JP6364405B2 - Molding material for damping material, damping material obtained by molding this, and molded product for structural member - Google Patents

Molding material for damping material, damping material obtained by molding this, and molded product for structural member Download PDF

Info

Publication number
JP6364405B2
JP6364405B2 JP2015518176A JP2015518176A JP6364405B2 JP 6364405 B2 JP6364405 B2 JP 6364405B2 JP 2015518176 A JP2015518176 A JP 2015518176A JP 2015518176 A JP2015518176 A JP 2015518176A JP 6364405 B2 JP6364405 B2 JP 6364405B2
Authority
JP
Japan
Prior art keywords
molding
segment
damping
damping material
unsaturated polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015518176A
Other languages
Japanese (ja)
Other versions
JPWO2014188854A1 (en
Inventor
隆仁 石内
隆仁 石内
崇生 新原
崇生 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2014188854A1 publication Critical patent/JPWO2014188854A1/en
Application granted granted Critical
Publication of JP6364405B2 publication Critical patent/JP6364405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • C08F283/105Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule on to unsaturated polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0442Catalysts
    • C08F299/045Peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Description

本発明は、制振材用成形材料並びにこれを成形して得られる制振材及び構造部材用成形品に関する。特に、本発明は、常温時だけでなく高温時であっても機械的強度を保持しつつ、制振性あるいは防音性に優れた成形品が得られる成形材料、及びこれを成形してなる成形品に関する。   The present invention relates to a damping material molding material, a damping material obtained by molding the damping material, and a molded product for a structural member. In particular, the present invention relates to a molding material that can obtain a molded article having excellent vibration damping properties or sound insulation properties while maintaining mechanical strength not only at room temperature but also at high temperature, and molding formed by molding the same. Related to goods.

自動車や産業機器あるいは家電製品などに使用されるモーター部品は、振動や騒音を発生させる原因となっている。これらの振動や騒音を低減・防止して、制振性や防音性を付与する方法として、これら構造部材に制振鋼板を用いたり、あるいはゴムやエラストマーを貼り付けたり、金属部品を樹脂部品に置き換えることなどが一般的に行われている。ここで、構造部材に制振鋼板を用いる場合、それ自身のコストが高く、また微細な形状に加工することが難しいため、制振鋼板を用いて制振性を付与できる用途が限定されるなどの欠点があった。また、構造部材にゴムやエラストマーを貼り付ける方法も、加工工程や部品点数が増える為、コストアップの要因となっていた。   Motor parts used in automobiles, industrial equipment, home appliances, and the like cause vibration and noise. As a method of reducing and preventing these vibrations and noises and providing vibration damping and soundproofing, these structural members can be made of damping steel plates, rubber or elastomers can be attached, and metal parts can be used as resin parts. Replacement is generally performed. Here, when using a damping steel plate as a structural member, the cost of itself is high, and it is difficult to process into a fine shape. There were drawbacks. In addition, the method of attaching rubber or elastomer to the structural member has also been a factor in increasing costs due to an increase in processing steps and the number of parts.

一方、制振性が必要な部品を金属部品から樹脂部品に置き換えることで、金属部品を用いていた場合と比べ、制振性が大幅に向上する事が知られている。一般的に、耐熱性、高寸法精度、寸法安定性が要求される、振動源の周辺部品である構造部材には弾性率が高くなる無機充填材を多く配合した成形材料が使用されている。   On the other hand, it is known that by replacing a metal part with a resin part in a part that requires vibration damping, the vibration damping is significantly improved as compared with the case where a metal part is used. In general, a molding material containing a large amount of an inorganic filler having a high elastic modulus is used for a structural member that is a peripheral component of a vibration source that requires heat resistance, high dimensional accuracy, and dimensional stability.

他方、制振性は、構造部材の弾性率が低くなるほど優れる事が知られており、成形材料の弾性率を下げることを目的として、熱可塑性エラストマーを配合する方法が開示されている(例えば、特許文献1、2及び3参照)。しかしながら、エラストマーを配合することにより、高温で使用する際に、成形品の弾性率が低下してしまう為、製品への使用が制限されてしまう。また、より一層の制振性あるいは防音性を付与する為には、樹脂部品にゴムやエラストマーを貼り付けたり、制振塗料を塗布する設計をせざるを得ないのが現状であり、加工工程数が増えコストが高くなるといったデメリットがある。こういった現状から、優れた耐熱性、制振性あるいは防音性を有する成形品を得る事ができる成形材料が望まれている。   On the other hand, it is known that the vibration damping property is better as the elastic modulus of the structural member is lower, and a method of blending a thermoplastic elastomer is disclosed for the purpose of lowering the elastic modulus of the molding material (for example, (See Patent Documents 1, 2, and 3). However, when the elastomer is blended, the elastic modulus of the molded product is lowered when used at a high temperature, so that the use of the product is limited. In addition, in order to give even more vibration control or soundproofing, it is currently necessary to design rubber parts or elastomers on resin parts or to apply vibration control paints. There is a demerit that the number increases and the cost increases. Under these circumstances, a molding material capable of obtaining a molded product having excellent heat resistance, vibration damping properties, and soundproofing properties is desired.

特開2000−143959号公報JP 2000-143959 A 特開2000−327894号公報JP 2000-327894 A 特許第4334630号公報Japanese Patent No. 4334630

本発明は、上記従来技術が有する問題に鑑み、常温時だけでなく高温時であっても機械的強度を保持しつつ、制振性あるいは防音性に優れた成形品が得られる成形材料、及びこれを成形してなる成形品を提供することを目的とする。   In view of the problems of the above-described conventional technology, the present invention provides a molding material that can obtain a molded product having excellent vibration damping properties or soundproofing properties while maintaining mechanical strength not only at room temperature but also at high temperatures, and It aims at providing the molded article formed by shape | molding this.

本発明は下記(1)〜(10)で示される。   This invention is shown by following (1)-(10).

(1)それぞれ単独で硬化後のガラス転移温度が異なる2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)、繊維(C)及び硬化剤(D)を含有し、エラストマー(B)が、ガラス転移温度が10℃以上で80℃未満であるセグメント(X)の少なくとも1種及びガラス転移温度が80℃以上であるセグメント(Y)の少なくとも1種から構成される制振材用成形材料。   (1) Two or more types of unsaturated polyester resins (A-1) or vinyl ester resins (A-2) having different glass transition temperatures after curing, elastomers that are block copolymers or graft copolymers ( B), the fiber (C) and the curing agent (D), and the elastomer (B) has a glass transition temperature of 10 ° C. or more and less than 80 ° C. and at least one segment (X) and a glass transition temperature of 80 A molding material for vibration damping material composed of at least one segment (Y) having a temperature of not lower than ° C.

(2)それぞれ単独で硬化後のガラス転移温度が異なる2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)、繊維(C)及び硬化剤(D)を含有し、エラストマー(B)が、酢酸ビニル由来の構成単位からなるセグメント(X)、及びスチレン又はメチルメタクリレート由来の構成単位からなるセグメント(Y)の少なくとも2種以上のセグメントから構成される制振材用成形材料。   (2) Two or more unsaturated polyester resins (A-1) or vinyl ester resins (A-2) having different glass transition temperatures after curing alone, elastomers that are block copolymers or graft copolymers ( B), a fiber (C) and a curing agent (D), and the elastomer (B) is a segment (X) made of a structural unit derived from vinyl acetate, and a segment (Y) made of a structural unit derived from styrene or methyl methacrylate ), A molding material for vibration damping material composed of at least two types of segments.

(3)エラストマー(B)の添加量が、不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)100質量部に対して10〜40質量部である前記(1)又は(2)に記載の制振材用成形材料。   (3) Said (1) or (2) whose addition amount of elastomer (B) is 10-40 mass parts with respect to 100 mass parts of unsaturated polyester resin (A-1) or vinyl ester resin (A-2). The molding material for vibration damping materials as described in).

(4)繊維(C)の添加量が、不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)100質量部に対して3〜300質量部である前記(1)〜(3)のいずれかに記載の制振材用成形材料。   (4) Said (1)-(3) whose addition amount of fiber (C) is 3-300 mass parts with respect to 100 mass parts of unsaturated polyester resin (A-1) or vinyl ester resin (A-2). ) The damping material molding material according to any one of the above.

(5)前記不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)が、それぞれ単独で硬化後のガラス転移温度が100℃以上と100℃未満である2種以上の樹脂からなる、前記(1)〜(4)のいずれかに記載の制振材用成形材料。   (5) The unsaturated polyester resin (A-1) or the vinyl ester resin (A-2) is composed of two or more kinds of resins whose glass transition temperatures after curing are 100 ° C. or higher and lower than 100 ° C., respectively. The molding material for vibration damping materials according to any one of (1) to (4).

(6)前記セグメント(X)におけるモノマー由来の構成単位と前記セグメント(Y)におけるモノマー由来の構成単位とのモル比が5:5〜3:7である前記(1)〜(5)のいずれかに記載の制振材用成形材料。   (6) Any of (1) to (5) above, wherein the molar ratio of the monomer-derived structural unit in segment (X) to the monomer-derived structural unit in segment (Y) is 5: 5 to 3: 7. Molding material for damping material according to any one of the above.

(7)前記(1)〜(6)のいずれかに記載の制振材用成形材料を成形して得られる制振材。   (7) A damping material obtained by molding the damping material molding material according to any one of (1) to (6).

(8)130℃における曲げ弾性率が6GPa以上である前記(6)に記載の制振材。   (8) The vibration damping material according to (6), wherein a flexural modulus at 130 ° C. is 6 GPa or more.

(9)80℃における損失係数が0.05以上であり、120℃における損失係数が0.06以上である前記(7)又は(8)に記載の制振材。   (9) The damping material according to (7) or (8), wherein the loss coefficient at 80 ° C. is 0.05 or more and the loss coefficient at 120 ° C. is 0.06 or more.

(10)前記(1)〜(6)のいずれかに記載の制振材用成形材料を成形してなる構造部材用成形品。   (10) A molded product for a structural member obtained by molding the damping material molding material according to any one of (1) to (6).

本発明は、硬化後のTgが異なる2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)および繊維(C)を含有する事を特徴とする制振材用成形材料であり、常温時だけでなく高温時であっても機械的強度を保持しつつ、制振性あるいは防音性に優れた成形品を得る事ができる。   The present invention relates to two or more unsaturated polyester resins (A-1) or vinyl ester resins (A-2) having different Tg after curing, elastomers (B) and fibers which are block copolymers or graft copolymers. A molding material for damping material characterized by containing (C), which has excellent mechanical and damping properties while maintaining mechanical strength not only at room temperature but also at high temperature Can be obtained.

また、エラストマー(B)のブロック共重合体またはグラフト共重合体を構成するセグメント(X)のTgが10℃以上で80℃未満であり、且つセグメント(Y)のTgが80℃以上である事により、広い温度域で高い損失係数を有した制振材用成形材料を得る事ができる。   The Tg of the segment (X) constituting the block copolymer or graft copolymer of the elastomer (B) is 10 ° C. or more and less than 80 ° C., and the Tg of the segment (Y) is 80 ° C. or more. Thus, it is possible to obtain a molding material for damping material having a high loss factor in a wide temperature range.

実施例及び比較例において得られた制振材用成形材料を、円盤成形金型を用いてトランスファー成形して得られる成形品の外観を示す図である。It is a figure which shows the external appearance of the molded article obtained by transfer-molding the damping material molding material obtained in the Example and the comparative example using a disk molding die. 実施例及び比較例において得られた制振材用成形材料を、円盤成形金型を用いてトランスファー成形して得られる成形品における、試験片の切出し方向を示す図である。It is a figure which shows the cut-out direction of a test piece in the molded article obtained by carrying out transfer molding of the molding material for damping materials obtained in the Example and the comparative example using a disk molding die.

本発明の制振材用成形材料は、その硬化物のTgが異なる、2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)、及び、繊維(C)を含有し、エラストマー(B)が、Tgが10℃以上で80℃未満であるセグメント(X)、及びTgが80℃以上であるセグメント(Y)の少なくとも2種以上のセグメントから構成される制振材用成形材料である。以下に、詳細を説明する。   The molding material for vibration damping material of the present invention has two or more unsaturated polyester resins (A-1) or vinyl ester resins (A-2), block copolymers, or graft copolymers having different Tg of cured products. A segment (X) containing an elastomer (B) that is a coalescence and a fiber (C), the elastomer (B) having a Tg of 10 ° C. or more and less than 80 ° C., and a segment (Tg of 80 ° C. or more) Y) a damping material molding material composed of at least two or more types of segments. Details will be described below.

<不飽和ポリエステル樹脂(A−1)、ビニルエステル樹脂(A−2)>
その硬化物のTgが異なる、2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)(以下、成分(A)ということがある)は、その硬化物のTgの異なる2種類の不飽和ポリエステル樹脂(A−1)の組み合わせ、その硬化物のTgの異なる2種類のビニルエステル樹脂(A−2)の組み合わせ、その硬化物のTgの異なる不飽和ポリエステル樹脂(A−1)とビニルエステル樹脂(A−2)の組み合わせとすることができる。
<Unsaturated polyester resin (A-1), vinyl ester resin (A-2)>
Two or more kinds of unsaturated polyester resins (A-1) or vinyl ester resins (A-2) (hereinafter sometimes referred to as component (A)) having different Tg of the cured product are those of Tg of the cured product. Combination of two different types of unsaturated polyester resins (A-1), combination of two types of vinyl ester resins (A-2) with different Tg of the cured product, unsaturated polyester resins with different Tg of the cured product (A -1) and a vinyl ester resin (A-2).

本発明に用いられる成分(A)は、高温であっても機械的強度に優れ、制振性あるいは防音性に優れた成形品が得られる点で、その単独での硬化時におけるTgが100℃以上と100℃未満の2種以上の不飽和ポリエステル樹脂(A−1)及びビニルエステル樹脂(A−2)の組み合わせからなるものが好ましい。ここで、Tgが100℃以上の樹脂については、Tgが100〜300℃であることがより好ましく、150〜250℃であることがさらに好ましい。また、Tgが100℃未満の樹脂については、Tgが30〜90℃であることがより好ましく、40〜80℃であることがさらに好ましい。なお、Tgは、JIS K7244−(4)に規定する測定方法で得られた、損失係数(tanδ)が最大を示す温度から求められる。   The component (A) used in the present invention is excellent in mechanical strength even at high temperatures, and a molded product having excellent vibration damping or soundproofing properties can be obtained. What consists of a combination of the above and 2 or more types of unsaturated polyester resin (A-1) and vinyl ester resin (A-2) below 100 degreeC is preferable. Here, about resin with Tg of 100 degreeC or more, it is more preferable that Tg is 100-300 degreeC, and it is further more preferable that it is 150-250 degreeC. Moreover, about resin whose Tg is less than 100 degreeC, it is more preferable that Tg is 30-90 degreeC, and it is further more preferable that it is 40-80 degreeC. In addition, Tg is calculated | required from the temperature in which the loss coefficient (tan-delta) shows the maximum obtained by the measuring method prescribed | regulated to JISK7244- (4).

Tgの測定方法は、例えば、以下の通りである。単独の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)100質量部に対して、3質量部の硬化剤(D)(tert−ブチルベンゾイルペルオキシド)を添加し、これらを30℃で双腕型ニーダーを用いて混練する。次に、得られた成形材料を、φ120mmの円盤成形金型(ファンゲート)を用いて、射出時間60sec、硬化時間120sec、圧力10MPa、成形温度150℃でトランスファー成形を行い、成形品を得る。得られた成形品から長さ45mm×幅3mm×厚さ3mmの試験片を切出し、切出した試験片について、引張複素弾性率測定装置(GABO社製、EPLEXOR100N)を用いて、周波数1Hzの正弦的な引張力を試験片に加えて、試験片に加えた力と変位サイクルの振幅と両者間の位相差を測定することで、損失係数(tanδ)が求められる。なお、試験片はクランプ間距離30mmで設置する。また、引張複素弾性率の測定にあたっては、20〜300℃の範囲を2℃間隔で測定を行い、周波数−温度換算則を使ってのマスタープロットを行うことができる。求められた損失係数(tanδ)が最大となる温度をTgとして採用することができる。   The measuring method of Tg is as follows, for example. 3 parts by mass of a curing agent (D) (tert-butylbenzoyl peroxide) is added to 100 parts by mass of a single unsaturated polyester resin (A-1) or vinyl ester resin (A-2). Kneading with a double-arm kneader at ℃. Next, transfer molding is performed on the obtained molding material using a φ120 mm disk molding die (fan gate) at an injection time of 60 sec, a curing time of 120 sec, a pressure of 10 MPa, and a molding temperature of 150 ° C. to obtain a molded product. A test piece having a length of 45 mm, a width of 3 mm, and a thickness of 3 mm was cut out from the obtained molded product, and the cut out test piece was sinusoidal with a frequency of 1 Hz using a tensile complex modulus measuring device (manufactured by GABO, EPLEXOR100N). A loss factor (tan δ) is obtained by applying a simple tensile force to the test piece and measuring the force applied to the test piece, the amplitude of the displacement cycle, and the phase difference between the two. The test piece is installed with a distance between clamps of 30 mm. Moreover, in the measurement of a tensile complex elastic modulus, it can measure in the range of 20-300 degreeC at intervals of 2 degreeC, and can perform the master plot using a frequency-temperature conversion rule. The temperature at which the obtained loss coefficient (tan δ) is maximum can be adopted as Tg.

本発明で用いられる不飽和ポリエステル樹脂(A−1)は、多価アルコールと不飽和多塩基酸(及び必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、必要に応じてスチレンモノマーのような反応性希釈材に溶解したものであり、「ポリエステル樹脂ハンドブック」(滝山栄一郎、日刊工業新聞社、1988年発行)や「塗料用語辞典」(色材協会編集、技報堂出版、1993年発行)などに記載されている樹脂である。   The unsaturated polyester resin (A-1) used in the present invention is a condensation product (unsaturated polyester) by an esterification reaction between a polyhydric alcohol and an unsaturated polybasic acid (and a saturated polybasic acid if necessary). Is dissolved in a reactive diluent such as styrene monomer as necessary. The "Polyester Resin Handbook" (Eiichiro Takiyama, Nikkan Kogyo Shimbun, published in 1988) and "Dictionary of Paint Glossary" (Color Material Association) Edit, Gihodo Publishing, published in 1993).

成分(A)の原料として用いられる不飽和ポリエステルとしては、公知の方法により製造されたものを用いることができる。具体的にはフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸等の重合性不飽和結合を有していない多塩基酸又はその無水物とフマル酸、マレイン酸、イタコン酸等の重合性不飽和多塩基酸又はその無水物を酸成分とし、これとエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、シクロヘキサン−1,4−ジメタノール、ビスフェノールA、水素化ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物,ビスフェノールAのプロピレンオキサイド付加物等の多価アルコールをアルコール成分として反応させることにより製造されるものである。酸成分としては、無水マレイン酸、テレフタル酸、フマル酸、イソフタル酸、無水フタル酸が、価格、物性の点で好ましい。多価アルコールとしては、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、ジプロピレングリコール、水素化ビスフェノールA、エチレングリコールが、価格、物性の点で好ましい。   As the unsaturated polyester used as a raw material for the component (A), those produced by a known method can be used. Specifically, polybasic acids or anhydrides having no polymerizable unsaturated bond, such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid, and fumaric acid, maleic acid, itaconic acid A polymerizable unsaturated polybasic acid or an anhydride thereof such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, bisphenol A, hydrogenated bisphenol A , Ethylene oxide adduct of bisphenol A, propylene oxide of bisphenol A Polyalcohols id adducts are those prepared by reacting as the alcohol component. As the acid component, maleic anhydride, terephthalic acid, fumaric acid, isophthalic acid, and phthalic anhydride are preferable in terms of cost and physical properties. As the polyhydric alcohol, propylene glycol, diethylene glycol, neopentyl glycol, dipropylene glycol, hydrogenated bisphenol A, and ethylene glycol are preferable in terms of price and physical properties.

不飽和ポリエステルは、不飽和基当量(不飽和基1個当たりの分子量)100〜800が好ましい。不飽和基当量が100未満のものは合成することができない傾向にあり、また、不飽和基当量が800を超えると高硬度の硬化物を得ることができない傾向にある。   The unsaturated polyester preferably has an unsaturated group equivalent (molecular weight per unsaturated group) of 100 to 800. Those having an unsaturated group equivalent of less than 100 tend not to be synthesized, and if the unsaturated group equivalent exceeds 800, a cured product having a high hardness tends to be unable to be obtained.

不飽和ポリエステルの酸価は、40mgKOH/g以下が好ましく、25mgKOH/g以下がより好ましい。酸価が40mgKOH/gを超えると、硬化物の相分離構造が不十分となり、得られる成形品の制振性や強度が不十分となる傾向にある。なお、不飽和ポリエステルの酸価は、JIS K6901 5.3の方法により測定する。   The acid value of the unsaturated polyester is preferably 40 mgKOH / g or less, and more preferably 25 mgKOH / g or less. When the acid value exceeds 40 mgKOH / g, the phase separation structure of the cured product becomes insufficient, and the vibration damping property and strength of the obtained molded product tend to be insufficient. In addition, the acid value of unsaturated polyester is measured by the method of JISK6901 5.3.

不飽和ポリエステル樹脂(A−1)は、通常、前記の不飽和ポリエステルに必要に応じてスチレンモノマーに代表される不飽和基を有する反応性希釈剤を配合したものである。不飽和基を有する反応性希釈剤は、BMCを製造する際に繊維(C)及び無機充填材との混練性及び含浸性を高め、かつ成形製品の硬度、強度、耐薬品性、耐熱性等を向上させるために重要であり、バランスよい物性を得るためには特にスチレンモノマーが有効である。不飽和基を有する反応性希釈剤の添加量は、不飽和ポリエステル単体100質量部に対して10〜250質量部が好ましく、20〜100質量部がより好ましく、30〜80質量部がさらに好ましい。反応性希釈剤の添加量が10質量部未満では、高粘度のため作業性、含浸性、耐食性能が悪化する傾向にあり、また添加量が250質量部を超えると、充分な強度、耐熱性が得られない傾向にある。   The unsaturated polyester resin (A-1) is usually one obtained by blending a reactive diluent having an unsaturated group represented by a styrene monomer with the unsaturated polyester as necessary. The reactive diluent having an unsaturated group enhances kneadability and impregnation with the fiber (C) and the inorganic filler when producing BMC, and the hardness, strength, chemical resistance, heat resistance, etc. of the molded product Styrene monomer is particularly effective for obtaining a well-balanced physical property. 10-250 mass parts is preferable with respect to 100 mass parts of unsaturated polyester single-piece | units, 20-100 mass parts is more preferable, and, as for the addition amount of the reactive diluent which has an unsaturated group, 30-80 mass parts is more preferable. If the addition amount of the reactive diluent is less than 10 parts by mass, workability, impregnation and corrosion resistance tend to deteriorate due to high viscosity. If the addition amount exceeds 250 parts by mass, sufficient strength and heat resistance are obtained. Tend not to be obtained.

不飽和基を有する反応性希釈剤としてスチレンモノマー以外の反応性希釈剤を使用してもよい。その例としては、クロルスチレン、ビニルトルエン、ジビニルベンゼンなどのスチレン系モノマーや、メチル(メタ)アクリレート、エチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなど他の重合性モノマー、その他特殊な反応性希釈剤としてジアリルフタレートモノマー、ジアリルフタレートプレポリマー、トリアリルイソシアヌレート等が挙げられるが、これらに限定されない。また、これらは単独または組み合わせて使用しても良い。   You may use reactive diluents other than a styrene monomer as a reactive diluent which has an unsaturated group. Examples include styrene monomers such as chlorostyrene, vinyltoluene, and divinylbenzene, other polymerizable monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, and ethylene glycol di (meth) acrylate, and other special reactions. Examples of the diluent include, but are not limited to, diallyl phthalate monomer, diallyl phthalate prepolymer, triallyl isocyanurate, and the like. These may be used alone or in combination.

また、不飽和ポリエステル樹脂(A−1)は、末端カルボキシル基にグリシジル(メタ)アクリレートを付加させた一種のポリエステル(メタ)アクリレート樹脂であってもよい。   The unsaturated polyester resin (A-1) may be a kind of polyester (meth) acrylate resin in which glycidyl (meth) acrylate is added to the terminal carboxyl group.

本発明で用いられるビニルエステル樹脂(A−2)は、エポキシアクリレート樹脂とも呼ばれ、一般にグリシジル基(エポキシ基)を有する化合物と、アクリル酸などの重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持った化合物(ビニルエステル)を、反応性希釈剤に溶解したものであり、「ポリエステル樹脂ハンドブック」(滝山栄一郎、日刊工業新聞社、1988年発行)や「塗料用語辞典」(色材協会編集、技報堂出版、1993年発行)などに記載されている樹脂である。   The vinyl ester resin (A-2) used in the present invention is also called an epoxy acrylate resin, and is generally a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. A compound having a polymerizable unsaturated bond (vinyl ester) produced by a ring-opening reaction with benzene is dissolved in a reactive diluent. "Polyester resin handbook" (Eiichiro Takiyama, Nikkan Kogyo Shimbun, 1988) Issue) and “painting glossary” (edited by the Color Material Association, published by Gihodo, published in 1993).

また、ビニルエステル樹脂(A−2)(エポキシアクリレート系樹脂)の原料として用いられるビニルエステルとしては、公知の方法により製造されるものであり、エポキシ樹脂に不飽和一塩基酸、例えば、アクリル酸またはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレートである。また、各種エポキシ樹脂をビスフェノール(例えば、ビスフェノールA)またはアジピン酸、セバシン酸、ダイマー酸(ハリダイマー270S:ハリマ化成株式会社製)などの二塩基酸で反応させ、可撓性を付与しても良い。原料としてのエポキシ樹脂としては、ビスフェノールAジグリシジルエーテル及びその高分子量同族体、ノボラック型グリシジルエーテル類等が挙げられる。これらの中でも、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂が、価格、物性の点で好ましい。また不飽和一塩基酸としては、メタクリル酸が、価格、物性の点で好ましい。   Moreover, as vinyl ester used as a raw material of vinyl ester resin (A-2) (epoxy acrylate resin), it is manufactured by a well-known method, and unsaturated monobasic acid, for example, acrylic acid, is used for epoxy resin. Or it is epoxy (meth) acrylate obtained by making methacrylic acid react. Further, various epoxy resins may be reacted with bisphenol (for example, bisphenol A) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: manufactured by Harima Kasei Co., Ltd.) to impart flexibility. . Examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and its high molecular weight homologues, novolac glycidyl ethers, and the like. Among these, as an epoxy resin, a bisphenol A type epoxy resin is preferable in terms of price and physical properties. As the unsaturated monobasic acid, methacrylic acid is preferable in terms of cost and physical properties.

ビニルエステルは、不飽和基当量(不飽和基1個当たりの分子量)100〜800が好ましい。不飽和基当量が100未満のものは合成することができない傾向にあり、また、不飽和基当量が800を超えると高硬度の硬化物を得ることができない傾向にある。   The vinyl ester preferably has an unsaturated group equivalent (molecular weight per unsaturated group) of 100 to 800. Those having an unsaturated group equivalent of less than 100 tend not to be synthesized, and if the unsaturated group equivalent exceeds 800, a cured product having a high hardness tends to be unable to be obtained.

ビニルエステル樹脂(A−2)は、通常、前記のビニルエステルにスチレンモノマーに代表される不飽和基を有する反応性希釈剤を配合したものである。不飽和基を有する反応性希釈剤は、BMCを製造する際に繊維(C)及び無機充填材との混練性含浸性を高め、かつ成形製品の硬度、強度、耐薬品性、耐熱性等を向上させるために重要であり、バランスよい物性を得るためには特にスチレンモノマーが有効である。不飽和基を有する反応性希釈剤の添加量は、ビニルエステル100質量部に対して10〜250質量部が好ましく、30〜200質量部がより好ましく、50〜150質量部がさらに好ましい。反応性希釈剤の添加量が10質量部未満では、高粘度のため作業性、含浸性、耐食性能が悪化する傾向にあり、また添加量が250質量部を超えると、充分な強度、耐熱性が得られない傾向にある。   The vinyl ester resin (A-2) is usually obtained by blending a reactive diluent having an unsaturated group typified by a styrene monomer with the above vinyl ester. The reactive diluent having an unsaturated group enhances the kneadability impregnation property with the fiber (C) and the inorganic filler when producing BMC, and improves the hardness, strength, chemical resistance, heat resistance, etc. of the molded product. Styrene monomer is particularly effective for improving the properties and obtaining balanced physical properties. 10-250 mass parts is preferable with respect to 100 mass parts of vinyl esters, as for the addition amount of the reactive diluent which has an unsaturated group, 30-200 mass parts is more preferable, and 50-150 mass parts is more preferable. If the addition amount of the reactive diluent is less than 10 parts by mass, workability, impregnation and corrosion resistance tend to deteriorate due to high viscosity. If the addition amount exceeds 250 parts by mass, sufficient strength and heat resistance are obtained. Tend not to be obtained.

不飽和基を有する反応性希釈剤としてスチレンモノマー以外の反応性希釈剤を使用してもよい。その例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−アクリロイロキシプロピル(メタ)アクリレート、2−メタクリロイロキシエチル2−ヒドロキシプロピルフタレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、アリル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が挙げられるが、これらに限定されない。また、これらは単独または組み合わせて使用しても良い。   You may use reactive diluents other than a styrene monomer as a reactive diluent which has an unsaturated group. Examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (Meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, furfuryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-acryl Iroxypropyl (meth) acrylate, 2-methacryloyloxyethyl 2-hydroxypropyl phthalate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol Di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate 1,10-decanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, methoxytriethylene glycol (meth) acrylate , Butoxyethyl (meth) acrylate, neopentyl glycol di (meth) acrylate, trifluoroethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, allyl (meth) acrylate, dicyclopentenyl (meth) acrylate, di Examples thereof include, but are not limited to, cyclopentenyloxyethyl (meth) acrylate. These may be used alone or in combination.

成分(A)には、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、ジアリルフタレート樹脂等のラジカル硬化性樹脂をブレンドしてもよい。   The component (A) may be blended with a radical curable resin such as a polyester (meth) acrylate resin, a urethane (meth) acrylate resin, or a diallyl phthalate resin.

<エラストマー(B)>
本発明に用いられるエラストマー(B)は、ブロック共重合体又はグラフト共重合体であり、Tgが10℃以上で80℃未満であるセグメント(X)、及びTgが80℃以上であるセグメント(Y)の少なくとも2種以上のセグメントから構成される。Tgが10℃以上で80℃未満であるセグメント(X)、及びTgが80℃以上であるセグメント(Y)の少なくとも2種以上のセグメントから構成されることで、常温時だけでなく高温時であっても機械的強度を保持しつつ、制振性あるいは防音性に優れた成形品を得る事ができる。
<Elastomer (B)>
The elastomer (B) used in the present invention is a block copolymer or graft copolymer, a segment (X) having a Tg of 10 ° C. or higher and lower than 80 ° C., and a segment (Y) having a Tg of 80 ° C. or higher. ) At least two types of segments. By being composed of at least two types of segments (X) having a Tg of 10 ° C. or more and less than 80 ° C. and a segment (Y) having a Tg of 80 ° C. or more, not only at normal temperature but also at high temperature Even in such a case, it is possible to obtain a molded product having excellent vibration damping properties and soundproofing properties while maintaining mechanical strength.

ここで、セグメント(X)のTgは10〜70℃であることがより好ましく、20〜60℃であることがさらに好ましい。セグメント(Y)のTgは80〜150℃であることがより好ましく、80〜130℃であることがさらに好ましい。なお、セグメント(X)及びセグメント(Y)のTgについては、セグメント(X)及びセグメント(Y)のそれぞれを単独で構成単位として有するホモポリマーを合成して、JIS K7244−(4)にしたがって損失係数(tanδ)が最大となる温度を求めるか、あるいは、セグメント(X)及びセグメント(Y)のそれぞれについてFOX式を用いてTgを算出することができる。   Here, the Tg of the segment (X) is more preferably 10 to 70 ° C, and further preferably 20 to 60 ° C. The Tg of the segment (Y) is more preferably 80 to 150 ° C, and further preferably 80 to 130 ° C. For Tg of segment (X) and segment (Y), a homopolymer having each of segment (X) and segment (Y) alone as a constituent unit was synthesized, and the loss was in accordance with JIS K7244- (4). The temperature at which the coefficient (tan δ) is maximized is obtained, or Tg can be calculated for each of the segment (X) and the segment (Y) using the FOX equation.

エラストマー(B)を構成するセグメント(X)におけるモノマー由来の構成単位とセグメント(Y)におけるモノマー由来の構成単位とのモル比としては、5:5〜7:3が好ましく、5:5〜6:4がさらに好ましい。   The molar ratio of the structural unit derived from the monomer in the segment (X) constituting the elastomer (B) and the structural unit derived from the monomer in the segment (Y) is preferably 5: 5 to 7: 3, and 5: 5 to 6 : 4 is more preferable.

エラストマー(B)としては、例えば、低収縮剤として有効なポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル等のセグメントで構成されるブロック共重合体またはグラフト共重合体の一種または二種以上を使用することができる。エラストマー(B)を構成するセグメント(X)としては、ポリ酢酸ビニルセグメント、ポリアミド、ポリ乳酸、ポリブチレンテレフタレート、ポリエチレンテレフタレートがあげられ、セグメント(Y)としては、ポリスチレンセグメント、ポリメチルメタクリレートセグメント、ポリ塩化ビニル、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアクリロニトリルなどがあげられる。エラストマー(B)は、成分(A)100質量部に対して10〜40質量部とするのが好ましく、15〜35質量部がより好ましく、20〜30質量部がさらに好ましい。配合量が10質量部より少ないと損失係数が小さくなる傾向にあり、40質量部を越えると高温時の強度が著しく悪化する傾向にある。   As the elastomer (B), for example, one or more of a block copolymer or a graft copolymer composed of segments such as polystyrene, polymethyl methacrylate, and polyvinyl acetate that are effective as a low shrinkage agent are used. Can do. Examples of the segment (X) constituting the elastomer (B) include a polyvinyl acetate segment, polyamide, polylactic acid, polybutylene terephthalate, and polyethylene terephthalate. Examples of the segment (Y) include a polystyrene segment, a polymethyl methacrylate segment, and a poly (ethylene methacrylate) segment. Examples include vinyl chloride, polycarbonate, polyphenylene sulfide, polyphenylene oxide, and polyacrylonitrile. The elastomer (B) is preferably 10 to 40 parts by mass, more preferably 15 to 35 parts by mass, and still more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the component (A). When the blending amount is less than 10 parts by mass, the loss factor tends to be small, and when it exceeds 40 parts by mass, the strength at high temperature tends to be remarkably deteriorated.

エラストマー(B)がブロック共重合体である場合、エラストマー(B)は、例えば、セグメント(X)−セグメント(Y)、セグメント(X)−セグメント(Y)−セグメント(X)、セグメント(Y)−セグメント(X)−セグメント(Y)などの構成をとることができる。また、エラストマー(B)がグラフト共重合体である場合、セグメント(X)が主鎖で、セグメント(Y)がグラフト鎖(側鎖)のグラフト共重合体と、セグメント(Y)が主鎖で、セグメント(X)がグラフト鎖(側鎖)のグラフト共重合体のいずれも用いることができる。   When the elastomer (B) is a block copolymer, the elastomer (B) is, for example, segment (X) -segment (Y), segment (X) -segment (Y) -segment (X), segment (Y) A configuration such as a segment (X) and a segment (Y) can be adopted. When the elastomer (B) is a graft copolymer, the segment (X) is a main chain, the segment (Y) is a graft copolymer (side chain), and the segment (Y) is a main chain. Any of the graft copolymers in which the segment (X) is a graft chain (side chain) can be used.

<繊維(C)>
本発明で使用する繊維(C)としては、特に限定はないが、トランスファー成形など流動をともなう成形に用いる場合には、繊維長1.5〜25mm程度に切断した繊維(C)が好ましい。繊維(C)の繊維長は6〜25mmがより好ましく、9〜25mmがさらに好ましい。また繊維(C)の種類としては、ガラス繊維、カーボン繊維、パルプ繊維、テトロン(登録商標)繊維、ビニロン繊維、アラミド繊維、ポリエチレンテレフタレート繊維、ワラストナイト等の有機、無機繊維を使用することができる。これらの中でもガラス繊維が価格、物性の点で好ましい。さらには、チョップドストランドガラスが好ましい。繊維(C)の配合量は、成分(A)100質量部に対して3〜300質量部が好ましく、5〜200質量部がより好ましく、50〜150質量部がさらに好ましい。繊維(C)の配合量が300質量部よりも多い場合には制振材用成形材料の含浸性、流動性を損なうなどの問題が発生し、成形性が悪化するなどの傾向にある。繊維(C)の配合量が3質量部よりも少ない場合には、強度が不十分となる傾向にある。
<Fiber (C)>
Although it does not specifically limit as fiber (C) used by this invention, When using for shaping | molding with flows, such as transfer shaping | molding, the fiber (C) cut | disconnected by about 1.5-25 mm in fiber length is preferable. The fiber length of the fiber (C) is more preferably 6 to 25 mm, further preferably 9 to 25 mm. Moreover, as a kind of fiber (C), organic and inorganic fibers, such as glass fiber, carbon fiber, pulp fiber, Tetron (registered trademark) fiber, vinylon fiber, aramid fiber, polyethylene terephthalate fiber, and wollastonite, may be used. it can. Among these, glass fiber is preferable in terms of price and physical properties. Furthermore, chopped strand glass is preferable. As for the compounding quantity of a fiber (C), 3-300 mass parts is preferable with respect to 100 mass parts of components (A), 5-200 mass parts is more preferable, 50-150 mass parts is more preferable. When the blending amount of the fiber (C) is more than 300 parts by mass, problems such as impregnation and fluidity of the damping material molding material occur, and the moldability tends to deteriorate. When the amount of the fiber (C) is less than 3 parts by mass, the strength tends to be insufficient.

<硬化剤(D)>
硬化剤は、有機過酸化物系触媒として、公知のケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるものがあり、またアゾ化合物も有効である。具体例としては、例えばベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジターシャリーブチルパーオキサイド、t−ブチルパーオキシベンゾエート、1,1ービス(t−ブチルパーオキシ)ー3,3,5ートリメチルシクロヘキサン、2,5ージメチルー2,5ービス(t−ブチルパーオキシ)ヘキシンー3、3ーイソプロピルヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4ーt−ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5ートリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、アゾビスイソブチロニトリル、アゾビスカルボンアミドなどが使用できる。保存安定性が良好でジクミルパーオキサイド、ジターシャリーブチルパーオキサイド、t−ブチルハイドロパーオキサイドなどは特に有効である。硬化剤は、成分(A)100質量部に対して、1〜10質量部であることが好ましく、2〜5質量部であることがより好ましい。
<Curing agent (D)>
Curing agents are those classified as well known ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates as organic peroxide catalysts. Azo compounds are also effective. Specific examples include, for example, benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, ditertiary butyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5- Trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3,3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, dicumyl hydroperoxide, acetyl peroxide, Bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauryl peroxide, Azobisisobutyronitrile, azo-bis-carboxylic amide can be used. Dicumyl peroxide, ditertiary butyl peroxide, t-butyl hydroperoxide and the like are particularly effective because of good storage stability. It is preferable that it is 1-10 mass parts with respect to 100 mass parts of components (A), and, as for a hardening | curing agent, it is more preferable that it is 2-5 mass parts.

本発明においては、上記の各成分に加えて、増粘剤、減粘剤、顔料、無機充填材、硬化剤、内部離型剤等を必要に応じて用いることができる。   In the present invention, in addition to the above components, a thickener, a thickener, a pigment, an inorganic filler, a curing agent, an internal mold release agent, and the like can be used as necessary.

増粘剤としては酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム等の金属酸化物や金属水酸化物およびイソシアネート化合物が例示される。増粘剤は必ずしも使用しなくてもよい。   Examples of the thickener include metal oxides such as magnesium oxide, magnesium hydroxide, calcium hydroxide, and calcium oxide, metal hydroxides, and isocyanate compounds. It is not always necessary to use a thickener.

無機充填材としては、炭酸カルシウム、水酸化アルミニウムが主であるが、それ以外にガラス粉、ガラスビーズ、シリカ、タルク、クレー、アルミナ、硫酸バリウム、酸化チタン等の公知の充填材が使用できる。これらの無機充填材は一種を単独で使用してもよく、二種以上を組み合わせて使用することもできる。無機充填材の配合量は、成分(A)100質量部に対して100〜500質量部が好ましく、200〜450質量部がより好ましく、200〜300質量部がさらに好ましい。無機充填材の配合量が500質量部よりも多い場合には制振材用成形材料の粘度が高くなり、含浸性、流動性を損なうなどの問題が発生し、物性が低下する傾向にある。無機充填材の配合量が100質量部よりも少ない場合には、流動性が大きすぎ、また熱間時の強度などの物性も低下する傾向にある。   As the inorganic filler, calcium carbonate and aluminum hydroxide are mainly used, but other known fillers such as glass powder, glass beads, silica, talc, clay, alumina, barium sulfate, and titanium oxide can be used. These inorganic fillers may be used individually by 1 type, and can also be used in combination of 2 or more type. 100-500 mass parts is preferable with respect to 100 mass parts of components (A), and, as for the compounding quantity of an inorganic filler, 200-450 mass parts is more preferable, and 200-300 mass parts is more preferable. When the blending amount of the inorganic filler is more than 500 parts by mass, the viscosity of the damping material molding material becomes high, and problems such as impregnation and fluidity are impaired, and physical properties tend to be lowered. When the blending amount of the inorganic filler is less than 100 parts by mass, the fluidity is too large, and physical properties such as hot strength tend to decrease.

無機充填材の形状等に特に制限はないが、重量平均粒径が0.5μm〜50μmのものが好ましく、0.5μm〜30μmがより好ましく、1μm〜20μmがさらに好ましい。平均粒径が0.5μm未満であると粘度が高くなり、成形品を製造できない傾向にあり、50μmを超えると制振材用成形材料の流動性が悪く、成形性が悪くなる傾向にある。   Although there is no restriction | limiting in particular in the shape of an inorganic filler, The thing of a weight average particle diameter of 0.5 micrometer-50 micrometers is preferable, 0.5 micrometer-30 micrometers are more preferable, 1 micrometer-20 micrometers are more preferable. When the average particle size is less than 0.5 μm, the viscosity tends to be high, and there is a tendency that a molded product cannot be produced. When the average particle size is more than 50 μm, the fluidity of the damping material is poor and the moldability tends to be poor.

内部離型剤としては、例えばステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム等のステアリン酸塩、カルナバワックス等があり、これらを適宜な割合で使用もしくは併用することができる。   Examples of the internal mold release agent include stearic acid, zinc stearate, calcium stearate, aluminum stearate, stearates such as magnesium stearate, carnauba wax, and the like, and these can be used or used in appropriate ratios. .

以上のような成分によって構成される本発明の制振材用成形材料は、通常行われる方法、例えばニーダー等を用いて前記成分(A)〜(D)他を混練することによって得ることができる。また、成形方法においては、その方法には格別の限定はないが、例えば圧縮成形、トランスファー成形、射出成形等を採用し、その硬化物が相分離構造となる成形品を得ることで、良好な制振特性を持ち、高強度の成形品を得る事ができる。   The damping material molding material of the present invention constituted by the components as described above can be obtained by kneading the components (A) to (D) and the like using a usual method, for example, a kneader. . In the molding method, the method is not particularly limited. For example, compression molding, transfer molding, injection molding, or the like is adopted, and a cured product having a cured product having a phase separation structure is obtained. It has vibration-damping properties and can obtain a high-strength molded product.

本発明の制振材用成形材料を成形して得られる制振材は、130℃における曲げ弾性率が6GPa以上であることが好ましく、7GPa以上であることがより好ましく、8GPa以上であることがさらに好ましい。この場合の曲げ弾性率は、JIS K6911に基づいて測定される。制振材の130℃における曲げ弾性率が6GPa以上であることで、得られる成形品の高温における機械的強度を保持できる傾向にある。   The damping material obtained by molding the molding material for damping material of the present invention preferably has a flexural modulus at 130 ° C. of 6 GPa or more, more preferably 7 GPa or more, and 8 GPa or more. Further preferred. The bending elastic modulus in this case is measured based on JIS K6911. When the damping elastic modulus of the damping material at 130 ° C. is 6 GPa or more, the resulting molded product tends to be able to maintain the mechanical strength at a high temperature.

曲げ弾性率の測定方法は、以下の通りである。成形温度150℃、成形圧力10MPa、硬化時間3分で圧縮成形し得られた成形品を用いて、JIS K6911に基づき測定した。具体的には、長さ80mm×幅10mm×厚み4mmの試験片を成形し、得られた試験片の厚さ方向が地面と垂直となるようにして、試験片の下側に支点間距離64mmとなるように支点を設けた。23℃及び130℃の条件下で曲げ試験機(株式会社島津製作所製、オートグラフAG−X plus)を用いて、試験片の中央部に、試験片の上側から加圧くさびで2mm/minの荷重速度で荷重を加え、荷重による試験片の中央部のたわみの大きさの変化を測定し、荷重−たわみ曲線を作図した。そして、以下の式(1)を用いて、曲げ弾性率を算出する。

Figure 0006364405
The method for measuring the flexural modulus is as follows. Measurement was performed based on JIS K6911 using a molded product obtained by compression molding at a molding temperature of 150 ° C., a molding pressure of 10 MPa, and a curing time of 3 minutes. Specifically, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was formed, and the thickness direction of the obtained test piece was perpendicular to the ground so that the distance between supporting points was 64 mm below the test piece. A fulcrum was established so that Using a bending tester (manufactured by Shimadzu Corporation, Autograph AG-X plus) under conditions of 23 ° C. and 130 ° C., a pressure wedge of 2 mm / min is applied to the center of the test piece from above the test piece. A load was applied at a load speed, a change in the deflection of the central part of the test piece due to the load was measured, and a load-deflection curve was drawn. And a bending elastic modulus is computed using the following formula | equation (1).
Figure 0006364405

本発明の制振材は、80℃における損失係数が0.05以上であり、120℃における損失係数が0.06以上であることが好ましい。この場合の損失係数は、JIS K7244−(4)に基づいて測定される。制振材の80℃における損失係数が0.05以上であり、120℃における損失係数が0.06以上であることで、幅広い温度域で損失係数が高くなり、また制振性が良好となる傾向にある。得られた成形材料をφ120mmの円盤成形金型(ファンゲート)を用いて、射出時間60sec、硬化時間120sec、圧力10MPa、成形温度150℃でトランスファー成形を行い、成形品を得る。得られた成形品から長さ45mm×幅3mm×厚さ3mmの試験片を切出し、切出した試験片について、引張複素弾性率測定装置(GABO社製、EPLEXOR100N)を用いて、周波数1Hzの正弦的な引張力を試験片に加えて、試験片に加えた力と変位サイクルの振幅と両者間の位相差を測定することで、損失係数(tanδ)が求められる。なお、試験片はクランプ間距離30mmで設置する。また、引張複素弾性率の測定にあたっては、20〜130℃の範囲を2℃間隔で測定を行い、周波数−温度換算則を使ってのマスタープロットを行うことができる。   The vibration damping material of the present invention preferably has a loss coefficient at 80 ° C. of 0.05 or more and a loss coefficient at 120 ° C. of 0.06 or more. The loss coefficient in this case is measured based on JIS K7244- (4). The loss factor at 80 ° C. of the damping material is 0.05 or more, and the loss factor at 120 ° C. is 0.06 or more, so that the loss factor is high in a wide temperature range and the damping property is good. There is a tendency. The obtained molding material is subjected to transfer molding at an injection time of 60 sec, a curing time of 120 sec, a pressure of 10 MPa, and a molding temperature of 150 ° C. using a φ120 mm disk molding die (fan gate) to obtain a molded product. A test piece having a length of 45 mm × width of 3 mm × thickness of 3 mm was cut out from the obtained molded product, and the cut-out test piece was sinusoidally with a frequency of 1 Hz using a tensile complex modulus measuring apparatus (manufactured by GABO, EPLEXOR100N). A loss factor (tan δ) is obtained by applying a simple tensile force to the test piece and measuring the force applied to the test piece, the amplitude of the displacement cycle, and the phase difference between the two. The test piece is installed with a distance between clamps of 30 mm. Moreover, in the measurement of a tensile complex elastic modulus, the range of 20-130 degreeC can be measured by 2 degreeC space | interval, and the master plot using a frequency-temperature conversion rule can be performed.

以下、実施例により本発明をより具体的に説明するが、本発明は、実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by an Example.

<不飽和ポリエステル樹脂(Tg:190℃)>
プロピレングリコール80モル、水素化ビスフェノールA20モル、無水マレイン酸100モルからなる配合組成物を不活性ガス下に200℃で縮合することでエステル化をし、不飽和ポリエステルを得た。この得られた不飽和ポリエステル60質量部を、スチレンモノマー40質量部に溶解し、不飽和ポリエステル樹脂を作製した。
<Unsaturated polyester resin (Tg: 190 ° C.)>
A blended composition consisting of 80 mol of propylene glycol, 20 mol of hydrogenated bisphenol A, and 100 mol of maleic anhydride was condensed at 200 ° C. under an inert gas to obtain an unsaturated polyester. 60 parts by mass of the obtained unsaturated polyester was dissolved in 40 parts by mass of a styrene monomer to prepare an unsaturated polyester resin.

<不飽和ポリエステル樹脂(Tg:60℃)>
ジエチレングリコール100モル、テレフタル酸50モルからなる配合組成物を不活性ガス下に200℃で、酸価5mgKOH/g以下になるまで1次反応させた後、無水マレイン酸20モル、無水フタル酸30モルを加え、反応温度200℃で酸価40mgKOH/g以下になるまで二次反応させる事により不飽和ポリエステルを得た。この得られた不飽和ポリエステル70質量部を、スチレンモノマー30質量部に溶解し、不飽和ポリエステル樹脂を作製した。なお、酸価は、JIS K6901 5.3により測定した。
<Unsaturated polyester resin (Tg: 60 ° C.)>
A blended composition consisting of 100 moles of diethylene glycol and 50 moles of terephthalic acid was subjected to a primary reaction under an inert gas at 200 ° C. until an acid value of 5 mgKOH / g or less, then maleic anhydride 20 moles, phthalic anhydride 30 moles. Was added to carry out a secondary reaction until the acid value reached 40 mgKOH / g or less at a reaction temperature of 200 ° C. to obtain an unsaturated polyester. 70 parts by mass of the obtained unsaturated polyester was dissolved in 30 parts by mass of a styrene monomer to prepare an unsaturated polyester resin. The acid value was measured according to JIS K6901 5.3.

<ビニルエステル樹脂(Tg:130℃)>
ビスフェノールA型エポキシ樹脂1.0当量(旭化成株式会社製、AER−2603)及びメタクリル酸1.0当量からなる配合組成物を140℃で反応させ、ビニルエステルを得た。この得られたビニルエステル50質量部を、スチレンモノマー50質量部に溶解し、ビニルエステル樹脂を作製した。
<Vinyl ester resin (Tg: 130 ° C.)>
A compound composition comprising 1.0 equivalent of bisphenol A type epoxy resin (AER-2603, manufactured by Asahi Kasei Corporation) and 1.0 equivalent of methacrylic acid was reacted at 140 ° C. to obtain a vinyl ester. 50 parts by mass of the obtained vinyl ester was dissolved in 50 parts by mass of a styrene monomer to prepare a vinyl ester resin.

表1中には各不飽和ポリエステル樹脂又はビニルエステル樹脂のみにより作製した注型板(作製法は下記)のTgを示した。なお、JIS K7244−(4)に規定する測定方法で得られる、損失係数(tanδ)が最大を示す温度をTgとして採用した。   Table 1 shows the Tg of a casting plate (manufacturing method is described below) prepared only with each unsaturated polyester resin or vinyl ester resin. The temperature at which the loss factor (tan δ) is maximum obtained by the measurement method specified in JIS K7244- (4) was adopted as Tg.

より具体的には、以下の方法により、Tgの測定を行った。上で得られた不飽和ポリエステル樹脂又はビニルエステル樹脂100質量部に対して、3質量部のtert−ブチルベンゾイルペルオキシドを添加し、これらを30℃で双腕型ニーダーを用いて混練した。次に、得られた成形材料を、φ120mmの円盤成形金型(ファンゲート)を用いて、射出時間60sec、硬化時間120sec、圧力10MPa、成形温度150℃でトランスファー成形を行い、成形品を得た。得られた成形品から長さ45mm×幅3mm×厚さ3mmの試験片を切出し、切出した試験片について、引張複素弾性率測定装置(GABO社製、EPLEXOR100N)を用いて、周波数1Hzの正弦的な引張力を試験片に加えて、試験片に加えた力と変位サイクルの振幅と両者間の位相差を測定することで、損失係数(tanδ)を求めた。なお、試験片はクランプ間距離30mmで設置した。また、引張複素弾性率の測定にあたっては、20〜300℃の範囲を2℃間隔で測定を行い、周波数−温度換算則を使ってのマスタープロットを行った。求められた損失係数(tanδ)が最大となる温度をTgとして採用した。   More specifically, Tg was measured by the following method. 3 parts by mass of tert-butylbenzoyl peroxide was added to 100 parts by mass of the unsaturated polyester resin or vinyl ester resin obtained above, and these were kneaded at 30 ° C. using a double-arm kneader. Next, the obtained molding material was subjected to transfer molding at an injection time of 60 sec, a curing time of 120 sec, a pressure of 10 MPa, and a molding temperature of 150 ° C. using a φ120 mm disk molding die (fan gate) to obtain a molded product. . A test piece having a length of 45 mm, a width of 3 mm, and a thickness of 3 mm was cut out from the obtained molded product, and the cut out test piece was sinusoidal with a frequency of 1 Hz using a tensile complex modulus measuring device (manufactured by GABO, EPLEXOR100N). A loss factor (tan δ) was determined by applying a simple tensile force to the test piece and measuring the force applied to the test piece, the amplitude of the displacement cycle, and the phase difference between the two. In addition, the test piece was installed with the distance between clamps of 30 mm. Moreover, in the measurement of the tensile complex elastic modulus, the range of 20-300 degreeC was measured at 2 degreeC intervals, and the master plot using the frequency-temperature conversion rule was performed. The temperature at which the obtained loss coefficient (tan δ) was maximized was adopted as Tg.

<制振材用成形材料及び制振材の作製>
上記の方法により得られた不飽和ポリエステル樹脂およびビニルエステル樹脂を用いて、表1及び2に示す配合組成でそれぞれの配合成分を、30℃で双腕型ニーダーを用いて混練することで、実施例1〜11及び比較例1〜12の制振材用成形材料を得た。この各制振材用成形材料を、φ120mmの円盤成形金型(ファンゲート)を用いて、射出時間60sec、硬化時間120sec、圧力10MPa、成形温度150℃でトランスファー成形した。
<Production of damping material molding material and damping material>
Using the unsaturated polyester resin and vinyl ester resin obtained by the above method, each compounding component with the compounding composition shown in Tables 1 and 2 was kneaded at 30 ° C using a double-arm kneader. The molding material for damping materials of Examples 1-11 and Comparative Examples 1-12 was obtained. Each of the damping material molding materials was transfer molded using a φ120 mm disk molding die (fan gate) at an injection time of 60 sec, a curing time of 120 sec, a pressure of 10 MPa, and a molding temperature of 150 ° C.

図1は、実施例1〜11及び比較例1〜12において得られた制振材用成形材料を、円盤成形金型を用いてトランスファー成形して得られる成形品の外観を示す図である。図1(a)は、得られた成形品の上面図であり、図1(b)は得られた成形品の左側面図である。成形品1は、φ120mmで厚さ3mmの円盤状の成形品本体2と、成形品本体2の円周上に固着した厚さ2mmのゲート部3から構成される。ゲート部3の最大幅は30mmであり、成形品本体2の中心方向から反対側になるほど、その幅は狭くなる。   FIG. 1 is a view showing an appearance of a molded product obtained by transfer molding the damping material molding materials obtained in Examples 1 to 11 and Comparative Examples 1 to 12 using a disk molding die. FIG. 1A is a top view of the obtained molded product, and FIG. 1B is a left side view of the obtained molded product. The molded product 1 includes a disk-shaped molded product main body 2 having a diameter of 120 mm and a thickness of 3 mm, and a gate portion 3 having a thickness of 2 mm fixed on the circumference of the molded product main body 2. The maximum width of the gate portion 3 is 30 mm, and the width becomes narrower as it goes away from the center direction of the molded product body 2.

次に、図2に示すように、トランスファー成形により得られた成形品1から長さ45mm×幅3mmの試験片4を、ガラス繊維の配向に平行な方向(以下、配向方向という)及びガラス繊維の配向とは垂直な方向(以下、非配向方向)となる様にそれぞれ切出した。得られたこの試験片4a、4bについて、JIS K7244−(4)に基づき、損失係数(tanδ)を測定し、配向方向と非配向方向の試験片の平均値を表1及び表2に示した。なお、図2(a)は円盤成形金型の上面図であり、図2(b)は円盤成形金型の左側面図である。   Next, as shown in FIG. 2, a test piece 4 having a length of 45 mm and a width of 3 mm is formed from the molded product 1 obtained by transfer molding in a direction parallel to the glass fiber orientation (hereinafter referred to as the orientation direction) and the glass fiber. Each was cut out so as to be in a direction perpendicular to the orientation (hereinafter referred to as non-orientation direction). About this obtained test piece 4a, 4b, loss factor (tan-delta) was measured based on JISK7244- (4), and the average value of the test piece of an orientation direction and a non-orientation direction was shown in Table 1 and Table 2. . 2A is a top view of the disk molding die, and FIG. 2B is a left side view of the disk molding die.

より具体的には、損失係数の測定は以下の方法により行った。切出した試験片について、引張複素弾性率測定装置(GABO社製、EPLEXOR100N)を用いて、40℃、80℃、120℃において、周波数1Hzの正弦的な引張力を試験片に加えて、試験片に加えた力と変位サイクルの振幅と両者間の位相差を測定することで、各温度における損失係数(tanδ)を求めた。なお、試験片はクランプ間距離30mmで設置した。   More specifically, the loss factor was measured by the following method. About the cut-out test piece, a sinusoidal tensile force with a frequency of 1 Hz was applied to the test piece at 40 ° C., 80 ° C., and 120 ° C. using a tensile complex elastic modulus measuring device (manufactured by GABO, EPLEXOR100N). The loss factor (tan δ) at each temperature was determined by measuring the force applied to the above, the amplitude of the displacement cycle, and the phase difference between the two. In addition, the test piece was installed with the distance between clamps of 30 mm.

また、曲げ強さ、曲げ弾性率及び成形収縮率については、成形温度150℃、成形圧力10MPa、硬化時間3分で圧縮成形し得られた成形品を用いて、JIS K6911に基づき測定した。具体的には、長さ80mm×幅10mm×厚み4mmの試験片を成形し、得られた試験片の厚さ方向が地面と垂直となるようにして、試験片の下側に支点間距離 64mmとなるように支点を設けた。23℃及び130℃の条件下で曲げ試験機(株式会社島津製作所製、オートグラフAG−X plus)を用いて、試験片の中央部に、試験片の上側から加圧くさびで2mm/minの荷重速度で荷重を加え、荷重による試験片の中央部のたわみの大きさの変化を測定し、荷重−たわみ曲線を作図した。そして、以下の式(1)を用いて、曲げ弾性率を算出した。結果を表1及び表2に示した。

Figure 0006364405
The bending strength, flexural modulus, and molding shrinkage were measured based on JIS K6911 using a molded product obtained by compression molding at a molding temperature of 150 ° C., a molding pressure of 10 MPa, and a curing time of 3 minutes. Specifically, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was formed, and the thickness direction of the obtained test piece was perpendicular to the ground so that the distance between supporting points was 64 mm below the test piece. A fulcrum was established so that Using a bending tester (manufactured by Shimadzu Corporation, Autograph AG-X plus) under conditions of 23 ° C. and 130 ° C., a pressure wedge of 2 mm / min is applied to the center of the test piece from above the test piece. A load was applied at a load speed, a change in the deflection of the central part of the test piece due to the load was measured, and a load-deflection curve was drawn. And the bending elastic modulus was computed using the following formula | equation (1). The results are shown in Tables 1 and 2.
Figure 0006364405

また、曲げ強さについては、以下の式(2)を用いて、曲げ強さを算出した。試験片の折れた箇所が試験片を3等分した中央部以外である場合には、これを試験値に採用せず、再試験を行った。結果を表1及び表2に示した。

Figure 0006364405
Moreover, about bending strength, bending strength was computed using the following formula | equation (2). When the broken part of the test piece was other than the central part obtained by dividing the test piece into three equal parts, this was not adopted as the test value, and the retest was performed. The results are shown in Tables 1 and 2.
Figure 0006364405

成形圧縮率については、成形を行った後、試験片及び金型のそれぞれを温度23℃、湿度50%の状態で24時間静置し、試験片と金型のそれぞれの寸法を測定し、その収縮率を算出した。結果を表1及び表2に示した。
Regarding the molding compression ratio, after molding, each of the test piece and the mold was allowed to stand for 24 hours at a temperature of 23 ° C. and a humidity of 50%, and the dimensions of the test piece and the mold were measured. Shrinkage was calculated. The results are shown in Tables 1 and 2.

Figure 0006364405
Figure 0006364405

Figure 0006364405
Figure 0006364405

本発明は、制振性の求められる構造部材用成形品を得るための成形材料として使用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a molding material for obtaining a molded article for a structural member that requires vibration damping.

1 成形品
2 成形品本体
3 ゲート部
4 試験片
DESCRIPTION OF SYMBOLS 1 Molded product 2 Molded product main body 3 Gate part 4 Test piece

Claims (9)

それぞれ単独で硬化後のガラス転移温度が異なる2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)、繊維(C)及び硬化剤(D)を含有し、エラストマー(B)が、ガラス転移温度が10℃以上で80℃未満であるセグメント(X)の少なくとも1種及びガラス転移温度が80℃以上であるセグメント(Y)の少なくとも1種から構成され、前記セグメント(X)におけるモノマー由来の構成単位と前記セグメント(Y)におけるモノマー由来の構成単位とのモル比が5:5〜3:7である制振材用成形材料。 Two or more kinds of unsaturated polyester resins (A-1) or vinyl ester resins (A-2) having different glass transition temperatures after curing alone, elastomer (B) which is a block copolymer or a graft copolymer, The fiber (C) and the curing agent (D) are contained, and the elastomer (B) has a glass transition temperature of 10 ° C. or higher and lower than 80 ° C. and at least one segment (X) and a glass transition temperature of 80 ° C. or higher. It is comprised from at least 1 sort (s) of a certain segment (Y), and the molar ratio of the structural unit derived from the monomer in the said segment (X) and the structural unit derived from the monomer in the said segment (Y) is 5: 5 to 3: 7. Molding material for damping material. それぞれ単独で硬化後のガラス転移温度が異なる2種以上の不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)、ブロック共重合体又はグラフト共重合体であるエラストマー(B)、繊維(C)及び硬化剤(D)を含有し、エラストマー(B)が、酢酸ビニル由来の構成単位からなるセグメント(X)、及びスチレン又はメチルメタクリレート由来の構成単位からなるセグメント(Y)の少なくとも2種以上のセグメントから構成され、前記セグメント(X)におけるモノマー由来の構成単位と前記セグメント(Y)におけるモノマー由来の構成単位とのモル比が5:5〜3:7である制振材用成形材料。 Two or more kinds of unsaturated polyester resins (A-1) or vinyl ester resins (A-2) having different glass transition temperatures after curing alone, elastomer (B) which is a block copolymer or a graft copolymer, A segment (X) comprising a fiber (C) and a curing agent (D), the elastomer (B) comprising a structural unit derived from vinyl acetate, and a segment (Y) comprising a structural unit derived from styrene or methyl methacrylate; For a damping material comprising two or more types of segments, and the molar ratio of the monomer-derived structural unit in the segment (X) to the monomer-derived structural unit in the segment (Y) is 5: 5 to 3: 7 Molding material. エラストマー(B)の添加量が、不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)100質量部に対して10〜40質量部である請求項1又は2に記載の制振材用成形材料。 The damping amount according to claim 1 or 2, wherein the addition amount of the elastomer (B) is 10 to 40 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin (A-1) or the vinyl ester resin (A-2). Molding material for materials. 繊維(C)の添加量が、不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)100質量部に対して3〜300質量部である請求項1〜3のいずれかに記載の制振材用成形材料。 The addition amount of a fiber (C) is 3-300 mass parts with respect to 100 mass parts of unsaturated polyester resin (A-1) or vinyl ester resin (A-2), The any one of Claims 1-3 Molding material for damping material. 前記不飽和ポリエステル樹脂(A−1)又はビニルエステル樹脂(A−2)が、それぞれ単独で硬化後のガラス転移温度が100℃以上と100℃未満である2種以上の樹脂からなる、請求項1〜4のいずれかに記載の制振材用成形材料。 The said unsaturated polyester resin (A-1) or vinyl ester resin (A-2) consists of 2 or more types of resin whose glass transition temperature after hardening each is 100 degreeC or more and less than 100 degreeC, respectively. The molding material for damping materials in any one of 1-4. 請求項1〜のいずれかに記載の制振材用成形材料を成形して得られる制振材。 The damping material obtained by shape | molding the molding material for damping materials in any one of Claims 1-5 . 130℃における曲げ弾性率が6GPa以上である請求項6に記載の制振材。 The vibration damping material according to claim 6, wherein the bending elastic modulus at 130 ° C is 6 GPa or more. 80℃における損失係数が0.05以上であり、120℃における損失係数が0.06以上である請求項又はに記載の制振材。 The damping material according to claim 6 or 7 , wherein a loss coefficient at 80 ° C is 0.05 or more and a loss coefficient at 120 ° C is 0.06 or more. 請求項1〜のいずれかに記載の制振材用成形材料を成形してなる構造部材用成形品。 A molded article for a structural member obtained by molding the damping material molding material according to any one of claims 1 to 5 .
JP2015518176A 2013-05-21 2014-04-28 Molding material for damping material, damping material obtained by molding this, and molded product for structural member Active JP6364405B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013107009 2013-05-21
JP2013107009 2013-05-21
PCT/JP2014/061882 WO2014188854A1 (en) 2013-05-21 2014-04-28 Molding material for damping material, and damping material and structural member molded article obtained by molding same

Publications (2)

Publication Number Publication Date
JPWO2014188854A1 JPWO2014188854A1 (en) 2017-02-23
JP6364405B2 true JP6364405B2 (en) 2018-07-25

Family

ID=51933418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518176A Active JP6364405B2 (en) 2013-05-21 2014-04-28 Molding material for damping material, damping material obtained by molding this, and molded product for structural member

Country Status (3)

Country Link
JP (1) JP6364405B2 (en)
CN (1) CN105283476B (en)
WO (1) WO2014188854A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241967B2 (en) * 1995-05-01 2001-12-25 三菱自動車工業株式会社 Vibration-damping resin composition and structural vibration-damping resin molding using the same
JP2000143959A (en) * 1998-09-07 2000-05-26 Takeda Chem Ind Ltd Resin composition and molded product having excellent vibration-damping property
JP2000327894A (en) * 1999-05-24 2000-11-28 Nof Corp Vibration damping unsaturated polyester resin composition and its cured product
JP2001026760A (en) * 1999-07-13 2001-01-30 Toyo Tire & Rubber Co Ltd Woody board and binder therefor
JP3772632B2 (en) * 2000-03-09 2006-05-10 いすゞ自動車株式会社   Damping resin composition and engine damping cover using the same
JP2002003819A (en) * 2000-06-21 2002-01-09 Nof Corp Vibration-damping thermosetting resin composition and its cured material
JP2004075702A (en) * 2002-08-09 2004-03-11 Mitsubishi Fuso Truck & Bus Corp Vibration-damping resin composition having engine oil resistance and vibration-damping resin molded article for structural use using the same
JP2004231702A (en) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd Unsaturated polyester resin composition and its molded product
JP2009073975A (en) * 2007-09-21 2009-04-09 Showa Highpolymer Co Ltd Unsaturated polyester resin composition, and molded article of electrical or electronic component using the same

Also Published As

Publication number Publication date
WO2014188854A1 (en) 2014-11-27
JPWO2014188854A1 (en) 2017-02-23
CN105283476B (en) 2017-10-03
CN105283476A (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5242150B2 (en) Composite molded body
JP4598822B2 (en) Unsaturated polyester resin composition for lamp reflector and molded product thereof
JP6260754B1 (en) Prepregs and molded products
WO2018070076A1 (en) Fiber-reinforced molding material and molded article using same
JP6241583B1 (en) Fiber-reinforced molding material and molded product using the same
CN111164137B (en) Resin composition for prepreg, and molded article
JP2005247879A (en) Composition for fiber-reinforced composite material and its molding material
JP6590342B2 (en) Unsaturated polyester resin composition, lamp reflector and method for producing the same
WO2016080040A1 (en) Unsaturated polyester resin composition and switched reluctance motor
EP3335859B1 (en) Friction stir welding method
WO2005103152A1 (en) Low specific gravity unsaturated polyester resin composition for lamp reflector and moldings thereof
JP2020094100A (en) Vartm molding resin composition, molding material, molding and method for manufacturing molding
JP6364405B2 (en) Molding material for damping material, damping material obtained by molding this, and molded product for structural member
CN111372980A (en) Fiber-reinforced molding material and molded article using same
JP6150034B1 (en) Prepregs and molded products
JP6579417B1 (en) Carbon fiber reinforced plastic molding resin composition, molding material, molded article and method for producing molded article
JP6772460B2 (en) Sheet molding compound and its molded products
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP6354930B1 (en) VaRTM molding resin composition, molding material, molded article, and method for producing molded article
JP2019085508A (en) Fiber-reinforced molding material and molded article using the same
JP2011162748A (en) Bulk molding compound, lamp reflector and method for producing the same
JP2017114935A (en) Manufacturing method of sheet-like molding material and molding method of molded product
JP5885053B1 (en) Molding material for heat compression molding and molded product thereof
JP2007198093A (en) Method of repairing and reinforcing structure
JP6590338B2 (en) Bulk molding compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350