furthermore, since the ammonia generating catalyst 13 is composed of a transition metal element, the reduction reaction of the gas 7b can be activated on the back surface 9b of the base material 9, and the aqueous solution 7a can be applied without requiring the application of a voltage by an external device. The oxidation reaction and the reduction reaction of the gas 7b can be generated more efficiently. As a result, ammonia can be generated more efficiently.

なお、本発明は、上述の実施形態に限定されない。例えば、アンモニア発生装置1には窓部3dが設けられて、窓部3dを介して光Lを光触媒5の面5aに入射させるように構成されているが、密閉容器3の窓部3dの反対側(例えば、底面3b)に窓部が設けられ、光触媒5の面5bに外部から光を入射可能に構成されていてもよい。このような構成によれば、外部から可視光領域または近赤外光領域の波長を含む光Lを光触媒5の面5bに照射することにより、アンモニア発生触媒13及び基材9を透過した光が金属体11によって捕集されて電荷分離を引き起こすことができる。さらに、窓部3dに加えて密閉容器3の窓部3dの反対側に窓部が設けられてもよい。この場合、面5a及び面5bに可視光または近赤外光を同時に照射させることができ、より効率的にアンモニアを発生させることが可能となる。   In addition, this invention is not limited to the above-mentioned embodiment. For example, the ammonia generator 1 is provided with a window 3d so that the light L is incident on the surface 5a of the photocatalyst 5 through the window 3d, but is opposite to the window 3d of the sealed container 3. A window portion may be provided on the side (for example, the bottom surface 3b), and light may be incident on the surface 5b of the photocatalyst 5 from the outside. According to such a configuration, light transmitted through the ammonia generating catalyst 13 and the base material 9 is irradiated by irradiating the surface 5b of the photocatalyst 5 with light L including a wavelength in the visible light region or near infrared light region from the outside. It can be collected by the metal body 11 to cause charge separation. Furthermore, a window portion may be provided on the opposite side of the window portion 3d of the sealed container 3 in addition to the window portion 3d. In this case, the surface 5a and the surface 5b can be irradiated with visible light or near-infrared light simultaneously, and ammonia can be generated more efficiently.

また、アンモニア発生装置1では、基材9の表面9aに金属体11が設けられ、基材9の裏面9bにアンモニア発生触媒13が設けられているが、基材9の少なくとも一部が金属体11とアンモニア発生触媒13との間に配置されていればよい。つまり、ある方向に沿って、金属体11、基材9及びアンモニア発生触媒13がその順に配列されていればよい。例えば、図7の(a)に示されるように、金属体11のすべての領域が基材9の内部に設けられてもよく、図7の(b)に示されるように、金属体11の一部の領域が基材9の内部に設けられてもよい。また、基材9の形状は板状に限られず、例えば図8の(a)に示されるように、基材9は複数の凸部を備えていてもよい。また、アンモニア発生装置1は、2以上の基材9を備えてもよい。例えば、図8の(b)に示されるように、金属体11の各領域とアンモニア発生触媒13との間にそれぞれ基材9が設けられてもよい。また、図8の(c)に示されるように、導体16で接続された基材91及び基材92を備え、基材91に金属体11が設けられ、基材92にアンモニア発生触媒13が設けられてもよい。導体16としては、例えば金属、電解質溶液、イオン性溶液または溶融塩等が用いられる。また、アンモニア発生触媒13は、基材9の裏面9bの全面に設けられる必要はない。図7及び図8に示されるような光触媒5を用いた場合でも、金属体11が光を捕集し、金属体11と基材9との界面において電荷分離が引き起こされ、アンモニア発生触媒13に電子が運ばれる。その結果、外部装置による電圧の印加を必要とせずに、アンモニアを発生させることが可能となる。   Further, in the ammonia generator 1, the metal body 11 is provided on the front surface 9a of the base material 9, and the ammonia generating catalyst 13 is provided on the back surface 9b of the base material 9, but at least a part of the base material 9 is a metal body. 11 and the ammonia generation catalyst 13 may be disposed. That is, the metal body 11, the base material 9, and the ammonia generation catalyst 13 should just be arranged in that order along a certain direction. For example, as shown in FIG. 7A, all the regions of the metal body 11 may be provided inside the base material 9, and as shown in FIG. A part of the region may be provided inside the substrate 9. Moreover, the shape of the base material 9 is not restricted to plate shape, For example, as shown to (a) of FIG. 8, the base material 9 may be provided with the some convex part. The ammonia generator 1 may include two or more base materials 9. For example, as illustrated in FIG. 8B, the base material 9 may be provided between each region of the metal body 11 and the ammonia generation catalyst 13. Further, as shown in FIG. 8C, a base material 91 and a base material 92 connected by the conductor 16 are provided, the metal body 11 is provided on the base material 91, and the ammonia generating catalyst 13 is provided on the base material 92. It may be provided. As the conductor 16, for example, a metal, an electrolyte solution, an ionic solution, a molten salt, or the like is used. Further, the ammonia generating catalyst 13 does not need to be provided on the entire back surface 9b of the base material 9. Even when the photocatalyst 5 as shown in FIGS. 7 and 8 is used, the metal body 11 collects light, and charge separation is caused at the interface between the metal body 11 and the base material 9. Electrons are carried. As a result, ammonia can be generated without requiring application of a voltage by an external device.

(実施例)
以下、実施例及び比較例に基づいて本発明がより具体的に説明されるが、本発明は以下の実施例に限定されない。
(Example)
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

図9は、アンモニア発生装置1の特性測定に用いたアンモニア生成装置の概略図である。この特性測定では、実施例の光触媒5及び比較例の光触媒105を用意した。実施例の光触媒5は、以下のように作製した。基材9として0.05wt%のニオブをドープしたチタン酸ストロンチウム基板を使用した。スパッタリングにより基材9の表面9aに金からなる金属体11を3nmの厚さで成膜した後、窒素雰囲気下の800°Cで1時間アニール処理を施し、電子線蒸着により基材9の裏面9bにルテニウムからなるアンモニア発生触媒13を3nmの厚さで成膜した。この光触媒5は、図3〜図6に示される特性を有していた。   FIG. 9 is a schematic diagram of an ammonia generator used for measuring the characteristics of the ammonia generator 1. In this characteristic measurement, the photocatalyst 5 of the example and the photocatalyst 105 of the comparative example were prepared. The photocatalyst 5 of the example was produced as follows. A strontium titanate substrate doped with 0.05 wt% niobium was used as the substrate 9. After the metal body 11 made of gold is formed to a thickness of 3 nm on the surface 9a of the base material 9 by sputtering, it is annealed at 800 ° C. for 1 hour in a nitrogen atmosphere, and the back surface of the base material 9 is formed by electron beam evaporation. An ammonia generating catalyst 13 made of ruthenium was formed into a film with a thickness of 3 nm on 9b. This photocatalyst 5 had the characteristics shown in FIGS.

比較例の光触媒105では、基材9として0.05wt%のニオブをドープしたチタン酸ストロンチウム基板を使用した。金属体11及びアンモニア発生触媒13を形成せず基材9のみとした。   In the photocatalyst 105 of the comparative example, a strontium titanate substrate doped with 0.05 wt% niobium was used as the base material 9. Only the base material 9 was formed without forming the metal body 11 and the ammonia generating catalyst 13.

そして、これらの光触媒を収容したアンモニア発生装置1の空間S1に10体積%のエタノールを含む濃度0.1M、ph13.0の水酸化カリウム溶液を収容し、空間S2に水蒸気飽和窒素ガスを収容し、さらに空間S2に濃度0.01M、ph2.0の塩化水素溶液を15μL注入した。そして、図9に示されるように、アンモニア発生装置1に対して、光源20を用いて所定の波長の光を照射した。つまり、800Wのキセノンランプ21から出射された光を水フィルター22、レンズ23及び光学フィルター24を介してアンモニア発生装置1の窓部3dから光触媒の一方の面5aに照射した。そして、反応後のアンモニア発生装置1に純水を通液し、純水に溶出したアンモニウム塩を定量した。   A space S1 of the ammonia generator 1 containing these photocatalysts contains a potassium hydroxide solution having a concentration of 0.1M and ph13.0 containing 10% by volume of ethanol, and a water-saturated nitrogen gas is contained in the space S2. Further, 15 μL of a hydrogen chloride solution having a concentration of 0.01 M and ph 2.0 was injected into the space S2. Then, as shown in FIG. 9, the ammonia generator 1 was irradiated with light having a predetermined wavelength using a light source 20. That is, the light emitted from the 800 W xenon lamp 21 was applied to one surface 5 a of the photocatalyst from the window 3 d of the ammonia generator 1 through the water filter 22, the lens 23 and the optical filter 24. Then, pure water was passed through the ammonia generator 1 after the reaction, and the ammonium salt eluted in the pure water was quantified.

(アンモニアの定量)
ここで、アンモニアの定量方法について説明する。アンモニウム塩を溶出した水溶液0.5mLに対して、発色させるために50wt%のEDTA・4Na・4HO溶液を0.08mL加える。そして、濃度1.25Mの水酸化ナトリウムと0.87wt%の塩素元素を含む次亜塩素酸ナトリウムとの混合溶液を0.52mL加え、アンモニウム塩と水酸化ナトリウムとを反応させてアンモニアを生成し、アンモニアと次亜塩素酸イオンとを反応させる。この化学反応は、下記化学式;
NHCl+NaOH→NH+NaCl+H
NH+ClO→NHCl+OH
で表されるような反応であり、このような反応によりモノクロラミンが生成される。そして、濃度1.46Mのサリチル酸ナトリウムと濃度0.24Mのピラゾールとの混合溶液を0.16mL加え、モノクロラミンとサリチル酸と次亜塩素酸イオンとを反応させる。この化学反応は、下記化学式;

で表されるような反応であり、このような反応によりサリチル酸二量化物が生成される。
(Quantification of ammonia)
Here, a method for quantifying ammonia will be described. Add 0.08 mL of 50 wt% EDTA · 4Na · 4H 2 O solution to 0.5 mL of the aqueous solution from which the ammonium salt is eluted. Then, 0.52 mL of a mixed solution of sodium hydroxide having a concentration of 1.25M and sodium hypochlorite containing 0.87 wt% of chlorine element is added, and ammonium is reacted with sodium hydroxide to generate ammonia. Then, ammonia and hypochlorite ions are reacted. This chemical reaction has the following chemical formula:
NH 4 Cl + NaOH → NH 3 + NaCl + H 2 O
NH 3 + ClO → NH 2 Cl + OH
A monochloramine is produced by such a reaction. Then, 0.16 mL of a mixed solution of 1.46M sodium salicylate and 0.24M pyrazole is added to react monochloramine, salicylic acid, and hypochlorite ion. This chemical reaction has the following chemical formula:

The salicylic acid dimer is produced by such a reaction.

図10は、各アンモニア濃度における光の波長とサリチル酸二量化物の吸光度との関係を示す図である。サリチル酸二量化物は、アンモニアと定量的に反応するので、サリチル酸二量化物の吸光度とアンモニアの濃度は比例関係にある。また、サリチル酸二量化物は、650nmの波長の光に対して吸光度が最大となる。このため、上記のようにして得られたサリチル酸二量化物に対して、650nmの波長の光を照射し、その吸光度を測定することにより、図10に示される関係からアンモニアの濃度を算出し、アンモニアの量を算出する。なお、アンモニアの定量は、ガスクロマトグラフィー、液体クロマトグラフィーまたはイオンクロマトグラフィー等の方法を用いて行ってもよい。   FIG. 10 is a diagram showing the relationship between the wavelength of light and the absorbance of salicylic acid dimer at each ammonia concentration. Since salicylic acid dimer reacts quantitatively with ammonia, the absorbance of salicylic acid dimer and the concentration of ammonia are in a proportional relationship. The salicylic acid dimer has a maximum absorbance with respect to light having a wavelength of 650 nm. Therefore, the concentration of ammonia is calculated from the relationship shown in FIG. 10 by irradiating the salicylic acid dimer obtained as described above with light having a wavelength of 650 nm and measuring the absorbance. Calculate the amount of ammonia. The ammonia may be quantified using a method such as gas chromatography, liquid chromatography, or ion chromatography.

(測定結果)
図11は、光の照射時間に対するアンモニア生成量を示す図である。実施例の光触媒5及び比較例の光触媒105に550nm〜800nmの波長の光を照射し続け、照射時間に対するアンモニア生成量の変化を測定した。また、実施例の光触媒5に光を照射することなく、暗下における時間の経過によるアンモニア生成量の変化を測定した。図11に示されるように、比較例の光触媒105に550nm〜800nmの波長の光を照射した場合及び実施例の光触媒5に光を照射しなかった場合には、時間が経過してもアンモニア生成量は増加しなかった。一方、実施例の光触媒5に550nm〜800nmの波長の光を照射した場合には、照射時間の経過とともにアンモニア生成量が増加した。実施例の光触媒5に550nm〜800nmの波長の光を照射した場合の照射時間とアンモニア生成量との関係は、ほぼ比例関係であり、アンモニア生成速度は約0.231nmol/hourであった。
(Measurement result)
FIG. 11 is a diagram showing the amount of ammonia produced with respect to the light irradiation time. The photocatalyst 5 of the example and the photocatalyst 105 of the comparative example were continuously irradiated with light having a wavelength of 550 nm to 800 nm, and the change in the amount of ammonia produced with respect to the irradiation time was measured. Moreover, the change of the ammonia production amount with the passage of time in the dark was measured without irradiating the photocatalyst 5 of the example with light. As shown in FIG. 11, when the photocatalyst 105 of the comparative example is irradiated with light having a wavelength of 550 nm to 800 nm and when the photocatalyst 5 of the example is not irradiated with light, ammonia is generated even if time passes. The amount did not increase. On the other hand, when the photocatalyst 5 of the example was irradiated with light having a wavelength of 550 nm to 800 nm, the amount of ammonia generated increased with the lapse of irradiation time. When the photocatalyst 5 of the example was irradiated with light having a wavelength of 550 nm to 800 nm, the relationship between the irradiation time and the amount of ammonia produced was almost proportional, and the ammonia production rate was about 0.231 nmol / hour.

図12は、入射光の波長範囲ごとのアンモニア生成量を示す図である。図13は、入射光の波長範囲ごとの量子収率を示す図である。光Lの波長範囲を、410nm〜800nm、450nm〜800nm、550nm〜800nm、633nm〜800nm、700nm〜800nmに変化させて、実施例の光触媒5にそれぞれ24時間照射した。図12のグラフRは、対象となる波長範囲を照射した時のアンモニア生成量を示す。例えば、グラフRの「410−」は410nm〜800nmの波長範囲の光を24時間照射した時のアンモニア生成量を示す。同様に、グラフRの「450−」は450nm〜800nmの波長範囲の光を24時間照射した時のアンモニア生成量、グラフRの「550−」は550nm〜800nmの波長範囲の光を24時間照射した時のアンモニア生成量、グラフRの「633−」は633nm〜800nmの波長範囲の光を24時間照射した時のアンモニア生成量、グラフRの「700−」は700nm〜800nmの波長範囲の光を24時間照射した時のアンモニア生成量を示す。   FIG. 12 is a diagram showing the amount of ammonia generated for each wavelength range of incident light. FIG. 13 is a diagram showing the quantum yield for each wavelength range of incident light. The wavelength range of the light L was changed from 410 nm to 800 nm, 450 nm to 800 nm, 550 nm to 800 nm, 633 nm to 800 nm, and 700 nm to 800 nm, and each of the photocatalysts 5 of Examples was irradiated for 24 hours. Graph R in FIG. 12 shows the amount of ammonia produced when the target wavelength range is irradiated. For example, “410-” in the graph R indicates the amount of ammonia produced when light in the wavelength range of 410 nm to 800 nm is irradiated for 24 hours. Similarly, “450-” in graph R is the amount of ammonia produced when light in the wavelength range of 450 nm to 800 nm is irradiated for 24 hours, and “550-” in graph R is irradiated for light in the wavelength range of 550 nm to 800 nm for 24 hours. Amount of ammonia produced in graph R, “633−” in graph R represents the amount of ammonia produced when light in the wavelength range of 633 nm to 800 nm was irradiated for 24 hours, and “700−” in graph R represents light in the wavelength range of 700 nm to 800 nm. Shows the amount of ammonia produced when irradiated for 24 hours.

図12のグラフSは、単位波長当たりのアンモニア生成量を示す。例えば、グラフSの「410−」は410nm〜450nmの単位波長当たりのアンモニア生成量を示し、{(410nm〜800nmの波長域の光を24時間照射した時のアンモニア生成量)−(450nm〜800nmの波長域の光を24時間照射した時のアンモニア生成量)}/(450−410)によって算出された値である。同様に、グラフSの「450−」は450nm〜550nmの単位波長当たりのアンモニア生成量、グラフSの「550−」は550nm〜633nmの単位波長当たりのアンモニア生成量、グラフSの「633−」は633nm〜700nmの単位波長当たりのアンモニア生成量、グラフSの「700−」は700nm〜800nmの単位波長当たりのアンモニア生成量を示す。   Graph S in FIG. 12 shows the amount of ammonia produced per unit wavelength. For example, “410-” in the graph S indicates an ammonia production amount per unit wavelength from 410 nm to 450 nm, and {(ammonia production amount when light in a wavelength region of 410 nm to 800 nm is irradiated for 24 hours) − (450 nm to 800 nm The amount of ammonia produced when irradiated with light in the wavelength range of 24 hours)} / (450-410). Similarly, “450−” in the graph S indicates an ammonia production amount per unit wavelength of 450 nm to 550 nm, “550−” in the graph S indicates an ammonia generation amount per unit wavelength of 550 nm to 633 nm, and “633” in the graph S. Represents the amount of ammonia produced per unit wavelength from 633 nm to 700 nm, and “700-” in the graph S represents the amount of ammonia produced per unit wavelength from 700 nm to 800 nm.

図13の入射光の波長範囲ごとの量子収率ηappは、単位波長当たりのアンモニア生成量と、各波長における照射された光子数と、を用いて式(1)によって算出した値である。各波長範囲における照射された光子数は、多目的分光放射計(MSR−7000N)を用いて測定した。
The quantum yield η app for each wavelength range of incident light in FIG. 13 is a value calculated by the equation (1) using the amount of ammonia generated per unit wavelength and the number of photons irradiated at each wavelength. The number of photons irradiated in each wavelength range was measured using a multipurpose spectroradiometer (MSR-7000N).

図13には、光触媒5の面5aの消光スペクトル(すなわち、プラズモン共鳴スペクトル)を併せて示した。図13に示されるように、見かけの量子収率は、光触媒5の面5aの消光スペクトルに対応していることが判明した。このことから、金属体11のプラズモン(実施例では金のプラズモン)が基材9(実施例ではチタン酸ストロンチウム)の電荷分離に寄与していることが証明された。つまり、プラズモン増強により金の電子が励起され、励起された電子がチタン酸ストロンチウムの電子伝導帯に移動して、光触媒5の面5bにおいて窒素を還元してアンモニアを発生させているといえる。そして、太陽光を光触媒5に照射した場合でも、太陽光に含まれる波長に応じた量子収率でアンモニアが生成されることが示された。   In FIG. 13, the quenching spectrum (namely, plasmon resonance spectrum) of the surface 5a of the photocatalyst 5 is also shown. As shown in FIG. 13, the apparent quantum yield was found to correspond to the extinction spectrum of the surface 5 a of the photocatalyst 5. From this, it was proved that the plasmon of the metal body 11 (gold plasmon in the example) contributes to charge separation of the base material 9 (strontium titanate in the example). That is, it can be said that gold electrons are excited by plasmon enhancement, the excited electrons move to the electron conduction band of strontium titanate, and nitrogen is reduced on the surface 5b of the photocatalyst 5 to generate ammonia. And even when sunlight was irradiated to the photocatalyst 5, it was shown that ammonia is produced | generated with the quantum yield according to the wavelength contained in sunlight.

以上のことから、金属体11のプラズモン共鳴波長を可視光領域または近赤外光領域(実施例では620nm付近)とすることにより、外部装置を用いず(pHの勾配は利用)に、太陽光を照射するだけで、水、窒素及びアルコールからアンモニアを発生させることが可能であることが示された。   From the above, by setting the plasmon resonance wavelength of the metal body 11 to the visible light region or the near-infrared light region (in the embodiment, near 620 nm), solar light can be used without using an external device (utilizing the pH gradient). It was shown that it is possible to generate ammonia from water, nitrogen and alcohol simply by irradiating.

1…アンモニア発生装置、3…密閉容器、5…光触媒、5a…面、5b…面、7a…水溶液、7b…ガス、9…基材、9a…表面、9b…裏面、11…金属体、13…アンモニア発生触媒、L…光、S1…空間、S2…空間。   DESCRIPTION OF SYMBOLS 1 ... Ammonia generator, 3 ... Sealed container, 5 ... Photocatalyst, 5a ... Surface, 5b ... Surface, 7a ... Aqueous solution, 7b ... Gas, 9 ... Base material, 9a ... Front surface, 9b ... Back surface, 11 ... Metal body, 13 ... ammonia generation catalyst, L ... light, S1 ... space, S2 ... space.

Claims (6)

互いに導体で接続された光触媒材料を含む第1基材及び第2基材を有する基材と、
前記第1基材の表面または前記第1基材の内部に設けられ、複数領域に分離して配置されたプラズモン共鳴吸収性を有する金属体と、
前記第2基材に設けられたアンモニア発生触媒と、
前記基材、前記金属体、及び前記アンモニア発生触媒を収容する密閉容器と、
を備え、
前記密閉容器は、前記第1基材の前記表面と対向する第1底面に設けられた光を入射させるための第1窓部と、前記第1底面とは反対側の第2底面に設けられた前記光を入射させるための第2窓部と、を有し、
前記基材の少なくとも一部は、前記金属体と前記アンモニア発生触媒との間に配置されているアンモニア発生装置。
A substrate having a first substrate and a second substrate comprising a photocatalytic material connected to each other by a conductor;
A metal body having plasmon resonance absorption disposed on the surface of the first base material or inside the first base material and arranged separately in a plurality of regions;
An ammonia generating catalyst provided on the second substrate;
A sealed container containing the substrate, the metal body, and the ammonia generating catalyst;
With
The sealed container is provided on a first window for entering light provided on a first bottom surface facing the surface of the first base material, and on a second bottom surface opposite to the first bottom surface. A second window for allowing the light to enter,
At least a part of the base material is an ammonia generator arranged between the metal body and the ammonia generating catalyst.
前記光触媒材料は金属酸化物である、請求項1に記載のアンモニア発生装置。 The ammonia generator according to claim 1 , wherein the photocatalytic material is a metal oxide. 前記金属体は11族元素を含む、請求項1又は請求項2に記載のアンモニア発生装置。 The ammonia generator according to claim 1 or 2 , wherein the metal body contains a Group 11 element. 前記アンモニア発生触媒は遷移金属元素を含む、請求項1〜請求項3のいずれか一項に記載のアンモニア発生装置。 The ammonia generating apparatus according to any one of claims 1 to 3 , wherein the ammonia generating catalyst contains a transition metal element. 互いに導体で接続された光触媒材料を含む第1基材及び第2基材を有する基材と、前記第1基材の表面または前記第1基材の内部に設けられ、複数領域に分離して配置されたプラズモン共鳴吸収性を有する金属体と、前記第2基材に設けられたアンモニア発生触媒と、前記基材、前記金属体、及び前記アンモニア発生触媒を収容する密閉容器と、を備え、前記基材の少なくとも一部が前記金属体と前記アンモニア発生触媒との間に配置されているアンモニア発生装置を用意し、
前記アンモニア発生触媒に窒素を接触させて保持し、
前記基材に光を照射し、
前記密閉容器は、前記第1基材の前記表面と対向する第1底面に設けられた前記光を入射させるための第1窓部と、前記第1底面とは反対側の第2底面に設けられた前記光を入射させるための第2窓部と、を有し、
前記第1窓部及び前記第2窓部から前記基材に前記光を照射する、
アンモニア発生方法。
A base material having a first base material and a second base material containing a photocatalyst material connected to each other by a conductor; provided on the surface of the first base material or inside the first base material; A metal body having plasmon resonance absorption disposed, an ammonia generation catalyst provided on the second base material, and a sealed container containing the base material, the metal body, and the ammonia generation catalyst, Preparing an ammonia generator in which at least a part of the base material is disposed between the metal body and the ammonia generating catalyst;
Holding the ammonia generating catalyst in contact with nitrogen;
Irradiating the substrate with light,
The sealed container is provided on a first window provided on a first bottom surface facing the surface of the first base material and on a second bottom surface opposite to the first bottom surface. A second window for making the light incident thereon,
Irradiating the substrate with the light from the first window and the second window;
Ammonia generation method.
前記光の波長は400nm以上である、請求項5に記載のアンモニア発生方法。 The ammonia generation method according to claim 5 , wherein the wavelength of the light is 400 nm or more.
JP2014021110A 2014-02-06 2014-02-06 Ammonia generator and ammonia generation method Active JP6366287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021110A JP6366287B2 (en) 2014-02-06 2014-02-06 Ammonia generator and ammonia generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021110A JP6366287B2 (en) 2014-02-06 2014-02-06 Ammonia generator and ammonia generation method

Publications (2)

Publication Number Publication Date
JP2015147707A JP2015147707A (en) 2015-08-20
JP6366287B2 true JP6366287B2 (en) 2018-08-01

Family

ID=53891428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021110A Active JP6366287B2 (en) 2014-02-06 2014-02-06 Ammonia generator and ammonia generation method

Country Status (1)

Country Link
JP (1) JP6366287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337839B (en) * 2021-05-28 2023-12-19 西安交通大学 Photoelectrocatalysis nitrogen reduction ammonia synthesis reaction device of coupling groove type uniform condenser
CN115676850A (en) * 2022-10-11 2023-02-03 电子科技大学 Method for synthesizing ammonia by Fe (II) EDTA-assisted photocatalysis of NO

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH644471A5 (en) * 1981-02-02 1984-07-31 Michael Graetzel PRODUCT FOR USE AS A PHOTOCATALYST, PROCESS FOR PREPARING THE SAME AND USE OF THE SAME.
US4427510A (en) * 1982-05-03 1984-01-24 Atlantic Richfield Company Light driven photocatalytic process
JPH0559562A (en) * 1991-08-30 1993-03-09 Hitachi Ltd Production of titanium oxide thin film and production of photochemical reactor by using this thin film
JP2001072985A (en) * 1999-09-02 2001-03-21 Katsuyoshi Hoshino Method for fixing atmospheric nitrogen using composite material of titanium oxide and conductive polymer
JP2001097894A (en) * 1999-09-30 2001-04-10 Toshiba Corp Reduction apparatus for carbon dioxide gas
JPWO2011027864A1 (en) * 2009-09-04 2013-02-04 国立大学法人北海道大学 Photoreduction catalyst, ammonia synthesis method using the same, and nitrogen oxide reduction method in water
JP5585966B2 (en) * 2009-09-07 2014-09-10 国立大学法人北海道大学 Photoelectric conversion device, photodetection device, and photodetection method
JP5604204B2 (en) * 2010-07-21 2014-10-08 日立造船株式会社 Ammonia synthesis method
JP6230039B2 (en) * 2013-03-05 2017-11-15 国立大学法人北海道大学 Hydrogen generator and hydrogen generation method

Also Published As

Publication number Publication date
JP2015147707A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
He et al. Spatial separation of charge carriers in In2O3–x (OH) y nanocrystal superstructures for enhanced gas-phase photocatalytic activity
Feng et al. Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting
Shin et al. Visible light absorbing TiO2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting
Liu et al. Water photolysis with a cross-linked titanium dioxide nanowire anode
Mase et al. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt (II) chlorin complex
Nishijima et al. Near-infrared plasmon-assisted water oxidation
Jackman et al. Photoelectron spectroscopy study of stoichiometric and reduced anatase TiO2 (101) surfaces: the effect of subsurface defects on water adsorption at near-ambient pressures
Momeni et al. Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light
Yang et al. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition
Ye et al. CuWO4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation
Zhong et al. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4
Nail et al. Nickel Oxide Particles Catalyze Photochemical Hydrogen Evolution from Water Nanoscaling Promotes P-Type Character and Minority Carrier Extraction
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Teoh et al. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors
Seabold et al. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
Kim et al. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting
Berglund et al. Photoelectrochemical oxidation of water using nanostructured BiVO4 films
Naldoni et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation
Appavoo et al. Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
Xu et al. Laser-induced surface modification at anatase TiO2 nanotube array photoanodes for photoelectrochemical water oxidation
US9598781B2 (en) Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
Zhu et al. Near-infrared-triggered nitrogen fixation over upconversion nanoparticles assembled carbon nitride nanotubes with nitrogen vacancies
Alfakes et al. Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO
Li et al. Unique three-dimensional InP nanopore arrays for improved photoelectrochemical hydrogen production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6366287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250