JP6359921B2 - Pulmonary hypertension drug and screening method thereof - Google Patents

Pulmonary hypertension drug and screening method thereof Download PDF

Info

Publication number
JP6359921B2
JP6359921B2 JP2014181860A JP2014181860A JP6359921B2 JP 6359921 B2 JP6359921 B2 JP 6359921B2 JP 2014181860 A JP2014181860 A JP 2014181860A JP 2014181860 A JP2014181860 A JP 2014181860A JP 6359921 B2 JP6359921 B2 JP 6359921B2
Authority
JP
Japan
Prior art keywords
receptor
antibody
hypoxia
administration group
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014181860A
Other languages
Japanese (ja)
Other versions
JP2016056115A (en
Inventor
良和 中岡
良和 中岡
崇弘 片岡
崇弘 片岡
Original Assignee
良和 中岡
良和 中岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 良和 中岡, 良和 中岡 filed Critical 良和 中岡
Priority to JP2014181860A priority Critical patent/JP6359921B2/en
Publication of JP2016056115A publication Critical patent/JP2016056115A/en
Application granted granted Critical
Publication of JP6359921B2 publication Critical patent/JP6359921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、肺高血圧症治療薬およびそのスクリーニング方法に関するものである。   The present invention relates to a therapeutic drug for pulmonary hypertension and a screening method thereof.

循環器系は体循環と肺循環とから構成され、肺循環の主要な存在意義は肺ガス交換の場を提供することである。左心室から駆出された血液は体組織全体を広く潅流するが、肺血管系には右心系(右心室と右心房)を介してこの体組織全体を潅流した血液が流入して、肺毛細血管と肺胞間でガス交換を行っている。よって、肺循環系は基本的にhigh flow−low pressure−low resistanceな系であり、肺血流量の増加に対しては肺血管の拡張や再疎通(閉じている血管の再開通)などの機序で圧の上昇を抑える仕組みが内在している。   The circulatory system is composed of systemic circulation and pulmonary circulation, and the main significance of pulmonary circulation is to provide a place for lung gas exchange. The blood ejected from the left ventricle perfuses the entire body tissue widely, but the perfused blood flows into the pulmonary vascular system via the right heart system (the right ventricle and the right atrium), and the lungs Gas exchange is performed between capillaries and alveoli. Therefore, the pulmonary circulatory system is basically a high flow-low pressure-low resistance system, and mechanisms such as dilatation of pulmonary blood vessels and recanalization (reopening of closed blood vessels) against increase in pulmonary blood flow. There is a mechanism to suppress the rise in pressure.

肺動脈平均圧は正常・安静時には上限20mmHgの範囲で制御されている。運動などで肺血流量が増加しても直ちに肺動脈の著明な増加は見られないが、肺血管床の約50−60%程度以上が閉塞すると圧や血管抵抗の上昇が生じることが報告されている。2008年の第4回肺高血圧ワールドシンポジウム(ダナポイント会議)では、安静時に右心カテーテル検査を用いて実測した肺動脈平均圧(mean PAP)が25mmHg以上の場合が肺高血圧症と定義された。さらに肺高血圧症例中で特に肺動脈楔入圧(PCWP)が15mmHg以下の場合を肺動脈性肺高血圧症(pulmonary arterial hypertension)と定義した。2013年のニース会議でもこの定義は変更されておらず、肺動脈平均圧25mmHg以上が肺高血圧症の定義として維持されている。   The average pulmonary artery pressure is controlled within the upper limit of 20 mmHg during normal / resting. Even if the pulmonary blood flow increases due to exercise, there is no immediate increase in the pulmonary artery, but it has been reported that when about 50-60% or more of the pulmonary vascular bed is occluded, pressure and vascular resistance increase. ing. At the 4th World Symposium on Pulmonary Hypertension (Dana Point Conference) in 2008, pulmonary hypertension was defined as the mean pulmonary artery mean pressure (mean PAP) measured using right heart catheterization at rest was 25 mmHg or higher. Furthermore, pulmonary arterial hypertension was defined as a pulmonary arterial hypertension when the pulmonary artery wedge pressure (PCWP) was 15 mmHg or less. This definition has not been changed at the 2013 Nice Conference, and a mean pulmonary artery pressure of 25 mmHg or more is maintained as a definition of pulmonary hypertension.

肺動脈性肺高血圧症(以下「PAH」と略記する場合がある)は肺動脈の中膜、内膜の過増殖を病態背景に有する疾患である。現在、肺高血圧症治療には、エンドセリン受容体拮抗薬(ボセンタン、アンブリセンタン等)、ホスホジエステラーゼ(PDE)5阻害薬(シルデナフィル、タダラフィル等)、プロスタグランジンI2およびその誘導体(エポプロステノール、べラプロスト等)などが使用されている。しかし、これらの治療による予後の改善は十分とは言えず、PAHは難病の1つに指定されている。それゆえ、PAHの新しい治療法の開発が要請されている。   Pulmonary arterial hypertension (hereinafter sometimes abbreviated as “PAH”) is a disease having a pulmonary arterial media and intimal hyperproliferation as a pathological background. Currently, the treatment of pulmonary hypertension includes endothelin receptor antagonists (bosentan, ambrisentan, etc.), phosphodiesterase (PDE) 5 inhibitors (sildenafil, tadalafil, etc.), prostaglandin I2 and derivatives thereof (epoprostenol, beraprost). Etc.) are used. However, the improvement in prognosis by these treatments is not sufficient, and PAH has been designated as one of intractable diseases. Therefore, there is a demand for the development of new treatments for PAH.

近年、炎症がPAHの病態の進行に関わると報告されており、特に炎症性サイトカインであるIL−6(インターロイキン−6)の関与が報告されている。例えば、IL−6の血中濃度が高い特発性PAH患者は、IL−6の血中濃度が低い特発性PAH患者と比べて、予後が不良であることが報告されている(非特許文献1)。また、低酸素(10%O)負荷による実験的肺高血圧症モデルマウスを用いた検討の結果、IL−6がその病態形成に重要であることが報告されている(非特許文献2、3)。 In recent years, inflammation has been reported to be involved in the progression of the pathological condition of PAH, and in particular, involvement of IL-6 (interleukin-6), which is an inflammatory cytokine, has been reported. For example, it has been reported that patients with idiopathic PAH having a high IL-6 blood concentration have a poorer prognosis than patients with idiopathic PAH having a low IL-6 blood concentration (Non-patent Document 1). ). In addition, as a result of examination using experimental pulmonary hypertension model mice with hypoxia (10% O 2 ) load, it has been reported that IL-6 is important for the pathogenesis (Non-patent Documents 2 and 3). ).

Soon E et al, Circulation 122, 920-927, 2010Soon E et al, Circulation 122, 920-927, 2010 Steiner MK et al, Circ. Res. 104, 236-244, 2009Steiner MK et al, Circ. Res. 104, 236-244, 2009 Savale L et al, Respir Res. 10, 6, 2009Savale L et al, Respir Res. 10, 6, 2009

本発明は、肺動脈性肺高血圧症の病態形成に関与する分子を見出し、当該分子を標的とする新規な肺高血圧症の予防および/または治療用医薬を提供することを課題とする。また、当該分子を標的とする肺高血圧症治療薬のスクリーニング方法を提供することを課題とする。   An object of the present invention is to find a molecule involved in the pathogenesis of pulmonary arterial hypertension, and to provide a novel preventive and / or therapeutic drug for pulmonary hypertension targeting the molecule. Another object of the present invention is to provide a screening method for a therapeutic drug for pulmonary hypertension that targets the molecule.

本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]IL−21(インターロイキン−21)からのシグナル伝達を阻害する物質を有効成分とする肺高血圧症の予防および/または治療用医薬。
[2]IL−21からのシグナル伝達を阻害する物質が、IL−21とIL−21受容体との相互作用を阻害する物質である前記[1]に記載の医薬。
[3]IL−21とIL−21受容体との相互作用を阻害する物質が、抗IL−21抗体、抗IL−21受容体抗体、IL−21と結合するペプチドおよびIL−21受容体と結合するペプチドからなる群から選択される一種である前記[2]に記載の医薬。
[4]IL−21とIL−21受容体との相互作用を阻害する物質が、抗IL−21抗体である前記[3]に記載の医薬。
[5]IL−21およびIL−21受容体を用いることを特徴とする肺高血圧症治療薬のスクリーニング方法。
[6]IL−21からのシグナル伝達を阻害する物質を選択することを特徴とする前記[5]に記載の方法。
[7]IL−21とIL−21受容体との相互作用を阻害する物質を選択することを特徴とする前記[5]に記載の方法。
[8]被験物質とIL−21とIL−21受容体を発現する細胞を接触させる工程と、IL−21受容体の下流のシグナル量を測定する工程と、被験物質を接触させない場合の前記細胞におけるシグナル量と比較して、シグナル量を低下させる被験物質を選択する工程とを含むことを特徴とする前記[6]に記載の方法。
[9]被験物質とIL−21とIL−21受容体を接触させる工程と、IL−21とIL−21受容体との結合レベルを測定する工程と、被験物質を接触させない場合の結合レベルと比較して、結合レベルを低下させる被験物質を選択する工程とを含むことを特徴とする前記[7]に記載の方法。
The present invention includes the following inventions in order to solve the above problems.
[1] A pharmaceutical for the prevention and / or treatment of pulmonary hypertension comprising a substance that inhibits signal transduction from IL-21 (interleukin-21) as an active ingredient.
[2] The medicament according to [1], wherein the substance that inhibits signal transduction from IL-21 is a substance that inhibits the interaction between IL-21 and IL-21 receptor.
[3] A substance that inhibits the interaction between IL-21 and IL-21 receptor is an anti-IL-21 antibody, an anti-IL-21 receptor antibody, a peptide that binds to IL-21, and an IL-21 receptor. The medicament according to the above [2], which is a kind selected from the group consisting of peptides that bind.
[4] The medicament according to [3], wherein the substance that inhibits the interaction between IL-21 and IL-21 receptor is an anti-IL-21 antibody.
[5] A screening method for a therapeutic agent for pulmonary hypertension, characterized by using IL-21 and IL-21 receptor.
[6] The method according to [5] above, wherein a substance that inhibits signal transduction from IL-21 is selected.
[7] The method described in [5] above, wherein a substance that inhibits the interaction between IL-21 and IL-21 receptor is selected.
[8] A step of contacting a test substance with a cell expressing IL-21 and IL-21 receptor, a step of measuring a signal amount downstream of the IL-21 receptor, and the cell when the test substance is not contacted The method according to [6] above, comprising a step of selecting a test substance that decreases the signal amount as compared with the signal amount in step (1).
[9] A step of bringing a test substance into contact with IL-21 and IL-21 receptor, a step of measuring a binding level between IL-21 and IL-21 receptor, and a binding level when not bringing the test substance into contact The method according to [7], further comprising a step of selecting a test substance that decreases the binding level.

本発明によれば、肺高血圧症の予防および/または治療に有用な新規な医薬を提供することができる。また、本発明のスクリーニング方法によれば、肺高血圧症の治療薬として有用な物質を取得することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel pharmaceutical useful for the prevention and / or treatment of pulmonary hypertension can be provided. Moreover, according to the screening method of the present invention, a substance useful as a therapeutic agent for pulmonary hypertension can be obtained.

低酸素チェンバー内で飼育したマウスの肺におけるIL−6遺伝子の経時的な発現量を定量RT−PCRで解析した結果を示す図である(**p<0.01)。It is a figure which shows the result of having analyzed the time-dependent expression level of IL-6 gene in the lung of the mouse | mouth raised in the hypoxia chamber by quantitative RT-PCR (** p <0.01). 低酸素チェンバー内で飼育したマウスの肺の抗IL−6抗体による免疫組織化学染色像である。上段が細動脈(arteriole)、下段が小動脈(small artery)であり、左が正常酸素負荷、右が低酸素負荷である。It is the immunohistochemical dyeing | staining image by the anti- IL-6 antibody of the lung of the mouse | mouth raised in the hypoxic chamber. The upper row is an arteriole, the lower row is a small artery, the left is normoxic, and the right is hypoxic. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の肺におけるSTAT3のリン酸化状態を、低酸素負荷後2日目の肺を試料とし、抗P−STAT3−Tyr705抗体および抗STAT3抗体を用いてウエスタンブロットを行った結果を示す図である。STAT3 phosphorylation status in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result of having performed the western blotting using the anti- P-STAT3-Tyr705 antibody and the anti-STAT3 antibody as a sample. 抗IL−6受容体抗体(MR16−1)投与によるIL−6シグナル阻害が低酸素誘発性肺高血圧症の病態に与える影響を検討するための実験プロトコールである。It is an experimental protocol for examining the influence of IL-6 signal inhibition by administration of an anti-IL-6 receptor antibody (MR16-1) on the pathology of hypoxia-induced pulmonary hypertension. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後28日目における肺高血圧症の病態を検討した結果を示す図であり、Aは右室収縮期圧(RVSP)の結果、Bはフルトン係数の結果、Cは中膜肥厚係数の結果、Dは肺の切片をエラスチカ・ワンギーソン染色し肺血管リモデリングを観察した染色像を示す図である。The result of having examined the pathological condition of the pulmonary hypertension in the hypoxia control antibody administration group, the hypoxia anti-IL-6 receptor antibody (MR16-1) administration group, and the normoxia control antibody administration group on the 28th day after the hypoxia load is shown. A is the result of right ventricular systolic pressure (RVSP), B is the result of Fulton's coefficient, C is the result of medial thickening coefficient, D is the Elastica-Wangieson staining of lung sections, and pulmonary vascular remodeling is observed FIG. 低酸素負荷後7日目の肺における、F4/80(マクロファージに限局して発現する糖たんぱく質)の発現を検討した結果を示す図であり、AおよびBは抗F4/80抗体によるウエスタンブロットの結果を示し、CおよびDは抗CD68抗体による免疫組織化学染色により陽性細胞を観察した結果を示す図である。It is a figure which shows the result of having examined the expression of F4 / 80 (the glycoprotein expressed only in a macrophage) in the lung on the 7th day after hypoxia, and A and B are the results of Western blotting with anti-F4 / 80 antibody. A result is shown and C and D are the figures which show the result of having observed the positive cell by the immunohistochemical dyeing | staining by an anti-CD68 antibody. 低酸素チェンバー内で飼育したマウスの肺から採取したマクロファージにおけるFizz1遺伝子(M2マクロファージマーカー)の経時的な発現量を定量RT−PCRで解析した結果を示す図である(*p<0.05、**p<0.01)。It is a figure which shows the result of having analyzed the time-dependent expression level of Fizz1 gene (M2 macrophage marker) in the macrophage extract | collected from the lung of the mouse | mouth raised in the hypoxic chamber (* p <0.05, **). p <0.01). 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群のマウスの肺から、低酸素負荷後4日目に採取したマクロファージのM2マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはFizz1遺伝子、BはArg1遺伝子、CはChi3l3遺伝子、DはMrc1遺伝子、EはCxcl12遺伝子の結果である。Macrophage M2 marker collected 4 days after hypoxic load from the lungs of mice in hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result of having analyzed the expression level of the gene by quantitative RT-PCR, A is a result of a Fizz1 gene, B is an Arg1 gene, C is a Chi313 gene, D is a Mrc1 gene, E is a result of a Cxcl12 gene. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群のマウスの肺から、低酸素負荷後4日目に採取したマクロファージのM1マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはNos2遺伝子、BはIL−12β遺伝子、CはTNF−α遺伝子の結果である。M1 marker of macrophages collected 4 days after hypoxic load from lungs of mice of hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result of having analyzed the expression level of the gene by quantitative RT-PCR, A is a Nos2 gene, B is a result of IL-12 (beta) gene, C is a result of a TNF- (alpha) gene. マウスから気管支肺胞洗浄によって採取したマクロファージを培養し、IL−6、可溶性IL−16受容体またはその両方で刺激した後に、マクロファージのM2マーカー遺伝子およびM1マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはFizz1遺伝子、BはArg1遺伝子、CはChi3l3遺伝子、DはMrc1遺伝子、EはCxcl12遺伝子、FはNos2遺伝子、GはIL−12β遺伝子、HはTNF−α遺伝子の結果である。Macrophages collected from bronchoalveolar lavage from mice were cultured and stimulated with IL-6, soluble IL-16 receptor or both, and then the expression levels of macrophage M2 marker gene and M1 marker gene were determined by quantitative RT-PCR. It is a figure which shows the result of analysis, A is Fizz1 gene, B is Arg1 gene, C is Chi3l3 gene, D is Mrc1 gene, E is Cxcl12 gene, F is Nos2 gene, G is IL-12β gene, H is TNF- It is the result of the α gene. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後3日目の肺におけるTh1細胞、Th2細胞の動態をフローサイトメトリーにより解析した結果を示す図であり、Aは各群のフローサイトメトリー解析結果であり、BはIFN−γ発現CD4陽性細胞の頻度を示す図であり、CはIL−4発現CD4陽性細胞の頻度を示す図である。Flow of Th1 cell and Th2 cell dynamics in the lung 3 days after hypoxic load of hypoxia control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result analyzed by cytometry, A is a flow cytometry analysis result of each group, B is a figure which shows the frequency of IFN-γ expression CD4 positive cell, C is IL-4 expression CD4 positive It is a figure which shows the frequency of a cell. 低酸素チェンバー内で飼育したマウスの肺におけるIL−17遺伝子の経時的な発現量を定量RT−PCRで解析した結果を示す図である(*p<0.05)。It is a figure which shows the result of having analyzed with time quantitative expression level of IL-17 gene in the lung of the mouse | mouth raised in the hypoxic chamber by quantitative RT-PCR (* p <0.05). 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるTh17細胞マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはIL−17A遺伝子、BはRorc遺伝子、CはCxcl1遺伝子、DはTNF−α遺伝子の結果である。Quantified the expression level of Th17 cell marker gene in the lung 2 days after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result analyzed by RT-PCR, A is an IL-17A gene, B is a Rorc gene, C is a Cxcl1 gene, D is a result of a TNF- (alpha) gene. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるIL−17発現量をウエスタンブロットにより解析した結果を示す図であり、Aはバンドの写真、Bはバンドの濃さを数値化した図である。The expression level of IL-17 in the lungs 2 days after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group was determined by Western blotting. It is a figure which shows the result analyzed, A is a photograph of a band, B is a figure which digitized the density of the band. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるTh17細胞の動態をフローサイトメトリーにより解析した結果を示す図であり、Aは各群のフローサイトメトリー解析結果であり、BはIL−17発現CD4陽性細胞の頻度を示す図である。Flow cytometry of Th17 cell dynamics in the lungs 2 days after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result analyzed, A is a flow cytometry analysis result of each group, B is a figure which shows the frequency of IL-17 expression CD4 positive cell. IL−17シグナルの阻害が低酸素誘発性肺高血圧症の病態に与える影響を検討するための実験プロトコールである。It is an experimental protocol for examining the influence of inhibition of IL-17 signal on the pathology of hypoxia-induced pulmonary hypertension. 低酸素コントロール抗体投与群、低酸素抗IL−17A中和抗体投与群および正常酸素コントロール抗体投与群の低酸素負荷後28日目における肺高血圧症の病態を検討した結果を示す図であり、Aは右室収縮期圧(RVSP)の結果、Bはフルトン係数の結果を示す図である。It is a figure which shows the result of having examined the pathological condition of the pulmonary hypertension in the hypoxia control antibody administration group, the hypoxia anti-IL-17A neutralization antibody administration group, and the normoxia control antibody administration group on the 28th day after the hypoxic load, Is a diagram showing the result of right ventricular systolic pressure (RVSP), and B is a diagram showing the result of Fulton coefficient. 低酸素チェンバー内で飼育したマウスの肺におけるIL−21遺伝子の経時的な発現量を定量RT−PCRで解析した結果を示す図である(*p<0.05)。It is a figure which shows the result of having analyzed the expression level with time of the IL-21 gene in the lung of the mouse | mouth raised in the hypoxia chamber by quantitative RT-PCR (* p <0.05). 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるIL−21遺伝子の発現量を定量RT−PCRで解析した結果を示す図である。Quantification of IL-21 gene expression level in the lung 2 days after hypoxic load in hypoxia control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result analyzed by RT-PCR. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるIL−21発現量をウエスタンブロットにより解析した結果を示す図であり、Aはバンドの写真、Bはバンドの濃さを数値化した図である。The expression level of IL-21 in the lungs 2 days after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group was determined by Western blotting. It is a figure which shows the result analyzed, A is a photograph of a band, B is a figure which digitized the density of the band. 低酸素コントロール抗体投与群、低酸素抗IL−6受容体抗体(MR16−1)投与群および正常酸素コントロール抗体投与群の低酸素負荷後2日目の肺におけるIL−21産生Th17細胞の動態をフローサイトメトリーにより解析した結果を示す図であり、Aは各群のフローサイトメトリー解析結果であり、BはIL−21発現CD4陽性細胞の頻度を示し、CはIL−17AおよびIL−21発現CD4陽性細胞の頻度を示す図である。The dynamics of IL-21-producing Th17 cells in the lungs on the second day after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-IL-6 receptor antibody (MR16-1) administration group and normoxia control antibody administration group It is a figure which shows the result analyzed by flow cytometry, A is a flow cytometry analysis result of each group, B shows the frequency of IL-21 expression CD4 positive cell, C is IL-17A and IL-21 expression It is a figure which shows the frequency of CD4 positive cell. マウスから気管支肺胞洗浄によって採取したマクロファージを培養し、IL−21で刺激した後に、マクロファージのM2マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはFizz1遺伝子、BはArg1遺伝子、CはCxcl12遺伝子の結果である。It is a figure which shows the result of having analyzed the macrophage extract | collected by the bronchoalveolar lavage from the mouse | mouth, and having stimulated with IL-21, and analyzed the expression level of the M2 marker gene of a macrophage by quantitative RT-PCR, A is a Fizz1 gene, B is the result of the Arg1 gene, and C is the result of the Cxcl12 gene. マウスから気管支肺胞洗浄によって採取したマクロファージを培養し、IL−21で刺激した後に、マクロファージのM1マーカー遺伝子の発現量を定量RT−PCRで解析した結果を示す図であり、AはNos2遺伝子、BはIL−12β遺伝子、CはTNF−α遺伝子の結果である。It is a figure which shows the result of having analyzed the expression level of the M1 marker gene of a macrophage by quantitative RT-PCR after culturing the macrophage extract | collected from the mouse | mouth by bronchoalveolar lavage, and stimulating with IL-21, A is a Nos2 gene, B is the result of IL-12β gene, and C is the result of TNF-α gene. ヒト肺動脈平滑筋細胞をIL−21で直接刺激して増殖に及ぼす効果を検討した結果を示す図である。It is a figure which shows the result of having examined the effect which stimulates a human pulmonary artery smooth muscle cell directly with IL-21, and has on proliferation. ヒト肺動脈平滑筋細胞を、IL−21存在下でマウス肺胞マクロファージを培養して得られた培養上清(マクロファージ馴化培地)を用いて培養した際に増殖に及ぼす効果を検討した結果を示す図である。The figure which shows the result which examined the effect on proliferation when a human pulmonary artery smooth muscle cell was cultured using the culture supernatant (macrophage conditioned medium) obtained by culturing a mouse alveolar macrophage in presence of IL-21. It is. ヒト肺動脈平滑筋細胞を、IL−21存在下でマウス肺胞マクロファージを培養して得られた培養上清(マクロファージ馴化培地)に、Cxcl12受容体であるCXCR4の選択的阻害剤AMD3100を添加した培地を用いて培養した際に、増殖に及ぼす効果を検討した結果を示す図である。Culture medium obtained by culturing mouse pulmonary artery smooth muscle cells with mouse alveolar macrophages in the presence of IL-21 (macrophage conditioned medium), a medium in which AMD3100, a selective inhibitor of CXCR4 receptor CXCR4, is added It is a figure which shows the result of having examined the effect which acts on proliferation when it culture | cultivates using. 低酸素コントロール抗体投与群、低酸素抗抗IL−21中和抗体投与群および正常酸素コントロール抗体投与群の低酸素負荷後7日目の肺におけるFizz1陽性細胞(M2マクロファージ)を、抗Fizz1抗体による免疫組織化学染色により観察した結果を示す図であり、Aは免疫組織化学染色像、Bは各群のFizz1陽性細胞を数示す図である。Fizz1-positive cells (M2 macrophages) in the lung 7 days after hypoxic load in the hypoxic control antibody administration group, hypoxia anti-anti-IL-21 neutralization antibody administration group and normoxia control antibody administration group were treated with anti-Fizz1 antibody. It is a figure which shows the result observed by the immunohistochemical dyeing | staining, A is an immunohistochemical dyeing | staining image, B is a figure which shows the number of Fzz1-positive cells of each group. 低酸素コントロール抗体投与群、低酸素抗抗IL−21中和抗体投与群および正常酸素コントロール抗体投与群の低酸素負荷後7日目の肺におけるリン酸化ヒストンH3(pHH3)陽性細胞を、抗リン酸化ヒストンH3抗体による免疫蛍光染色により観察した結果を示す図であり、Aは免疫蛍光染色像、Bは各群のリン酸化ヒストンH3陽性細胞数を示す図である。Phosphorylated histone H3 (pHH3) positive cells in the lung 7 days after hypoxic load in the hypoxic control antibody administration group, the hypoxia anti-anti-IL-21 neutralization antibody administration group and the normoxia control antibody administration group were treated with anti-phosphorus. It is a figure which shows the result observed by the immunofluorescence dyeing | staining with an oxidation histone H3 antibody, A is an immunofluorescence dyeing | staining image, B is a figure which shows the phosphorylated histone H3 positive cell number of each group. 低酸素野生型マウス群、低酸素IL−21受容体遺伝子欠損マウス群、正常酸素野生型マウス群の低酸素負荷後28日目における肺高血圧症の病態を検討した結果を示す図であり、Aは右室収縮期圧(RVSP)の結果、Bはフルトン係数の結果、Cは中膜肥厚係数の結果を示す図である。It is a figure which shows the result of having examined the pathological condition of the pulmonary hypertension in the hypoxic wild type mouse group, the hypoxic IL-21 receptor gene deletion mouse group, and the normoxic wild type mouse group on the 28th day after the hypoxic load, A FIG. 7 is a graph showing the results of right ventricular systolic pressure (RVSP), B is the result of Fulton coefficient, and C is the result of medial thickness coefficient. 低酸素による肺高血圧症発症の分子機構を示す図である。It is a figure which shows the molecular mechanism of pulmonary hypertension onset by hypoxia.

本発明者らは、IL−6シグナルの下流でヘルパーT細胞の1つのサブセットであるTh17細胞からIL−21が分泌されて、肺高血圧症の病態形成において重要な役割を持つことを見出した。すなわち、本発明者らは、低酸素条件下においてIL−6シグナル依存性にIL−21がTh17細胞から分泌され、IL−21の作用により、肺胞マクロファージがM2マクロファージ優位な状態に分化誘導されて、M2マクロファージから分泌される液性因子(SDF−1など)により肺動脈平滑筋細胞が増殖して肺血管がリモデリングすることで肺高血圧症を発症することを明らかにした(図30参照)。本発明者らは、IL−21シグナルが欠損するIL−21受容体欠損(IL−21RKO)マウスを用いて、低酸素誘発性肺高血圧症モデルを作成したところ、野生型マウスと比較してIL−21RKOマウスは肺高血圧症の病態の指標である右室収縮期圧、右室/左室+心室中隔重量比、肺動脈中膜肥厚率が有意に抑制されることを見出し、IL−21からのシグナル伝達阻害によって肺高血圧症の病態抑制が可能であることを見出した。IL−21からのシグナル伝達阻害による肺高血圧症治療の可能性を示唆する報告はこれまで全く無く、本発明者らの知見は、当該分野において革新的な成果と考えられる。   The present inventors have found that IL-21 is secreted from Th17 cells, which is a subset of helper T cells, downstream of the IL-6 signal and have an important role in the pathogenesis of pulmonary hypertension. That is, the present inventors secreted IL-21 from Th17 cells in an IL-6 signal-dependent manner under hypoxic conditions, and the action of IL-21 induced differentiation of alveolar macrophages into a state predominantly M2 macrophages. Thus, it was revealed that pulmonary arterial smooth muscle cells are proliferated by humoral factors (such as SDF-1) secreted from M2 macrophages and pulmonary blood vessels are remodeled to develop pulmonary hypertension (see FIG. 30). . The present inventors made a hypoxia-induced pulmonary hypertension model using IL-21 receptor-deficient (IL-21RKO) mice that lack IL-21 signal. -21RKO mice were found to significantly suppress the right ventricular systolic pressure, right ventricular / left ventricular + ventricular septal weight ratio, and pulmonary arterial media thickening rate, which are indicators of pulmonary hypertension, from IL-21 It was found that the pathophysiology of pulmonary hypertension can be suppressed by inhibiting signal transduction. Until now, there has been no report suggesting the possibility of treatment of pulmonary hypertension by inhibiting signal transduction from IL-21, and the findings of the present inventors are considered to be an innovative result in this field.

〔肺高血圧症の予防および/または治療用医薬〕
本発明は、IL−21からのシグナル伝達を阻害する物質を有効成分とする肺高血圧症の予防および/または治療用医薬を提供する。本発明の医薬の有効成分は、IL−21からのシグナル伝達を阻害する物質であればどのような物質でもよく、特に限定されないが、IL−21とIL−21受容体との相互作用を阻害する物質であることが好ましい。IL−21とIL−21受容体との相互作用を阻害する物質としては、例えば、抗IL−21抗体、抗IL−21受容体抗体、IL−21と結合するペプチド、IL−21受容体と結合するペプチドなどが挙げられるが、これらに限定されない。これらの抗体またはペプチドは、IL−21またはIL−21受容体と結合することにより、IL−21とIL−21受容体との相互作用を阻害することができる抗体(中和抗体)またはペプチドであることが好ましい。IL−21とIL−21受容体との相互作用を阻害することができる抗体またはペプチドは、IL−21からのシグナル伝達を阻害することができ、肺高血圧症の病態形成を抑制することができる。
[Pharmaceutical for the prevention and / or treatment of pulmonary hypertension]
The present invention provides a medicament for preventing and / or treating pulmonary hypertension, which comprises a substance that inhibits signal transduction from IL-21 as an active ingredient. The active ingredient of the medicament of the present invention may be any substance that inhibits signal transduction from IL-21, and is not particularly limited, but inhibits the interaction between IL-21 and IL-21 receptor. It is preferable that it is a substance. Examples of the substance that inhibits the interaction between IL-21 and IL-21 receptor include, for example, an anti-IL-21 antibody, an anti-IL-21 receptor antibody, a peptide that binds to IL-21, and an IL-21 receptor. Examples include, but are not limited to, a peptide that binds. These antibodies or peptides are antibodies (neutralizing antibodies) or peptides that can inhibit the interaction between IL-21 and IL-21 receptor by binding to IL-21 or IL-21 receptor. Preferably there is. An antibody or peptide capable of inhibiting the interaction between IL-21 and IL-21 receptor can inhibit signal transduction from IL-21 and can suppress pathogenesis of pulmonary hypertension. .

IL−21とIL−21受容体との相互作用を阻害することができる抗体として公知の抗体は、本発明の医薬の有効成分として好適に用いることができる。このような公知の抗IL−21抗体および抗IL−21受容体抗体としては、例えば「Rosanne Spolski and Warren J. Leonard, Interleukin-21: a double-edged sword with therapeutic potential, Nature Reviews Drug Discovery 13, 379-95 (2014)」のTable 1に記載の抗IL−21抗体および抗IL−21受容体抗体、WO2000/053761に記載の抗zalpha11リガンド抗体、WO2010/055366に記載の抗IL−21抗体、WO2004/083249に記載の抗IL−21受容体抗体などが挙げられる。   Antibodies known as antibodies capable of inhibiting the interaction between IL-21 and IL-21 receptor can be suitably used as the active ingredient of the medicament of the present invention. Examples of such known anti-IL-21 antibody and anti-IL-21 receptor antibody include, for example, “Rosanne Spolski and Warren J. Leonard, Interleukin-21: a double-edged sword with therapeutic potential, Nature Reviews Drug Discovery 13, 379-95 (2014) ", anti-IL-21 antibody and anti-IL-21 receptor antibody described in Table 1, anti-zalpha11 ligand antibody described in WO2000 / 053761, anti-IL-21 antibody described in WO2010 / 055366, And anti-IL-21 receptor antibodies described in WO2004 / 083249.

IL−21とIL−21受容体との相互作用を阻害することができるペプチドとして公知のペプチドは、本発明の医薬の有効成分として好適に用いることができる。このような公知のIL−21と結合するペプチドおよびIL−21受容体と結合するペプチドとしては、例えば、WO2003/040313、WO2006/113331、WO2008/049920、JBC285、12223−12231,2010等に記載のIL−21と結合するペプチド、IL−21受容体と結合するペプチドなどが挙げられる。   Peptides known as peptides capable of inhibiting the interaction between IL-21 and IL-21 receptor can be suitably used as the active ingredient of the medicament of the present invention. Examples of such known peptides that bind to IL-21 and IL-21 receptor include those described in WO2003 / 040313, WO2006 / 113331, WO2008 / 049920, JBC285, 12223-12231, 2010 and the like. Peptides that bind to IL-21, peptides that bind to IL-21 receptor, and the like can be mentioned.

抗IL−21抗体は、IL−21またはそのフラグメントを抗原として作製することができる。抗原に用いるIL−21は、どのような動物由来のIL−21でもよいが、哺乳動物のIL−21であることが好ましく、ヒトのIL−21であることがより好ましい。抗原に用いるIL−21またはそのフラグメントは、IL−21発現細胞の培養上清や細胞抽出物から公知の方法(例えば、アフィニティーカラム)で精製する方法や、公知の遺伝子組換え技術を用いて組換えタンパク質として作製する方法などにより取得することができる。主要な哺乳動物のIL−21をコードする遺伝子の塩基配列情報およびアミノ酸配列情報は、公知のデータベース(DDBJ/GenBank/EMBL等)から取得することができる。例えば、ヒトIL−21をコードする遺伝子の塩基配列のアクセッション番号はAF254069であり、ヒトIL−21のアミノ酸配列のアクセッション番号はAAG29348である。   An anti-IL-21 antibody can be produced using IL-21 or a fragment thereof as an antigen. IL-21 used for the antigen may be IL-21 derived from any animal, but is preferably mammalian IL-21, and more preferably human IL-21. IL-21 or a fragment thereof used as an antigen is assembled by a known method (for example, affinity column) from a culture supernatant or cell extract of IL-21-expressing cells, or a known gene recombination technique. It can be obtained by a method of producing as a replacement protein. The nucleotide sequence information and amino acid sequence information of the gene encoding IL-21 of major mammals can be obtained from a known database (DDBJ / GenBank / EMBL, etc.). For example, the accession number of the base sequence of the gene encoding human IL-21 is AF254069, and the accession number of the amino acid sequence of human IL-21 is AAG29348.

抗IL−21受容体抗体は、IL−21受容体またはそのフラグメントを抗原として作製することができる。抗原に用いるIL−21受容体は、どのような動物由来のIL−21受容体でもよいが、哺乳動物のIL−21受容体であることが好ましく、ヒトのIL−21受容体であることがより好ましい。抗原に用いるIL−21受容体またはそのフラグメントは、IL−21受容体発現細胞の培養上清や細胞抽出物から公知の方法(例えば、アフィニティーカラム)で精製する方法や、公知の遺伝子組換え技術を用いて組換えタンパク質として作製する方法などにより取得することができる。主要な哺乳動物のIL−21受容体をコードする遺伝子の塩基配列情報およびアミノ酸配列情報は、公知のデータベース(DDBJ/GenBank/EMBL等)から取得することができる。例えば、ヒトIL−21受容体をコードする遺伝子の塩基配列のアクセッション番号は、AF254067であり、ヒトIL−21受容体のアミノ酸配列のアクセッション番号は、AAG29346である。   An anti-IL-21 receptor antibody can be produced using an IL-21 receptor or a fragment thereof as an antigen. The IL-21 receptor used for the antigen may be any animal-derived IL-21 receptor, but is preferably a mammalian IL-21 receptor, and preferably a human IL-21 receptor. More preferred. The IL-21 receptor or fragment thereof used for the antigen can be purified from the culture supernatant or cell extract of IL-21 receptor-expressing cells by a known method (for example, an affinity column), or a known gene recombination technique. Can be obtained by a method of preparing a recombinant protein using Base sequence information and amino acid sequence information of genes encoding major mammalian IL-21 receptors can be obtained from publicly known databases (DDBJ / GenBank / EMBL, etc.). For example, the accession number of the base sequence of the gene encoding the human IL-21 receptor is AF254067, and the accession number of the amino acid sequence of the human IL-21 receptor is AAG29346.

本発明の医薬の有効成分として用いる抗体は、ポリクローナル抗体でもモノクローナル抗体でもよい。また、完全な抗体分子でもよく、抗原に特異的に結合し得る抗体フラグメント(例えば、Fab、F(ab’)2、Fab’、Fv、scFv等)でもよい。抗体はヒト型キメラ抗体またはヒト化抗体が好ましい。   The antibody used as the active ingredient of the medicament of the present invention may be a polyclonal antibody or a monoclonal antibody. Further, it may be a complete antibody molecule or an antibody fragment (for example, Fab, F (ab ') 2, Fab', Fv, scFv, etc.) that can specifically bind to an antigen. The antibody is preferably a human chimeric antibody or a humanized antibody.

ポリクローナル抗体およびモノクローナル抗体は公知の方法で作製することができる。ポリクローナル抗体は、例えば、抗原(IL−21もしくはそのフラグメント、またはIL−21受容体もしくはそのフラグメント)をPBSに溶解し、所望により通常のアジュバント(例えばフロイント完全アジュバント)を適量混合したものを免疫原として哺乳動物(マウス、ラット、ウサギ、ヤギ、ウマ等)を免疫し、常法に従い免疫した動物から血液を採取して血清を分離し、ポリクローナル抗体画分を精製することにより作製することができる。免疫方法は特に限定されないが、例えば、1回または適当な間隔で複数回、皮下注射または腹腔内注射する方法が好ましい。モノクローナル抗体は、例えば、上記免疫された哺乳動物から得た免疫細胞(例えば脾細胞)とミエローマ細胞とを融合させてハイブリドーマを得、当該ハイブリドーマの培養物から抗体を採取することによって作製することができる。また、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主細胞に導入し、遺伝子組換え技術を用いて組換え型のモノクローナル抗体を産生させることもできる。さらに、ファージディスプレイ法を用いてモノクローナル抗体を作製することもできる。得られた抗体がIL−21とIL−21受容体との相互作用を阻害することは、例えばIL−21がIL−21受容体に結合すると細胞分裂が誘導される細胞(マウス由来B9細胞株、N1186ヒトT細胞株など)を用いて、IL−21依存性細胞増殖に対する阻害効果を測定することにより確認できる。   Polyclonal antibodies and monoclonal antibodies can be prepared by known methods. The polyclonal antibody is prepared by, for example, dissolving an antigen (IL-21 or a fragment thereof, or IL-21 receptor or a fragment thereof) in PBS, and mixing an appropriate amount of a normal adjuvant (for example, Freund's complete adjuvant) if necessary. Can be prepared by immunizing a mammal (mouse, rat, rabbit, goat, horse, etc.), collecting blood from the immunized animal according to a conventional method, separating the serum, and purifying the polyclonal antibody fraction. . Although the immunization method is not particularly limited, for example, a method of subcutaneous injection or intraperitoneal injection once or a plurality of times at an appropriate interval is preferable. A monoclonal antibody can be prepared, for example, by fusing an immune cell (eg, spleen cell) obtained from the immunized mammal and a myeloma cell to obtain a hybridoma, and collecting the antibody from the hybridoma culture. it can. Alternatively, an antibody gene can be cloned from a hybridoma, incorporated into an appropriate vector, introduced into a host cell, and a recombinant monoclonal antibody can be produced using gene recombination techniques. Furthermore, monoclonal antibodies can also be produced using the phage display method. The resulting antibody inhibits the interaction between IL-21 and IL-21 receptor. For example, cells in which cell division is induced when IL-21 binds to IL-21 receptor (mouse-derived B9 cell line) , N1186 human T cell line) and the like, and the inhibitory effect on IL-21-dependent cell proliferation can be measured.

ヒト型キメラ抗体は、ヒト以外の動物由来の抗体の重鎖可変領域および軽鎖可変領域と、ヒト抗体の重鎖定常領域および軽鎖定常領域からなる抗体をいう。ヒト化抗体は、ヒト以外の動物由来の抗体のCDR(相補性決定領域:complementarity determining region)をヒト抗体のCDRへ移植したものをいい、CDR移植抗体、再構成抗体などとも称される。ヒト化抗体のFR(フレームワーク領域:framework region)は、CDRが良好な抗原結合部位を形成するものが選択される。必要に応じ、ヒト化抗体のCDRが適切な抗原結合部位を形成するように、抗体の可変領域におけるFWのアミノ酸配列を置換してもよい。ヒト抗体の定常領域のアミノ酸配列は、公知のデータベース(Protein Data Bank等)から取得することができる。   A human chimeric antibody refers to an antibody comprising a heavy chain variable region and a light chain variable region of an antibody derived from a non-human animal, and a heavy chain constant region and a light chain constant region of a human antibody. A humanized antibody is obtained by grafting a CDR (complementarity determining region) of an antibody derived from a non-human animal into a CDR of a human antibody, and is also referred to as a CDR-grafted antibody or a reconstituted antibody. The FR (framework region) of the humanized antibody is selected so that CDR forms a favorable antigen-binding site. If necessary, the amino acid sequence of FW in the variable region of the antibody may be substituted so that the CDR of the humanized antibody forms an appropriate antigen-binding site. The amino acid sequence of the constant region of a human antibody can be obtained from a known database (Protein Data Bank etc.).

本発明の医薬の有効成分として用いるペプチドは、公知の一般的なペプチド合成のプロトコールに従って、固相合成法(Fmoc法、Boc法)または液相合成法により作製することができる。また、ペプチドをコードするDNAを含有する発現ベクターを導入した形質転換体を用いて作製することができる。また、in vitro転写・翻訳系を用いる方法により作製することができる。ペプチドは、C末端がカルボキシル基、カルボキシレート、アミドまたはエステルのいずれであってもよい。また、ペプチドは、N末端のアミノ基が保護基(例えば、ホルミル基、アセチルなどのC2−6アルカノイル基などのC1−6アシル基など)で保護されているものであってもよい。ペプチドは塩を形成していてもよく、その塩としては、生理学的に許容される塩が好ましい。得られたペプチドがIL−21とIL−21受容体との相互作用を阻害することは、例えばIL−21がIL−21受容体に結合すると細胞分裂が誘導される細胞(マウス由来B9細胞株、N1186ヒトT細胞株など)を用いて、IL−21依存性細胞増殖に対する阻害効果を測定することにより確認できる。 The peptide used as the active ingredient of the medicament of the present invention can be prepared by a solid phase synthesis method (Fmoc method, Boc method) or a liquid phase synthesis method according to a known general peptide synthesis protocol. Moreover, it can produce using the transformant which introduce | transduced the expression vector containing DNA which codes a peptide. Alternatively, it can be produced by a method using an in vitro transcription / translation system. The peptide may be any of carboxyl group, carboxylate, amide or ester at the C-terminus. The peptide may be such that the N-terminal amino group is protected with a protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl). The peptide may form a salt, and a physiologically acceptable salt is preferable as the salt. The resulting peptide inhibits the interaction between IL-21 and IL-21 receptor. For example, cells that induce cell division when IL-21 binds to IL-21 receptor (mouse-derived B9 cell line) , N1186 human T cell line) and the like, and the inhibitory effect on IL-21-dependent cell proliferation can be measured.

本発明の医薬は、IL−21からのシグナル伝達を阻害する物質を有効成分とし、常套手段に従って製剤化することができる。例えば、経口投与のための製剤としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤などが挙げられる。これらの製剤は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有するものである。例えば、錠剤用の担体、賦形剤としては、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムなどが用いられる。非経口投与のための製剤としては、例えば、注射剤、坐剤などが用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤、関節内注射剤などの剤形を包含する。このような注射剤は、公知の方法に従って、例えば、本発明の医薬の有効成分を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁または乳化することによって調製する。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液などが用いられ、適当な溶解補助剤、例えば、アルコール(例えば、エタノール等)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール等)、非イオン界面活性剤(例えば、ポリソルベート80、HCO−50等)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどを併用してもよい。直腸投与に用いられる坐剤は、本発明の医薬の有効成分を通常の坐薬用基剤に混合することによって調製される。本発明の医薬の有効成分がペプチドまたは抗体である場合、薬学的に許容される担体とともに製剤化された注射剤または輸液として、非経口投与経路、例えば、静脈内、筋肉内、皮膚内、腹腔内、皮下または局所に投与することが好ましい。このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的にまたは非経口的に投与することができる。   The medicament of the present invention can be formulated according to conventional means using a substance that inhibits signal transduction from IL-21 as an active ingredient. For example, preparations for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), Examples include syrups, emulsions, and suspensions. These preparations are produced by a known method and contain carriers, diluents or excipients usually used in the pharmaceutical field. For example, lactose, starch, sucrose, magnesium stearate and the like are used as carriers and excipients for tablets. As preparations for parenteral administration, for example, injections, suppositories and the like are used, and injections are intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, intraarticular injections. And other dosage forms. Such an injection is prepared according to a known method, for example, by dissolving, suspending or emulsifying the active ingredient of the medicament of the present invention in a sterile aqueous or oily liquid usually used for injection. As an aqueous solution for injection, for example, isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (for example, ethanol), polyalcohol (for example, , Propylene glycol, polyethylene glycol, etc.), nonionic surfactants (eg, polysorbate 80, HCO-50, etc.) and the like. As the oily liquid, for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The suppository used for rectal administration is prepared by mixing the active ingredient of the medicament of the present invention with an ordinary suppository base. When the active ingredient of the medicament of the present invention is a peptide or an antibody, it can be used as an injection or infusion formulated with a pharmaceutically acceptable carrier as a parenteral route of administration, for example, intravenous, intramuscular, intradermal, intraperitoneal It is preferred to administer internally, subcutaneously or locally. Since the preparation thus obtained is safe and has low toxicity, for example, it is orally administered to humans and mammals (eg, rats, mice, rabbits, sheep, pigs, cows, cats, dogs, monkeys, etc.). Or it can be administered parenterally.

本発明の医薬には、有効成分を0.001〜50質量%、好ましくは0.01〜10質量%、更に好ましくは0.1〜1質量%含有することができる。
本発明の医薬の投与量は、目的、疾患の重篤度、患者の年齢、体重、性別、既往歴、有効成分の種類などを考慮して、適宜設定される。約65〜70kgの体重を有する平均的なヒトを対象とした場合、1日当たり0.02mg〜4000mg程度が好ましく、0.1mg〜200mg程度がより好ましい。1日当たりの総投与量は、単一投与量であっても分割投与量であってもよい。
The medicament of the present invention can contain 0.001 to 50 mass%, preferably 0.01 to 10 mass%, more preferably 0.1 to 1 mass%, of the active ingredient.
The dosage of the medicament of the present invention is appropriately set in consideration of the purpose, the severity of the disease, the patient's age, weight, sex, medical history, type of active ingredient, and the like. When an average human having a body weight of about 65 to 70 kg is used as a target, about 0.02 mg to 4000 mg per day is preferable, and about 0.1 mg to 200 mg is more preferable. The total daily dose may be a single dose or divided doses.

〔スクリーニング方法〕
本発明は、肺高血圧症治療薬のスクリーニング方法を提供する。本発明のスクリーニング方法は、IL−21およびIL−21受容体を用いることを特徴とする。本発明のスクリーニング方法で用いるIL−21およびIL−21受容体は、全長タンパク質でもよく、機能断片でもよい。本発明のスクリーニング方法に用いるIL−21およびIL−21受容体は、どのような動物由来のIL−21でもよいが、哺乳動物のIL−21であることが好ましく、ヒトのIL−21であることがより好ましい。IL−21およびIL−21受容体またはこれらのフラグメントは、上述の方法で作製することができる。
[Screening method]
The present invention provides a screening method for a therapeutic agent for pulmonary hypertension. The screening method of the present invention is characterized by using IL-21 and IL-21 receptor. IL-21 and IL-21 receptor used in the screening method of the present invention may be full-length proteins or functional fragments. The IL-21 and IL-21 receptor used in the screening method of the present invention may be IL-21 derived from any animal, but is preferably mammalian IL-21, and is human IL-21. It is more preferable. IL-21 and IL-21 receptor or fragments thereof can be made by the methods described above.

本発明のスクリーニング方法において用いる被験物質は、特に限定されないが、例えば、核酸、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、細胞培養上清、植物抽出液、哺乳動物の組織抽出液、血漿等を好ましく用いることができる。被験物質は、新規な物質であってもよいし、公知の物質であってもよい。これら被験物質は塩を形成していてもよい。被験物質の塩としては、生理学的に許容される酸や塩基との塩が用いられる。   The test substance used in the screening method of the present invention is not particularly limited. For example, nucleic acid, peptide, protein, non-peptide compound, synthetic compound, fermentation product, cell extract, cell culture supernatant, plant extract, mammal Animal tissue extracts, plasma and the like can be preferably used. The test substance may be a novel substance or a known substance. These test substances may form a salt. As a salt of a test substance, a salt with a physiologically acceptable acid or base is used.

本発明のスクリーニング方法により、IL−21からのシグナル伝達を阻害する物質を選択することが好ましい。IL−21からのシグナル伝達を阻害すれば、肺高血圧症の病態形成を抑制することができ、肺高血圧症を予防および/または治療することができる。本発明のスクリーニング方法により、IL−21からのシグナル伝達を阻害する物質を選択する場合、例えば、被験物質とIL−21とIL−21受容体を発現する細胞を接触させる工程と、IL−21受容体の下流のシグナル量を測定する工程と、被験物質を接触させない場合の前記細胞におけるシグナル量と比較して、シグナル量を低下させる被験物質を選択する工程とを含む方法を好適に用いることができる。   It is preferable to select a substance that inhibits signal transduction from IL-21 by the screening method of the present invention. If signal transduction from IL-21 is inhibited, the pathogenesis of pulmonary hypertension can be suppressed, and pulmonary hypertension can be prevented and / or treated. When selecting a substance that inhibits signal transduction from IL-21 by the screening method of the present invention, for example, a step of contacting a test substance with cells expressing IL-21 and IL-21 receptor, and IL-21 Preferably, the method includes a step of measuring a signal amount downstream of a receptor and a step of selecting a test substance that decreases the signal amount as compared with the signal amount in the cell when the test substance is not contacted. Can do.

IL−21受容体を発現する細胞は、IL−21との相互作用によりIL−21受容体の下流のシグナル量を測定可能なIL−21受容体発現細胞であればどのような細胞でもよい。このような細胞としては培養細胞が好ましく、初代培養細胞でもよく、細胞株でもよい。初代培養細胞として、例えばマウス肺胞マクロファージ、ヒトBリンパ球細胞などが挙げられ、細胞株として、例えばヒトN1186T細胞株、マウスB9細胞株、IL−21受容体を強制発現させたHEK293細胞などが挙げられる。これらはいずれも本発明のスクリーニング方法に好適に用いることができる。被験物質とIL−21とIL−21受容体発現細胞を接触させる方法は、特に限定されず、例えば、培養細胞を用いる場合には、培地に被験物質とIL−21を添加する方法などが挙げられる。接触時間は特に限定されず、適宜選択すればよい。また、被験物質を接触させない対照群を設ける。   The cell expressing the IL-21 receptor may be any cell as long as it is an IL-21 receptor-expressing cell capable of measuring the downstream signal amount of the IL-21 receptor by interacting with IL-21. Such cells are preferably cultured cells, and may be primary cultured cells or cell lines. Examples of primary cultured cells include mouse alveolar macrophages and human B lymphocyte cells. Examples of cell lines include human N1186T cell line, mouse B9 cell line, and HEK293 cells in which IL-21 receptor is forcibly expressed. Can be mentioned. Any of these can be suitably used in the screening method of the present invention. The method for bringing the test substance into contact with IL-21 and IL-21 receptor-expressing cells is not particularly limited. For example, in the case of using cultured cells, a method of adding the test substance and IL-21 to the medium can be mentioned. It is done. The contact time is not particularly limited and may be appropriately selected. In addition, a control group that does not contact the test substance is provided.

IL−21受容体の下流のシグナル量は、例えばIL−21がIL−21受容体に結合すると細胞分裂が誘導される細胞(マウス由来B9細胞株、N1186ヒトT細胞株など)をIL−21受容体発現細胞として用いた場合には、用いたIL−21受容体発現細胞の細胞増殖を指標として測定することができる。細胞増殖の測定には、公知の細胞増殖方法を適宜選択して用いることができる。また、IL−21依存性に活性化されるSTAT3のチロシンリン酸化のレベルを指標として測定することができる。STAT3のチロシンリン酸化のレベルは、例えばウエスタンブロット等の公知の方法を用いて検出、定量することができる。   The amount of signal downstream of the IL-21 receptor can be determined by, for example, inducing cells that induce cell division when IL-21 binds to the IL-21 receptor (such as mouse-derived B9 cell line, N1186 human T cell line). When used as a receptor-expressing cell, cell proliferation of the used IL-21 receptor-expressing cell can be measured as an index. For measuring cell proliferation, a known cell proliferation method can be appropriately selected and used. In addition, the level of STAT3 tyrosine phosphorylation activated in an IL-21-dependent manner can be used as an index. The level of tyrosine phosphorylation of STAT3 can be detected and quantified using a known method such as Western blot.

被験物質と接触させない対照群におけるシグナル量と比較して、被験物質を接触させた場合にシグナル量が低下していれば、当該被験物質を肺高血圧症治療薬候補物質として選択すれることができる。対照群のシグナル量と比較して、統計学的に有意にシグナル量を低下させる被験物質を選択することが好ましく、シグナル量を50%以下に低下させる被験物質を選択することがより好ましく、シグナル量を25%以下に低下させる被験物質を選択することがさらに好ましい。   The test substance can be selected as a candidate drug for the treatment of pulmonary hypertension if the signal level is reduced when the test substance is brought into contact with the control group not brought into contact with the test substance. . It is preferable to select a test substance that significantly reduces the signal level statistically significantly compared to the signal level of the control group, more preferably to select a test substance that reduces the signal level to 50% or less. More preferably, a test substance that reduces the amount to 25% or less is selected.

本発明のスクリーニング方法により、IL−21とIL−21受容体との相互作用を阻害する物質を選択することが好ましい。IL−21とIL−21受容体との相互作用を阻害すれば、IL−21からのシグナル伝達が阻害され、肺高血圧症の病態形成を抑制することができ、肺高血圧症を予防および/または治療することができる。本発明のスクリーニング方法により、IL−21とIL−21受容体との相互作用を阻害する物質を選択する場合、例えば、被験物質とIL−21とIL−21受容体を接触させる工程と、IL−21とIL−21受容体との結合レベルを測定する工程と、被験物質を接触させない場合の結合レベルと比較して、結合レベルを低下させる被験物質を選択する工程とを含む方法を好適に用いることができる。   It is preferable to select a substance that inhibits the interaction between IL-21 and IL-21 receptor by the screening method of the present invention. If the interaction between IL-21 and IL-21 receptor is inhibited, signal transduction from IL-21 can be inhibited, pathogenesis of pulmonary hypertension can be suppressed, and / or pulmonary hypertension can be prevented and / or Can be treated. When a substance that inhibits the interaction between IL-21 and IL-21 receptor is selected by the screening method of the present invention, for example, a step of contacting a test substance with IL-21 and IL-21 receptor, Preferably, the method comprises a step of measuring the binding level between -21 and IL-21 receptor, and a step of selecting a test substance that decreases the binding level compared to the binding level when the test substance is not contacted. Can be used.

被験物質とIL−21とIL−21受容体を接触させる接触させる方法は特に限定されない。例えば、IL−21とIL−21受容体とを含む反応系を準備し、ここに被験物質を添加する方法が挙げられる。接触時間、接触温度は特に限定されず、適宜選択すればよい。IL−21受容体としてIL−21受容体発現細胞を用いてもよい。IL−21受容体発現細胞を用いる場合は、当該細胞を培養している培地に被験物質とIL−21を添加する方法などが挙げられる。どのような系を用いる場合も、被験物質を接触させない対照群を設ける。   The method for bringing the test substance into contact with IL-21 and the IL-21 receptor is not particularly limited. For example, a method of preparing a reaction system containing IL-21 and IL-21 receptor and adding a test substance thereto can be mentioned. The contact time and the contact temperature are not particularly limited and may be appropriately selected. IL-21 receptor-expressing cells may be used as the IL-21 receptor. When IL-21 receptor-expressing cells are used, a method of adding a test substance and IL-21 to the medium in which the cells are cultured can be mentioned. Regardless of which system is used, a control group is provided that does not come into contact with the test substance.

IL−21とIL−21受容体との結合レベルを確認する方法は特に限定されず、公知の方法を適宜選択して使用することができる。例えば、ELISA法、蛍光偏光法、細胞増殖を測定する方法などを好適に用いることができる。ELISA法を用いる場合、IL−21とIL−21受容体のいずれか一方を固相化し、そこに他方および被験物質を添加して反応させ、IL−21とIL−21受容体の結合レベルを適当な一次抗体および二次抗体を用いて検出することができる。   The method for confirming the binding level between IL-21 and IL-21 receptor is not particularly limited, and a known method can be appropriately selected and used. For example, an ELISA method, a fluorescence polarization method, a method for measuring cell proliferation, and the like can be suitably used. When using the ELISA method, either IL-21 or IL-21 receptor is immobilized, and the other and a test substance are added thereto and reacted to determine the binding level of IL-21 and IL-21 receptor. Detection can be performed using appropriate primary and secondary antibodies.

被験物質を接触させない対照群におけるIL−21とIL−21受容体との結合レベルと比較して、被験物質を接触させた場合にIL−21とIL−21受容体との結合レベルが低下していれば、当該被験物質を目的物質として選択すれることができる。対照群の結合レベルと比較して、統計学的に有意に結合レベルを低下させる被験物質を選択することが好ましく、結合レベルを50%以下に低下させる被験物質を選択することがより好ましく、結合レベルを25%以下に低下させる被験物質を選択することがさらに好ましい。   Compared with the binding level of IL-21 and IL-21 receptor in the control group not contacted with the test substance, the binding level of IL-21 and IL-21 receptor decreased when the test substance was contacted. If so, the test substance can be selected as the target substance. It is preferable to select a test substance that reduces the binding level statistically significantly compared to the binding level of the control group, more preferably to select a test substance that reduces the binding level to 50% or less. More preferably, a test substance that reduces the level to 25% or less is selected.

本発明には、IL−21からのシグナル伝達を阻害する物質の有効量を投与する工程を包含することを特徴とする肺高血圧症の予防および/または治療方法が含まれる。また、本発明には、肺高血圧症の予防および/または治療用医薬組成物を製造するための、IL−21からのシグナル伝達を阻害する物質の使用が含まれる。また、本発明には、肺高血圧症の予防および/または治療に使用するための、IL−21からのシグナル伝達を阻害する物質が含まれる。   The present invention includes a method for preventing and / or treating pulmonary hypertension, comprising the step of administering an effective amount of a substance that inhibits signal transduction from IL-21. The present invention also includes the use of a substance that inhibits signal transduction from IL-21 for producing a pharmaceutical composition for preventing and / or treating pulmonary hypertension. The present invention also includes substances that inhibit signal transduction from IL-21 for use in the prevention and / or treatment of pulmonary hypertension.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実験材料と方法〕
(1)実験動物
全ての実験は8週齢の雄マウスを使用して行った。IL−21受容体欠損(IL−21RKO)マウスを用いた実験以外の実験には、C57BL/6マウス(日本SLCから購入)を用いた。IL−21RKO)マウスは米国NIHのWarren J. Leonard博士から供与を受けた。IL−21RKOマウスの遺伝子バックグラウンドはC57BL/6である。
全てのマウスは明暗12時間/12時間サイクルで24±1℃に調節した飼育室に収容し、標準的マウス飼料と水を自由に摂取させた。低酸素負荷をする際には、マウスを10%酸素の低酸素チェンバー内に4週間収容した。ただし、低酸素チェンバー内の掃除のために週2回各5分間、マウスをチェンバー外(正常酸素環境)に置いた。低酸素チェンバーへ低酸素ガスを流量1L/分で持続的に供給した。実験では、低酸素コントロール抗体投与群および低酸素中和抗体投与群、ならびに正常酸素コントロール抗体投与群を設けた。1群の匹数は8〜12匹とした。低酸素曝露後、マウスの血行動態測定を行った後にマウスを安楽死させ、心臓と肺を摘出して臓器重量を測定し、病理学的解析に供した。
[Experimental materials and methods]
(1) Experimental animals All experiments were performed using 8-week-old male mice. C57BL / 6 mice (purchased from Japan SLC) were used for experiments other than those using IL-21 receptor-deficient (IL-21RKO) mice. IL-21RKO) mice were donated by Dr. Warren J. Leonard, NIH, USA. The genetic background of IL-21RKO mice is C57BL / 6.
All mice were housed in a breeding room adjusted to 24 ± 1 ° C. in a light / dark 12-hour / 12-hour cycle, and received standard mouse food and water ad libitum. When hypoxic, mice were housed in a 10% oxygen hypoxia chamber for 4 weeks. However, mice were placed outside the chamber (normoxic environment) twice a week for 5 minutes each for cleaning in the hypoxic chamber. Low oxygen gas was continuously supplied to the low oxygen chamber at a flow rate of 1 L / min. In the experiment, a hypoxia control antibody administration group, a hypoxia neutralization antibody administration group, and a normoxia control antibody administration group were provided. The number of animals in one group was 8-12. After exposure to hypoxia, the mice were euthanized after measuring the hemodynamics, and the heart and lungs were removed and organ weights were measured for pathological analysis.

(2)中和抗体を用いた肺高血圧症モデルマウスの治療実験
(2−1)抗IL−6受容体中和抗体
抗IL−6受容体中和抗体(MR16−1)は、中外製薬株式会社から供与された。MR16−1は、マウスIL−6受容体に対するラットモノクローナルIgG1抗体である。MR16−1によるIL−6シグナル阻害効果を検討するために、最初にMR16−1またはコントロール抗体(purified rat non-immune isotype IgG; MP Biomedicals)2mgを、それぞれ低酸素または正常酸素負荷の直前に静脈内投与し、その後は1週間に1回0.5mgのMR16−1またはコントロール抗体を腹腔内投与した(図4参照)。
(2) Treatment experiment of pulmonary hypertension model mouse using neutralizing antibody (2-1) Anti-IL-6 receptor neutralizing antibody Anti-IL-6 receptor neutralizing antibody (MR16-1) is Chugai Pharmaceutical Co., Ltd. Provided by the company. MR16-1 is a rat monoclonal IgG1 antibody against the mouse IL-6 receptor. In order to examine the IL-6 signal inhibitory effect of MR16-1, first, MR16-1 or 2 mg of a control antibody (purified rat non-immune isotype IgG; MP Biomedicals) was intravenously administered immediately before hypoxia or normoxia. Thereafter, 0.5 mg of MR16-1 or a control antibody was intraperitoneally administered once a week (see FIG. 4).

(2−2)IL−17中和抗体
IL−17中和抗体は、ラット抗マウスIL−17モノクローナル抗体(MAB421;R&D systems)を購入して使用した。抗IL−17中和抗体またはコントロールIgG0.2mgを、それぞれ低酸素または正常酸素の負荷1日前から負荷後4日目まで毎日、その後は負荷後7,10,13,16,19,22,25,28日目に腹腔内投与した(図16参照)。
(2-2) IL-17 neutralizing antibody As an IL-17 neutralizing antibody, a rat anti-mouse IL-17 monoclonal antibody (MAB421; R & D systems) was purchased and used. Anti-IL-17 neutralizing antibody or 0.2 mg of control IgG was administered daily from 1 day before hypoxia or normoxia until 4 days after the load, and then 7, 10, 13, 16, 19, 22, 25 after the load. , Day 28 (see FIG. 16).

(2−3)IL−21中和抗体
IL−21中和抗体は、市販のラット抗マウスIL−21モノクローナル抗体(FFA21, eBioscience)を購入して使用した。抗IL−21中和抗体またはアイソタイプコントロール抗体100μgを、それぞれ低酸素または正常酸素の負荷1日前、負荷当日、負荷後1,2,3,4日目に腹腔内投与した。
(2-3) IL-21 neutralizing antibody IL-21 neutralizing antibody was purchased from a commercially available rat anti-mouse IL-21 monoclonal antibody (FFA21, eBioscience). 100 μg of anti-IL-21 neutralizing antibody or isotype control antibody was intraperitoneally administered 1 day before, 1st, 2nd, 3rd, and 4th day after loading with hypoxia or normoxia, respectively.

(3)右心カテーテルによる血行動態測定
ペントバルビタールナトリウム(60 mg/kg 腹腔内投与)と鎮痛薬の酒石酸ブトルファノール(0.1-0.4 mg/kg腹腔内投与)でマウスを麻酔した。さらに、ペントバルビタールナトリウム(15-20 mg/kg/h 腹腔内投与)と酒石酸ブトルファノール(0.03-0.05 mg/kg/h 腹腔内投与)を手術レベルの麻酔深度を維持するために定期的に追加投与した。直腸温モニターと連動したサーモスタット制御のヒートパッドを用いて、血行動態測定中のマウスの体温を37〜38℃に維持した。気管にカニュレーションを挿入し、マウス用の人工呼吸器(Minivent type 845; Harvard apparatus)を用いて肺を換気した。吸気ガスは高濃度酸素に調整され、人工呼吸器を1回換気量6μL/g、頻度170〜190/分に設定した。
(3) Hemodynamic measurement using right heart catheter Mice were anesthetized with sodium pentobarbital (60 mg / kg ip) and the analgesic butorphanol tartrate (0.1-0.4 mg / kg ip). In addition, sodium pentobarbital (15-20 mg / kg / h ip) and butorphanol tartrate (0.03-0.05 mg / kg ip ip) are regularly added to maintain a surgical level of anesthesia. did. Using a thermostat-controlled heat pad in conjunction with a rectal temperature monitor, the body temperature of the mouse during hemodynamic measurement was maintained at 37-38 ° C. A cannulation was inserted into the trachea, and the lungs were ventilated using a mouse ventilator (Minivent type 845; Harvard apparatus). The inspiratory gas was adjusted to high concentration oxygen, and the ventilator was set to a tidal volume of 6 μL / g and a frequency of 170 to 190 / min.

ポリエチレンチューブを右外頸静脈に挿入して右室まで進めて右室圧(RVP)を測定した。RVPシグナルは圧トランスデューサー(MLT0670; ADインスツルメンツ)で検出し、圧アンプリファイアー(ML117; ADインスツルメンツ)でそのシグナルを中継して、Power Labシステム(ADインスツルメンツ)で連続的にサンプリングし、Chart software(ADインスツルメンツ)を用いてコンピューターに記録した。心拍数は右室収縮期のピークから得られた。心拍数が300〜500回/分の条件を満たす場合に測定を行った。300回/分以下に心拍数が低下した場合は測定から除外した。全身の血圧は、コンピューター化されたテールカフシステム(BP-98A-L; ソフトロン)を用いて、意識のある状態のマウスから非侵襲的に測定した。   A polyethylene tube was inserted into the right external jugular vein and advanced to the right ventricle to measure right ventricular pressure (RVP). The RVP signal is detected by a pressure transducer (MLT0670; AD Instruments), relayed by a pressure amplifier (ML117; AD Instruments), continuously sampled by a Power Lab system (AD Instruments), and Chart software ( Recorded on a computer using AD Instruments). Heart rate was obtained from the right ventricular systolic peak. Measurement was performed when the heart rate satisfied the conditions of 300 to 500 times / minute. When the heart rate decreased to 300 times / minute or less, it was excluded from the measurement. Systemic blood pressure was measured non-invasively from conscious mice using a computerized tail cuff system (BP-98A-L; Softron).

(4)ウエスタンブロット
凍結したマウス肺を溶解用緩衝液(50 mM HEPES, 100 mM sodium fluoride, 2 mM sodium orthovanadate, 4 mM EDTA, 1% Tween-20, 0.1% SDS, プロテアーゼ阻害薬カクテルComplete (Roche Applied Science))中で、ポリトロンホモジナイザーを用いてホモジナイズした。遠心分離により固形物を除去し、肺の溶解液を定法に従いSDS−PAGEに供した。ブロットはECLシステム(GEヘルスケア)を用いて発色させた。ウエスタンブロット解析では以下の抗体を使用した。抗P−STAT3−Tyr705抗体(CloneD3A7, Cell Signaling Technology)、抗STAT3抗体(Clone 79D7, Cell Signaling Technology)、抗F4/80抗体(MCA497GA, AbD Serotec)、抗RELM alpha (Fizz1)抗体(ab39626, Abcam)、抗IL−17抗体(sc-52567, Santa Cruz)および抗IL−21抗体(MAB594, R&D Systems)。また、抗β−tubulin抗体(T5201, Sigma-Aldrich)によるウエスタンブロットを内部コントロールとして用いた。
(4) Western blot Buffer for lysis of frozen mouse lung (50 mM HEPES, 100 mM sodium fluoride, 2 mM sodium orthovanadate, 4 mM EDTA, 1% Tween-20, 0.1% SDS, protease inhibitor cocktail Complete (Roche Applied Science)) and homogenized using a Polytron homogenizer. Solid matter was removed by centrifugation, and the lung lysate was subjected to SDS-PAGE according to a conventional method. Blots were developed using the ECL system (GE Healthcare). The following antibodies were used in Western blot analysis. Anti-P-STAT3-Tyr705 antibody (CloneD3A7, Cell Signaling Technology), anti-STAT3 antibody (Clone 79D7, Cell Signaling Technology), anti-F4 / 80 antibody (MCA497GA, AbD Serotec), anti-RELM alpha (Fizz1) antibody (ab39626, Abcam ), Anti-IL-17 antibody (sc-52567, Santa Cruz) and anti-IL-21 antibody (MAB594, R & D Systems). In addition, a Western blot using an anti-β-tubulin antibody (T5201, Sigma-Aldrich) was used as an internal control.

(5)マウス肺からのマクロファージの単離
気管支肺胞洗浄液(BALF)は、0.9mLのPBSを3回気管支内に滴下して取得し、塊状の上皮細胞を除去するために40μmのセルストレーナーでろ過した。細胞培養実験のために、BALFから初代マウス肺胞マクロファージを得た。2%ウシ胎仔血清(FBS)含有DMEMを用いて、マクロファージを含む回収細胞を培養した。細胞を24ウェル細胞培養プレートに1.5×10個/ウェルで播種し、10%FBS、2mM L−グルタミン、100U/mLペニシリン、100μg/mLストレプトマイシンを含むDMEMで培養した。37℃で4時間培養した後、血清を含有しないDMEMに培地交換し、種々のサイトカインによる刺激試験に供した。血清を含まない培地で一夜培養した後、組換えマウスIL−21(20ng/mL)、IL−6(20ng/mL)、可溶性IL−16受容体(sIL6R、20ng/mL)(R&D systems)で18時間刺激した。
(5) Isolation of macrophages from mouse lungs Bronchoalveolar lavage fluid (BALF) was obtained by dripping 0.9 mL of PBS into the bronchi three times and a 40 μm cell strainer to remove massive epithelial cells. And filtered. Primary mouse alveolar macrophages were obtained from BALF for cell culture experiments. The recovered cells containing macrophages were cultured using DMEM containing 2% fetal bovine serum (FBS). The cells were seeded in a 24-well cell culture plate at 1.5 × 10 5 cells / well and cultured in DMEM containing 10% FBS, 2 mM L-glutamine, 100 U / mL penicillin, 100 μg / mL streptomycin. After culturing at 37 ° C. for 4 hours, the medium was replaced with serum-free DMEM and subjected to stimulation tests with various cytokines. After overnight culture in serum-free medium, recombinant mouse IL-21 (20 ng / mL), IL-6 (20 ng / mL), soluble IL-16 receptor (sIL6R, 20 ng / mL) (R & D systems) Stimulated for 18 hours.

(6)形態学的解析
血行動態測定後、マウスを過麻酔により安楽死させ、心臓を摘出した。心房を取り除き、右心室(RV)壁を左心室(LV)と中隔(septum)から分離した。水分を吸い取ったうえで組織重量を測定し、100gの体重換算で標準化した。RVと(LV+septum)との重量比(フルトン係数)を、右室肥大の指標として用いた。
肺は、組織学的および免疫組織化学的な解析のために回収した。肺動脈と気管は、それぞれ4%パラフォルムアルデヒド(PFA)を定圧で(肺動脈は100cmH2O、気管は25cmH2O)潅流して、肺血管と気道を完全に拡張した状態で固定した。切除した肺は4%PFAにて4℃で一夜固定し、パラフィン包埋して4μmで切片化した。肺血管の形態解析のために、切片にエラスチカ・ワンギーソン染色を施した。動脈の画像はBZ−9000顕微鏡(Keyence)で撮像した。各処置群でランダムに選んだ5〜6匹の動物の肺切片を用いて形態解析を行った。肺血管リモデリングは肺実質にある肺動脈、終末細気管支レベルにある小動脈(small artery)、肺細葉レベルにある細小動脈(arteriole)で中膜肥厚係数(% wall thickness)を測定して検討した。中膜肥厚係数は、内弾性板と外弾性板の間の距離を2倍して、外弾性板間の距離(血管の直径)で除したものに100を乗じたものと定義される。一層の弾性板しかない血管では、弾性板と内皮下の基底膜との間の距離を計測した。中膜肥厚は、切り口がほぼ円形の血管のみを対象に解析した。肺動脈の直径はNIH Image Jソフトウェアを用いて測定した。中膜肥厚係数は1匹のマウスあたり少なくとも10の肺小動脈と肺細小動脈で計算した。
(6) Morphological analysis After measuring the hemodynamics, the mice were euthanized by over anesthesia, and the heart was removed. The atrium was removed and the right ventricular (RV) wall was separated from the left ventricle (LV) and septum. The tissue weight was measured after absorbing water, and standardized in terms of 100 g body weight. The weight ratio (Fulton coefficient) between RV and (LV + septum) was used as an index of right ventricular hypertrophy.
Lungs were collected for histological and immunohistochemical analysis. The pulmonary artery and trachea were each perfused with 4% paraformaldehyde (PFA) at a constant pressure (pulmonary artery 100 cmH 2 O, trachea 25 cmH 2 O), and the pulmonary artery and airway were fully dilated and fixed. The excised lung was fixed overnight at 4 ° C. with 4% PFA, embedded in paraffin and sectioned at 4 μm. For pulmonary blood vessel morphology analysis, the sections were stained with Elastica-Wangeson. Arterial images were taken with a BZ-9000 microscope (Keyence). Morphological analysis was performed using lung sections of 5-6 animals randomly selected in each treatment group. Pulmonary vascular remodeling is studied by measuring the medial wall thickness (% wall thickness) of the pulmonary artery in the lung parenchyma, the small artery at the end bronchiole level, and the arteriole at the pulmonary lobule level. did. The medial thickness coefficient is defined as the distance between the inner elastic plate and the outer elastic plate doubled and divided by the distance between the outer elastic plates (blood vessel diameter) multiplied by 100. For blood vessels with only one elastic plate, the distance between the elastic plate and the subendothelial basement membrane was measured. Media thickening was analyzed only for blood vessels with a roughly circular incision. Pulmonary artery diameter was measured using NIH Image J software. The media thickness was calculated for at least 10 pulmonary arterioles and pulmonary arterioles per mouse.

(7)肺血管の組織学的、免疫組織化学的解析
免疫組織化学解析に用いるサンプルは4%PFA/PBSで1時間固定した後、5〜20%のスクロース入りPBSで置換してから、OCTコンパウンド(Sakura)で包埋して凍結し、10μm厚で切片化した。凍結切片はPBS処理してから、1%過酸化水素水/メタノールで30分処理し、PBST(PBS/0.1%Triton-X100)中に1%ウシ血清アルブミン(BSA)または5%スキムミルクを含むブロッキング溶液で1時間インキュベートし、PBST中の1次抗体で4℃一晩インキュベートした。1次抗体には、抗CD68抗体(1:200希釈; MCA1957GA, AbD Serotec)、抗RELM alpha(Fizz1)抗体(1:100希釈; ab39626, Abcam)、抗IL−6抗体(1:200希釈; ab6672, Abcam)、抗phospho−Histone−H3抗体(Ser10)(1:100希釈; 06-570, Upstate)、抗Actin, alpha−Smooth Muscle−Cy3抗体(1:200希釈; C6198, Sigma-Aldrich)を用いた。次に、PBSTで切片を洗浄し、蛍光標識2次抗体(1:200希釈; Alexa Fluor 488- or 546-結合; Invitrogen)またはHRP標識2次抗体(1:200希釈; 7074, Cell Signaling Technology)で室温1時間インキュベートした。必要に応じてPBSTで洗浄後、DAB(Sigma)を用いて発色させた。染色像はBZ−9000蛍光顕微鏡(Keyence)で撮像した。
(7) Histological and immunohistochemical analysis of pulmonary blood vessels Samples used for immunohistochemical analysis were fixed with 4% PFA / PBS for 1 hour and then replaced with PBS containing 5 to 20% sucrose, and then OCT. They were embedded in a compound (Sakura), frozen, and sectioned at a thickness of 10 μm. The frozen section is treated with PBS, then treated with 1% aqueous hydrogen peroxide / methanol for 30 minutes, and blocking containing 1% bovine serum albumin (BSA) or 5% skim milk in PBST (PBS / 0.1% Triton-X100). The solution was incubated for 1 hour and incubated with primary antibody in PBST overnight at 4 ° C. Primary antibodies include anti-CD68 antibody (1: 200 dilution; MCA1957GA, AbD Serotec), anti-RELM alpha (Fizz1) antibody (1: 100 dilution; ab39626, Abcam), anti-IL-6 antibody (1: 200 dilution; ab6672, Abcam), anti-phospho-Histone-H3 antibody (Ser10) (1: 100 dilution; 06-570, Upstate), anti-Actin, alpha-Smooth Muscle-Cy3 antibody (1: 200 dilution; C6198, Sigma-Aldrich) Was used. Next, the sections were washed with PBST, and fluorescently labeled secondary antibody (1: 200 dilution; Alexa Fluor 488- or 546-binding; Invitrogen) or HRP-labeled secondary antibody (1: 200 dilution; 7074, Cell Signaling Technology) And incubated at room temperature for 1 hour. After washing with PBST as necessary, color was developed using DAB (Sigma). Stained images were taken with a BZ-9000 fluorescence microscope (Keyence).

(8)フローサイトメトリー(FACS)解析
マウスの肺組織をコラゲナーゼおよびDNaseI(1U/mL;Takara)含有DMEM中に直接浸漬し、で37℃40分〜1時間インキュベートした。組織懸濁液を40μmのメッシュに通し、ペレットをPBS−F(2%FBS入りPBS)で再懸濁して、PBS−Fで2回洗浄した。Fcγレセプターをブロックするために、CD16/32で細胞をプレインキュベートし、洗浄後、全量100μLのPBS−Fで蛍光標識した抗CD4抗体と30分間インキュベートした。
(8) Flow cytometry (FACS) analysis Mouse lung tissue was directly immersed in DMEM containing collagenase and DNase I (1 U / mL; Takara) and incubated at 37 ° C for 40 minutes to 1 hour. The tissue suspension was passed through a 40 μm mesh and the pellet was resuspended with PBS-F (PBS with 2% FBS) and washed twice with PBS-F. To block the Fcγ receptor, cells were preincubated with CD16 / 32, washed and incubated with anti-CD4 antibody fluorescently labeled with a total volume of 100 μL of PBS-F for 30 minutes.

細胞内のサイトカインを染色するために、25ng/mLのPMA、1μg/mLのionomycinおよび10μgのbrefeldin A(Sigma-Aldrich)を含む培地で5時間刺激した。CD4の表面染色後、細胞を固定してマウスFoxp3 Buffer Set(BD Pharmingen)で膜透過化処理した。2回洗浄した後、細胞を蛍光標識抗体(抗IFN−γ抗体、抗IL−4抗体、抗IL−17A抗体、抗IL−21抗体)で氷上30分間染色した。細胞をFACSCanto(BD Biosciences)で解析し、続いてFlowJoソフトウェア(Tristar)で解析した。用いた抗体は以下の通りであり、いずれもeBiosciences社の製品である。FITC標識抗CD4抗体(RM4−5)、PE標識抗IFN−γ抗体(XMG1.2)、APC標識抗IL−4抗体(11B11)、APC標識抗IL−17A(eBio17B7)、PE標識抗IL−21抗体(mhalx21)。   To stain intracellular cytokines, stimulation was carried out for 5 hours in medium containing 25 ng / mL PMA, 1 μg / mL ionomycin and 10 μg brefeldin A (Sigma-Aldrich). After surface staining of CD4, the cells were fixed and membrane permeabilized with mouse Foxp3 Buffer Set (BD Pharmingen). After washing twice, the cells were stained with fluorescently labeled antibodies (anti-IFN-γ antibody, anti-IL-4 antibody, anti-IL-17A antibody, anti-IL-21 antibody) on ice for 30 minutes. Cells were analyzed with FACSCanto (BD Biosciences) followed by FlowJo software (Tristar). The antibodies used are as follows, and all are products of eBiosciences. FITC-labeled anti-CD4 antibody (RM4-5), PE-labeled anti-IFN-γ antibody (XMG1.2), APC-labeled anti-IL-4 antibody (11B11), APC-labeled anti-IL-17A (eBio17B7), PE-labeled anti-IL- 21 antibody (mhalx21).

(9)定量RT−PCRによる解析
肺組織または肺胞マクロファージからTRIzol(Invitrogen)を用いてトータルRNAを抽出した。定量リアルタイムRT−PCRはQuantiFast SYBRGreen RT−PCRキット(Qiagen)を用いて行った。RT−PCR反応は、80ngのトータルRNAを10分間50℃で逆転写させ、95℃で5分間変性した後、95℃10秒間と60℃30秒間を40サイクル行った。蛍光データはABI PRISM 7900HTを用いて収集し、解析した。用いた遺伝子とそのプライマーは以下の通りである。
Gapdh: 5’- TCTCCACACCTATGGTGCAA -3’ (配列番号1)
5’- CAAGAAACAGGGGAGCTGAG -3’ (配列番号2)
Fizz1: 5’- CCCTTCTCATCTGCATCTCC -3’ (配列番号3)
5’- AGGAGGCCCATCTGTTCATA -3’ (配列番号4)
Arg1: 5’- GTGAAGAACCCACGGTCTGT -3’ (配列番号5)
5’- CTGGTTGTCAGGGGAGTGTT -3’ (配列番号6)
Chi3I3: 5’- CCCACCAGGAAAGTACACAG -3’ (配列番号7)
5’- GAGGGAAATGTCTCTGGTGA -3’ (配列番号8)
Mrc1: 5’- CGCGAGGCAATTTTTAATCT -3’ (配列番号9)
5’- ATTTGCATTGCCCAGTAAGG -3’ (配列番号10)
Cxcl12: 5’- GGTTCTTCGAGAGCCACATC -3’ (配列番号11)
5’- TAATTTCGGGTCAATGCACA -3’ (配列番号12)
Il17a: 5’- TCCAGAAGGCCCTCAGACTA -3’ (配列番号13)
5’- CTCGACCCTGAAAGTGAAGG -3’ (配列番号14)
Rorc: 5’- AACCAGGCATCCTGAACTTG -3’ (配列番号15)
5’- CGTAGAAGGTCCTCCAGTCG -3’ (配列番号16)
Il17ra: 5’- TGTACCTCGAGGGTGCAGA -3’ (配列番号17)
5’- GGCCAGGATCTACCACAAAG -3’ (配列番号18)
Cxcl1: 5’- GCCTATCGCCAATGAGCTG -3’ (配列番号19)
5’- TCTGAACCAAGGGAGCTTCA -3’ (配列番号20)
Cxcl5: 5’- CTGCCCCTTCCTCAGTCATA -3’ (配列番号21)
5’- TGGATCCAGACAGACCTCCT -3’ (配列番号22)
Il21: 5’- GGACAGTGGCCCATAAATCA -3’ (配列番号23)
5’- CAGGGTTTGATGGCTTGAGT -3’ (配列番号24)
Il21r: 5’- ATGCGCTTGTCTCAATTCCT -3’ (配列番号25)
5’- CACGTAGTTGGAGGGTTCGT -3’ (配列番号26)
Il6: 5’- TGTGCAATGGCAATTCTGAT -3’ (配列番号27)
5’- GGTACTCCAGAAGACCAGAGGA -3’(配列番号28)
Nos2: 5’- GCTCATGACATCGACCAGAA -3’ (配列番号29)
5’- TGTTGCATTGGAAGTGAAGC -3’ (配列番号30)
Il12b: 5’- AGGTCACACTGGACCAAAGG -3’ (配列番号31)
5’- AGGGTACTCCCAGCTGACCT -3’ (配列番号32)
Tnf-α: 5’- TGCCTATGTCTCAGCCTCTTC -3’,(配列番号33)
5’- GGTCTGGGCCATAGAACTGA -3’ (配列番号34)
(9) Analysis by quantitative RT-PCR Total RNA was extracted from lung tissue or alveolar macrophages using TRIzol (Invitrogen). Quantitative real-time RT-PCR was performed using the QuantFast SYBRGreen RT-PCR kit (Qiagen). In the RT-PCR reaction, 80 ng of total RNA was reverse-transcribed for 10 minutes at 50 ° C., denatured at 95 ° C. for 5 minutes, and then subjected to 40 cycles of 95 ° C. for 10 seconds and 60 ° C. for 30 seconds. Fluorescence data was collected and analyzed using ABI PRISM 7900HT. The genes used and their primers are as follows.
Gapdh: 5'-TCTCCACACCTATGGTGCAA-3 '(SEQ ID NO: 1)
5'-CAAGAAACAGGGGAGCTGAG-3 '(SEQ ID NO: 2)
Fizz1: 5'- CCCTTCTCATCTGCATCTCC -3 '(SEQ ID NO: 3)
5'- AGGAGGCCCATCTGTTCATA -3 '(SEQ ID NO: 4)
Arg1: 5'- GTGAAGAACCCACGGTCTGT -3 '(SEQ ID NO: 5)
5'- CTGGTTGTCAGGGGAGTGTT -3 '(SEQ ID NO: 6)
Chi3I3: 5'- CCCACCAGGAAAGTACACAG -3 '(SEQ ID NO: 7)
5'-GAGGGAAATGTCTCTGGTGA-3 '(SEQ ID NO: 8)
Mrc1: 5'- CGCGAGGCAATTTTTAATCT -3 '(SEQ ID NO: 9)
5'-ATTTGCATTGCCCAGTAAGG-3 '(SEQ ID NO: 10)
Cxcl12: 5'-GGTTCTTCGAGAGCCACATC-3 '(SEQ ID NO: 11)
5'-TAATTTCGGGTCAATGCACA-3 '(SEQ ID NO: 12)
Il17a: 5'-TCCAGAAGGCCCTCAGACTA -3 '(SEQ ID NO: 13)
5'-CTCGACCCTGAAAGTGAAGG-3 '(SEQ ID NO: 14)
Rorc: 5'- AACCAGGCATCCTGAACTTG -3 '(SEQ ID NO: 15)
5'-CGTAGAAGGTCCTCCAGTCG-3 '(SEQ ID NO: 16)
Il17ra: 5'-TGTACCTCGAGGGTGCAGA-3 '(SEQ ID NO: 17)
5'- GGCCAGGATCTACCACAAAG -3 '(SEQ ID NO: 18)
Cxcl1: 5'- GCCTATCGCCAATGAGCTG -3 '(SEQ ID NO: 19)
5'-TCTGAACCAAGGGAGCTTCA-3 '(SEQ ID NO: 20)
Cxcl5: 5'- CTGCCCCTTCCTCAGTCATA -3 '(SEQ ID NO: 21)
5'- TGGATCCAGACAGACCTCCT -3 '(SEQ ID NO: 22)
Il21: 5'- GGACAGTGGCCCATAAATCA -3 '(SEQ ID NO: 23)
5'-CAGGGTTTGATGGCTTGAGT -3 '(SEQ ID NO: 24)
Il21r: 5'- ATGCGCTTGTCTCAATTCCT -3 '(SEQ ID NO: 25)
5'-CACGTAGTTGGAGGGTTCGT -3 '(SEQ ID NO: 26)
Il6: 5'-TGTGCAATGGCAATTCTGAT -3 '(SEQ ID NO: 27)
5'-GGTACTCCAGAAGACCAGAGGA-3 '(SEQ ID NO: 28)
Nos2: 5'- GCTCATGACATCGACCAGAA-3 '(SEQ ID NO: 29)
5'- TGTTGCATTGGAAGTGAAGC-3 '(SEQ ID NO: 30)
Il12b: 5'- AGGTCACACTGGACCAAAGG -3 '(SEQ ID NO: 31)
5'- AGGGTACTCCCAGCTGACCT -3 '(SEQ ID NO: 32)
Tnf-α: 5'- TGCCTATGTCTCAGCCTCTTC -3 ', (SEQ ID NO: 33)
5'-GGTCTGGGCCATAGAACTGA -3 '(SEQ ID NO: 34)

(10)ヒト肺動脈平滑筋細胞の増殖アッセイ
ヒト肺動脈平滑筋細胞はLonza社から購入した。ヒト肺動脈平滑筋細胞は最初から6世代までのものを使用した。ヒト肺動脈平滑筋細胞を96ウェル細胞培養プレートに2×10個/100μL/ウェルで播種した。培地には、5%FBSおよびSingleQuotサプリメント(Lonza)を含むSmBM(Lonza)を用いた。アッセイの2日前に、0.1%FBS、10mM L−グルタミン、100U/mLペニシリン、100μg/mLストレプトマイシンを含むSmBMに培地交換した。
(10) Proliferation assay of human pulmonary artery smooth muscle cells Human pulmonary artery smooth muscle cells were purchased from Lonza. Human pulmonary artery smooth muscle cells from the first generation to the 6th generation were used. Human pulmonary artery smooth muscle cells were seeded in 96-well cell culture plates at 2 × 10 3 cells / 100 μL / well. As the medium, SmBM (Lonza) containing 5% FBS and SingleQuot supplement (Lonza) was used. Two days before the assay, the medium was changed to SmBM containing 0.1% FBS, 10 mM L-glutamine, 100 U / mL penicillin, 100 μg / mL streptomycin.

マクロファージ馴化培地を得るために、正常酸素条件で飼育したマウスから気管支肺胞洗浄によって初代マウス肺胞マクロファージを採取し、プールし、遠心分離により洗浄し、細胞数をカウントして、96ウェル細胞培養プレートに2×10個/100μL/ウェルで播種した。培地には、10%FBS、2mM L−グルタミン、100U/mLペニシリン、100μg/mLストレプトマイシンを含むDMEMを用いた。37℃で4時間培養後、血清を含有しないDMEMに培地交換した。血清を含まない培地で一夜培養した後、組換えマウスIL−21(20ng/mL)で18時間刺激し、PBSで洗浄し、DMEM単独で24時間培養した。培地を回収し、0.2%FBSを含有する新鮮なDMEMで2倍に希釈して、馴化培地として用いた。 To obtain macrophage conditioned medium, primary mouse alveolar macrophages were collected by bronchoalveolar lavage from mice bred under normoxic conditions, pooled, washed by centrifugation, cell number counted, and 96-well cell culture. Plates were seeded at 2 × 10 5 cells / 100 μL / well. As the medium, DMEM containing 10% FBS, 2 mM L-glutamine, 100 U / mL penicillin, 100 μg / mL streptomycin was used. After culturing at 37 ° C. for 4 hours, the medium was replaced with serum-free DMEM. After overnight culture in serum-free medium, the cells were stimulated with recombinant mouse IL-21 (20 ng / mL) for 18 hours, washed with PBS, and cultured with DMEM alone for 24 hours. The medium was collected and diluted 2-fold with fresh DMEM containing 0.2% FBS and used as conditioned medium.

この馴化培地を用いてヒト肺動脈平滑筋細胞を3日間培養した。必要であれば、馴化培地に、CXCR4の化学抑制剤であるAMD3100(1μg/μL、Sigma)または溶媒(PBS)を添加した。ヒト肺動脈平滑筋細胞を、組換えヒトIL−21で24時間刺激した。細胞増殖はMTSアッセイ(Cell Titer 96 kit、Promega)を用いて評価した。すなわち、各ウェル(100μL)に20μLのMTS試薬を添加し、37℃で2時間培養後にOD490を測定した。   Using this conditioned medium, human pulmonary artery smooth muscle cells were cultured for 3 days. If necessary, AMD3100 (1 μg / μL, Sigma) or a solvent (PBS), which is a chemical inhibitor of CXCR4, was added to the conditioned medium. Human pulmonary artery smooth muscle cells were stimulated with recombinant human IL-21 for 24 hours. Cell proliferation was assessed using the MTS assay (Cell Titer 96 kit, Promega). That is, 20 μL of MTS reagent was added to each well (100 μL), and OD490 was measured after incubation at 37 ° C. for 2 hours.

(11)統計解析
全てのデータは平均値±標準誤差で表した。多群間の差は一元配置分散分析法それに続くSheffe法を用いた事後比較により比較した。2群間の差の検定には、スチューデントt検定を用いた。P<0.05の場合に統計的有意差ありと判断した。
(11) Statistical analysis All data were expressed as mean ± standard error. Differences between multiple groups were compared by a one-way analysis of variance followed by a post hoc comparison using the Sheffe method. Student's t test was used to test the difference between the two groups. A statistically significant difference was determined when P <0.05.

〔実験結果〕
実験1:低酸素負荷によるC57BL6マウス肺でのIL−6発現動態の検討
C57BL/6マウスを低酸素チェンバー(10%酸素)内で飼育し、低酸素負荷後2、4、7、14および28日目のマウス肺からRNAを回収し、IL−6 mRNAの発現量を定量RT−PCRで解析した。IL−6 mRNAの発現量は低酸素負荷後2日目に負荷前の約8倍に増加したが、負荷後4日目には約5倍に下がり、負荷後7日目にはベースラインレベルに復帰した(図1)。
抗IL−6抗体による免疫組織化学染色によりIL−6の発現部位を検討すると、低酸素負荷後2日目のマウス肺の細動脈(arteriole)、小動脈(small artery)の内皮細胞(内膜)と平滑筋細胞(中膜)に発現が強く見られた(図2)。
〔Experimental result〕
Experiment 1: Examination of IL-6 expression kinetics in lungs of C57BL6 mice under hypoxic load C57BL / 6 mice were bred in a hypoxic chamber (10% oxygen) and 2, 4, 7, 14, and 28 after hypoxic load RNA was collected from the day mouse lung, and the expression level of IL-6 mRNA was analyzed by quantitative RT-PCR. The expression level of IL-6 mRNA increased about 8 times before loading on day 2 after hypoxia, but decreased to about 5 times on day 4 after loading, and baseline level on day 7 after loading. (Fig. 1).
When the expression site of IL-6 was examined by immunohistochemical staining with an anti-IL-6 antibody, the arterial and small artery endothelial cells (intima) of the mouse lung 2 days after hypoxia ) And smooth muscle cells (media) were strongly expressed (FIG. 2).

実験2:低酸素誘発性肺高血圧症モデルでの抗IL−6受容体抗体(MR16−1)によるIL−6シグナル阻害の肺高血圧症病態に対する効果の検討
IL−6シグナルは主に転写因子STAT3(signal transducer and activator of transcription 3)により媒介されるため、低酸素負荷後2日目の肺におけるSTAT3活性化、すなわちSTAT3の705チロシン残基のリン酸化状態をウエスタンブロットにより検討した。低酸素コントロール抗体投与群では、正常酸素コントロール抗体投与群よりSTAT3チロシンリン酸化が亢進していたが、低酸素MR16−1投与群では、そのリン酸化が正常酸素コントロール抗体投与群と同レベルに抑制されていた(図3)。この結果から、抗IL−6受容体抗体投与により、マウス肺でのIL−6によるSTAT3活性化が効率的に抑制されることが示された。
Experiment 2: Examination of the effect of IL-6 signal inhibition on pulmonary hypertension by anti-IL-6 receptor antibody (MR16-1) in hypoxia-induced pulmonary hypertension model IL-6 signal is mainly a transcription factor STAT3 Since it is mediated by (signal transducer and activator of transcription 3), activation of STAT3 in the lung 2 days after hypoxia, ie, phosphorylation state of 705 tyrosine residue of STAT3 was examined by Western blot. In the hypoxia control antibody administration group, STAT3 tyrosine phosphorylation was enhanced compared to the normoxia control antibody administration group, but in the hypoxia MR16-1 administration group, the phosphorylation was suppressed to the same level as the normoxia control antibody administration group. (Figure 3). From these results, it was shown that administration of anti-IL-6 receptor antibody efficiently suppresses STAT3 activation by IL-6 in mouse lung.

抗IL−6受容体抗体投与によるIL−6シグナル阻害が低酸素誘発性肺高血圧症の病態に与える影響を検討するために、図4に示した実験プロトコールでコントロール抗体(ラットIgG)またはMR16−1を投与した。低酸素負荷後28日目に右心カテーテルによりマウスの右室収縮期圧(right ventricular systolic pressure; RVSP)を測定し、その後マウスの心臓を摘出して右室肥大の度合いの指標であるフルトン係数、肺動脈のリモデリングの指標である中膜肥厚係数を計測した。結果を図5A〜Dに示した。低酸素コントロール抗体投与群のマウスでは、右室収縮期圧、フルトン係数および中膜肥厚係数のいずれにおいても、正常酸素コントロール抗体投与群よりも有意な増加が認められたが、低酸素MR16−1投与群ではその増加が有意に抑圧された。この結果より、抗IL−6受容体抗体投与により、IL−6シグナル阻害は低酸素誘発性PAHと肺血管のリモデリングが効果的に抑制されることが示された。   In order to examine the influence of IL-6 signal inhibition by administration of anti-IL-6 receptor antibody on the pathology of hypoxia-induced pulmonary hypertension, control antibody (rat IgG) or MR16- 1 was administered. On the 28th day after hypoxia, the right ventricular systolic pressure (RVSP) of the mouse was measured with a right heart catheter, and then the heart of the mouse was removed and Fulton coefficient as an index of the degree of right ventricular hypertrophy The medial thickness coefficient, which is an index of pulmonary artery remodeling, was measured. The results are shown in FIGS. The mice in the hypoxic control antibody administration group showed a significant increase in the right ventricular systolic pressure, Fulton's coefficient and medial thickness coefficient compared to the normoxic control antibody administration group, but the hypoxic MR16-1 The increase was significantly suppressed in the administration group. These results indicate that administration of anti-IL-6 receptor antibody effectively suppresses hypoxia-induced PAH and pulmonary vascular remodeling in IL-6 signal inhibition.

実験3:低酸素負荷による肺でのマクロファージの動態と抗IL−6受容体抗体によるIL−6シグナル阻害の効果の検討
低酸素負荷後の肺における炎症細胞の浸潤を検討する目的で、マクロファージに焦点を当てて、その動態を検討した。低酸素負荷後7日目の肺における、F4/80(マクロファージに限局して発現する糖たんぱく質)の発現を、ウエスタンブロットにより検討した結果を図6A、Bに示した。低酸素コントロール抗体投与群では正常酸素コントロール抗体投与群に比して有意に増加していたが、低酸素MR16−1投与群ではその増加が有意に抑制されていた。F4/80に対する免疫組織化学染色でもウエスタンブロットと同様の結果が得られた(図6C、D)。以上の結果より、抗IL−6受容体抗体投与によるIL−6シグナル阻害は、低酸素により誘導される肺へのマクロファージ浸潤を抑制することが示された。
Experiment 3: Investigation of macrophage dynamics in the lung by hypoxic load and the effect of IL-6 signal inhibition by anti-IL-6 receptor antibody In order to examine the infiltration of inflammatory cells in the lung after hypoxic load, The focus was on its dynamics. The results of examining the expression of F4 / 80 (a glycoprotein expressed exclusively in macrophages) in the lung 7 days after hypoxic load by Western blot are shown in FIGS. 6A and 6B. The hypoxia control antibody administration group showed a significant increase compared to the normoxia control antibody administration group, but the hypoxia MR16-1 administration group significantly suppressed the increase. The results similar to the Western blot were obtained by immunohistochemical staining for F4 / 80 (FIGS. 6C and D). From the above results, it was shown that IL-6 signal inhibition by anti-IL-6 receptor antibody administration suppresses macrophage infiltration into the lung induced by hypoxia.

低酸素負荷により肺のマクロファージはM2マクロファージ型の特徴を獲得することが報告されている(Vegardi E et al. Circulation 123, 1986-1995, 2011)。そこで、抗IL−6受容体抗体投与のマクロファージの極性形成への影響を検討した。2,4,7および14日間低酸素(10%酸素)に曝したC57BL/6マウスから気管支肺胞洗浄液を採取して、その中のマクロファージの極性を定量RT−PCRで同定したところ、M2マクロファージマーカーの1つFizz1遺伝子の発現量は低酸素負荷後4日目にピークを示した(図7)。そこで、低酸素負荷後4日目に採取したマクロファージのM2マーカー遺伝子Fizz1、Arg1、Chi3l3、Mrc1およびCxcl12の発現状態をコントロール抗体投与群とMR16−1投与群とで比較したところ、低酸素コントロール投与群では、これらの遺伝子発現が正常酸素コントロール投与群より有意に増加していたが、低酸素MR16−1投与群ではこれらの遺伝子の発現増加は有意に抑制されていた(図8A〜E)。一方、M1マクロファージの代表的遺伝子であるNos2、IL−12βおよびTNF−αの発現量は2群間で有意な差を認めなかった(図9A〜C)。   It has been reported that pulmonary macrophages acquire M2 macrophage-type characteristics due to hypoxia (Vegardi E et al. Circulation 123, 1986-1995, 2011). Thus, the effect of anti-IL-6 receptor antibody administration on macrophage polarity formation was examined. Bronchoalveolar lavage fluid was collected from C57BL / 6 mice exposed to hypoxia (10% oxygen) for 2, 4, 7 and 14 days, and the polarity of macrophages therein was identified by quantitative RT-PCR. The expression level of Fizz1 gene, one of the markers, peaked on the fourth day after hypoxia (FIG. 7). Therefore, when the expression states of M2 marker genes Fizz1, Arg1, Chi313, Mrc1 and Cxcl12 of macrophages collected on the fourth day after hypoxic load were compared between the control antibody administration group and the MR16-1 administration group, the hypoxia control administration In the group, the expression of these genes was significantly increased as compared to the normoxic control administration group, but the increase in the expression of these genes was significantly suppressed in the hypoxic MR16-1 administration group (FIGS. 8A to E). On the other hand, the expression levels of Nos2, IL-12β, and TNF-α, which are representative genes of M1 macrophages, were not significantly different between the two groups (FIGS. 9A to 9C).

気管支肺胞洗浄によって採取したマクロファージをin vitroで培養して、IL−6、可溶性IL−16受容体をそれぞれ単独刺激または共刺激してもM1、M2マクロファージマーカーの発現量の変動は観察されなかったため(図10A〜H)、上記の低酸素誘発性マクロファージのM2極性化現象はIL−6とIL−6受容体による直接刺激で誘導されたものではないことが示唆された。   Even if macrophages collected by bronchoalveolar lavage were cultured in vitro and IL-6 and soluble IL-16 receptors were stimulated individually or costimulated, respectively, no change in the expression levels of M1 and M2 macrophage markers was observed. Therefore (FIGS. 10A to H), it was suggested that the above-mentioned hypoxia-induced macrophage M2 polarization phenomenon was not induced by direct stimulation with IL-6 and IL-6 receptor.

実験4:低酸素誘発性肺高血圧症モデルでの抗IL−6受容体抗体によるIL−6シグナル阻害のTh17細胞とTh17サイトカインに対する効果の検討
マクロファージの極性形成にヘルパーT細胞が決定的な働きをすることが近年報告されている。そこで、低酸素負荷後3日目の肺組織でのTh1細胞、Th2細胞の動態に対して抗IL−6受容体抗体投与が影響を与えるかどうかを検討した。正常酸素コントロール投与群、低酸素コントロール投与群および低酸素MR16−1投与群のマウスから試験開始3日目に肺を摘出し、上記実験材料と方法(8)に記載の方法で実験を行った。
CD4陽性ヘルパーT細胞をTh1マーカーのインターフェロン−γ、Th2マーカーのIL−4でFACS展開して、コントロール抗体投与群とMR16−1投与群とで比較したが、有意な差を認めなかった(図11A〜C)。
Experiment 4: Examination of effect of IL-6 signal inhibition by anti-IL-6 receptor antibody on Th17 cell and Th17 cytokine in hypoxia-induced pulmonary hypertension model Helper T cell plays a crucial role in macrophage polarity formation It has been reported in recent years. Therefore, it was examined whether anti-IL-6 receptor antibody administration affects the dynamics of Th1 cells and Th2 cells in the lung tissue 3 days after hypoxia. The lungs were excised from the mice of the normoxic control administration group, the hypoxia control administration group and the hypoxia MR16-1 administration group on the 3rd day of the test, and the experiment was conducted by the method described in the above experimental materials and method (8) .
FACS development of CD4 positive helper T cells with Th1 marker interferon-γ and Th2 marker IL-4 was compared between the control antibody administration group and the MR16-1 administration group, but no significant difference was observed (Fig. 11A-C).

次に第3のヘルパーT細胞分画であるTh17細胞の動態について検討した。C57BL/6マウスを低酸素チェンバーで飼育して、低酸素負荷後2、4、7、14、28日目の肺から回収したトータルRNAを用いて定量RT−PCRを行い、Th17細胞の代表的なマーカーであるIL−17 mRNAの発現量を検討したところ、低酸素負荷後2日目に負荷前の約6倍に増加してピークを認めたが、負荷後7日目以降も発現は継続して上昇していた(図12)。   Next, the dynamics of Th17 cells, which are the third helper T cell fraction, were examined. C57BL / 6 mice were bred in a hypoxic chamber, and quantitative RT-PCR was performed using total RNA collected from the lungs 2, 4, 7, 14, and 28 days after hypoxia, and representative of Th17 cells. When the expression level of IL-17 mRNA, which is a major marker, was examined, a peak was observed on the second day after hypoxia, which increased approximately 6-fold before the load, but the expression continued after the seventh day after the load. It was rising (Fig. 12).

次に、低酸素負荷後2日目の肺組織でのTh17細胞の動態に対する抗IL−6受容体抗体投与の影響を検討した。すなわち、低酸素負荷後2日目の肺から回収したトータルRNAを用いて定量RT−PCRを行い、IL−17Aとその他のTh17細胞マーカー遺伝子であるIL−17A、Rorc(Ror−γt)、Cxcl1、Cxcl5のmRNAの発現量を解析した。その結果、低酸素コントロール投与群では、正常酸素コントロール投与群と比較して有意な発現量の増加が観察されたが、低酸素MR16−1投与群では、発現量の増加が有意に抑制されていた(図13A〜D)。また、ウエスタンブロットによりIL−17タンパク質の発現を検討すると同様の結果が得られた(図14A、B)。さらに、FACSによってTh17細胞の動態を確認したところ、低酸素コントロール投与群では、正常酸素コントロール投与群と比較して有意な増加が観察されたが、低酸素MR16−1投与群では、低酸素負荷による増加が有意に抑制されていた(図15A、B)。   Next, the influence of anti-IL-6 receptor antibody administration on the dynamics of Th17 cells in lung tissue on the second day after hypoxia was examined. That is, quantitative RT-PCR was performed using total RNA collected from the lungs on the second day after hypoxia, and IL-17A and other Th17 cell marker genes IL-17A, Rorc (Ror-γt), Cxcl1 The expression level of Cxcl5 mRNA was analyzed. As a result, a significant increase in the expression level was observed in the hypoxic control administration group as compared to the normoxic control administration group, but the increase in the expression level was significantly suppressed in the hypoxic MR16-1 administration group. (FIGS. 13A-D). Moreover, when the expression of IL-17 protein was examined by Western blotting, similar results were obtained (FIGS. 14A and B). Furthermore, when the kinetics of Th17 cells was confirmed by FACS, a significant increase was observed in the hypoxia control administration group compared to the normoxia control administration group, but in the hypoxia MR16-1 administration group, the hypoxia load was observed. The increase by was suppressed significantly (FIG. 15A, B).

実験5:低酸素誘発性肺高血圧症モデルでの抗IL−17A中和抗体によるIL−17シグナル阻害の肺高血圧症病態に対する効果の検討
IL−17シグナルの阻害が低酸素誘発性肺高血圧症の病態形成に与える影響を検討する目的で、C57BL/6マウスを低酸素チェンバーで飼育して、図16に示した実験プロトコールでコントロール抗体または抗IL−17A中和抗体を投与した。低酸素負荷後28日目に右心カテーテルによりマウスの右室収縮期圧(RVSP)を測定して、マウスの心臓を摘出してフルトン係数を測定した。RVSPおよびフルトン係数のどちらもコントロール抗体投与群と抗IL−17A中和抗体投与群との間に有意な差は観察されなかった(図17A、B)。なお、示してないが、コントロール抗体投与群と抗IL−17A中和抗体投与群とも、正常酸素コントロール抗体投与群と比較して有意な増加が観察され、低酸素誘発性PAHの病態が形成されていた。この結果より、IL−17シグナル阻害は低酸素誘発性PAHの病態形成を抑制し得ないことが明らかになった。
Experiment 5: Examination of the effect of IL-17 signal inhibition on pulmonary hypertension pathology by anti-IL-17A neutralizing antibody in hypoxia-induced pulmonary hypertension model . For the purpose of examining the influence on pathogenesis, C57BL / 6 mice were bred in a hypoxic chamber, and a control antibody or an anti-IL-17A neutralizing antibody was administered according to the experimental protocol shown in FIG. On the 28th day after hypoxia, the right ventricular systolic pressure (RVSP) of the mouse was measured with a right heart catheter, and the heart of the mouse was removed to measure the Fulton coefficient. Neither RVSP nor Fulton coefficient was significantly different between the control antibody-administered group and the anti-IL-17A neutralizing antibody-administered group (FIGS. 17A and B). Although not shown, a significant increase was observed in both the control antibody administration group and the anti-IL-17A neutralization antibody administration group as compared to the normoxia control antibody administration group, and the pathology of hypoxia-induced PAH was formed. It was. From this result, it was revealed that IL-17 signal inhibition cannot suppress the pathogenesis of hypoxia-induced PAH.

実験6:低酸素誘発性肺高血圧症モデルでの抗IL−6受容体抗体によるIL−6シグナル阻害のIL−21産生Th17細胞に対する効果の検討
次に、Th17細胞が産生するTh17サイトカインの1つであるIL−21に焦点を当てて検討した。低酸素負荷後2、4、7、14、28日目の肺から回収したトータルRNAを用いて定量RT−PCRを行い、IL−21 mRNAの発現量を検討したところ、低酸素負荷後2日目に負荷前の約2倍に増加してピークを認め、負荷後7日目まで継続してその増加が観察されたが、14日目以降はベースラインに復帰した(図18)。
Experiment 6: Examination of the effect of IL-6 signal inhibition by IL-6 receptor antibody on IL-21-producing Th17 cells in a hypoxia-induced pulmonary hypertension model Next, one of Th17 cytokines produced by Th17 cells The study was focused on IL-21. Quantitative RT-PCR was performed using total RNA collected from the lungs 2, 4, 7, 14, and 28 days after hypoxia, and the expression level of IL-21 mRNA was examined. The peak increased to about twice that before the load and was observed until the seventh day after the load, but the increase was observed after the 14th day, but returned to the baseline (FIG. 18).

次に、正常酸素コントロール投与群、低酸素コントロール投与群および低酸素MR16−1投与群について、実験開始2日目の肺から回収したトータルRNAを用いて定量RT−PCRを行い、IL−21 mRNAの発現量を解析したところ、低酸素コントロール投与群では、正常酸素コントロール投与群と比較して有意な発現量の増加が観察されたが、低酸素MR16−1投与群では、発現量の増加が有意に抑制されていた(図19)。また、ウエスタンブロットによりIL−17タンパク質の発現を検討すると同様の結果が得られた(図20A、B)。さらに、FACSによってIL−21産生Th17細胞(CD4、IL−17aおよびIL−21の三重陽性細胞)の動態を確認したところ、低酸素コントロール投与群では、正常酸素コントロール投与群と比較して有意な増加が観察されたが、低酸素MR16−1投与群では、低酸素負荷による増加が有意に抑制されていた(図21A〜C)。   Next, quantitative RT-PCR was performed on the normoxia control administration group, the hypoxia control administration group, and the hypoxia MR16-1 administration group using total RNA collected from the lungs on the second day of the experiment, and IL-21 mRNA In the hypoxic control administration group, a significant increase in the expression amount was observed compared to the normoxic control administration group. However, in the hypoxia MR16-1 administration group, the expression amount increased. It was significantly suppressed (FIG. 19). Moreover, when the expression of IL-17 protein was examined by Western blotting, similar results were obtained (FIGS. 20A and 20B). Furthermore, when the kinetics of IL-21-producing Th17 cells (triple positive cells of CD4, IL-17a and IL-21) was confirmed by FACS, the hypoxia control administration group was significantly more than the normoxia control administration group. Although an increase was observed, in the hypoxic MR16-1 administration group, the increase due to the hypoxic load was significantly suppressed (FIGS. 21A to 21C).

実験7:IL−21による肺胞マクロファージの極性化と肺動脈平滑筋細胞の増殖の検討
C57BL/6マウスから気管支肺胞洗浄で採取したマクロファージをin vitroで培養して、一晩血清除去した後にIL−21存在下で18時間培養してマクロファージマーカーの遺伝子発現を検討した。IL−21刺激によりM2マクロファージマーカー遺伝子であるFizz1、Arg1およびCxcl12のmRNA発現量が約2倍に増加した(図22A〜C)のに対して、M1マクロファージマーカー遺伝子であるNos2、IL−12βおよびTNF−αの発現量には、有意な変化が見認められなかった(図23A〜C)。
Experiment 7: Polarization of alveolar macrophages by IL-21 and examination of proliferation of pulmonary artery smooth muscle cells Macrophages collected from bronchoalveolar lavage from C57BL / 6 mice were cultured in vitro, and serum was removed overnight. Cultured for 18 hours in the presence of -21 to examine the gene expression of macrophage markers. IL-21 stimulation increased the mRNA expression levels of the M2 macrophage marker genes Fizz1, Arg1, and Cxcl12 approximately 2-fold (FIGS. 22A-C), whereas the M1 macrophage marker genes Nos2, IL-12β, and No significant change was observed in the expression level of TNF-α (FIGS. 23A to 23C).

次に、IL−21と肺動脈平滑筋細胞の増殖の関連性を検討した。ヒト肺動脈平滑筋細胞に対してIL−21で直接刺激しても増殖応答は全く見られなかった(図24)。一方、気管支肺胞洗浄で採取したマウス肺胞マクロファージを、IL−21存在下で培養して、得られた培養上清(マクロファージ馴化培地)を用いてヒト肺動脈平滑筋細胞を培養すると、増殖促進効果が観察された(図25)。この結果から、マクロファージにIL−21が作用して分泌された何らかの液性因子がヒト肺動脈平滑筋細胞に作用して増殖を促進することが示唆された。   Next, the relationship between IL-21 and pulmonary artery smooth muscle cell proliferation was examined. No proliferative response was seen when directly stimulated with IL-21 against human pulmonary artery smooth muscle cells (FIG. 24). On the other hand, when mouse alveolar macrophages collected by bronchoalveolar lavage were cultured in the presence of IL-21 and human pulmonary artery smooth muscle cells were cultured using the obtained culture supernatant (macrophage conditioned medium), proliferation was promoted. An effect was observed (FIG. 25). From this result, it was suggested that some humoral factors secreted by the action of IL-21 on macrophages act on human pulmonary artery smooth muscle cells to promote proliferation.

M2マクロファージが分泌する液性因子の1つであるCxcl12は、肺動脈平滑筋の増殖に関連すること報告されている(Takeda Y et al. Nature 479, 122-126, 2011)。そこで、Cxcl12の受容体であるCXCR4の選択的阻害剤AMD3100をマクロファージ馴化培地に添加してヒト肺動脈平滑筋細胞を培養したところ、マクロファージ馴化培地による増殖促進作用が抑制された(図26)。以上の結果から、IL−21によるマクロファージのM2極性化が、肺動脈平滑筋細胞の増殖に必要であることが示唆された。   Cxcl12, one of the humoral factors secreted by M2 macrophages, has been reported to be associated with pulmonary artery smooth muscle proliferation (Takeda Y et al. Nature 479, 122-126, 2011). Thus, when the human pulmonary artery smooth muscle cells were cultured by adding the selective inhibitor AMD3100 of CXCR4, which is a receptor for Cxcl12, to the macrophage conditioned medium, the growth promoting action by the macrophage conditioned medium was suppressed (FIG. 26). From the above results, it was suggested that M2 polarization of macrophages by IL-21 is necessary for proliferation of pulmonary artery smooth muscle cells.

実験8:低酸素誘発性肺高血圧症モデルでの抗IL−21抗体による肺高血圧症病態に対する効果の検討
低酸素誘発性肺高血圧症モデルでは、低酸素によりマウス肺動脈の内皮細胞や平滑筋細胞でIL−6の発現が誘導され、その下流でTh17細胞からIL−21が分泌されることが肺高血圧症病態形成に決定的な役割をしていることが示唆された。そこで、我々は低酸素誘発性肺高血圧症モデルに対してコントロール抗体または抗IL−21中和抗体を投与して、マクロファージのM2極性形成と肺動脈平滑筋細胞の増殖に対する効果を検討した。
Experiment 8: Examination of the effect of anti-IL-21 antibody on pulmonary hypertension pathology in hypoxia-induced pulmonary hypertension model In hypoxia-induced pulmonary hypertension model, hypoxia induced endothelial cells and smooth muscle cells in mouse pulmonary arteries. It was suggested that the expression of IL-6 was induced, and that IL-21 was secreted from Th17 cells downstream thereof plays a critical role in the pathogenesis of pulmonary hypertension. Therefore, we administered a control antibody or an anti-IL-21 neutralizing antibody to a hypoxia-induced pulmonary hypertension model to examine the effects on macrophage M2 polarity formation and pulmonary artery smooth muscle cell proliferation.

低酸素負荷後7日目において、低酸素コントロール抗体投与群では、M2マクロファージマーカーであるFizz1陽性細胞が、正常酸素コントロール抗体投与群と比較して有意に増加していたが、低酸素IL−21中和抗体投与群ではその増加は有意に抑制されていた(図27A、B)。また、低酸素負荷後7日目において、低酸素コントロール抗体投与群では、肺動脈平滑筋細胞の細胞分裂の指標となるリン酸化ヒストンH3(pHH3)陽性細胞(図中矢印)が、正常酸素コントロール抗体投与群と比較して有意に増加していたが、低酸素IL−21中和抗体投与群ではその増加が有意に抑制されていた(図28A、B)。これらの結果から、Th17細胞由来のIL−21がマクロファージのM2極性化を介して、肺動脈平滑筋細胞の増殖を正に調節していることが示唆された。   On the 7th day after hypoxic load, in the hypoxic control antibody administration group, Fzz1-positive cells, which are M2 macrophage markers, were significantly increased compared to the normoxia control antibody administration group, but hypoxic IL-21 In the neutralizing antibody administration group, the increase was significantly suppressed (FIGS. 27A and B). In addition, on day 7 after hypoxic load, in the hypoxic control antibody administration group, phosphorylated histone H3 (pHH3) positive cells (arrows in the figure), which serve as an index of cell division of pulmonary artery smooth muscle cells, are normoxic control antibody. Although it increased significantly compared with the administration group, the increase was significantly suppressed in the hypoxic IL-21 neutralizing antibody administration group (FIGS. 28A and 28B). From these results, it was suggested that Th-21 cell-derived IL-21 positively regulates the proliferation of pulmonary artery smooth muscle cells through M2 polarization of macrophages.

実験9:低酸素誘発性肺高血圧症モデルでのIL−21受容体(IL−21R)遺伝子欠損(KO)による肺高血圧症病態に対する効果の検討
IL−21受容体遺伝子欠損(IL−21RKO)マウス(Ozaki et al., Science 298, 1630-1634, 2002)と野生型マウスを用いて、それぞれ低酸素誘発性肺高血圧症モデルを作製し、肺高血圧症病態形成に対するIL−21R遺伝子欠損の影響を検討した。低酸素負荷後28日目に右心カテーテルによりマウスのRVSPを測定し、その後マウスの心臓を摘出してフルトン係数を測定し、さらに肺組織をEVG染色して肺動脈の中膜肥厚係数を計測した。低酸素負荷した野生型マウスではRVSP、フルトン係数および中膜肥厚係数のいずれにおいても、正常酸素環の野生型マウスに比べて有意な増加が認められたが、低酸素負荷したIL−21RKOマウスでは、これらの増加が有意に抑制された(図29A〜C)。この結果から、IL−21シグナル阻害は低酸素誘発性高血圧症の病態形成過程を抑制し得ることが明らかになった。
Experiment 9: Examination of the effect of IL-21 receptor (IL-21R) gene deficiency (KO) on pulmonary hypertension pathology in a hypoxia-induced pulmonary hypertension model IL-21 receptor gene deficiency (IL-21RKO) mouse (Ozaki et al., Science 298, 1630-1634, 2002) and wild-type mice, respectively, to create hypoxia-induced pulmonary hypertension models, and to investigate the effects of IL-21R gene deficiency on the pathogenesis of pulmonary hypertension investigated. On the 28th day after hypoxia, the RVSP of the mouse was measured with a right heart catheter, and then the heart of the mouse was removed to measure the Fulton coefficient, and the lung tissue was EVG stained to measure the medial thickness coefficient of the pulmonary artery. . Hypoxia-loaded wild type mice showed significant increases in RVSP, Fulton's coefficient, and medial thickness coefficient compared to normoxic wild-type mice, but hypoxia-loaded IL-21RKO mice. These increases were significantly suppressed (FIGS. 29A-C). From this result, it became clear that IL-21 signal inhibition can suppress the pathogenesis process of hypoxia-induced hypertension.

なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (9)

IL−21からのシグナル伝達を阻害する物質を有効成分とする肺高血圧症の予防および/または治療用医薬。   A pharmaceutical for the prevention and / or treatment of pulmonary hypertension comprising a substance that inhibits signal transduction from IL-21 as an active ingredient. IL−21からのシグナル伝達を阻害する物質が、IL−21とIL−21受容体との相互作用を阻害する物質である請求項1に記載の医薬。   The medicament according to claim 1, wherein the substance that inhibits signal transduction from IL-21 is a substance that inhibits the interaction between IL-21 and IL-21 receptor. IL−21とIL−21受容体との相互作用を阻害する物質が、抗IL−21抗体、抗IL−21受容体抗体、IL−21と結合するペプチドおよびIL−21受容体と結合するペプチドからなる群から選択される一種である請求項2に記載の医薬。   Substances that inhibit the interaction between IL-21 and IL-21 receptor are anti-IL-21 antibody, anti-IL-21 receptor antibody, peptide that binds to IL-21 and peptide that binds to IL-21 receptor The medicament according to claim 2, which is a kind selected from the group consisting of: IL−21とIL−21受容体との相互作用を阻害する物質が、抗IL−21抗体である請求項3に記載の医薬。   The medicament according to claim 3, wherein the substance that inhibits the interaction between IL-21 and IL-21 receptor is an anti-IL-21 antibody. IL−21およびIL−21受容体を用いることを特徴とする肺高血圧症治療薬のスクリーニング方法。   A screening method for a therapeutic agent for pulmonary hypertension, characterized by using IL-21 and IL-21 receptor. IL−21からのシグナル伝達を阻害する物質を選択することを特徴とする請求項5に記載の方法。   6. The method according to claim 5, wherein a substance that inhibits signal transduction from IL-21 is selected. IL−21とIL−21受容体との相互作用を阻害する物質を選択することを特徴とする請求項5に記載の方法。   6. The method according to claim 5, wherein a substance that inhibits the interaction between IL-21 and IL-21 receptor is selected. 被験物質とIL−21とIL−21受容体を発現する細胞を接触させる工程と、IL−21受容体の下流のシグナル量を測定する工程と、被験物質を接触させない場合の前記細胞におけるシグナル量と比較して、シグナル量を低下させる被験物質を選択する工程とを含むことを特徴とする請求項6に記載の方法。   A step of contacting a test substance with cells expressing IL-21 and IL-21 receptor; a step of measuring a signal amount downstream of the IL-21 receptor; and a signal amount in the cell when the test substance is not contacted The method of Claim 6 including the process of selecting the test substance which reduces a signal amount compared with. 被験物質とIL−21とIL−21受容体を接触させる工程と、IL−21とIL−21受容体との結合レベルを測定する工程と、被験物質を接触させない場合の結合レベルと比較して、結合レベルを低下させる被験物質を選択する工程とを含むことを特徴とする請求項7に記載の方法。   Comparing the test substance with IL-21 and IL-21 receptor, the step of measuring the binding level of IL-21 and IL-21 receptor, and the binding level when the test substance is not contacted And a step of selecting a test substance that decreases the binding level.
JP2014181860A 2014-09-08 2014-09-08 Pulmonary hypertension drug and screening method thereof Active JP6359921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181860A JP6359921B2 (en) 2014-09-08 2014-09-08 Pulmonary hypertension drug and screening method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014181860A JP6359921B2 (en) 2014-09-08 2014-09-08 Pulmonary hypertension drug and screening method thereof

Publications (2)

Publication Number Publication Date
JP2016056115A JP2016056115A (en) 2016-04-21
JP6359921B2 true JP6359921B2 (en) 2018-07-18

Family

ID=55757472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181860A Active JP6359921B2 (en) 2014-09-08 2014-09-08 Pulmonary hypertension drug and screening method thereof

Country Status (1)

Country Link
JP (1) JP6359921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194897A1 (en) * 2015-06-01 2016-12-08 国立大学法人富山大学 Therapeutic agent and therapeutic method for pulmonary hypertension
US10772882B2 (en) 2016-06-17 2020-09-15 Tohoku University Pulmonary hypertension preventative or therapeutic agent containing crude drug
JP6609293B2 (en) * 2017-08-30 2019-11-20 平田機工株式会社 Holding nozzle, holding head, and transfer device
WO2023090391A1 (en) * 2021-11-17 2023-05-25 国立研究開発法人国立循環器病研究センター Method for testing pulmonary hypertension, pathological animal model for pulmonary arterial hypertension, and preventive or therapeutic agent for pulmonary hypertension

Also Published As

Publication number Publication date
JP2016056115A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US20190389962A1 (en) Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis
Sahin et al. Chemokine Cxcl9 attenuates liver fibrosis‐associated angiogenesis in mice
KR101568051B1 (en) Monoclonal antibody capable of binding to Anexelekto, and use thereof
EP2902495B1 (en) Use of tam receptor activators as immunosuppressors
US9505844B2 (en) Anti-human CCR7 antibody, hybridoma, nucleic acid, vector, cell, pharmaceutical composition, and antibody-immobilized carrier
EP2252318A2 (en) Methods of treating inflammation
JP6359921B2 (en) Pulmonary hypertension drug and screening method thereof
BR112020020118A2 (en) anti-cmklr1 compound, nucleic acid molecule, vector, host cell, combination product, compound combination, method for selecting an anti-cmklr1 compound, and, cmklr1 agonist compound.
US11780898B2 (en) Treatment of SMC mediated disease
CA2773978A1 (en) Methods of treating inflammation
JP2018104422A (en) Agent for improvement of hypothermia
KR20220152554A (en) Methods of Inhibiting MASP-2 for Treatment and/or Prevention of Coronavirus-Induced Acute Respiratory Distress Syndrome
US20240084019A1 (en) Anti-Chemokin Like Receptor 1 Humanized Antibodies and Their Therapeutic Applications
US20120183556A1 (en) Suppressant for atherosclerosis
US20160355601A1 (en) Methods and Compositions for the Treatment of Pancreatic Cancer
WO2014119387A1 (en) Composition for treating or diagnosing diastolic heart failure and utilization thereof
US10047164B2 (en) Methods and compositions for the treatment of pancreatic cancer
NZ702818A (en) Stem cell factor inhibitor
NZ702818B2 (en) Stem cell factor inhibitor
NZ612783B2 (en) Stem cell factor inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6359921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250