JP6363389B2 - Flat plate reformer for fuel cells - Google Patents
Flat plate reformer for fuel cells Download PDFInfo
- Publication number
- JP6363389B2 JP6363389B2 JP2014099350A JP2014099350A JP6363389B2 JP 6363389 B2 JP6363389 B2 JP 6363389B2 JP 2014099350 A JP2014099350 A JP 2014099350A JP 2014099350 A JP2014099350 A JP 2014099350A JP 6363389 B2 JP6363389 B2 JP 6363389B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- plate
- separator
- inlet
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 175
- 239000003054 catalyst Substances 0.000 claims description 15
- 230000000149 penetrating effect Effects 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 230000004308 accommodation Effects 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000565 sealant Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000004590 silicone sealant Substances 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000002407 reforming Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005120 petroleum cracking Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
本発明は、燃料電池用平板型改質器であって、特に、モジュール化した改質器と燃料電池とを結合させることで、熱交換効率並びに組立分解の利便性の向上によって汎用化できる改質器に関する。 The present invention is a flat type reformer for a fuel cell, and in particular, an improved modification that can be generalized by improving the heat exchange efficiency and the convenience of assembly and disassembly by combining a modular reformer and a fuel cell. It relates to the genitalia.
従来の燃料電池は作動温度によって高温型と低温型に分けられ、これらのうち、高温型の燃料電池の方が高効率性を備え、空気極(正極)からメタンなどの原料ガスを直接透過する事や貴金属を使わないですむ電極触媒など、低温型が及ばない利点を有する。 Conventional fuel cells are classified into high-temperature and low-temperature types depending on the operating temperature. Among these, the high-temperature type fuel cell has higher efficiency and directly transmits raw material gas such as methane from the air electrode (positive electrode). It has advantages over low temperature types, such as electrode catalysts that do not use precious metals.
更にメタンは天然ガスの主成分であって、自然界に豊富な資源である為、現在では従来のタイプのエネルギー資源の代替燃料として提案される。燃料電池の商業的発展過程において、メタンは一種の理想的な燃料として早々採用されたが、主に外部改質(External reforming)方式によって水素を製造し、燃料電池に供給することに使用される。
外部改質には、例えば、外部改質器の過大な容積のためにシステムユニットと一体成形するように設計できず、熱伝導の時間が長くて不均等分布になりがちなどの種々の欠点があるものの、工業上の常用改質転化工程は大型設備を使用するのが殆どで、石油のクラッキングにおける副産物として得られる工程がその一例である。
Furthermore, since methane is a main component of natural gas and is an abundant resource in nature, it is now proposed as an alternative fuel for conventional types of energy resources. In the commercial development of fuel cells, methane was quickly adopted as a kind of ideal fuel, but it is mainly used to produce hydrogen and supply it to the fuel cell by an external reforming method. .
The external reforming has various drawbacks, for example, it cannot be designed to be integrally molded with the system unit due to the excessive volume of the external reformer, and the heat conduction time tends to be long and uneven distribution. However, most industrial reforming conversion processes use large equipment, and the process obtained as a by-product in petroleum cracking is one example.
これにより、燃料電池システムの基本的構成は燃料処理部分と、燃料電池と、インバータと、温度管理部分とによって構築される。システムコスト全体において、燃料処理部分は大きな比率を占めるので重要であり、システムの効率向上及び熱エネルギーの最適化過程に関しては全体への考慮も必要である。 Thereby, the basic configuration of the fuel cell system is constructed by the fuel processing part, the fuel cell, the inverter, and the temperature management part. The fuel processing portion is important because it accounts for a large proportion of the overall system cost, and it is also necessary to consider the entire process for improving the efficiency of the system and optimizing the thermal energy.
ここで、燃料電池が最初に採用するのは炭化水素燃料の改質産物で、以下は固体酸化物燃料電池(SOFC)を例として電池内部における燃料の反応過程を説明する。
まず、燃料は燃料電池外部に設置する改質器を通して、その内部において炭化水素類改質触媒単体によって水素富化ガスに転換されて燃料電池の空気極(正極)に入り、この混合気体の主要成分である水素と一酸化炭素が正極で酸化物イオンと出会い、電気化学反応によって放出された電子が外部回路に沿って燃料極(負極)に移動する。酸素は負極の表面付近で吸着されて、電子を得て酸化物イオンとなって電解質膜に移動して浸透し、電解質膜と正極と接する面まで入り込んで、そこの反応区で電気化学反応を生じる。
Here, the reformed product of the hydrocarbon fuel is first adopted by the fuel cell, and the following is a description of the fuel reaction process inside the cell, taking a solid oxide fuel cell (SOFC) as an example.
First, fuel passes through a reformer installed outside the fuel cell, and is converted into a hydrogen-enriched gas by a hydrocarbon reforming catalyst alone inside the fuel cell and enters the air electrode (positive electrode) of the fuel cell. Hydrogen and carbon monoxide, which are components, meet oxide ions at the positive electrode, and electrons released by the electrochemical reaction move to the fuel electrode (negative electrode) along the external circuit. Oxygen is adsorbed near the surface of the negative electrode, obtains electrons, becomes oxide ions, moves into the electrolyte membrane, penetrates, enters the surface where the electrolyte membrane contacts the positive electrode, and performs an electrochemical reaction in the reaction zone. Arise.
特許文献1に記載される従来技術は、水素ガスを発生させる為の反応効率及び熱効率を高めることができる平板型改質器及びこれを採用した燃料電池システムを提供するが、その改質器と燃料電池とは分離された別体として空間を占める一方、溶接による接合構造は整備に利便性が欠ける。
The prior art described in
特許文献2に記載される従来技術は、固体酸化物燃料電池の輻射熱によって改質器を加熱する手段を掲示する。複数個の固体酸化物燃料電池スタックと反応管を有する間接内部改質型固体酸化物燃料電池と、灯油を水蒸気改質可能な改質触媒が充填された反応管を複数個有するのと、該スタック同士の間に挟まれる位置に該反応管が互いに離間されて二列に配列され千鳥状をなすなどの特徴を挙げる。これにより、引用文献2の加熱機能はセルスタックによる輻射熱のみで、多様の加熱機能を欠く為、熱交換効率には良くないとされる。
The prior art described in
上記諸点により、従来の技術には多様な加熱機能及び整備に有利な互換性が欠けているという問題がある。 Due to the above-mentioned points, there is a problem that the conventional technology lacks compatibility with various heating functions and maintenance.
したがって、本発明の目的の一つは、燃料電池と同じ大きさで一体化可能であって、燃料電池(セルスタック)モジュールの一部品と看做せる交換性を備え、燃料電池の稼働中に問題が起きても、随時に取り替える利便性及び対応の多様性を有する燃料電池用平板型改質器を提供する。 Therefore, one of the objects of the present invention is that it can be integrated with the same size as the fuel cell, and can be regarded as one part of the fuel cell (cell stack) module. Provided is a planar reformer for a fuel cell that has the convenience of being replaced at any time even when a problem occurs and a variety of responses.
また、本発明のもう一つの目的は、専用工具などで取り外す必要がある従来の溶接接合とは違い、各板部品の形状で分解組立できるタイプの密封構造で簡単に取外し可能であって、互換性に有利な燃料電池用平板型改質器を提供する。 Another object of the present invention is that it can be easily removed with a sealing structure of a type that can be disassembled and assembled in the shape of each plate part, unlike conventional welding joints that need to be removed with a dedicated tool or the like. A flat type reformer for a fuel cell that is advantageous in terms of performance is provided.
更に本発明のもう一つの目的は、燃料電池と平板型改質器とのコンパクトな密着構造により、燃料電池が発生した熱エネルギーは外に発散することなく改質器に直接に熱伝導により供給されることで、熱交換の効率を向上できる燃料電池用平板型改質器を提供する。 Yet another object of the present invention is to provide a compact close contact structure between the fuel cell and the flat plate reformer, so that the heat energy generated by the fuel cell is supplied directly to the reformer by heat conduction without radiating outside. Thus, a flat plate reformer for a fuel cell that can improve the efficiency of heat exchange is provided.
更に、本発明のもう一つの目的は、燃料電池と平板型改質器との接合により、予熱器及び水蒸気改質反応機能を備える、小容積で高発電効率を達成する構造として、定置型燃料電池から燃料電池自動車用水素供給設備までに適用できる汎用性のある料電池用平板型改質器を提供する。 Furthermore, another object of the present invention is to provide a stationary fuel as a structure that achieves high power generation efficiency with a small volume, having a preheater and a steam reforming reaction function by joining a fuel cell and a flat plate reformer. Provided is a plate type reformer for a battery cell that can be applied from a battery to a hydrogen supply facility for a fuel cell vehicle.
上記目的に沿う本発明に係わる燃料電池用平板型改質器は、熱伝導性材料からなる複数個の板状部品による積層構造からなる改質器モジュールと、前記改質器モジュールの表面に設けられ、これと組み合わされる燃料電池モジュールの表面と分解組立可能に接合できる接合面と、前記各板状部品の間に設けられた触媒単体の収容空間と、各前記板状部品に設けられて外部から燃料を導入し、前記各収容空間を通過して前記各触媒単体と反応させる燃料流路と、外部から空気を燃料電池モジュールに導入する独立の空気流路と、を備え、前記燃料流路を経由して水素及び一酸化炭素を発生させて燃料電池モジュールの内部に導入し、別途導入された空気と電気化学反応させることを特徴とする。 A flat plate reformer for a fuel cell according to the present invention that meets the above object is provided with a reformer module having a laminated structure of a plurality of plate-like parts made of a heat conductive material, and provided on the surface of the reformer module. A joint surface that can be disassembled and assembled with the surface of the fuel cell module combined therewith, a space for accommodating a single catalyst provided between the plate-like components, and an external space provided on each of the plate-like components. A fuel flow path through which the fuel is introduced and allowed to react with each catalyst alone and an independent air flow path for introducing air from the outside into the fuel cell module. Hydrogen and carbon monoxide are generated via the gas, introduced into the fuel cell module, and electrochemically reacted with the separately introduced air.
従って、上記平板型改質器モジュールは、基部板、隔離板、蓋板から構成され、該基部板の頂面に設けられた凹んだ収容空間と、収容空間の一方側に基部板の底面を貫通する燃料入口と、燃料入口側に基部板の収容空間と隔離されて基部板の底面を貫通する空気出口と、基部板の収容空間の反対側に設けられ、基部板の収容空間と隔離されて基部板の底面を貫通する燃料出口と空気入口とを備える熱伝導用基部板と、
上記基部板と同じ外周形状を備えた隔離板の底面を上記基部板の収容空間の開口側に積層し、隔離板の頂面に設けられる凹んだ収容空間と、隔離板の収容空間の上記基部板の燃料入口の反対側に設けられた隔離板の底面を貫通する燃料導引入口と、
該燃料導引入口の反対側に隔離板の収容空間と隔離されて隔離板の底面を貫通する空気導引出口と、燃料導引入口と同じ側に隔離板の収容空間と隔離されて、隔離板の底面を貫通して別々に設けられた燃料導引出口と空気導引入口とを備える熱伝導用隔離板と、
上記基部板と同じ外周形状を備えた蓋板の底面を上記隔離板の収容空間の開口側に積層し、蓋板の頂面に燃料電池モジュールの表面に取り付けられる接合面と、接合面の一方側に蓋板を貫通して隔離板の燃料導引出口に対応する燃料接続出口と、同じく隔離板の空気導引入口に対応する空気接続入口と、接合面の他方側に蓋板を貫通して隔離板の空気導引出口に対応する空気接続出口と燃料接続入口とを備える熱伝導用蓋板とを有し、かつ、上記燃料入口、燃料出口、燃料導入口、燃料導出口、燃料接続入口、燃料接続出口からなる燃料流路及び、上記空気入口、空気出口、空気導入口、空気導出口、空気接続入口からなる空気流路を有する、ことを特徴とする。
Accordingly, the flat plate reformer module is composed of a base plate, a separator plate, and a cover plate, and a recessed storage space provided on the top surface of the base plate, and a bottom surface of the base plate on one side of the storage space. A fuel inlet penetrating, an air outlet penetrating the bottom surface of the base plate and being separated from the housing space of the base plate on the fuel inlet side, provided on the opposite side of the housing space of the base plate and isolated from the housing space of the base plate A heat conduction base plate comprising a fuel outlet and an air inlet penetrating the bottom surface of the base plate;
The bottom surface of the separator having the same outer peripheral shape as the base plate is laminated on the opening side of the base plate receiving space, the concave receiving space provided on the top surface of the separator plate, and the base of the receiving space of the separator plate A fuel inlet / inlet passing through the bottom surface of the separator provided on the opposite side of the fuel inlet of the plate;
On the opposite side of the fuel inlet, an air inlet outlet that is isolated from the separator receiving space and penetrates the bottom surface of the separator, and is isolated from the separator receiving space on the same side as the fuel inlet. A heat conducting separator comprising a fuel inlet and an air inlet provided separately through the bottom of the plate;
The bottom surface of the lid plate having the same outer peripheral shape as the base plate is laminated on the opening side of the space for accommodating the separator plate, and a joining surface attached to the surface of the fuel cell module on the top surface of the lid plate, and one of the joining surfaces A fuel connection outlet corresponding to the fuel inlet / outlet of the separator plate through the lid plate on the side, an air connection inlet corresponding to the air inlet / outlet of the separator plate, and a lid plate penetrating the other side of the joint surface. A heat conduction lid plate having an air connection outlet corresponding to the air guide outlet of the separator and a fuel connection inlet, and the fuel inlet, the fuel outlet, the fuel inlet, the fuel outlet, and the fuel connection A fuel flow path including an inlet and a fuel connection outlet, and an air flow path including the air inlet, the air outlet, the air inlet, the air outlet, and the air connection inlet are provided.
そして、上記基部板、隔離板、蓋板の間を耐熱シリコンシーラントで密封して外部と隔離される密封固定状態を形成する。また、耐熱シリコンシーラントは除去しやすいことから、基部板、隔離板と、蓋板とは組立分解し易い接合状態になる。 Then, the base plate, the separator plate, and the lid plate are sealed with a heat-resistant silicone sealant to form a sealed and fixed state that is isolated from the outside. Further, since the heat-resistant silicon sealant is easy to remove, the base plate, the separator plate, and the lid plate are in a joined state that is easy to assemble and disassemble.
そして、上記基部板、隔離板、蓋板は各自の周縁に複数個の取付孔をそれぞれ対応するように設け、複数個の固定部品を各取付孔に通して上記基部板、隔離板、蓋板を締結、接合させる。 The base plate, the separator plate, and the cover plate are provided with a plurality of mounting holes corresponding to the respective peripheral edges, and the base plate, the separator plate, and the cover plate are passed through the mounting holes through a plurality of fixing parts. Are fastened and joined.
従って、燃料電池モジュールの周縁に複数個の取付孔が、上記平板型改質器モジュールの上記取付孔に対応するように設けられる。 Accordingly, a plurality of mounting holes are provided on the periphery of the fuel cell module so as to correspond to the mounting holes of the flat plate reformer module.
また、前記基部板の収容空間の隔離板の燃料導引入口に対応する部位に、該燃料導引入口に向けて収束させた形状とする収集部があり、前記隔離板の収容空間の蓋板の燃料接続入口に対応する部位に、該燃料接続入口に向けて収束させた形状とする収集部がある。 A collecting portion having a shape converged toward the fuel inlet / outlet at a portion corresponding to the fuel inlet / outlet of the separator in the accommodation space of the base plate; There is a collecting portion having a shape converged toward the fuel connection inlet at a portion corresponding to the fuel connection inlet.
ここで、想定される触媒単体の材質はPt/CeO2αAl2O3である。 Here, the assumed material of the catalyst simple substance is Pt / CeO 2 αAl 2 O 3 .
以上の構成により、上記改質器モジュールは接合面で、燃料電池モジュールに直接接触することで熱伝導効果を向上させる他に、燃料電池モジュールから発生した大量の熱エネルギーを有する空気及び燃料気体による輻射加熱効果によって、上記改質器を加熱させる事が出来るので、より良い熱伝導効率を備える。
また、ある有効な実施例において、反応温度が800℃を超え、S/C比(水蒸気と一酸化炭素の量論比)が2.0の条件下において、触媒量40gと燃料流量が0.35lpmのメタンとの産物の中に、流量が1.5lpmの水素ガス及び一酸化炭素の混合気体(H2+CO)が含まれていることが分かった。更にこれに対して550時間の性能テストを行って、メタンの転化率は98%以上に維持できることが分かった。
With the above configuration, the reformer module is connected to the fuel cell module directly at the joint surface, and in addition to improving the heat conduction effect, the reformer module uses air and fuel gas having a large amount of heat energy generated from the fuel cell module. Since the reformer can be heated by the radiation heating effect, it has better heat conduction efficiency.
Also, in one effective example, under a condition where the reaction temperature exceeds 800 ° C. and the S / C ratio (stoichiometric ratio of water vapor and carbon monoxide) is 2.0, the catalyst amount is 40 g and the fuel flow rate is 0.1. It was found that the product with 35 lpm of methane contained a hydrogen gas and carbon monoxide mixed gas (H 2 + CO) with a flow rate of 1.5 lpm. Furthermore, a 550 hour performance test was conducted on this, and it was found that the methane conversion rate could be maintained at 98% or more.
また、上記燃料電池モジュール(セルスタック)と平板型改質器モジュールとは組立分解できる構造をしているので、シリコンシーラントで密封すれば、専用の工程でしか取外せない従来の溶接による結合形態とは違い、組立分解に便利な構造で、異なるワット数の燃料電池モジュールにより、基部板と隔離板の数量を増減させることで、異なる触媒単体に対して収容空間の空間量を変化し、燃料処理量を変えるという効果を達成できる。 In addition, the fuel cell module (cell stack) and the flat plate reformer module have a structure that can be assembled and disassembled, so if they are sealed with silicon sealant, they can be removed only by a dedicated process. Contrary to this, it has a structure that is convenient for assembly and disassembly, and by changing the number of base plates and separators with fuel cell modules of different wattages, the amount of space in the housing space can be changed for different catalyst units. The effect of changing the throughput can be achieved.
以下、本発明に関わる改質器の一実施形態について、図1〜図3を用いて説明する。
図1によれば、本実施形態に係わる改質器は下から上に配置した順に、熱伝導性材料からなる基部板1、隔離板2、蓋板3からなる平板型改質器である。
基部板1は、平板型熱伝導体であり、その頂面に設けられた凹んだ収容空間11と、該収容空間11の一方側に隔離板2の燃料導引入口に向けて収束させた形状とした収集部111と、前記収容空間11の他方の側に前記基部板1の底面を貫通する燃料入口13と、前記収容空間11を囲む外枠に設けられる突縁12と、前記突縁12の内側の前記燃料入口13と同じ側であって前記収容空間11と隔離されて前記基部板の底面を貫通する空気出口16と、前記基部板1の前記収集部111側に前記突縁12の外側に、別々に設けられて前記収容空間11と隔離された前記基部板1の底面を貫通する燃料出口14と空気入口15と、前記基部板1外縁を垂直に貫通する複数個の取付孔17と、を備える。
Hereinafter, an embodiment of a reformer according to the present invention will be described with reference to FIGS.
According to FIG. 1, the reformer according to the present embodiment is a flat plate type reformer composed of a
The
隔離板2は、前記基部板1と同じ外周形状の平板型熱伝導体であり、前記基部板1と完全に積層して周縁が一致するように接合し、該隔離板2の頂面に設けられる凹んだ収容空間21と、前記収容空間21の片方側に設けられる前記基部板1の収集部111に対応して該隔離板2を貫通する燃料導引入口23と、前記収容空間21の他方側に蓋板3の燃料接続入口33に向けて収束させた形状とした凹所を形成する収集部211と、前記収容空間21を囲む外枠に設けられる突縁22と、前記突縁22の内側であって前記収集部211の同じ側に前記収容空間21と隔離されて前記隔離板2の底面を貫通する空気導引出口26と、該隔離板2の燃料導引入口23と同じ側であって前記突縁12の外側に別々に設けられて前記収容空間11と隔離されて該隔離板2の底面を貫通する燃料導引出口24(前記燃料出口14に対応する)と空気導引入口25(前記空気入口15に対応する)と、前記隔離板2を垂直に貫通する複数個の取付孔27(それぞれ前記基部板の取付孔17に対応する)と、を備える。
The
蓋板3は、前記基部板1と同じ外周形状の平板型熱伝導体で、前記基部板1及び前記隔離板2と完全に積層して周縁が一致するように接合し、該蓋板3の頂面に設けられた接合面31と、前記接合面31の一方側に前記蓋板3を貫通する燃料接続出口34(前記隔離板2の燃料導引出口24に対応する)及び空気接続入口35(前記隔離板2の空気導引入口25と対応する)と、前記接合面31の他方側に前記蓋板3を貫通する燃料接続入口33(前記隔離板2の前記収集部211に対応する)及び空気接続出口36(前記前記隔離板2の空気導引出口26に対応する)と、前記蓋板3の周縁に設けられる複数個の垂直に貫通する取付孔37(それぞれ前記前記隔離板2の取付孔27に対応する)と、を備える。
The
ある実施例においては、前記収容空間11、21にはそれぞれ触媒単体が配置され、(図面に示していないが、触媒の形状、材料及び作動原理については、台湾の実用新案登録号第281305号に参照されたい。 以下はPt/CeO2−αAl2O3を触媒とする実施例で説明する)、更に前記基部板1と前記隔離板2と前記蓋板3との周縁をシリコンシーラントで密封して接合させ、前記基部板1の収容空間11を前記燃料入口13を通して外と連通し、前記隔離板2の収容空間21を前記蓋歌3の燃料接続入口33を通して外と連通し、そして前記収容空間11、21の間は前記燃料導引入口23によって連通され、全体として燃料が流れる流路を形成する。
In one embodiment, a single catalyst is disposed in each of the
燃料であるメタンは基部板1の底面の燃料入口13に接続される多岐管を経由して収容空間11(図2に示す矢印A1、A2の方向で)に流入して、触媒単体(Pt/CeO2−αAl2O3)と反応して水素及び一酸化炭素を発生し、過剰な燃料(メタン)は収集部111に集められ(図2に示す矢印A3の方向で)、上に向けて燃料導引入口23を通して収容空間21に流れ込んで(図2に示す矢印A4、A5の方向で)、収容空間21内のもう一つの触媒単体(Pt/CeO2−αAl2O3)と反応して水素及び一酸化炭素を発生し、最後に、その水素及び一酸化炭素は蓋体3の燃料接続入口33を経由して外に流出し(図2に示す矢印A6、A7の方向で)、次の(図4に示す様に)燃料電池モジュール5の内部に流れ込む。そして前記燃料電池モジュール5から流出した水素及び一酸化炭素が、蓋体3の燃料接続出口34に導入されて隔離板2の燃料導引出口24と基部板1の燃料出口14とを経由して排出される(図2に示す矢印A8、A9、A10の方向で)ことで、完全な燃料流路が形成される。
Methane, which is the fuel, flows into the accommodation space 11 (in the directions of arrows A1 and A2 shown in FIG. 2) via the manifold connected to the
空気については、基部板1の空気入口15から導入し、順次に隔離板2の空気導引入口25と、蓋体3の空気接続入口35を通して(図2に示す矢印B1、B2、B3の方向で)次の(図4に示す様に)燃料電池モジュール5に導入される。前記燃料電池モジュール5から流出した空気は蓋体3の空気接続出口36に導入されて、順番を踏まえて隔離板2の空気導引出口26と基部板1の空気出口16と(図2に示す矢印B4、B5、B6の方向で)を通して外に流れて行くことで、完全な空気流路が形成される。
Air is introduced from the
図4に示すとおり、本発明の実施形態においては、基部板1、隔離板2及び蓋板3からなる改質器モジュールはその接合面31で対象とする燃料電池モジュール5の表面と接合でき、燃料電池モジュール5は蓋板3の接合面31と接合する表面には、燃料導出口54(改質器モジュール側の燃料接続出口34に対応する)と、燃料導入口53(改質器モジュール側の燃料接続入口33に対応する)と、空気導入口55(改質器モジュール側の空気接続入口35に対応する)と、空気導出口56(改質器モジュール側の前記空気接続出口36に対応する)とが設けられ、更に燃料電池モジュール5の周縁にはそれぞれ改質器モジュールの側取付孔37に対応して複数個の取付孔57が設けられ、複数個の固定部品を用いて(図面に示していない)取付孔57と取付孔17、27、37とを連通して繋げ合わせることで改質器モジュールと燃料電池モジュール5との接合を形成する。
As shown in FIG. 4, in the embodiment of the present invention, the reformer module including the
実際の応用においては、前記燃料(メタン)が各触媒単体を介して発生した水素と一酸化炭素は蓋板3の燃料接続入口33から燃料導入口53を通して燃料電池モジュール5に導入され、そして外部の空気は所定の多岐管から空気入口15、空気導引入口25、及び空気接続入口35を経て、空気導入口55から燃料電池モジュール5の内部に導入されて、前記水素と一酸化炭素とを電気化学反応させる。
更に、過剰な空気は空気導出口56から空気接続出口36、空気導引出口26、及び空気出口16を経て外に流出させられ、過剰な水素と一酸化炭素は燃料導出口54から燃料接続出口34、燃料導引出口24、及び燃料出口14を経て外に流出させられることによって、改質に必要な循環を完成させることができる。
In actual application, hydrogen and carbon monoxide generated by the fuel (methane) through each catalyst alone are introduced into the
Further, excess air flows out from the
以上、添付の図を参照しながら本発明の好適な実施例について説明したが、前記説明は単に本発明を説明することを目的としており、意味限定や請求の範囲に記載された本発明の請求の範囲を制限するためのものではない。したがって、前記説明によって当業者であれば、本発明の技術思想を逸脱しない範囲で各種の変更および修正が可能であることはいうまでもない。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, the descriptions are merely for the purpose of illustrating the present invention, and the claims of the present invention described in the meaning limitation and claims are described. It is not intended to limit the scope of Therefore, it goes without saying that various changes and modifications can be made by those skilled in the art based on the above description without departing from the technical idea of the present invention.
1 基部板
11、21 収容空間
111、211 収集部
12、22 突縁
13 燃料入口
14 燃料出口
15 空気入口
16 空気出口
17、27、37、57 取付孔
2 隔離板
23 燃料導引入口
24 燃料導引出口
25 空気導引入口
26 空気導引出口
3 蓋板
31 接合面
34 燃料接続出口
35 空気接続入口
33 燃料接続入口
36 空気接続出口
5 燃料電池モジュール
53 燃料導入口
54 燃料導出口
55 空気導入口
56 空気導出口
A1〜A0 燃料の流れを示す矢印
B1〜B6 空気の流れを示す矢印
DESCRIPTION OF
Claims (6)
これらの外周形状を燃料電池の外周形状と合致させると共に、それぞれの相対する側の外枠周縁には突縁を設けて該突縁を介して相互に密接させ、かつ、燃料電池と相対する該改質器の蓋板の頂面を燃料電池表面に取り付ける接合面として燃料電池と接合・分離可能とし、
上記基部板は、頂面に設けられた凹んだ収容空間と、該収容空間の一方側に前記基部板の底面を貫通する燃料入口と、該燃料入口側に前記基部板の収容空間と隔離されて該基部板の底面を貫通する空気出口と、前記基部板の収容空間の他方側に、該基部板の収容空間と隔離されて基部板の底面を貫通する燃料出口と空気入口とを備え
上記隔離板は、その底面を前記基部板の収容空間の開口側に積層し、該隔離板の頂面に設けられた凹んだ収容空間と、該隔離板の収容空間にある上記基部板の燃料入口の反対側に設けられて前記隔離板の底面を貫通する燃料導引入口と、該燃料導引入口の反対側に該隔離板の収容空間と隔離されて該隔離板の底面を貫通する空気導引出口と、該燃料導引入口と同じ側に該隔離板の収容空間と隔離されて、該隔離板の底面を貫通して別々に設けられる燃料導引出口と空気導引入口とを備え
上記蓋板は、その底面を前記隔離板の収容空間の開口側に積層し、該蓋板の頂面に前記燃料電池の表面に取り付けられる接合面と、該接合面の一方側に該蓋板を貫通して前記隔離板の燃料導引出口に対応する燃料接続出口と、前記隔離板の空気導引入口に対応する空気接続入口と、該接合面の他方側に蓋板を貫通して前記隔離板の空気導引出口に対応する空気接続出口と、同じく隔離板の収容空間に開口する燃料接続入口とを備え
これらにより、外部から前記燃料入口、前記燃料導引入口及び前記燃料接続入口を経て燃料が燃料電池に至る燃料流路と、燃料電池から前記燃料接続出口、前記燃料導引出口及び前記燃料出口を経て外部に至る燃料流路、
及び外部から前記空気入口、前記空気導引入口及び前記空気接続入口を経て燃料電池に至る空気流路と、燃料電池から前記空気接続出口、前記空気導引出口、
前記空気出口を経て外部に至る空気流路、を形成し、
これら基部板と隔離板、及び隔離板と蓋板の間の収容空間に触媒単体を配置して、燃料電池に接する蓋板の接合面からの熱を熱伝導性材料からなる基部板と隔離板、及び隔離板と蓋板を介して伝えて余熱せしめる、ことを特徴とする燃料電池用平板型改質器。 A flat type reformer for a fuel cell, in which a base plate, a separator plate, and a cover plate, which are plate-shaped parts made of a heat conductive material, are sequentially introduced from the outside and fuel and air are introduced from the fuel cell. A base plate, a separator plate, and a lid plate to be joined to the fuel cell .
These outer peripheral shapes are matched with the outer peripheral shape of the fuel cell, and the outer frame peripheral edge on each opposite side is provided with a protruding edge so as to be in close contact with each other via the protruding edge, and the opposite of the fuel cell. The top surface of the lid of the reformer can be joined and separated from the fuel cell as a joint surface that is attached to the surface of the fuel cell.
The base plate is isolated from a recessed storage space provided on the top surface, a fuel inlet penetrating the bottom surface of the base plate on one side of the storage space, and a storage space of the base plate on the fuel inlet side. An air outlet that penetrates the bottom surface of the base plate, and a fuel outlet and an air inlet that are isolated from the housing space of the base plate and penetrate the bottom surface of the base plate on the other side of the housing space of the base plate. The separator plate has a bottom surface stacked on the opening side of the base plate storage space, a recessed storage space provided on the top surface of the separator plate, and a fuel inlet of the base plate in the storage space of the separator plate A fuel inlet / inlet provided on the opposite side of the separator and penetrating the bottom surface of the separator, and an air guide penetrating the bottom surface of the separator and isolated from the accommodation space of the separator on the opposite side of the fuel inlet / inlet. The isolation port is isolated from the receiving space of the separator on the same side as the fuel inlet and The lid plate includes a fuel inlet and an air inlet that are provided separately through the bottom surface of the lid plate, and the bottom plate is laminated on the opening side of the accommodation space of the separator plate, and is formed on the top surface of the lid plate. A joint surface attached to the surface of the fuel cell; a fuel connection outlet corresponding to the fuel guide outlet of the separator plate through the lid plate on one side of the joint surface; and an air inlet port of the separator plate An air connection inlet corresponding to the air interface, an air connection outlet corresponding to the air guide outlet of the separator plate through the cover plate on the other side of the joint surface, and a fuel connection inlet that also opens into the accommodation space of the separator plate The fuel flow path from which the fuel reaches the fuel cell through the fuel inlet, the fuel introduction inlet and the fuel connection inlet from the outside, and the fuel connection outlet, the fuel introduction outlet and the fuel from the fuel cell Fuel flow path to the outside through the outlet,
And an air flow path from the outside to the fuel cell via the air inlet, the air inlet / inlet and the air connection inlet, and the air connection outlet, the air inlet / outlet from the fuel cell,
Forming an air flow path to the outside through the air outlet ,
The base plate and the separator, and the base plate and the separator made of a heat conductive material are arranged in the housing space between the base plate and the separator, and the separator and the lid, and heat from the joint surface of the lid that is in contact with the fuel cell, and A flat plate type reformer for a fuel cell, characterized in that the heat is transmitted through a separator and a cover plate to cause residual heat .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014099350A JP6363389B2 (en) | 2014-05-13 | 2014-05-13 | Flat plate reformer for fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014099350A JP6363389B2 (en) | 2014-05-13 | 2014-05-13 | Flat plate reformer for fuel cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015216067A JP2015216067A (en) | 2015-12-03 |
JP6363389B2 true JP6363389B2 (en) | 2018-07-25 |
Family
ID=54752779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014099350A Expired - Fee Related JP6363389B2 (en) | 2014-05-13 | 2014-05-13 | Flat plate reformer for fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6363389B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2737535B2 (en) * | 1992-05-22 | 1998-04-08 | 松下電器産業株式会社 | Internal reforming molten carbonate fuel cell |
JP5580644B2 (en) * | 2010-04-05 | 2014-08-27 | 日本特殊陶業株式会社 | Solid oxide fuel cell and solid oxide fuel cell system |
JP2011228171A (en) * | 2010-04-21 | 2011-11-10 | Ngk Spark Plug Co Ltd | Fuel cell |
JP2012061399A (en) * | 2010-09-15 | 2012-03-29 | Nippon Shokubai Co Ltd | Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst |
-
2014
- 2014-05-13 JP JP2014099350A patent/JP6363389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015216067A (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4651923B2 (en) | Fuel cell stack and fuel cell module | |
US8034496B2 (en) | Fuel cell | |
US8507139B2 (en) | Fuel cell module | |
US9054352B2 (en) | Solid oxide fuel cell stack with uniform flow distribution structure and metal sealing member | |
EP1976047B1 (en) | Fuel cell | |
JP2007095692A (en) | Fuel cell, and fuel cell system provided with the same | |
JP2017199599A (en) | High-temperature operation fuel cell and fuel cell system | |
JP5070885B2 (en) | Fuel cell | |
JP5551495B2 (en) | Fuel cell module | |
WO2014167306A2 (en) | Fuel cells | |
TWI459624B (en) | Fuel cell module | |
JP2009070622A (en) | Fuel cell and its manufacturing method | |
JP6363389B2 (en) | Flat plate reformer for fuel cells | |
JP7113180B2 (en) | fuel cell stack | |
KR101619060B1 (en) | Plate Type Reformer for Fuel Cell System | |
KR101372673B1 (en) | Solid oxide fuel cell containg dummy separator | |
JP5588911B2 (en) | Fuel cell system | |
US20150357664A1 (en) | Plate type fuel reformer of fuel cell | |
US10804545B2 (en) | Fuel cell | |
TWI521782B (en) | Plate type reformer for fuel cell | |
JP6960886B2 (en) | Fuel cell module and fuel cell system | |
JP6917193B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP5228342B2 (en) | Fuel reformer and fuel cell | |
KR20160053347A (en) | Separator for fuel cell stack having improved confidentiality and cooling performance | |
CN114300699B (en) | High-temperature ammonia fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6363389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |