JP6362354B2 - Image display device, image display control device, and image display program - Google Patents

Image display device, image display control device, and image display program Download PDF

Info

Publication number
JP6362354B2
JP6362354B2 JP2014041067A JP2014041067A JP6362354B2 JP 6362354 B2 JP6362354 B2 JP 6362354B2 JP 2014041067 A JP2014041067 A JP 2014041067A JP 2014041067 A JP2014041067 A JP 2014041067A JP 6362354 B2 JP6362354 B2 JP 6362354B2
Authority
JP
Japan
Prior art keywords
voltage
particles
substrate
threshold voltage
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014041067A
Other languages
Japanese (ja)
Other versions
JP2015166781A (en
Inventor
諏訪部 恭史
恭史 諏訪部
大樹 鳫
大樹 鳫
昌昭 阿部
昌昭 阿部
町田 義則
義則 町田
友純 上坂
友純 上坂
Original Assignee
イー インク コーポレイション
イー インク コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イー インク コーポレイション, イー インク コーポレイション filed Critical イー インク コーポレイション
Priority to JP2014041067A priority Critical patent/JP6362354B2/en
Publication of JP2015166781A publication Critical patent/JP2015166781A/en
Application granted granted Critical
Publication of JP6362354B2 publication Critical patent/JP6362354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

本発明は、画像表示装置、画像表示制御装置、及び画像表示プログラムに関する。   The present invention relates to an image display device, an image display control device, and an image display program.

画像に応じた電圧を一対の基板間に印加することにより基板間に封入された異なる色に着色された複数種類の粒子を移動させて、粒子の色をコントラストとして画像表示させる画像表示装置が知られている。   2. Description of the Related Art An image display device that moves a plurality of types of particles colored in different colors enclosed between substrates by applying a voltage according to an image between a pair of substrates, and displays the image of the colors of the particles as contrast is known. It has been.

例えば、特許文献1に記載の技術では、一対の基板間に封入された分散媒と、分散媒中に分散され且つ基板間に形成された電界に応じて基板間を移動するように基板間に封入された色及び帯電極性が異なる第1泳動粒子、第2泳動粒子と、を有する表示媒体を駆動装置が駆動する。そして、駆動装置が、第1泳動粒子の色を階調表示する場合に、第1泳動粒子の少なくとも一部の粒子を表示基板又は背面基板から剥離させるのに必要な閾値電圧以上の電圧であって、第1泳動粒子の色の階調に応じた第1の電圧を基板間に印加した後、第1の電圧と同極性で且つ閾値電圧より小さい第2の電圧を印加する電圧印加部を備えることが提案されている。   For example, in the technique described in Patent Document 1, a dispersion medium sealed between a pair of substrates and a substrate that moves between the substrates according to an electric field that is dispersed in the dispersion medium and formed between the substrates. The driving device drives a display medium having first and second migrating particles having different colors and charged polarities. When the drive device displays the color of the first migrating particles in gradation, the voltage is equal to or higher than a threshold voltage necessary for peeling at least some of the first migrating particles from the display substrate or the back substrate. And applying a first voltage corresponding to the gradation of the color of the first migrating particles between the substrates, and then applying a second voltage having the same polarity as the first voltage and smaller than the threshold voltage. It has been proposed to provide.

特開2012−133310号公報JP 2012-133310 A

本発明は、混色を抑制可能な画像表示装置、画像表示制御装置、及び画像表示プログラムを提供することを目的とする。   An object of the present invention is to provide an image display device, an image display control device, and an image display program capable of suppressing color mixing.

請求項1に記載の画像表示媒体の画像表示装置は、一対の基板と、前記一対の基板の間に封入され各々電圧印加により基板から剥離し、各々剥離を始める閾値電圧が異なる複数種類の粒子を含む複数の画素と、隣接する前記画素の前記閾値電圧が小さい方の前記粒子が一方の基板に移動終了後に、前記閾値電圧が大きい方の前記粒子の階調に応じた印加時間の電圧を印加する印加部と、を備えている。   The image display device of the image display medium according to claim 1, wherein a plurality of types of particles having different threshold voltages that are sealed between a pair of substrates and are sealed between the pair of substrates and are each separated from the substrate by voltage application. And a voltage of an application time corresponding to the gradation of the particle having the larger threshold voltage after the particles having the smaller threshold voltage of the adjacent pixel have moved to one substrate. And an application unit for applying.

請求項2に記載の発明は、請求項1に記載の発明において、前記印加部は、前記閾値電圧が小さい方の前記粒子が基板から剥離し、前記閾値電圧が大きい方の前記粒子が基板から剥離しない大きさの電圧を前もって更に印加する。   According to a second aspect of the present invention, in the first aspect of the present invention, the application unit may be configured such that the particles having a smaller threshold voltage are separated from the substrate, and the particles having the larger threshold voltage are separated from the substrate. A voltage that does not peel is applied in advance.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記印加部は、前記印加部により各々の前記粒子が移動する電圧を印加したときに、前記閾値電圧が大きい方の前記粒子が基板から剥離開始するまでに、前記閾値電圧が小さい方の前記粒子の移動が終了する大きさ又は時間の電圧をリセット時に更に印加する。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the application unit has a large threshold voltage when a voltage at which each of the particles moves is applied by the application unit. A voltage having a magnitude or a time at which the movement of the particle having the smaller threshold voltage ends before the particle starts to peel from the substrate is further applied at the time of resetting.

請求項4に記載の発明は、請求項1〜3の何れか1項に記載の発明において、前記印加部は、前記粒子を基板から剥離させる大きさで、かつ階調に応じた印加時間の電圧を印加する第1ステップと、前記第1ステップで印加する電圧より小さく、基板から剥離した前記粒子を基板へ付着させる大きさの電圧を印加する第2ステップと、を有する駆動パルス
を印加する。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects of the present invention, the application section has a size for separating the particles from the substrate and an application time corresponding to a gradation. Applying a driving pulse having a first step of applying a voltage, and a second step of applying a voltage that is smaller than the voltage applied in the first step and that causes the particles detached from the substrate to adhere to the substrate. .

請求項5に記載の発明は、請求項4に記載の発明において、前記印加部は、各画素の前記第2ステップの電圧の印加タイミングを揃えた前記駆動パルスを印加する。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the application unit applies the drive pulse in which the voltage application timings of the second step of each pixel are aligned.

請求項6に記載の発明は、請求項1〜5の何れか1項に記載の発明において、前記2種類の粒子は、大きい方の前記閾値電圧を前記一対の基板の間に印加したときに、前記閾値電圧が小さい方の前記粒子が基板から剥離して移動終了するまでの時間より、前記閾値電圧が大きい方の前記粒子が基板から剥離するまでの時間の方が長い特性を有する粒子である。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the two kinds of particles are applied when the larger threshold voltage is applied between the pair of substrates. The particles having the characteristic that the time until the particles having the larger threshold voltage are separated from the substrate is longer than the time until the particles having the smaller threshold voltage are separated from the substrate and the movement is finished. is there.

請求項7に記載の画像表示制御装置は、一対の基板の間に封入され、前記一対の基板間に各々印加される電圧により基板から剥離し、各々剥離を始める閾値電圧が異なる複数種類の粒子を含む複数の画素のうち、隣接する前記画素の前記閾値電圧の小さい方の前記粒子が一方の基板に移動終了後に、前記閾値電圧が大きい方の前記粒子の階調に応じた印加時間の電圧を印加するように電圧を制御する制御部を備えている。   The image display control apparatus according to claim 7, wherein a plurality of types of particles are sealed between a pair of substrates, are separated from the substrate by a voltage applied between the pair of substrates, and have different threshold voltages for starting the separation. Among the plurality of pixels including adjacent pixels, the voltage of the application time corresponding to the gradation of the particles having the larger threshold voltage after the particles having the smaller threshold voltage of the adjacent pixels finish moving to one substrate. The control part which controls a voltage so that may be applied is provided.

請求項8に記載の画像表示プログラムは、コンピュータを、請求項1〜6の何れか1項に記載の画像表示装置の前記印加部として機能させる。   An image display program according to an eighth aspect causes a computer to function as the application unit of the image display apparatus according to any one of the first to sixth aspects.

請求項1に記載の発明によれば、隣接する画素の閾値電圧が小さい方の粒子が一方の基板に移動終了する前に、閾値電圧が大きい方の粒子の階調に応じた印加時間の電圧を印加する場合と比較して、混色を抑制可能な画像表示装置を提供することができる、という効果がある。   According to the first aspect of the present invention, the voltage of the application time corresponding to the gradation of the particle having the larger threshold voltage before the particle having the smaller threshold voltage of the adjacent pixel finishes moving to the one substrate. As compared with the case of applying, there is an effect that it is possible to provide an image display device capable of suppressing color mixing.

請求項2に記載の発明によれば、閾値電圧が小さい方の粒子が基板から剥離する大きさの電圧を前もって印加しない場合と比較して、より混色を抑制できる、という効果がある。   According to the second aspect of the present invention, there is an effect that color mixing can be further suppressed as compared with a case where a voltage having such a magnitude that particles having a smaller threshold voltage are peeled from the substrate is not applied in advance.

請求項3に記載の発明によれば、閾値電圧が大きい方の粒子が移動開始するまでに、閾値電圧が小さい方の粒子の移動が終了する大きさ又は時間の電圧をリセット時に印加しない場合と比較して、閾値電圧の小さい方の粒子が移動終了するまでの時間を短くすることができる、という効果がある。   According to the third aspect of the present invention, when the particle having the larger threshold voltage starts to move, the voltage of the magnitude or time at which the movement of the smaller threshold voltage ends is not applied at the time of resetting. In comparison, there is an effect that the time until the movement of the particles having a smaller threshold voltage is completed can be shortened.

請求項4に記載の発明によれば、第1ステップと第2ステップとを有する駆動パルスを用いない場合と比較して、電圧印加後の浮遊粒子を減少して安定した画像を表示することができる、という効果がある。   According to the fourth aspect of the present invention, it is possible to display a stable image by reducing suspended particles after voltage application, as compared with the case where the driving pulse having the first step and the second step is not used. There is an effect that can be done.

請求項5に記載の発明によれば、各画素に第2ステップの電圧の印加タイミングが異なる場合と比較して、安価な装置にすることができる、という効果がある。   According to the fifth aspect of the present invention, there is an effect that an inexpensive device can be obtained as compared with the case where the application timing of the voltage in the second step is different for each pixel.

請求項6に記載の発明によれば、閾値電圧が小さい方の粒子が基板から剥離して移動終了するまでの時間より、閾値電圧が大きい方の粒子が基板から剥離するまでの時間の方が長い特性を有する粒子を採用しない場合と比較して、混色を抑制することができる、という効果がある。   According to the invention described in claim 6, the time until the particles having the larger threshold voltage are separated from the substrate is longer than the time until the particles having the smaller threshold voltage are separated from the substrate and the movement is finished. There is an effect that color mixing can be suppressed as compared with the case where particles having long characteristics are not employed.

請求項7に記載の発明によれば、隣接する画素の閾値電圧が小さい方の粒子が一方の基板に移動終了する前に、閾値電圧が大きい方の粒子の階調に応じた印加時間の電圧を印加する場合と比較して、混色を抑制可能な画像表示制御装置を提供することができる、とい
う効果がある。
According to the seventh aspect of the present invention, the voltage of the application time corresponding to the gradation of the particle having the larger threshold voltage before the particle having the smaller threshold voltage of the adjacent pixel finishes moving to one substrate. As compared with the case of applying, there is an effect that it is possible to provide an image display control device capable of suppressing color mixing.

請求項8に記載の発明によれば、隣接する画素の閾値電圧が小さい方の粒子が一方の基板に移動終了する前に、閾値電圧が大きい方の粒子の階調に応じた印加時間の電圧を印加する場合と比較して、混色を抑制可能な画像表示プログラムを提供することができる、という効果がある。   According to the eighth aspect of the present invention, the voltage of the application time corresponding to the gradation of the particle having the larger threshold voltage before the particle having the smaller threshold voltage of the adjacent pixel finishes moving to one substrate. As compared with the case of applying, there is an effect that an image display program capable of suppressing color mixing can be provided.

(A)は本実施の形態に係わる画像表示装置の概略を示す概略図であり、(B)は本実施の形態に係る画像表示装置の制御部の構成を示すブロック図である。(A) is a schematic diagram showing an outline of an image display apparatus according to the present embodiment, and (B) is a block diagram showing a configuration of a control unit of the image display apparatus according to the present embodiment. 混色が発生する例を説明するための図である。It is a figure for demonstrating the example which color mixing generate | occur | produces. 本実施の形態に係る画像表示装置の制御部による電圧印加部の制御例を説明するための図である。It is a figure for demonstrating the example of control of the voltage application part by the control part of the image display apparatus which concerns on this Embodiment. 閾値電圧の小さい方の第1泳動粒子を先に移動させるパルス電圧を前もって印加する例を説明するための図である。It is a figure for demonstrating the example which applies previously the pulse voltage which moves the 1st migrating particle with a smaller threshold voltage first. リセット時の電圧の大きさや印加時間により泳動粒子の剥離開始時間を制御する例を説明するための図である。It is a figure for demonstrating the example which controls the peeling start time of an electrophoretic particle with the magnitude | size of a voltage at the time of reset, and application time. 2つのステップで電圧を印加する駆動パルスの一例を説明するための図である。It is a figure for demonstrating an example of the drive pulse which applies a voltage in two steps. 各画素において同じタイミングで同じ大きさの電圧を印加するように電圧の印加タイミングを揃えた駆動パルスの一例を説明するための図である。It is a figure for demonstrating an example of the drive pulse which aligned the application timing of a voltage so that the voltage of the same magnitude | size may be applied at the same timing in each pixel.

以下、本実施形態について図面を参照しつつ説明する。作用や機能が同じ働きを担う部材には、全図面を通して同じ符合を付与し、重複する説明を省略する場合がある。また、説明を簡易化するために、適宜1つのセルに注目した図を用いて本実施形態を説明する。   Hereinafter, the present embodiment will be described with reference to the drawings. Members having the same functions and functions may be given the same reference numerals throughout the drawings, and redundant descriptions may be omitted. In addition, in order to simplify the description, the present embodiment will be described with reference to a diagram that focuses on one cell as appropriate.

図1(A)は、本実施形態に係わる画像表示装置を概略的に示している。この画像表示装置50は、画像表示媒体10と、画像表示媒体10を駆動する駆動装置20と、を備えている。駆動装置20は、画像表示媒体10の表示側電極3、背面側電極4間に電圧を印加する電圧印加部30と、画像表示媒体10に表示させる画像の画像情報に応じて電圧印加部30を制御する制御部40と、を含んで構成されている。   FIG. 1A schematically shows an image display apparatus according to this embodiment. The image display device 50 includes an image display medium 10 and a drive device 20 that drives the image display medium 10. The driving device 20 includes a voltage application unit 30 that applies a voltage between the display-side electrode 3 and the back-side electrode 4 of the image display medium 10, and a voltage application unit 30 according to image information of an image displayed on the image display medium 10. And a control unit 40 to be controlled.

画像表示媒体10は、画像表示面とされる、透光性を有する表示基板1と、非表示面とされる背面基板2と、が間隙を持って対向して配置される一対の基板を有する。   The image display medium 10 includes a pair of substrates in which a translucent display substrate 1 serving as an image display surface and a rear substrate 2 serving as a non-display surface are disposed to face each other with a gap therebetween. .

これらの基板1、2間を予め定められた間隔に保持すると共に、該基板間を複数のセルに区画する間隙部材5が設けられている。   A gap member 5 is provided that holds the substrates 1 and 2 at a predetermined interval and partitions the substrates into a plurality of cells.

上記セルとは、背面側電極4が設けられた背面基板2と、表示側電極3が設けられた表示基板1と、間隙部材5と、によって囲まれた領域を示している。なお、1つのセルは複数の画素を含む。また、本実施の形態では、間隙部材5を有する例を説明するが、基板間の間隙を保持できる構成であれば間隙部材5を省略した構成としてもよい。   The cell indicates a region surrounded by the back substrate 2 provided with the back side electrode 4, the display substrate 1 provided with the display side electrode 3, and the gap member 5. Note that one cell includes a plurality of pixels. In this embodiment, an example having the gap member 5 is described. However, the gap member 5 may be omitted as long as the gap between the substrates can be held.

セル中には、例えば絶縁性液体で構成された分散媒6と、分散媒6中に分散された第1泳動粒子11と、第2泳動粒子12とがそれぞれ粒子群として封入されている。第1泳動粒子11と第2泳動粒子12は、それぞれ異なる色に着色されると共に、異なる帯電特性を有しており、一対の電極3、4間に印加する電圧を制御することにより、泳動粒子11、12が基板間を泳動する。また、泳動粒子11、12は、基板から離脱を始める閾値電圧をそれぞれ有し、基板間に閾値電圧が印加された場合に、極性に応じて基板から剥離し
て泳動する。
In the cell, for example, a dispersion medium 6 made of an insulating liquid, a first migrating particle 11 dispersed in the dispersion medium 6, and a second migrating particle 12 are sealed as a particle group. The first migrating particles 11 and the second migrating particles 12 are colored in different colors and have different charging characteristics, and the migrating particles are controlled by controlling the voltage applied between the pair of electrodes 3 and 4. 11 and 12 migrate between the substrates. In addition, the migrating particles 11 and 12 each have a threshold voltage at which separation starts from the substrate. When a threshold voltage is applied between the substrates, the migrating particles 11 and 12 are separated from the substrate and migrate according to the polarity.

第1泳動粒子11と第2泳動粒子12は、互いに異なる色に着色されており、また、基板に付着した状態を維持するための付着力が互いに異なり、基板間の電界によって基板に付着した状態から基板を離脱するために必要な電圧が互いに異なる。すなわち、一対の電極3、4間に印加する電圧を制御することにより、第1泳動粒子11及び第2泳動粒子12がそれぞれ単独で泳動する特性を有している。より具体的には、電圧を印加して発生させた電界によって、粒子が基板を離脱する向きの力が付着力の大きさ以上になると粒子が基板を離脱して他方の基板に向かう。この、電界によって発生する力が付着力と釣り合って粒子が移動し始める電圧を閾値電圧という。本実施形態において、第1泳動粒子11と第2泳動粒子12を移動させ、画像を表示させた後に電圧の印加を停止した後も、ファンデルワールス力や鏡像力、静電引力等によって粒子は基板に付着したままとなり、画像表示は維持される。粒子の付着力を制御するには、これらの鏡像力や静電引力、ファンデルワールス力等を調整すればよく、その手段としては、例えば粒子の帯電量、粒径、電荷密度、誘電率、表面形状、表面エネルギー、分散剤の組成や密度等をそれぞれ適切に調整することが挙げられる。なお、第1泳動粒子11及び第2泳動粒子12の他に白色に着色された白色粒子を粒子群として含むようにしてもよい。この場合、白色粒子は、第1泳動粒子11、第2泳動粒子12よりも帯電量が少なく、第1泳動粒子11、第2泳動粒子12が何れか一方の電極側まで移動する電圧が電極間に印加されても、何れの電極側まで移動しない浮遊粒子としてもよい。或いは、分散媒に着色剤を混合することで、泳動粒子の色とは異なる白色を表示させる構成としてもよい。   The first migrating particles 11 and the second migrating particles 12 are colored in different colors, and have different adhesion forces to maintain the state of adhering to the substrate, and are adhering to the substrate due to the electric field between the substrates. Different voltages are required to detach the substrate from the substrate. That is, by controlling the voltage applied between the pair of electrodes 3 and 4, the first migrating particles 11 and the second migrating particles 12 each have a characteristic of migrating alone. More specifically, when the force in the direction in which the particles leave the substrate exceeds the adhesion force by the electric field generated by applying a voltage, the particles leave the substrate and go to the other substrate. The voltage at which the force generated by the electric field is balanced with the adhesive force and the particles start to move is called a threshold voltage. In the present embodiment, even after the first migrating particles 11 and the second migrating particles 12 are moved and the image is displayed and the application of voltage is stopped, the particles are caused by van der Waals force, mirror image force, electrostatic attraction, etc. It remains attached to the substrate and the image display is maintained. In order to control the adhesion force of the particles, it is only necessary to adjust the mirror image force, electrostatic attraction force, van der Waals force, and the like. For example, the charge amount of the particles, the particle size, the charge density, the dielectric constant, The surface shape, the surface energy, the composition and density of the dispersing agent, etc. can be appropriately adjusted. In addition to the first migrating particles 11 and the second migrating particles 12, white particles colored white may be included as a particle group. In this case, the white particles are less charged than the first migrating particles 11 and the second migrating particles 12, and the voltage at which the first migrating particles 11 and the second migrating particles 12 move to either one of the electrodes is between the electrodes. Even if it is applied to, suspended particles that do not move to any electrode side may be used. Or it is good also as a structure which displays white different from the color of electrophoretic particle by mixing a coloring agent with a dispersion medium.

駆動装置20(電圧印加部30及び制御部40)は、画像表示媒体10の表示側電極3、背面側電極4間に印加する電圧を表示させる色に応じて制御することにより、第1泳動粒子11及び第2泳動粒子12を泳動させ、それぞれの帯電極性に応じて表示基板1、背面基板2の何れか一方に引き付ける。   The drive device 20 (the voltage application unit 30 and the control unit 40) controls the voltage applied between the display-side electrode 3 and the back-side electrode 4 of the image display medium 10 according to the color for displaying the first electrophoretic particles. 11 and the second migrating particles 12 are migrated and attracted to either the display substrate 1 or the back substrate 2 according to their respective charging polarities.

電圧印加部30は、表示側電極3及び背面側電極4にそれぞれ電気的に接続されている。また、電圧印加部30は、制御部40に信号授受されるように接続されている。   The voltage application unit 30 is electrically connected to the display side electrode 3 and the back side electrode 4, respectively. Further, the voltage application unit 30 is connected to the control unit 40 so as to exchange signals.

図1(B)は、本実施の形態に係る画像表示装置50の制御部40の構成を示すブロック図である。   FIG. 1B is a block diagram illustrating a configuration of the control unit 40 of the image display device 50 according to the present embodiment.

制御部40は、図1(B)に示すように、例えばコンピュータ40として構成される。コンピュータ40は、CPU(Central Processing Unit)40A、ROM(Read Only Memory)40B、RAM(Random Access Memory)40C、不揮発性メモリ40D、及び入出力インターフェース(I/O)40Eがバス40Fを介して各々接続されている。I/O40Eには電圧印加部30が接続されている。この場合、各色の表示に必要な電圧の印加を電圧印加部30に指示する処理をコンピュータ40に実行させるプログラムを、例えば不揮発性メモリ40Dに書き込んでおき、これをCPU40Aが読み込んで実行させる。なお、プログラムは、CD−ROM等の記録媒体により提供するようにしてもよい。   As shown in FIG. 1B, the control unit 40 is configured as a computer 40, for example. The computer 40 includes a CPU (Central Processing Unit) 40A, a ROM (Read Only Memory) 40B, a RAM (Random Access Memory) 40C, a nonvolatile memory 40D, and an input / output interface (I / O) 40E via a bus 40F. It is connected. A voltage application unit 30 is connected to the I / O 40E. In this case, a program for causing the computer 40 to execute processing for instructing the voltage application unit 30 to apply a voltage necessary for displaying each color is written in, for example, the nonvolatile memory 40D, and this is read and executed by the CPU 40A. The program may be provided by a recording medium such as a CD-ROM.

電圧印加部30は、表示側電極3及び背面側電極4に電圧を印加するための電圧印加装置であり、制御部40の制御に応じた電圧を表示側電極3及び背面側電極4に印加する。電圧印加部30は、アクティブマトリクス方式を適用してもよいし、パッシブマトリクス方式を適用するようにしてもよい。或いは、セグメント方式を適用するようにしてもよい。   The voltage application unit 30 is a voltage application device for applying a voltage to the display side electrode 3 and the back side electrode 4, and applies a voltage according to the control of the control unit 40 to the display side electrode 3 and the back side electrode 4. . The voltage application unit 30 may apply an active matrix method or a passive matrix method. Alternatively, a segment method may be applied.

ところで、上述のように構成された画像表示装置50では、粒子が基板から剥離を始める閾値電圧以上の電圧を印加し、その電圧の印加時間で2種類の粒子の移動を制御して階
調表示することが可能である。以下、帯電極性が同じ2種類の粒子で説明をするが、帯電極性が異なっても効果に変わりは無い。閾値電圧の異なる2種類の粒子は、まず閾値の大きい粒子に対応した階調信号により、閾値電圧の大きい粒子の階調を画素ごとに決めて移動させる。その後、閾値電圧の小さい粒子に対応した階調信号により、閾値電圧の小さい粒子の階調を画素ごとに決めて移動させる。この際に、閾値電圧の大きい粒子の階調を決める電圧印加により、閾値電圧の小さい粒子は付着力が小さいため、閾値電圧の大きい粒子より先に一方の基板から移動開始し、他方の基板へ到達する。閾値電圧の大きい粒子も他方の基板へ移動開始するが、階調により移動する粒子量を電圧の印加時間の長さで調整する。移動する粒子量の多い場合は長い時間電圧を印加し、移動する粒子量が少ない場合は短い時間電圧を印加する。なお、閾値電圧の大きい粒子を移動させず、閾値電圧の小さい粒子のみを移動させる場合は、閾値電圧の小さい粒子を先に全て移動させ(ここで、全て移動とは、階調の変化が視認できない程度に移動、或いは混色が視認できない程度に移動を含む)、閾値電圧の大きい粒子が移動開始する前に電圧印加を終了し、その後に閾値電圧の小さい粒子の階調に応じた電圧のみを印加して閾値電圧の小さい粒子を移動させる。また、閾値電圧の大きい粒子も、閾値電圧の小さい粒子も共に移動させない場合は、電圧を印加しない。
By the way, in the image display device 50 configured as described above, a voltage equal to or higher than a threshold voltage at which particles start to peel from the substrate is applied, and the movement of the two kinds of particles is controlled by the application time of the voltages, thereby displaying gradation. Is possible. Hereinafter, two types of particles having the same charging polarity will be described, but the effect remains the same even if the charging polarity is different. Two types of particles having different threshold voltages are moved by determining the gradation of particles having a large threshold voltage for each pixel based on a gradation signal corresponding to the particles having a large threshold. Thereafter, the gradation of particles having a small threshold voltage is determined and moved for each pixel by a gradation signal corresponding to the particles having a small threshold voltage. At this time, by applying a voltage that determines the gradation of particles having a large threshold voltage, particles having a small threshold voltage have a low adhesion force, and therefore start moving from one substrate before particles having a large threshold voltage, and move to the other substrate. To reach. Particles having a large threshold voltage also start to move to the other substrate, but the amount of particles that move by the gradation is adjusted by the length of the voltage application time. When the amount of moving particles is large, a long time voltage is applied, and when the amount of moving particles is small, a short time voltage is applied. If only particles with a small threshold voltage are moved without moving particles with a large threshold voltage, all particles with a small threshold voltage are moved first. The voltage application is terminated before the particles having a large threshold voltage start moving, and then only the voltage corresponding to the gradation of the particles having the small threshold voltage is moved. Applied to move particles with a small threshold voltage. Further, when neither particles having a large threshold voltage nor particles having a small threshold voltage are moved, no voltage is applied.

しかしながら、隣接する画素において閾値電圧が小さい方の泳動粒子が一方の基板に移動が終了する前に、閾値電圧が大きい方の泳動粒子の階調に応じた印加時間の電圧を印加すると、混色(所謂クロストーク)が発生する。   However, if a voltage having an application time corresponding to the gradation of the migrating particle having the larger threshold voltage is applied before the migrating particle having the smaller threshold voltage finishes moving to one substrate in the adjacent pixel, the color mixture ( So-called crosstalk occurs.

例えば、第1泳動粒子11の方が、第2泳動粒子12より小さい閾値電圧で移動する場合、第1泳動粒子11が一方の基板から剥離して他方の基板に移動終了するまでに時間を要する。ここで、第1泳動粒子11の移動が終了する前に隣接画素において第2泳動粒子12を移動させる電圧が印加されることにより、移動終了する前の第1泳動粒子11が隣接画素に印加された電圧の影響を受けることにより混色が発生する。   For example, when the first migrating particles 11 move with a threshold voltage smaller than that of the second migrating particles 12, it takes time for the first migrating particles 11 to peel off from one substrate and finish moving to the other substrate. . Here, before the movement of the first migrating particle 11 is finished, a voltage for moving the second migrating particle 12 is applied to the adjacent pixel, so that the first migrating particle 11 before the movement is finished is applied to the adjacent pixel. Color mixing occurs due to the influence of voltage.

さらに具体的には、第1泳動粒子11の閾値電圧を|Vt1|とし第2泳動粒子12の閾値電圧を|Vt2|(|Vt1|<|Vt2|)とし、|Vt2|より大きな電圧|V2|を印加した場合に図2(A)のような特性を有するものとする。図2(A)の反射率は表示基板側から測定した値を示し、表示基板側に配置される粒子が多いと小さい値となり、表示基板側に配置される粒子量が少ないと大きい値となる。反射率を測定することで、粒子の移動量を測定することが可能となる。図2(A)の実線は電圧−V2を印加したときの第1泳動粒子11の剥離開始を示し、点線は第1泳動粒子11の移動終了を示す。点線は、粒子の速度と基板間の距離から背面基板側の配置された粒子量を計算して表しているが、背面側の基板を透明として反射率を測定した値とも一致する。また、図2(A)の一点鎖線は第2泳動粒子12の剥離開始を示す。図2(A)の例では、第1泳動粒子11及び第2泳動粒子12は共に正極の帯電特性を有し、表示側電極3を共通電極としてグランドとし、背面側電極4を電極A〜Cとして電圧を印加するものとする。   More specifically, the threshold voltage of the first migrating particle 11 is | Vt1 |, the threshold voltage of the second migrating particle 12 is | Vt2 | (| Vt1 | <| Vt2 |), and a voltage | V2 larger than | Vt2 | When | is applied, it has characteristics as shown in FIG. The reflectivity shown in FIG. 2A indicates a value measured from the display substrate side. When the number of particles arranged on the display substrate side is large, the reflectance is small. When the amount of particles arranged on the display substrate side is small, the reflectance is large. . By measuring the reflectance, the amount of movement of the particles can be measured. The solid line in FIG. 2A indicates the start of peeling of the first migrating particles 11 when the voltage −V2 is applied, and the dotted line indicates the end of movement of the first migrating particles 11. The dotted line represents the amount of particles arranged on the rear substrate side calculated from the velocity of the particles and the distance between the substrates. The dotted line also coincides with the value obtained by measuring the reflectance with the rear substrate being transparent. In addition, the alternate long and short dash line in FIG. 2A indicates the start of peeling of the second migrating particles 12. In the example of FIG. 2A, both the first migrating particles 11 and the second migrating particles 12 have positive charging characteristics, the display-side electrode 3 is a ground as a common electrode, and the back-side electrode 4 is an electrode AC. A voltage is applied as follows.

ここで、例えば、各々隣接する電極A〜Cへ印加する電圧を図2(B)に示すように印加するものとする。なお、リセットを予め行って表示基板1側に第1泳動粒子11及び第2泳動粒子12を移動させておく。この場合、各々の画素では、はじめに−V2の電圧が印加されることにより、図2(C)の状態から図2(D)に示すように、第1泳動粒子11が表示基板1側から背面基板2側へ移動を開始する。そして、図2(B)の時間t1では、図2(E)に示すように、第1泳動粒子11が基板から剥離して移動している途中となる、その後、電極A、Cの電圧の印加を終了すると、図2(B)の時間t2で、図2(F)に示すように、第1泳動粒子11の背面基板2側への移動が終了となる。しかしながら、第1泳動粒子11の移動終了の前に第2泳動粒子12も移動を開始してしまう。さらには、電極Bでは、階調に応じた第2泳動粒子12を移動させるための電圧が印加され続
ける。これにより電極Bの背面基板2側に第2泳動粒子12を移動させる際に、電極A、Cの表示基板1側から剥離した第2泳動粒子12が図2(F)の矢印で示すように移動してしまい混色が発生した状態で、図2(G)に示すように、第2泳動粒子12の移動を終了する。
Here, for example, the voltages applied to the adjacent electrodes A to C are applied as shown in FIG. Note that resetting is performed in advance to move the first migrating particles 11 and the second migrating particles 12 to the display substrate 1 side. In this case, in each pixel, by first applying a voltage of −V2, the first migrating particles 11 are moved from the display substrate 1 side to the back surface as shown in FIG. 2D from the state of FIG. The movement to the substrate 2 side is started. Then, at time t1 in FIG. 2B, as shown in FIG. 2E, the first migrating particles 11 are in the process of being separated from the substrate and moving. When the application is finished, the movement of the first migrating particles 11 toward the back substrate 2 is finished as shown in FIG. 2 (F) at time t2 in FIG. 2 (B). However, the second migrating particles 12 also start to move before the end of the movement of the first migrating particles 11. Furthermore, a voltage for moving the second migrating particles 12 corresponding to the gradation is continuously applied to the electrode B. As a result, when the second electrophoretic particles 12 are moved to the back substrate 2 side of the electrode B, the second electrophoretic particles 12 separated from the display substrate 1 side of the electrodes A and C are as indicated by the arrows in FIG. The movement of the second migrating particles 12 is completed as shown in FIG.

そこで、本実施の形態では、制御部40が電圧印加部30を制御することにより、隣接する画素の閾値電圧の小さい方の第1泳動粒子11が一方の基板に移動終了後に、閾値電圧が大きい方の第2泳動粒子12の階調に応じた印加時間の電圧を印加するようになっている。   Therefore, in the present embodiment, the control unit 40 controls the voltage application unit 30 to increase the threshold voltage after the movement of the first migrating particle 11 having the smaller threshold voltage of the adjacent pixel to one substrate. A voltage having an application time corresponding to the gradation of the second migrating particles 12 is applied.

例えば、大きい方の閾値電圧を基板間に印加したときに、閾値電圧が小さい方の第1泳動粒子11が基板から剥離して移動終了するまでの時間より、閾値電圧が大きい方の第2泳動粒子12が基板から剥離するまでの時間の方が長い特性を有する粒子を採用することで、第1泳動粒子11が一方の基板から剥離して移動終了した後に、第2泳動粒子12の剥離が開始可能な粒子を選択する。これにより、隣接する画素の閾値電圧の小さい方の第1泳動粒子11が一方の基板に移動終了後に、閾値電圧が大きい方の第2泳動粒子12の階調に応じた印加時間の電圧を印加することが可能となる。   For example, when the larger threshold voltage is applied between the substrates, the second migration having the larger threshold voltage than the time until the first migrating particles 11 having the smaller threshold voltage are separated from the substrate and the movement is finished. By adopting particles having a longer time until the particles 12 are peeled from the substrate, the second migrating particles 12 are peeled after the first migrating particles 11 are peeled off from one substrate and moved. Select startable particles. Thereby, after the movement of the first migrating particle 11 having the smaller threshold voltage of the adjacent pixel to one substrate, the voltage of the application time corresponding to the gradation of the second migrating particle 12 having the larger threshold voltage is applied. It becomes possible to do.

ここで、本発明の実施の形態に係る画像表示装置50の制御部40による電圧印加部30の具体的な制御例について説明する。図3は、本実施の形態に係る画像表示装置50の制御部40による電圧印加部30の制御例を説明するための図である。   Here, a specific control example of the voltage application unit 30 by the control unit 40 of the image display device 50 according to the embodiment of the present invention will be described. FIG. 3 is a diagram for explaining a control example of the voltage application unit 30 by the control unit 40 of the image display device 50 according to the present embodiment.

第1泳動粒子11及び第2泳動粒子12は、図3(A)に示すような特性の粒子が選択されている。第1泳動粒子11の閾値電圧を|V1|とし第2泳動粒子12の閾値電圧を|V2|とする。なお、図2と同様に、図3(A)の実線は電圧−V2を印加したときの第1泳動粒子11は剥離開始を示し、点線は第1泳動粒子11の移動終了を示す。また、図3(A)の一点鎖線は第2泳動粒子12の剥離開始を示す。図3(A)の例では、第1泳動粒子11及び第2泳動粒子12は共に正極の帯電特性を有し、表示側電極3を共通電極としてグランドとし、背面側電極4を電極A〜Bとして電圧を印加するものとする。2種類の粒子は、共に負極の帯電特性であっても、互いに帯電極性が異なっても同様の効果を有する。   As the first migrating particles 11 and the second migrating particles 12, particles having characteristics as shown in FIG. 3A are selected. The threshold voltage of the first migrating particles 11 is | V1 |, and the threshold voltage of the second migrating particles 12 is | V2 |. As in FIG. 2, the solid line in FIG. 3A indicates the start of separation of the first migrating particles 11 when the voltage −V2 is applied, and the dotted line indicates the end of movement of the first migrating particles 11. Moreover, the alternate long and short dash line in FIG. 3A indicates the start of peeling of the second migrating particles 12. In the example of FIG. 3A, both the first migrating particles 11 and the second migrating particles 12 have positive charge characteristics, the display side electrode 3 is a common electrode and the ground, and the back side electrode 4 is an electrode AB. A voltage is applied as follows. The two types of particles have the same effect even if they have both negative electrode charging characteristics and different charging polarities.

本実施の形態では、図3(A)に示すように、第1泳動粒子11と第2泳動粒子の閾値電圧の差が十分に大きいものが選択されている。なお、閾値電圧の差が十分に大きいとは、第2泳動粒子12の閾値電圧に相当する電圧−V2を印加したときに、第1泳動粒子11が基板を剥離してから移動終了するまでの時間より、第2泳動粒子12が基板から剥離開始するまでの時間が長くなっていることを示す。   In the present embodiment, as shown in FIG. 3A, a sufficiently large threshold voltage difference between the first migrating particles 11 and the second migrating particles is selected. The difference between the threshold voltages is sufficiently large when the voltage −V2 corresponding to the threshold voltage of the second migrating particles 12 is applied until the movement of the first migrating particles 11 is completed after the substrate is peeled off. It shows that the time until the second migrating particles 12 start to peel from the substrate is longer than the time.

ここで、制御部40が電圧印加部30を制御して、各々隣接する電極A〜Cへ印加する電圧を図3(B)に示すように印加するものとする。なお、リセットを予め行って表示基板1側に第1泳動粒子11及び第2泳動粒子12を移動させておく。この場合、各々の画素では、はじめに−V2の電圧が印加されることにより、図3(C)の状態から第1泳動粒子11が移動を開始して表示基板1側から背面基板2側へ移動する。そして、第1泳動粒子11の移動が終了する。続いて、電極Bでは、第2泳動粒子12の階調に応じた電圧印加が継続されて、図3(E)に示すように、第2泳動粒子12の表示基板1側から背面基板2側への移動を開始する。そして、図3(B)の時間txでは、図3(F)に示すように、電極A、Cへの電圧印加を終了し、電極Bでは、第2泳動粒子12の階調に応じた電圧印加が継続されて、第2泳動粒子12が背面基板2側へ移動して、階調に応じた電圧印加時間を経過したところで電極Bの電圧印加を終了する。本実施の形態では、第1泳動粒子11の移動が終了してから、第2泳動粒子12の階調に応じた電圧の印加が行われの
で、混色が発生することなく、図3(G)に示すように、第2泳動粒子12の階調に応じた移動を終了する。
Here, it is assumed that the control unit 40 controls the voltage application unit 30 to apply the voltages applied to the adjacent electrodes A to C as shown in FIG. Note that resetting is performed in advance to move the first migrating particles 11 and the second migrating particles 12 to the display substrate 1 side. In this case, in each pixel, by first applying a voltage of −V2, the first migrating particles 11 start moving from the state of FIG. 3C and move from the display substrate 1 side to the rear substrate 2 side. To do. Then, the movement of the first migrating particles 11 is finished. Subsequently, in the electrode B, voltage application according to the gradation of the second migrating particles 12 is continued, and as shown in FIG. 3E, the display substrate 1 side of the second migrating particles 12 to the rear substrate 2 side. Start moving to. Then, at time tx in FIG. 3B, as shown in FIG. 3F, the voltage application to the electrodes A and C is completed, and the voltage corresponding to the gradation of the second migrating particles 12 is applied to the electrode B. The application is continued, the second migrating particles 12 move to the back substrate 2 side, and the voltage application of the electrode B is terminated when the voltage application time corresponding to the gradation has elapsed. In the present embodiment, since the voltage is applied in accordance with the gradation of the second migrating particle 12 after the movement of the first migrating particle 11 is completed, color mixture does not occur and FIG. As shown in FIG. 4, the movement of the second migrating particles 12 according to the gradation is finished.

上記の実施の形態では、第2泳動粒子12の閾値電圧を印加したときに、第1泳動粒子11が一方の基板から剥離して移動終了後に、第2泳動粒子12の剥離を開始可能にする構成例として、大きい方の閾値電圧を基板間に印加したときに、閾値電圧が小さい方の第1泳動粒子11が基板から剥離して移動終了するまでの時間より、閾値電圧が大きい方の第2泳動粒子12が基板から剥離するまでの時間の方が長い特性を有する粒子を選択した例を説明したが、これに限るものではない。   In the above embodiment, when the threshold voltage of the second migrating particles 12 is applied, the first migrating particles 11 can be separated from the one substrate, and after the movement, the second migrating particles 12 can be separated. As a configuration example, when a larger threshold voltage is applied between the substrates, the first threshold voltage having a larger threshold voltage than the time until the first migrating particles 11 having the smaller threshold voltage peel off from the substrate and finish moving. Although the example which selected the particle | grains with the characteristic that the time until the 2 electrophoretic particle 12 peels from a board | substrate is longer was demonstrated, it does not restrict to this.

例えば、制御部40が電圧印加部30を制御して、閾値電圧の小さい方の第1泳動粒子11を先に移動させるパルス電圧を前もって印加するようにしてもよい。或いは、リセット時の電圧の大きさや印加時間により泳動粒子の剥離開始時間を制御するようにしてもよい。或いは、これらのうち少なくとも一方と、粒子の選択とを組み合わせるようにしてもよい。   For example, the control unit 40 may control the voltage application unit 30 to apply in advance a pulse voltage that moves the first migrating particles 11 having the smaller threshold voltage first. Or you may make it control the peeling start time of the electrophoretic particle by the magnitude | size of the voltage at the time of reset, and application time. Or you may make it combine at least one of these and selection of particle | grains.

閾値電圧の小さい方の第1泳動粒子11を先に移動させるパルス電圧を前もって印加する例を図4に示す。   An example in which a pulse voltage for moving the first migrating particles 11 having the smaller threshold voltage first is applied in advance is shown in FIG.

図4(A)に示すように、第1泳動粒子11の閾値電圧に相当する電圧−V1を各画素に前もって印加する。すなわち、第1泳動粒子のみが基板から剥離し、第2泳動粒子12が基板から剥離しない電圧を前もって印加する。   As shown in FIG. 4A, a voltage −V1 corresponding to the threshold voltage of the first migrating particles 11 is applied in advance to each pixel. That is, a voltage is applied in advance so that only the first migrating particles are separated from the substrate and the second migrating particles 12 are not separated from the substrate.

これにより、図4(B)に、電圧−V1を印加開始してから第1泳動粒子11が基板から剥離して終了するまでの時間より、電圧−V1を印加開始してから第2泳動粒子12が基板から剥離開始するまでの時間の方が長くなる。   Thus, in FIG. 4B, from the time from the start of applying the voltage −V1 to the time when the first migrating particles 11 are peeled off from the substrate and finish, the second migrating particles from the start of applying the voltage −V1. The time until 12 starts to peel from the substrate becomes longer.

すなわち、リセットを予め行って表示基板1側に第1泳動粒子11及び第2泳動粒子12を表示基板1側に移動させた状態(図4(C)の状態)で、各画素に対して図4(A)のように基板間に電圧を印加すると、各画素では、基板間に印加された電圧−V1によって第1泳動粒子11がのみが背面基板2側に移動して図4(D)に示す状態となる。続いて、各画素に対して電圧−V2が基板間に印加され、第1泳動粒子11の背面基板2側への移動が終了する。このとき、図4(E)に示すように第2泳動粒子12が表示基板1から背面基板2側へ移動を開始する。続いて、図4(A)の時間txで電極A、Cの電圧の印加を停止して電極Bの電圧を印加を階調に応じて継続する。電極Bでは、階調に応じて電圧−V2の印加が継続され、図4(F)に示すように、第2泳動粒子12が背面基板2側に移動して、階調に応じた時間が経過したところで、電圧の印加を停止して図4(G)に示す状態となる。   That is, the resetting is performed in advance and the first migrating particles 11 and the second migrating particles 12 are moved to the display substrate 1 side (the state shown in FIG. 4C). When a voltage is applied between the substrates as in FIG. 4A, in each pixel, only the first migrating particles 11 move to the back substrate 2 side by the voltage −V1 applied between the substrates, and FIG. It will be in the state shown in Subsequently, the voltage −V2 is applied between the substrates for each pixel, and the movement of the first migrating particles 11 toward the back substrate 2 is completed. At this time, as shown in FIG. 4E, the second migrating particles 12 start moving from the display substrate 1 to the rear substrate 2 side. Subsequently, the application of the voltages of the electrodes A and C is stopped at the time tx in FIG. 4A, and the application of the voltage of the electrode B is continued according to the gradation. In the electrode B, the application of the voltage −V2 is continued according to the gradation, and as shown in FIG. 4F, the second migrating particles 12 move to the back substrate 2 side, and the time corresponding to the gradation is obtained. When the time has elapsed, the application of voltage is stopped and the state shown in FIG.

このように、閾値電圧の小さい方の第1粒子11を先に移動させるパルス電圧を前もって印加するようにしても、第1泳動粒子11が一方の基板から剥離して移動終了後に、第2泳動粒子12の剥離を開始するようになるので、混色が抑制される。   As described above, even if the pulse voltage for moving the first particle 11 having the smaller threshold voltage first is applied in advance, the second migration is performed after the first migration particle 11 is separated from the one substrate and the movement is completed. Since peeling of the particles 12 starts, color mixing is suppressed.

一方、リセット時の電圧の大きさや印加時間により泳動粒子の剥離開始時間を制御する場合について説明する。例えば、第2泳動粒子12の閾値電圧を基板間に印加したときに、閾値電圧が大きい方の第2泳動粒子12が基板から剥離開始するまでに、閾値電圧が小さい方の第1泳動粒子11の移動が終了する大きさ又は時間の電圧をリセット時に印加する。リセット時の電圧印加時間TR(図5(A)参照)が長い、或いはリセット時の電圧VR(図5(A)参照)が大きいほど、リセットにより移動した粒子が基板面近傍に近く整列して配置される。そのため、粒子と基板間とに働く静電的付着力が揃い、静電的付着
力の分布が小さくなる。
On the other hand, the case where the peeling start time of electrophoretic particles is controlled by the magnitude of voltage at reset and the application time will be described. For example, when the threshold voltage of the second electrophoretic particle 12 is applied between the substrates, the first electrophoretic particle 11 having the smaller threshold voltage is required until the second electrophoretic particle 12 having the larger threshold voltage starts to peel from the substrate. A voltage having a magnitude or a time at which the movement of the motor ends is applied at the time of resetting. As the voltage application time TR at reset (see FIG. 5A) is longer or the voltage VR at reset (see FIG. 5A) is larger, the particles moved by the reset are aligned closer to the substrate surface. Be placed. Therefore, the electrostatic adhesive force acting between the particles and the substrate is uniform, and the distribution of the electrostatic adhesive force is reduced.

よって、リセット電圧を印加した後、粒子を反対側の基板方向へ移動のための電圧を基板間に印加した場合の基板から粒子が剥離を開始する時間は、リセット時間が長いほど、或いはリセット電圧が大きいほど大きくなる。その結果、図5(B)に示すように、先に移動する閾値電圧の小さい第1泳動粒子11の剥離時間の分布も小さくなり、剥離開始から移動終了までの時間が小さくなり、次に移動する閾値電圧の大きい第2泳動粒子12が移動開始するまでに、閾値電圧の小さい第1泳動粒子11のほとんどが反対側の基板へ到達し、閾値電圧の大きい第2泳動粒子12の階調駆動により隣接電極間に電位差が生じても、混色により不慮の粒子移動の発生を抑えられる。粒子を片側の基板に揃えるリセット電圧印加後に、それぞれの粒子を階調に応じて移動させる電圧を印加するが、それぞれの電圧印加前に0V電位を印加する時間を有していてもよい。この場合は、電極間の電圧極性切り換えに伴い、電源の電流が一度に流れないため、省電力となる効果を有する。   Therefore, after applying the reset voltage, when the voltage for moving the particles toward the opposite substrate is applied between the substrates, the time for the particles to start peeling from the substrate is the longer the reset time or the reset voltage The larger the value, the larger. As a result, as shown in FIG. 5B, the distribution of the separation time of the first migrating particles 11 having the smaller threshold voltage that moves first becomes smaller, the time from the start of separation to the end of the movement becomes smaller, and the next movement By the time the second migrating particles 12 having a large threshold voltage start to move, most of the first migrating particles 11 having a small threshold voltage reach the opposite substrate, and the second migrating particles 12 having a large threshold voltage are driven by gradation. Thus, even if a potential difference occurs between adjacent electrodes, the occurrence of inadvertent particle movement can be suppressed by color mixing. After applying the reset voltage for aligning the particles on one side of the substrate, a voltage for moving each particle according to the gradation is applied, but it may have time to apply a 0 V potential before applying each voltage. In this case, since the current of the power source does not flow at the same time when the voltage polarity is switched between the electrodes, there is an effect of saving power.

なお、上記実施の形態に係る画像表示装置50の電圧印加部30が電極間に印加する電圧は、上記で示した駆動パルス以外のものを適用するようにしてもよい。例えば、図6(A)に示すように、2つのステップで電圧を印加する駆動パルスを適用するようにしてもよい。該駆動パルスは、泳動粒子を基板から剥離させる大きさかつ階調に応じた印加時間の電圧−V2を印加する第1ステップと、第1ステップで印加する電圧より小さく、剥離した泳動粒子を基板へ付着させる大きさの電圧−V1を印加する第2ステップとを組み合わせた駆動パルスとされている。   Note that the voltage applied between the electrodes by the voltage application unit 30 of the image display device 50 according to the above embodiment may be applied to a voltage other than the drive pulse described above. For example, as shown in FIG. 6A, a driving pulse for applying a voltage in two steps may be applied. The drive pulse is smaller than the voltage applied in the first step, the first step of applying the voltage −V2 of the application time corresponding to the magnitude and gradation for separating the electrophoretic particles from the substrate, and the separated electrophoretic particles are removed from the substrate. The driving pulse is combined with the second step of applying the voltage −V1 having a magnitude to be attached to the electrode.

例えば、図6(A)のように、各電極A〜Cに2つのステップからなる駆動パルスを印加した場合、図6(B)〜(E)に示すように粒子が移動する。すなわち、リセットを予め行って表示基板1側に第1泳動粒子11及び第2泳動粒子12を移動させた状態(図6(B)の状態)で、各画素に対して図6(A)のように基板間に第1ステップの電圧を印加すると、各画素では、基板間に印加された電圧−V2によって第1泳動粒子11が移動を開始して反対側の基板へ移動する。そして、図6(A)の時間txでは、第1泳動粒子11の移動が終了して図6(C)に示す状態となる。続いて、電極A、Cの電圧の印加を停止して、電極Bの電圧の印加を階調に応じて継続する。これにより、図6(D)に示すように、電極Bに第2泳動粒子12が移動する。そして、各画素の電極A〜Cに第2ステップの電圧を印加することで、電極A、Cの電圧の印加を停止前に剥離し浮遊している第2泳動粒子12が背面基板2側へ付着して図6(E)に示すように安定した状態となる。   For example, when a driving pulse consisting of two steps is applied to each of the electrodes A to C as shown in FIG. 6 (A), the particles move as shown in FIGS. 6 (B) to (E). That is, in a state where the resetting is performed in advance and the first migrating particles 11 and the second migrating particles 12 are moved to the display substrate 1 side (the state shown in FIG. 6B), the pixels shown in FIG. Thus, when the voltage of the first step is applied between the substrates, in each pixel, the first migrating particles 11 start to move by the voltage −V2 applied between the substrates and move to the opposite substrate. Then, at the time tx in FIG. 6A, the movement of the first migrating particles 11 is completed and the state shown in FIG. 6C is obtained. Subsequently, the application of the voltages of the electrodes A and C is stopped, and the application of the voltage of the electrode B is continued according to the gradation. Thereby, as shown in FIG. 6D, the second migrating particles 12 move to the electrode B. Then, by applying the voltage of the second step to the electrodes A to C of each pixel, the second migrating particles 12 that have peeled off and floated before the application of the voltages of the electrodes A and C to the back substrate 2 side are removed. It will adhere and will be in the stable state as shown in FIG.6 (E).

ところで、図6(A)に示すように、2つのステップからなる駆動パルスを印加する場合には、例えば、図6(A)の時間tx以降において、電極A、Cと、電極Bとで異なる電圧を印加する必要がある。同じタイミングで画素毎に異なる電圧を印加するためには複雑な制御、或いは高価な電源回路等が必要となる。   By the way, as shown in FIG. 6A, in the case of applying a drive pulse consisting of two steps, for example, after time tx in FIG. It is necessary to apply a voltage. In order to apply different voltages for each pixel at the same timing, complicated control or an expensive power supply circuit is required.

そこで、各画素において同じタイミングで同じ大きさの電圧を印加するように電圧の印加タイミングを揃えるようにしてもよい。   Therefore, the voltage application timings may be aligned so that the same voltage is applied at the same timing in each pixel.

例えば、図7(A)に示すように、階調の異なる電極間で閾値電圧の大きい方の粒子を基板から剥離させる閾値電圧以上の電圧(第1ステップの電圧)の印加時間が、階調値の異なる画素間で異なる場合、パルス終了後は一旦0電位とする。図7(A)の例では、電極A、Cの電位を一旦0とする。そして、剥離した粒子を移動させる閾値電圧以下の電圧(第2ステップの電圧)は全ての画素の第1ステップの電圧の印加が終了した後に印加する。すなわち、第1ステップの電圧を印加して階調に応じた印加時間が経過したところで一旦電圧の印加を停止して、第2ステップの電圧の印加タイミングを各画素で揃える。これによって、各画素で同じタイミングで同じ大きさの電圧(又は0電位)が印加される。   For example, as shown in FIG. 7A, the application time of a voltage (first step voltage) that is equal to or higher than the threshold voltage for peeling particles having a larger threshold voltage from the substrate between electrodes of different gradations If the value differs between pixels, the potential is once set to 0 potential after the pulse ends. In the example of FIG. 7A, the potentials of the electrodes A and C are once set to zero. A voltage lower than the threshold voltage (second step voltage) for moving the separated particles is applied after the application of the first step voltage of all the pixels is completed. That is, when the first step voltage is applied and the application time corresponding to the gradation has elapsed, the voltage application is temporarily stopped, and the voltage application timing of the second step is made uniform for each pixel. As a result, the same voltage (or 0 potential) is applied to each pixel at the same timing.

或いは、図7(B)に示すように、第1ステップの電圧の印加を終了するタイミングを揃えるようにしてもよい。この場合には、図7(B)のように、第1ステップの電圧印加の終了タイミングを揃えることにより、画素間で不要な粒子の移動が抑制されて混色が抑制される。   Alternatively, as shown in FIG. 7B, the timing for ending the application of the voltage in the first step may be aligned. In this case, as shown in FIG. 7B, by aligning the end timing of the voltage application in the first step, unnecessary movement of particles between pixels is suppressed, and color mixing is suppressed.

なお、上記の実施の形態では、基板間に2種類の泳動粒子を封入した例を説明したが、これに限るものではない。例えば、3種類以上の複数種類の泳動粒子を封入する場合に適用するようにしてもよい。この場合には、それぞれの閾値電圧を切替える際に、隣接する画素の閾値電圧が小さい方の泳動粒子が一方の基板に移動終了後に、閾値電圧が大きい方の泳動粒子の階調に応じた印加時間の電圧を印加するように制御部40が電圧印加部30を制御すればよい。また、帯電極性が異なる2種類、あるいは3種類の泳動粒子を封入してもよく、帯電極性の異なる粒子は、電界を印加した時の泳動方向が互いに異なるが、閾値電圧の小さい方の泳動粒子が反対側の基板に移動終了後に、閾値電圧が大きい粒子が先に泳動した閾値電圧の小さい粒子とは逆の方向に移動するように制御すればよい。   In the above-described embodiment, an example in which two types of migrating particles are sealed between substrates has been described. However, the present invention is not limited to this. For example, the present invention may be applied when enclosing three or more types of electrophoretic particles. In this case, when switching the respective threshold voltages, after the migrating particles having the smaller threshold voltage of the adjacent pixels move to one substrate, the application is performed in accordance with the gradation of the migrating particles having the larger threshold voltage. The control unit 40 may control the voltage application unit 30 so as to apply the voltage of time. In addition, two or three types of migrating particles having different charging polarities may be encapsulated, and the particles having different charging polarities have different migratory directions when an electric field is applied, but the smaller migrating particles having a lower threshold voltage. After the movement to the opposite substrate, the particles having a large threshold voltage may be controlled so as to move in the direction opposite to the particles having the small threshold voltage previously migrated.

また、上記の実施形態における制御部40による電圧印加部30の制御は、ハードウエアによって実現するようにしてもよいし、ソフトウエアのプログラムを実行することによって実現するようにしてもよい。また、当該プログラムは、各種記憶媒体に記憶して流通するようにしてもよい。   In addition, the control of the voltage application unit 30 by the control unit 40 in the above-described embodiment may be realized by hardware or may be realized by executing a software program. The program may be stored in various storage media and distributed.

1 表示基板
2 背面基板
3 表示側電極
4 背面側電極
10 画像表示装置
11 第1泳動粒子
12 第2泳動粒子
20 駆動装置
30 電圧印加部
40 制御部
50 画像表示装置
DESCRIPTION OF SYMBOLS 1 Display substrate 2 Back substrate 3 Display side electrode 4 Back side electrode 10 Image display apparatus 11 1st electrophoretic particle 12 2nd electrophoretic particle 20 Drive apparatus 30 Voltage application part 40 Control part 50 Image display apparatus

Claims (6)

一対の基板と、
前記一対の基板の間に封入され各々電圧印加により基板から剥離し、各々剥離を始める閾値電圧が異なる複数種類の粒子を含む複数の画素と、
隣接する前記画素の前記閾値電圧が小さい方の前記粒子が一方の基板に移動終了後に、前記閾値電圧が大きい方の前記粒子の階調に応じた印加時間の電圧を印加する印加部と、
を備え、
前記印加部は、前記閾値電圧が小さい方の前記粒子が基板から剥離し、前記閾値電圧が大きい方の前記粒子が基板から剥離しない大きさの電圧を前もって更に印加する画像表示装置
A pair of substrates;
A plurality of pixels encapsulated between the pair of substrates, each peeled off from the substrate by voltage application, each including a plurality of types of particles having different threshold voltages for starting peeling; and
An application unit that applies a voltage of an application time according to the gradation of the particle having the larger threshold voltage after the particles having the smaller threshold voltage of the adjacent pixel have finished moving to one substrate;
With
The application unit is an image display device that further applies in advance a voltage with such a magnitude that the particles having a smaller threshold voltage are separated from the substrate, and the particles having a larger threshold voltage are not separated from the substrate .
一対の基板と、A pair of substrates;
前記一対の基板の間に封入され各々電圧印加により基板から剥離し、各々剥離を始める閾値電圧が異なる複数種類の粒子を含む複数の画素と、A plurality of pixels encapsulated between the pair of substrates, each peeled off from the substrate by voltage application, each including a plurality of types of particles having different threshold voltages for starting peeling; and
隣接する前記画素の前記閾値電圧が小さい方の前記粒子が一方の基板に移動終了後に、前記閾値電圧が大きい方の前記粒子の階調に応じた印加時間の電圧を印加する印加部と、An application unit that applies a voltage of an application time according to the gradation of the particle having the larger threshold voltage after the particles having the smaller threshold voltage of the adjacent pixel have finished moving to one substrate;
を備え、With
前記印加部は、前記印加部により各々の前記粒子が移動する電圧を印加したときに前記閾値電圧が大きい方の前記粒子が基板から剥離開始するまでに前記閾値電圧が小さい方の前記粒子の移動が終了するようにするための大きさ又は時間の電圧をリセット時に更に印加する画像表示装置。The application unit moves the particles having a smaller threshold voltage before the particles having the larger threshold voltage start to peel from the substrate when a voltage at which each of the particles moves is applied by the application unit. An image display device that further applies a voltage having a magnitude or time for resetting at the time of resetting.
一対の基板と、A pair of substrates;
前記一対の基板の間に封入され各々電圧印加により基板から剥離し、各々剥離を始める閾値電圧が異なる複数種類の粒子を含む複数の画素と、A plurality of pixels encapsulated between the pair of substrates, each peeled off from the substrate by voltage application, each including a plurality of types of particles having different threshold voltages for starting peeling; and
隣接する前記画素の前記閾値電圧が小さい方の前記粒子が一方の基板に移動終了後に、前記閾値電圧が大きい方の前記粒子の階調に応じた印加時間の電圧を印加する印加部と、An application unit that applies a voltage of an application time according to the gradation of the particle having the larger threshold voltage after the particles having the smaller threshold voltage of the adjacent pixel have finished moving to one substrate;
を備え、With
前記印加部は、前記閾値電圧が大きい方の前記粒子を基板から剥離させる大きさで、かつ階調に応じた印加時間の電圧を印加する第1ステップと、前記第1ステップで印加する電圧より小さく、基板から剥離した前記粒子を基板へ付着させる大きさの電圧を印加する第2ステップと、を有する駆動パルスを印加し、前記駆動パルスは、各画素の前記第2ステップの電圧の印加タイミングが揃えられている画像表示装置。The application unit has a first step of applying a voltage having an application time corresponding to a gradation, and a voltage applied in the first step. A second step of applying a voltage that is small and has a magnitude that causes the particles peeled off the substrate to adhere to the substrate, and the drive pulse applies the voltage application timing of the second step of each pixel. Is an image display device.
前記閾値電圧が小さい方の前記粒子と前記閾値電圧が大きい方の前記粒子は、大きい方の前記閾値電圧を前記一対の基板の間に印加したときに、前記閾値電圧が小さい方の前記粒子が基板から剥離して移動終了するまでの時間より、前記閾値電圧が大きい方の前記粒子が基板から剥離するまでの時間の方が長い特性を有する粒子である請求項1〜の何れか1項に記載の画像表示装置。 The particles having the smaller threshold voltage and the particles having the larger threshold voltage are applied when the threshold voltage having the larger threshold voltage is applied between the pair of substrates. than the time until the end peeling to move from the substrate, any one of the preceding claims 1-3 wherein the particles of the upper threshold voltage is large particles having a long characteristic towards the time until separated from the substrate The image display device described in 1. 請求項1〜4の何れか1項に記載の画像表示装置の前記印加部が印加する電圧を制御する制御部
を備えた画像表示制御装置。
The image display control apparatus provided with the control part which controls the voltage which the said application part of the image display apparatus of any one of Claims 1-4 applies .
コンピュータを、請求項1〜の何れか1項に記載の画像表示装置の前記印加部として機能させるための画像表示プログラム。 The image display program for functioning a computer as the said application part of the image display apparatus of any one of Claims 1-4 .
JP2014041067A 2014-03-03 2014-03-03 Image display device, image display control device, and image display program Active JP6362354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041067A JP6362354B2 (en) 2014-03-03 2014-03-03 Image display device, image display control device, and image display program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041067A JP6362354B2 (en) 2014-03-03 2014-03-03 Image display device, image display control device, and image display program

Publications (2)

Publication Number Publication Date
JP2015166781A JP2015166781A (en) 2015-09-24
JP6362354B2 true JP6362354B2 (en) 2018-07-25

Family

ID=54257686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041067A Active JP6362354B2 (en) 2014-03-03 2014-03-03 Image display device, image display control device, and image display program

Country Status (1)

Country Link
JP (1) JP6362354B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003233105A1 (en) * 2003-01-23 2004-08-13 Koninklijke Philips Electronics N.V. Electrophoretic display device and driving method therefor
KR20080023913A (en) * 2006-09-12 2008-03-17 삼성전자주식회사 Electrophoretic display and method for driving thereof
JP6235196B2 (en) * 2012-05-31 2017-11-22 イー インク コーポレイション Display medium drive device, drive program, and display device
JP5935064B2 (en) * 2012-05-31 2016-06-15 イー インク コーポレイション Image display medium drive device, image display device, and drive program

Also Published As

Publication number Publication date
JP2015166781A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5304850B2 (en) Display medium drive device, drive program, and display device
JP5935064B2 (en) Image display medium drive device, image display device, and drive program
CN110010080A (en) Electrophoretic display device (EPD) and its driving method
JP2013186409A (en) Driving device for image display medium, image display device and driving program
JP6095471B2 (en) Display medium drive device, drive program, and display device
JP5996277B2 (en) Image display medium and image display device
JP6362354B2 (en) Image display device, image display control device, and image display program
JP6067247B2 (en) Display medium drive device, drive program, and display device
JP6284294B2 (en) Image display medium drive device, image display device, and drive program
JP6001466B2 (en) Image display medium drive device, image display device, and drive program
JP5287952B2 (en) Display medium drive device, drive program, and display device
JP6371078B2 (en) Image display device, image display control device, and image display program
JP6082660B2 (en) Display medium drive device, drive program, and display device
JP2013250384A (en) Drive device of display medium, drive program of the display medium and display device
JP6182330B2 (en) Image display medium drive device, image display device, and drive program
JP6594502B2 (en) Method for driving a display medium
JP6522881B2 (en) Display medium drive device, display medium drive program, and display device
JP2016194730A (en) Image display medium and image display apparatus
JP6343157B2 (en) Display medium drive device, display medium drive program, and display device
JP2017016140A (en) Image display medium driving device, image display device, and driving program
JP5382073B2 (en) Display medium drive device, drive program, and display device
JP2016197268A (en) Driving device of display medium, driving program, and display device
JP2005284171A (en) Display device
JP2014142513A (en) Driving device for display medium, driving program, and display device
JP2014106367A (en) Drive unit for display medium, drive program and display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6362354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250