JP6357855B2 - Composite material having high water and oil repellency and method for producing the same - Google Patents

Composite material having high water and oil repellency and method for producing the same Download PDF

Info

Publication number
JP6357855B2
JP6357855B2 JP2014097939A JP2014097939A JP6357855B2 JP 6357855 B2 JP6357855 B2 JP 6357855B2 JP 2014097939 A JP2014097939 A JP 2014097939A JP 2014097939 A JP2014097939 A JP 2014097939A JP 6357855 B2 JP6357855 B2 JP 6357855B2
Authority
JP
Japan
Prior art keywords
fluorine
metal material
based lubricant
organic
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097939A
Other languages
Japanese (ja)
Other versions
JP2015214072A (en
Inventor
藤井 隆志
隆志 藤井
伊達 博充
博充 伊達
健一郎 田所
健一郎 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014097939A priority Critical patent/JP6357855B2/en
Publication of JP2015214072A publication Critical patent/JP2015214072A/en
Application granted granted Critical
Publication of JP6357855B2 publication Critical patent/JP6357855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高い撥水撥油性を長期にわたって持続し、さらに外的損傷により表面に疵が生じても、その機能を維持できる複合材料およびその製造方法に関する。   The present invention relates to a composite material that can maintain high water and oil repellency for a long period of time and can maintain its function even when wrinkles occur on the surface due to external damage, and a method for producing the same.

材料表面の高機能化技術の一つとして、材料表面の人工的な撥水撥油化技術がある。固体表面に撥水撥油性を付与できれば、例えば、自動車のボディや建築物の外壁であれば雨水や泥水の付着を防ぐことによる汚れや水垢の抑制、窓ガラスであれば防曇効果による視認性の向上、衣料であれば防水や防汚、標識やアンテナであれば着氷や着雪防止、携帯電話等のタッチパネルであれば指紋付着防止といった効果が期待できる。   As one of the technology for enhancing the functionality of the material surface, there is an artificial water / oil repellency technology for the material surface. If water and oil repellency can be imparted to a solid surface, for example, if it is an outer wall of an automobile body or a building, it prevents dirt and scale from adhering to rainwater and muddy water, and if it is a window glass, visibility due to an antifogging effect It can be expected to have an effect of waterproofing and antifouling for clothing, prevention of icing and snowing for signs and antennas, and prevention of fingerprint adhesion for touch panels such as mobile phones.

固体表面への濡れ性は、一般的に固体表面の化学的因子(表面張力)と幾何学的因子(表面粗さ)に依存する。撥水撥油表面を作製するには、まず、固体の表面張力を小さくすることが必要となる。その上で、固体表面に凹凸構造を付与することで、さらに撥水撥油性を高めることが可能となる。例えば、非特許文献1では、ポリエチレンテレフタレート(PTFE)をコーティングすることにより、撥水撥油性を付与した事例が開示されている。非特許文献2では、平滑なガラス表面に表面張力の小さな吸着性の有機アルキル分子を化学吸着させることで撥水撥油化した例が開示されている。非特許文献3では、シリコン基板を異方性イオンエッチングすることで、表面にリエントラント(再陥没)構造と呼ばれる形状を構築し、さらにその表面を吸着性のふっ素系有機アルキル分子で化学吸着させることで撥水撥油化する例が開示されている。非特許文献1および2は化学的因子(表面張力)の効果で、非特許文献3は化学的因子(表面張力)と幾何学的因子(表面粗さ)の双方の効果を最大限に活用することを目的に提案されたものである。これらに対し非特許文献4では、エポキシ樹脂に予め粗面化したシリコン基板の表面構造を転写することで、図1のように模式される柱状の構造体(幅300 nm、高さ500 nmもしくは5 μm)が、1〜2 μm程度の間隔で並んだ凹凸構造を付与した上で、吸着性有機分子であるふっ素系有機アルキル分子を凹凸構造の基材表面に化学結合させて有機分子中間層を形成し、さらに、粘性のある液状のふっ素系潤滑剤を塗布した構造により、撥水撥油性能を発現させる方法が提案されている。この提案では、表面形状(幾何学的因子)は流動性を持つふっ素系潤滑剤層を基材表面に保持する役割を担い、さらに基材表面にふっ素系の有機アルキル分子を化学結合させた有機分子中間層を形成していることで、分子間引力によってふっ素系潤滑剤の基材表面からの流出を抑制する。高い撥水撥油性能は化学的因子のみによって発現を狙ったものであり、ふっ化炭素鎖由来の小さな表面張力と、液体由来の分子の振動による効果により、従来にない高い撥水撥油性能に加え、外的損傷により表面に疵が生じても、疵部にふっ素系潤滑剤が流れ込み、撥水撥油性能を維持の自己修復性が発現されることが開示されている。   The wettability to a solid surface generally depends on the chemical factor (surface tension) and geometric factor (surface roughness) of the solid surface. In order to produce a water / oil repellent surface, it is first necessary to reduce the surface tension of the solid. In addition, by imparting a concavo-convex structure to the solid surface, it becomes possible to further improve the water and oil repellency. For example, Non-Patent Document 1 discloses an example in which water and oil repellency is imparted by coating with polyethylene terephthalate (PTFE). Non-Patent Document 2 discloses an example in which water- and oil-repellency is achieved by chemically adsorbing an adsorptive organic alkyl molecule having a small surface tension on a smooth glass surface. In Non-Patent Document 3, anisotropic ion etching of a silicon substrate is used to build a shape called a reentrant structure on the surface, and then the surface is chemically adsorbed with an adsorbing fluorine-based organic alkyl molecule. An example of water and oil repellency is disclosed. Non-patent documents 1 and 2 are the effects of chemical factors (surface tension), and Non-patent document 3 is the best use of the effects of both chemical factors (surface tension) and geometric factors (surface roughness). It was proposed for the purpose. In contrast, in Non-Patent Document 4, the surface structure of a silicon substrate that has been roughened in advance is transferred to an epoxy resin, whereby a columnar structure (width 300 nm, height 500 nm or 5 μm) has an uneven structure arranged at intervals of about 1 to 2 μm, and then fluorine-based organic alkyl molecules, which are adsorbing organic molecules, are chemically bonded to the substrate surface of the uneven structure to form an organic molecule intermediate layer. In addition, there has been proposed a method in which water and oil repellency is exhibited by a structure in which a liquid fluorine-based lubricant having a viscosity is applied. In this proposal, the surface shape (geometric factor) plays a role of holding a fluorine-based lubricant layer having fluidity on the surface of the substrate, and an organic material in which fluorine-based organic alkyl molecules are chemically bonded to the surface of the substrate. By forming the molecular intermediate layer, the outflow of the fluorine-based lubricant from the substrate surface is suppressed by intermolecular attractive force. High water and oil repellency is aimed at manifesting only by chemical factors. Unprecedented high water and oil repellency due to the small surface tension derived from the fluorocarbon chain and the effect of vibration of molecules derived from the liquid. In addition, it is disclosed that even if wrinkles occur on the surface due to external damage, a fluorine-based lubricant flows into the wrinkles and self-healing properties that maintain water and oil repellency performance are exhibited.

里川孝臣監修、「最新フッ素ポリマーコーティング加工技術」、エポテック株式会社、平成元年4月発行Supervised by Takaomi Satokawa, "Latest Fluoropolymer Coating Technology", Epotech Co., Ltd., issued in April 1989 P. E. Hintze, L. M. Calle, Electrochim. Acta, 51, (2006), 1761.P. E. Hintze, L. M. Calle, Electrochim. Acta, 51, (2006), 1761. A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, G. H. McKinley, R. E. Cohen, Proc. Natl. Acad. Sci., U. S. A., 105, (2008), 18200.A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, G. H. McKinley, R. E. Cohen, Proc. Natl. Acad. Sci., U. S. A., 105, (2008), 18200. T. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477, (2011), 443-447.T. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477, (2011), 443-447.

しかしながら、非特許文献1〜4で紹介されている事例は、いずれも撥水撥油性能が不足していたり、長期にわたって撥水撥油性能を維持する持続性が十分でなかったり、外的損傷により表面に疵が生じた場合の、撥水撥油性の自己修復性能が満足できるレベルではなかった。   However, all the cases introduced in Non-Patent Documents 1 to 4 have insufficient water and oil repellency, insufficient sustainability to maintain water and oil repellency over a long period of time, or external damage. When wrinkles occur on the surface, the water / oil repellency self-healing performance was not at a satisfactory level.

例えば、非特許文献1では、ポリエチレンテレフタレート(PTFE)は、撥水性能は期待できても、撥油性能が低い場合が多く、また成膜時に生成するピンホールによって、ポリエチレンテレフタレート(PTFE)と基材金属板との密着性が低下し剥離することがわかっている。非特許文献2では、化学結合を導入し基材とコーティング層の密着力を確保しこのような問題を解決しており、非特許文献3では、さらにその撥水撥油性能を強化すべく基材表面に凹凸構造を導入しているが、その撥水撥油性能は基材表面に化学結合によって固定された有機アルキル分子に依存するため、外的損傷により表面に疵が生じた場合に撥水撥油性能を自己修復する機能が担保されていないため、その性能が低下することは避けられなかった。非特許文献4は、高い撥水撥油性能とそれを維持できる自己修復機能を発現するものであるが、基材の凹凸構造が大きいため、基材表面に保持された流動性のあるふっ素系潤滑剤層を、有機分子中間層によって保持する機能が十分に高くなく、長期にわたり安定して撥水撥油性能を示す持続性が十分ではなかった。   For example, in Non-Patent Document 1, polyethylene terephthalate (PTFE) can be expected to have water repellency, but often has low oil repellency, and it is based on polyethylene terephthalate (PTFE) due to pinholes generated during film formation. It has been found that the adhesiveness with the metal plate decreases and peels. Non-Patent Document 2 solves this problem by introducing chemical bonds to secure the adhesion between the substrate and the coating layer, and Non-Patent Document 3 is based on a plan to further enhance its water and oil repellency. An uneven structure has been introduced on the surface of the material, but its water and oil repellency depends on organic alkyl molecules fixed to the surface of the substrate by chemical bonds, so it is repellent when wrinkles occur on the surface due to external damage. Since the function of self-repairing the water / oil repellency performance is not secured, it is inevitable that the performance deteriorates. Non-Patent Document 4 expresses high water and oil repellency and self-healing function that can maintain it, but because of the large uneven structure of the base material, it has a fluid fluorine system that is held on the surface of the base material. The function of holding the lubricant layer by the organic molecular intermediate layer was not sufficiently high, and the durability for stably exhibiting the water and oil repellency performance over a long period of time was not sufficient.

以上のように、高い撥水撥油性と自己修復性を発現させる目的で、非特許文献4のような、凹凸表面を有する基材と、流動性のある液状のふっ素系潤滑剤層と、それらを結びつける有機分子中間層とで構成される構造が好ましく提案もされていたが、さらにこの機能の持続性が高い金属板を得るためには、図1のように模式される柱状の構造体(幅300 nm、高さ500 nmもしくは5 μm)が、1〜2 μmの間隔で並んだ凹凸構造を付与した構造を、図2のように10〜300 nm程度の凹凸構造にさらに微細化して、機能を発現できる十分な量のふっ素系潤滑剤を基材表面に保持する機能を高めることが解決の一手段であると推測されたが、金属基板表面をそのような微細孔構造に加工し、上記のような有機分子中間層をその上に形成被覆し、更にその上にふっ素系潤滑剤層を形成させる実現可能な具体的な方法を見いだすことは難しく、業界の開発は、ふっ素系潤滑剤層を最表層に保持した表面の特性を利用した着氷防止などの応用検討や、異なる基板材料での効果発現に関する検討に進んでいった。   As described above, for the purpose of developing high water and oil repellency and self-repairing properties, as in Non-Patent Document 4, a substrate having an uneven surface, a fluid liquid fluorine-based lubricant layer, and those Although a structure composed of an organic molecular intermediate layer that binds to each other has been proposed as well, in order to obtain a metal plate with high durability of this function, a columnar structure (see FIG. 1) ( A structure with a concavo-convex structure with a width of 300 nm and a height of 500 nm or 5 μm) arranged at intervals of 1 to 2 μm is further refined to a concavo-convex structure of about 10 to 300 nm as shown in FIG. It was speculated that improving the function of holding a sufficient amount of a fluorine-based lubricant capable of expressing the function on the surface of the substrate was one of the solutions, but the metal substrate surface was processed into such a fine pore structure, An organic molecular intermediate layer as described above is formed and coated thereon, and a fluorine-based lubricant is further formed thereon. It is difficult to find a specific method that can be used to form the material, and industry development is considering application studies such as anti-icing using the characteristics of the surface with the fluorine-based lubricant layer held as the outermost layer, and different substrate materials. Proceeded to study on the manifestation of effects in Japan.

高い撥水撥油性や自己修復性の持続性を高めるには、基材の微細孔構造に有機分子中間層を形成する技術の確立が解決の一手段と推測されていたにも関わらず、実現可能な具体的な方法が提案されていなかった理由について本発明者が検討したところ、金属板表面の細孔を微細化すると、有機分子中間層を形成する吸着性有機分子が微細孔内に侵入しづらくなり、実質的に細孔内部に有機分子中間層が形成されにくいことにあることがわかった。その結果、有機分子中間層の上に形成されるふっ素系潤滑剤が十分に細孔内に浸透しないため、自己修復性や持続性が向上させられなかった。   Establishing a technology to form an organic molecular intermediate layer in the microporous structure of the substrate has been realized in order to improve the durability of high water and oil repellency and self-healing properties, even though it was supposed to be a solution. The present inventor has examined the reason why no specific method has been proposed. When the pores on the surface of the metal plate are made finer, the adsorbing organic molecules forming the organic molecule intermediate layer enter the fine pores. It became difficult to form an organic molecular intermediate layer inside the pores. As a result, the fluorine-based lubricant formed on the organic molecular intermediate layer does not sufficiently penetrate into the pores, so that self-repairability and sustainability cannot be improved.

細孔内部に有機分子中間層を形成しにくい理由について、本発明者が詳細に検討したところ、吸着性有機分子と基材との化学吸着により有機分子中間層を形成する際の、吸着性有機分子の自己縮合が原因であることを見出した。有機分子中間層の形成に用いられる吸着性有機分子は、微量の水分により加水分解し、金属材料や金属酸化物表面の水酸基と脱水縮合することで吸着するが、加水分解した吸着性有機分子同士もまた、自己縮合して重合体を形成する。そのため、吸着性有機分子は、単分子では微細孔内に侵入できる大きさであっても、重合体になると微細孔内に侵入できず、微細孔外に凝集物として析出してしまうため、微細孔内に有機分子中間層を形成することが難しい。このような理由から、有機分子中間層を介して、ふっ素系潤滑剤層を保持した微細孔を有する金属材料を作製するには、非特許文献4のような凹凸サイズの表面構造に限られていた。   The present inventor has examined in detail the reason why it is difficult to form an organic molecule intermediate layer in the pores. The adsorbing organic layer is formed when the organic molecule intermediate layer is formed by chemical adsorption between the adsorbing organic molecule and the substrate. It has been found that this is due to molecular self-condensation. The adsorptive organic molecules used to form the organic molecular interlayer are hydrolyzed by a small amount of water and adsorbed by dehydration condensation with hydroxyl groups on the surface of metal materials and metal oxides. Also self-condensate to form a polymer. Therefore, even if the adsorptive organic molecule has a size that can penetrate into the micropores with a single molecule, it cannot penetrate into the micropores when it becomes a polymer, and precipitates as an aggregate outside the micropores. It is difficult to form an organic molecular interlayer in the pores. For these reasons, producing a metal material having micropores holding a fluorine-based lubricant layer via an organic molecular intermediate layer is limited to a surface structure with an uneven size as in Non-Patent Document 4. It was.

そこで、本発明者は、この課題に解決には、吸着性有機分子の自己縮合を抑制し、重合体の形成を低減することが重要になると考え、鋭意検討した結果、吸着性有機分子として一般的に用いられる有機シランでは重合体を形成しやすいが、りん酸やホスホン酸のような、りん系の官能基を含む吸着性有機分子を用いると自己縮合が発生しづらい傾向にあることを見出した。   Therefore, the present inventor considered that it is important to suppress the self-condensation of the adsorptive organic molecules and reduce the formation of the polymer in order to solve this problem. It is found that organic silanes that are commonly used tend to form polymers, but self-condensation tends to be difficult to occur when adsorbing organic molecules containing phosphorus functional groups such as phosphoric acid and phosphonic acid are used. It was.

しかし、りん系官能基を有する吸着性有機分子により有機分子中間層を形成するだけでは凝集を防ぎきることはできず、さらに自己縮合を引き起こす要因となる金属材料表面の吸着水を取り除くことが重要であることを見出した。金属や金属酸化物材料の表面には吸着水が存在するが、微細孔を有する金属材料では、微細孔内にも吸着水が存在するためその量は平滑な表面に比べて多く、この吸着水が吸着性有機分子の加水分解を促し、結果として重合体の形成や凝集物としての析出を促すと考えられる。金属材料表面の吸着水を除去し、かつ、りん系の官能基を含む吸着性有機分子を有機分子中間層の形成に用いることで、吸着性有機分子の自己縮合による凝集体の生成が抑制され、さらに微細孔内にも有機分子中間層を形成でき、ふっ素系潤滑剤を微細孔内にも保持させられることを見出した。以上の手段により、本発明者は当業者が成し得なかった課題を解決し、本発明に至った。   However, agglomeration cannot be prevented simply by forming an organic molecular intermediate layer with adsorbing organic molecules having phosphorus functional groups, and it is important to remove adsorbed water on the surface of metal materials, which causes self-condensation. I found out. Although adsorbed water exists on the surface of metal or metal oxide material, the amount of adsorbed water in metal materials with fine pores is larger than that on a smooth surface because adsorbed water is also present in the fine pores. It is considered that promotes hydrolysis of the adsorptive organic molecule, and as a result, promotes formation of a polymer and precipitation as an aggregate. By removing adsorbed water on the surface of metal materials and using an adsorbing organic molecule containing a phosphorus-based functional group for the formation of an organic molecule intermediate layer, the formation of aggregates due to self-condensation of the adsorbing organic molecule is suppressed. Furthermore, it has been found that an organic molecular intermediate layer can be formed in the fine pores, and the fluorine-based lubricant can be retained in the fine pores. By the means described above, the present inventor has solved the problems that cannot be achieved by those skilled in the art, and has arrived at the present invention.

また、自己修復性や持続性を発現させるための特定の微細孔の孔径範囲、孔長、多孔度が存在することなどを見出した。   Further, the present inventors have found that there are pore diameter ranges, pore lengths, and porosities of specific micropores for exhibiting self-repairability and sustainability.

本発明の趣旨とするところは以下の通りである。
(1)微細孔を有し、水分を含まない金属材料の表面に、有機分子中間層を介して、ふっ素系潤滑剤層を有した複合材料であって、前記微細孔の孔径が10 nm以上300 nm以下および孔長が100 nm以上であり、かつ前記有機分子中間層が、フルオロアルキル鎖またはアルキル鎖を有し、一方の末端にホスホン酸もしくはりん酸をもつ吸着性有機分子の、前記ホスホン酸基もしくは前記りん酸基前記微細孔を有する金属材料の表面とが反応して形成される層であって、かつ前記ふっ素系潤滑剤層がパーフルオロアルキルエーテルまたはパーフルオロアルキルアミンまたはパーフルオロカーボンであることを特徴とする複合材料。
(2)前記微細孔の孔長が1 μm以上50 μm以下である請求項1に記載の複合材料。
(3)前記微細孔を有する金属材料の多孔度が10%以上40%以下である請求項1〜2のいずれか一項に記載の複合材料。
(4)前記有機分子中間層を形成する吸着性有機分子が、ホスホン酸またはりん酸する炭素数6以上のフルオロアルキル鎖を有する請求項1〜3のいずれかに記載の複合材料。
(5)金属材料表面に微細孔を形成し、大気もしくは乾燥ガス雰囲気下で、100℃以上300℃以下で加熱乾燥することで前記金属材料表面の水分を除去した後、ホスホン酸基もしくはりん酸基を有するアルキル分子またはフルオロアルキル分子を、前記ホスホン酸基もしくは前記りん酸基を介して前記金属材料表面に有機分子中間層を形成させ、さらにパーフルオロアルキルエーテルまたはパーフルオロアルキルアミンまたはパーフルオロアルキルカーボンからなるふっ素系潤滑剤を前記金属材料にコーティングした複合材料の製造方法。
The gist of the present invention is as follows.
(1) A composite material having a fine lubricant and a fluorine-based lubricant layer through an organic molecular intermediate layer on the surface of a metal material that does not contain moisture, and the pore size of the fine pore is 10 nm or more than or equal to 300 nm and hole length is at 100 nm or more, and the organic molecule intermediate layer has a fluoroalkyl chain or an alkyl chain, of the absorptive organic molecules with phosphonic acid group or phosphoric acid group at one end, a layer with the phosphonic acid group or the surface of the metallic material having the fine pores and the phosphate group is formed by reaction and the fluorine-based lubricant layer is perfluoroalkyl ether or perfluoroalkyl amine or A composite material characterized by being a perfluorocarbon.
(2) The composite material according to claim 1, wherein the pore length of the micropore is 1 μm or more and 50 μm or less.
(3) The composite material according to any one of claims 1 and 2 , wherein the metal material having fine pores has a porosity of 10% or more and 40% or less.
(4) absorptive organic molecule forming organic molecule intermediate layer is a composite material according to claim 1 having a fluoroalkyl chain having 6 or more carbon atoms which have a phosphonic acid group or phosphoric acid group .
(5) After forming fine pores on the metal material surface and removing moisture from the metal material surface by heating and drying at 100 ° C. or more and 300 ° C. or less in an air or dry gas atmosphere, a phosphonic acid group or phosphoric acid An alkyl molecule or a fluoroalkyl molecule having a group is formed on the surface of the metal material via the phosphonic acid group or the phosphoric acid group , and an organic molecular intermediate layer is formed on the surface of the metal material, and a perfluoroalkyl ether, perfluoroalkylamine, or perfluoroalkyl is further formed. A method for producing a composite material in which a fluorine-based lubricant composed of carbon is coated on the metal material.

本発明によれば、疵に対しても高い撥水撥油性を維持し、長期にわたって濡れ性を維持する自己修復性能に優れた金属材料を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the metal material excellent in the self-healing performance which maintains high water-oil-repellency with respect to a wrinkle, and maintains wettability over a long term.

先行技術の模式図を示す。A schematic diagram of the prior art is shown. 本発明の模式図を示す。The schematic diagram of this invention is shown. 微細孔を有する表面に有機分子中間層を形成した金属材料の外観写真(凝集物による白色の模様あり)を示す。An appearance photograph (with a white pattern by an aggregate) of a metal material in which an organic molecular intermediate layer is formed on a surface having fine pores is shown. 微細孔を有する表面に有機分子中間層を形成した金属材料の外観写真(凝集物による白色の模様なし)を示す。An appearance photograph (no white pattern due to aggregates) of a metal material in which an organic molecular intermediate layer is formed on a surface having micropores is shown.

以下に本発明を詳しく説明する。   The present invention is described in detail below.

本発明は、有機分子中間層を介して、ふっ素系潤滑剤層を保持した微細孔を有する金属材料であり、高い撥水撥油性を長期にわたって持続し、さらに外的損傷により表面に疵が生じても、その機能を維持できる特長を持つ。   The present invention is a metal material having fine pores that hold a fluorine-based lubricant layer through an organic molecular intermediate layer, and maintains high water and oil repellency for a long period of time. Further, wrinkles occur on the surface due to external damage. However, it has the feature that the function can be maintained.

<金属材料>
本発明の金属材料には、表面に微細な細孔構造を形成できる金属材料であれば使用できる。特に限定するものではないが、例としては市販されている一般的な金属材料として、JIS G 3141等に規定される冷延鋼板、SUS304、SUS430等のステンレス鋼板、JIS H 4000等のアルミニウム及びアルミニウム合金板、JIS H 4600等のチタン板をあげることができる。特に鉄鋼材料やアルミニウムやチタンであれば陽極酸化(ポーラス化成)を利用して微細な細孔構造を形成できるため好ましい。
<Metal material>
As the metal material of the present invention, any metal material that can form a fine pore structure on the surface can be used. Although not specifically limited, for example, as commercially available general metal materials, cold-rolled steel sheets specified in JIS G 3141, stainless steel sheets such as SUS304 and SUS430, aluminum and aluminum such as JIS H 4000 Examples include alloy plates and titanium plates such as JIS H 4600. In particular, steel materials, aluminum, and titanium are preferable because a fine pore structure can be formed by utilizing anodization (porous chemical conversion).

<有機分子中間層>
本発明における有機分子中間層は、ふっ素系潤滑剤層との親和力を高めることで、外部から液滴がふっ素系潤滑剤層上に接触した際も、液滴よりもふっ素系潤滑剤層がより優先して有機分子中間層を介して基材表面に濡れることにより、ふっ素系潤滑剤層の流出を防ぐ役割を果たす。その際、有機分子中間層の表面張力が小さく、基材表面の凹凸構造に対応して高密度に形成されているほど、ふっ素系潤滑剤層は安定して基材表面に保持されやすい。これは表面張力が小さいほど、付着する液滴よりもふっ素系潤滑剤層との親和性が高まり、さらに有機分子中間層が基材表面を均一に被覆していることで、基材表面の表面張力の影響を受けにくくなるためである。そのため、本発明の金属板の有機分子中間層は、フルオロアルキル鎖またはアルキル鎖を主鎖とし、一方の末端にりん系官能基を有する直鎖または分岐鎖状(枝状)分子が、微細孔を有する金属材料の表面とりん系官能基を介し化学結合して形成される層である。
<Organic molecular interlayer>
The organic molecular intermediate layer in the present invention increases the affinity with the fluorine-based lubricant layer, so that when the droplet comes into contact with the fluorine-based lubricant layer from the outside, the fluorine-based lubricant layer is more than the droplet. By preferentially wetting the substrate surface through the organic molecular intermediate layer, it plays the role of preventing the outflow of the fluorine-based lubricant layer. At that time, the smaller the surface tension of the organic molecular intermediate layer and the higher the density of the organic molecular intermediate layer corresponding to the uneven structure on the surface of the base material, the easier the fluorine-based lubricant layer is held on the surface of the base material. This is because the smaller the surface tension, the higher the affinity with the fluorine-based lubricant layer than the adhering droplets, and the organic molecule intermediate layer uniformly coats the substrate surface. This is because it becomes difficult to be affected by the tension. For this reason, the organic molecular intermediate layer of the metal plate of the present invention has a fine chain of linear or branched (branched) molecules having a fluoroalkyl chain or an alkyl chain as a main chain and having a phosphorus functional group at one end. It is a layer formed by chemically bonding to the surface of a metal material having phosphine via a phosphorus functional group.

有機分子中間層は、金属材料の表面や金属材料表面に形成された微細孔の内部においても吸着性有機分子を高密度に結合させることが好ましいため、有機分子中間層を形成する吸着性有機分子は、金属板表面と結合する前に自己縮合しにくく、凝集しにくい性質の化合物が好ましい。この観点で金属材料と結合する吸着性有機分子の官能基は、りん酸やホスホン酸などのりん系官能基である。りん系官能基であれば、金属板表面と結合する前の自己縮合や凝集を避けやすくなる。また、りん系官能基であれば、金属材料表面の水酸基と脱水縮合反応により、共有結合によって固定化できる。このような結合は物理結合に比べて強固であり、ふっ素系潤滑剤層を微細構造内およびその表面に安定して保持できる。りん系官能基以外では有機シランが一般的であるが、有機シランは水との反応性が高く、分子同士が自己縮合しやすいので、凝縮物となりやすい。そのため、微細孔を有する構造体では、細孔内を均一に被覆することができず、細孔上に凝縮物として析出しやすく、疵に対する自己修復作用や持続性が得られない。   The organic molecule intermediate layer preferably binds the adsorbing organic molecules at a high density even on the surface of the metal material or inside the micropores formed on the surface of the metal material. Is preferably a compound that is less likely to self-condense before bonding to the metal plate surface and less likely to aggregate. From this viewpoint, the functional group of the adsorptive organic molecule that binds to the metal material is a phosphorus-based functional group such as phosphoric acid or phosphonic acid. If it is a phosphorus functional group, it becomes easy to avoid the self-condensation and aggregation before couple | bonding with the metal plate surface. Moreover, if it is a phosphorus functional group, it can fix | immobilize by a covalent bond by the dehydration condensation reaction with the hydroxyl group on the metal material surface. Such bonds are stronger than physical bonds, and the fluorine-based lubricant layer can be stably held in the microstructure and on the surface thereof. Organosilanes are common except for phosphorus functional groups, but organic silanes are highly reactive with water, and molecules tend to self-condensate, so they tend to be condensed. For this reason, in the structure having fine pores, the inside of the pores cannot be uniformly coated, and is easily deposited as a condensate on the pores, so that a self-repairing action and sustainability for soot cannot be obtained.

また本発明の有機分子中間層は、分子間相互作用によりふっ素系潤滑剤層を微細孔内および金属材料表面に保持する役割を担うため、吸着性有機分子の主鎖はふっ素系潤滑剤との親和性が高いフルオロアルキル鎖またはアルキル鎖である。主鎖のアルキル鎖の炭素数は、特に制限されるものではないが、6以上が好ましい。6未満では、有機分子鎖長に対する親水性のりん系官能基の占める割合が大きくなるため、表面張力が増大し、ふっ素系潤滑剤層の保持力が弱まる傾向が増大するため好ましくない。また、有機分子中間層とふっ素系潤滑剤層との分子間相互作用は、吸着性有機分子の表面張力が小さいほど高められるため、吸着性有機分子のりん系官能基の反対側の片末端は、トリフルオロメチル基、メチル基を有していることが好ましい。トリフルオロメチル基(CF3-)の表面張力は、6 mN m-1であり、メチル基(CH3-)の表面張力は22 mN m-1である。また、-CF2-CF2-の表面張力は、18 mN m-1であり、-CH2-CH2-の表面張力は31 mN m-1である。よって、より好ましい吸着性有機分子は、りん系官能基を有し、その反対側の片末端がトリフルオロメチル基(CF3-)で、フルオロアルキル鎖(-CF2-CF2-)からなる有機ふっ素分子である、パーフルオロアルキルホスホン酸(ポリフルオロアルキルホスホン酸)やパーフルオロアルキルりん酸(ポリフルオロアルキルりん酸)があげられる。例えば、具体的に示すとすれば以下のような化合物が例示される。1H,1H',2H,2H'-Perfluorododecyl-1-phosphonic acid、1H,1H',2H,2H'-Perfluorodecyl-1-phosphonic acid、1H,1H',2H,2H'-Perfluorooctyl-1-phosphonic acid、1H,1H',2H,2H'-perfluorododecyl phosphate、1H,1H',2H,2H'-perfluorodecylphosphate、1H,1H',2H,2H'-perfluorooctyl phosphate、n-Octadecylphosphonic acid、n-Tetradecylphosphonic acid、n-Dodecylphosphonic acid、n-Decylphosphonic acid、n-Octylphosphonic acid、n-Hexylphosphonic acid、Octadecyl dihydrogen phosphate、Tetradecyl dihydrogen phosphate、Mono-n-dodecyl phosphate、Decyl hydrogen phosphate、Octyl dihydrogen phosphate、Hexyl dihydrogen phosphate。 In addition, the organic molecular interlayer of the present invention plays a role of holding the fluorine-based lubricant layer in the micropores and on the surface of the metal material by intermolecular interaction, so that the main chain of the adsorptive organic molecule is in contact with the fluorine-based lubricant. It is a fluoroalkyl chain or an alkyl chain with high affinity. The number of carbon atoms in the main chain alkyl chain is not particularly limited, but is preferably 6 or more. If it is less than 6, the ratio of the hydrophilic phosphorus functional group to the organic molecular chain length increases, so that the surface tension increases and the retention of the fluorine-based lubricant layer tends to weaken, which is not preferable. In addition, since the intermolecular interaction between the organic molecule intermediate layer and the fluorine-based lubricant layer increases as the surface tension of the adsorptive organic molecule decreases, one end of the adsorptive organic molecule opposite to the phosphorus functional group is It preferably has a trifluoromethyl group or a methyl group. The surface tension of the trifluoromethyl group (CF 3- ) is 6 mN m -1 , and the surface tension of the methyl group (CH 3- ) is 22 mN m -1 . The surface tension of -CF 2 -CF 2- is 18 mN m -1 and the surface tension of -CH 2 -CH 2- is 31 mN m -1 . Therefore, a more preferable adsorptive organic molecule has a phosphorus functional group, one end on the opposite side is a trifluoromethyl group (CF 3- ), and consists of a fluoroalkyl chain (-CF 2 -CF 2- ). Examples thereof include perfluoroalkyl phosphonic acid (polyfluoroalkyl phosphonic acid) and perfluoroalkyl phosphoric acid (polyfluoroalkyl phosphoric acid), which are organic fluorine molecules. For example, the following compounds are exemplified when specifically shown. 1H, 1H ', 2H, 2H'-Perfluorododecyl-1-phosphonic acid, 1H, 1H', 2H, 2H'-Perfluorodecyl-1-phosphonic acid, 1H, 1H ', 2H, 2H'-Perfluorooctyl-1-phosphonic acid , 1H, 1H ', 2H, 2H'-perfluorododecyl phosphate, 1H, 1H', 2H, 2H'-perfluorodecylphosphate, 1H, 1H ', 2H, 2H'-perfluorooctyl phosphate, n-Octadecylphosphonic acid, n-Tetradecylphosphonic acid, n -Dodecylphosphonic acid, n-Decylphosphonic acid, n-Octylphosphonic acid, n-Hexylphosphonic acid, Octadecyl dihydrogen phosphate, Tetradecyl dihydrogen phosphate, Mono-n-dodecyl phosphate, Decyl hydrogen phosphate, Octyl dihydrogen phosphate, Hexyl dihydrogen phosphate.

<ふっ素系潤滑剤層>
本発明におけるふっ素系潤滑剤層は、有機分子中間層を有する金属材料表面に保持され、外部から接触する液滴に対し、高い撥水撥油性を持続して示すだけでなく、基材表面に疵が生じた際も、疵部にふっ素系潤滑剤が浸透して、撥水・撥油性を維持することが必要となる。その実現に求められる特性として、ふっ素系潤滑剤層は低表面張力である必要がある。外部から接触する液滴との撥水撥油性は、潤滑剤層の表面張力が小さいほど高まる。また、ふっ素系潤滑剤層は粘性のある液体であることで、最表面は平滑かつ分子レベルで振動できるため、部位に寄らない均一な濡れと、高い撥水撥油性が可能となる。また、流動性を有するため、疵が生じても疵部に浸透すること、自己修復性も可能となる。ただし、ふっ素系潤滑剤は接触する液滴と混ざらないことも求められる。これらの特性を満たすものとして、本発明におけるふっ素系潤滑剤層は、フルオロカーボンを主成分とした揮発性の低い、液状のパーフルオロアルキルエーテルやパーフルオロアルキルアミン、パーフルオロカーボンである。これらであれば基材に付着する液滴と混ざることがなく、低表面張力の有機分子中間層によって基材表面にも保持される。さらに粘性のある液体であることで、疵に対する自己修復性を実現するだけでなく、分子レベルでの振動により、付着した液滴との親和力を小さくすることで高い撥水撥油性が得られる。
<Fluorine-based lubricant layer>
The fluorine-based lubricant layer in the present invention is held on the surface of a metal material having an organic molecular intermediate layer and not only continuously exhibits high water and oil repellency to droplets coming into contact with the outside, but also on the surface of the substrate. Even when wrinkles occur, it is necessary for the fluorine-based lubricant to penetrate into the wrinkles to maintain water and oil repellency. As a characteristic required for the realization, the fluorine-based lubricant layer needs to have a low surface tension. The water / oil repellency with droplets coming into contact with the outside increases as the surface tension of the lubricant layer decreases. In addition, since the fluorine-based lubricant layer is a viscous liquid, the outermost surface can be smooth and can vibrate at a molecular level, so that uniform wetting without depending on the part and high water / oil repellency are possible. Moreover, since it has fluidity | liquidity, even if wrinkles generate | occur | produce, it can penetrate | invade into a collar part and self-restoration property is also attained. However, it is also required that the fluorine-based lubricant does not mix with the droplets that come into contact. In order to satisfy these characteristics, the fluorine-based lubricant layer in the present invention is a liquid perfluoroalkyl ether, perfluoroalkylamine, or perfluorocarbon having a fluorocarbon as a main component and low volatility. If it is these, it will not mix with the droplet adhering to a base material, but it is hold | maintained also on the base-material surface by the organic molecule intermediate | middle layer of a low surface tension. Furthermore, since it is a viscous liquid, not only self-healing property for wrinkles is realized, but also high water and oil repellency can be obtained by reducing the affinity with attached droplets by vibration at the molecular level.

ふっ素系潤滑剤は、一般に分子量が高くなると揮発性は低下するが、粘性は高まり、逆に分子量が低下すると揮発性は上昇するが、粘性は低くなる。パーフルオロアルキルエーテルやパーフルオロアルキルアミンのような本発明におけるパーフルオロアルキル化合物においては、平均分子量は500以上11000以下が好ましい。500未満では揮発性が高く、持続性が不十分な傾向があり、11000超では粘度が高くなり、外的損傷により疵が生じた際、疵部へ浸透しにくく、自己修復性が弱い傾向が見られるためである。このとき、ふっ素系潤滑剤の揮発速度としては、特に限定されるものではないが、上述のパーフルオロアルキルエーテルのような一般的なふっ素系潤滑剤の場合、微細孔上に有機分子中間層を介して、ふっ素系潤滑剤層を保持した金属材料を、電気炉中で大気開放下、66℃で1時間保持した時の、蒸発前後でのふっ素系潤滑剤層の蒸発減量が50 g m-2以下が好ましい。これは、例えばASTM規格であれば、ASTM D972-02(2003)における66℃での22時間あたりのふっ素系潤滑剤の蒸発減量が、重量比で約2%以下に相当する。 Fluorine-based lubricants generally decrease in volatility when the molecular weight increases, but the viscosity increases. Conversely, when the molecular weight decreases, the volatility increases, but the viscosity decreases. In the perfluoroalkyl compound in the present invention such as perfluoroalkyl ether and perfluoroalkylamine, the average molecular weight is preferably 500 or more and 11,000 or less. If it is less than 500, the volatility tends to be high and the sustainability tends to be insufficient, and if it exceeds 11000, the viscosity tends to be high. This is to be seen. At this time, the volatilization rate of the fluorine-based lubricant is not particularly limited, but in the case of a general fluorine-based lubricant such as the above-mentioned perfluoroalkyl ether, an organic molecular intermediate layer is formed on the micropores. The evaporation loss of the fluorine-based lubricant layer before and after evaporation when holding a metal material holding the fluorine-based lubricant layer in an electric furnace at 66 ° C for 1 hour in the open air is 50 gm -2 The following is preferred. For example, in the ASTM standard, the evaporation loss of the fluorine-based lubricant per 22 hours at 66 ° C. in ASTM D972-02 (2003) corresponds to about 2% or less by weight.

基材表面に疵が生じると、疵部の微細孔構造および有機分子中間層の構造は破壊されるが、疵部近傍に保持されたふっ素系潤滑剤が疵部へ浸透し、疵部表面を覆うことで、自己修復性が発現する。ふっ素系潤滑剤としては、例えば、DuPont社製Krytox(R)(GPL 100, 101, 102, 103, 104)、3M社製FluorinertTM(FC-70, 43, 40)が好適なものとして例示される。 When wrinkles occur on the surface of the base material, the microporous structure of the buttock and the structure of the organic molecular intermediate layer are destroyed, but the fluorine-based lubricant held in the vicinity of the buttock penetrates into the buttock and By covering, self-repairing properties are manifested. The fluorine-based lubricant, for example, DuPont Co. Krytox (R) (GPL 100, 101, 102, 103, 104), 3M Co. Fluorinert TM (FC-70, 43 , 40) are preferably exemplified The

<微細孔構造の孔径>
本発明の金属板に形成する微細孔構造の平均孔径は、微細孔内に形成した有機分子中間層による孔内のふっ素系潤滑剤層の保持力に影響する。孔径が大きすぎると、微細孔表面に形成した有機分子中間層のふっ素系潤滑剤への分子間力が小さくなり、ふっ素系潤滑材の散逸が増大する傾向がある。一方、孔径が小さい場合、有機分子中間層によるふっ素系潤滑剤層の拘束力が高まり、ふっ素系潤滑剤層の十分な効果が得られない。本発明の平均孔径は、10 nm以上300 nm以下である。
<Pore diameter of fine pore structure>
The average pore diameter of the fine pore structure formed in the metal plate of the present invention affects the holding force of the fluorine-based lubricant layer in the pores by the organic molecular intermediate layer formed in the fine pores. If the pore diameter is too large, the intermolecular force of the organic molecular intermediate layer formed on the surface of the fine pores to the fluorine-based lubricant tends to be small, and the dissipation of the fluorine-based lubricant tends to increase. On the other hand, when the pore diameter is small, the binding force of the fluorine-based lubricant layer by the organic molecular intermediate layer is increased, and a sufficient effect of the fluorine-based lubricant layer cannot be obtained. The average pore diameter of the present invention is 10 nm or more and 300 nm or less.

10 nm未満では、分子間相互作用により有機分子中間層に拘束されるふっ素系潤滑剤の割合が多くなりふっ素系潤滑剤の運動性が損なわれやすくなり、外的損傷により表面に疵が生じた際の自己修復性が十分に得られない傾向がある。また、本発明によっても有機分子中間層を均一に形成することが難しい。300 nm超では、分子間相互作用により有機分子中間層によって拘束されるふっ素系潤滑剤の割合が少なくなり、ふっ素系潤滑剤の細孔内からの散逸が多くなり、撥水撥油性を安定して維持することが難しくなる。より好ましくは、50 nm以上200 nm以下である。この範囲であれば、分子間相互作用により有機分子中間層による拘束力と、ふっ素系潤滑剤の流動性を保つことができるため、撥水撥油性能を持続して発現すると同時に外的損傷により疵が生じても、その機能を維持させることができる。ここで平均孔径とは、微細孔構造の表面SEM(走査型電子顕微鏡)観察において、任意の視野で観察された10個以上の孔について測定された孔径の平均値を意味する。   If it is less than 10 nm, the proportion of the fluorine-based lubricant restrained by the organic molecular interlayer due to intermolecular interaction increases, and the mobility of the fluorine-based lubricant tends to be impaired, and the surface is wrinkled due to external damage. There is a tendency that sufficient self-repairability is not obtained. Also, it is difficult to form the organic molecular intermediate layer uniformly according to the present invention. Above 300 nm, the proportion of fluorine-based lubricants constrained by the organic molecular interlayer due to intermolecular interaction decreases, and the dissipation of fluorine-based lubricants from the pores increases, stabilizing water and oil repellency. It becomes difficult to maintain. More preferably, it is 50 nm or more and 200 nm or less. Within this range, the intermolecular interaction can maintain the binding force of the organic molecular intermediate layer and the fluidity of the fluorine-based lubricant. Even if wrinkles occur, the function can be maintained. Here, the average pore diameter means an average value of pore diameters measured for 10 or more holes observed in an arbitrary field of view in surface SEM (scanning electron microscope) observation of a fine pore structure.

<微細孔構造の多孔度>
本発明の金属板に形成する微細孔構造における平均多孔度は、金属板の見かけの面積あたりに占める微細孔の面積率(%)であるが、金属材料上に保持するふっ素系潤滑剤量に影響する。すなわち、微細孔構造の孔長が好ましい範囲にある場合、多孔度が大きいほど、基材表面に保持されるふっ素系潤滑剤量は増大させることができる。そのため、本発明の平均多孔度は、10%以上40%以下が好ましい。この範囲であれば、微細孔構造の強度を保持した上で、幾何学的因子に起因する表面粗さによるふっ素系潤滑剤層の保持力の向上効果が得られる。10%未満では金属板の平滑部の占める割合が大きいため、疵に対する自己修復性も低くなる傾向となり、本発明を実現できる許容値を下回る。一方、40%超では実質的に微細構造の形成が難しくなるほか、細孔構造体の強度も低下する。例えば、陽極酸化で微細孔構造を形成する場合、細孔は最密充填配列するが、40%を超えると細孔同士が結合したり、細孔壁が欠けたりするため、機械的耐久性が低くなる。より好ましくは、20%以上30%以下である。この範囲であれば、基材の強度を高いレベルで保つことができるうえ、工業的に作りやすい。ここで、平均多孔度とは、微細孔構造の表面SEM(走査型電子顕微鏡)観察において、任意の10視野で測定された、1視野あたりの金属板平面に占める細孔の面積率(空隙率)の平均値である。
<Porosity of microporous structure>
The average porosity in the microporous structure formed in the metal plate of the present invention is the area ratio (%) of micropores per apparent area of the metal plate, but the amount of fluorine-based lubricant retained on the metal material. Affect. That is, when the pore length of the fine pore structure is in a preferable range, the amount of fluorine-based lubricant retained on the substrate surface can be increased as the porosity increases. Therefore, the average porosity of the present invention is preferably 10% or more and 40% or less. Within this range, while maintaining the strength of the microporous structure, the effect of improving the retention of the fluorine-based lubricant layer due to the surface roughness caused by geometric factors can be obtained. If it is less than 10%, since the ratio of the smooth portion of the metal plate is large, the self-repairing property against wrinkles tends to be low, which is lower than the allowable value capable of realizing the present invention. On the other hand, if it exceeds 40%, it becomes difficult to form a fine structure substantially, and the strength of the pore structure also decreases. For example, when forming a microporous structure by anodic oxidation, the pores are closely packed, but if it exceeds 40%, the pores are bonded to each other or the pore walls are missing, resulting in high mechanical durability. Lower. More preferably, it is 20% or more and 30% or less. If it is this range, the intensity | strength of a base material can be kept at a high level, and it is easy to make industrially. Here, the average porosity refers to the area ratio of pores (porosity) in the plane of the metal plate per field of view measured in 10 arbitrary fields of view in the surface SEM (scanning electron microscope) observation of the microporous structure. ) Is the average value.

<微細孔構造の孔長>
本発明の金属板に形成する微細孔構造の平均孔長は、基材表面に生じる疵に対する微細孔構造の維持、および、ふっ素系潤滑剤の保持量に影響する。すなわち、孔長が大きければ、外的要因により金属材料表面に疵が生じても、疵部の下に微細孔構造が残存する可能性が高まり、また、自己修復性を維持するのに必要なふっ素系潤滑剤を供給することができる。一方、孔長が小さすぎると、疵により有機分子中間層を有する微細孔構造が失われ、下地の金属材料が露出してしまうため、自己修復性の効果が低下する。本発明の平均孔長は、100 nm以上50 μm以下である。
<Hole length of fine pore structure>
The average pore length of the microporous structure formed in the metal plate of the present invention affects the maintenance of the microporous structure against soot generated on the substrate surface and the amount of fluorine-based lubricant retained. In other words, if the hole length is large, even if wrinkles occur on the surface of the metal material due to external factors, there is a higher possibility that a fine hole structure will remain under the wrinkles, and it is necessary to maintain self-repairability. A fluorine-based lubricant can be supplied. On the other hand, if the pore length is too small, the fine pore structure having the organic molecular intermediate layer is lost due to soot, and the underlying metal material is exposed, so that the self-repairing effect is reduced. The average pore length of the present invention is 100 nm or more and 50 μm or less.

100 nm未満では、疵に対する微細孔構造の損傷が大きく、また、孔内に保持できるふっ素系潤滑剤量も多くないため、自己修復性が不十分となる。50 μm超では、孔長を大きくすることによる撥水撥油性能や自己修復性についての向上効果が飽和してくるため、経済的ではない。より好ましくは、1 μm以上50 μm以下である。この範囲であれば、疵に対する高い自己修復性と長期安定性を維持しつつ経済性も両立できる。本発明の平均孔長とは、微細孔構造の断面SEM(走査型電子顕微鏡)観察において、任意の視野で観察された20個以上の孔について測定された孔長の平均値を意味する。   If it is less than 100 nm, the damage to the micropore structure on the soot is large, and the amount of fluorine-based lubricant that can be retained in the pores is not large, so that the self-repairability is insufficient. If it exceeds 50 μm, the effect of improving the water / oil repellency and self-healing performance by increasing the hole length will be saturated, which is not economical. More preferably, it is 1 μm or more and 50 μm or less. Within this range, it is possible to achieve both economic efficiency while maintaining high self-repairability and long-term stability against wrinkles. The average hole length of the present invention means an average value of hole lengths measured for 20 or more holes observed in an arbitrary field of view in cross-sectional SEM (scanning electron microscope) observation of a micropore structure.

<微細孔の形成方法>
微細孔の形成方法は、特に限定されるものではなく、金属材料表面に上述の微細孔構造が形成できるような手法であれば、ドライプロセスやウェットプロセス、また、トップダウンプロセスやボトムアッププロセスを問わない。これらの例としては、陽極酸化(ポーラス化成)、フォトリソグラフィー、イオンエッチング、化学エッチング、電解エッチング等があげられる。また、金属材料表面に自然酸化皮膜をはじめとする金属酸化物や金属水酸化物を表面に有した金属材料や、微細孔構造の形成過程で表面に金属酸化物や金属水酸化物が生成するものも、本発明に含まれる。
<Method for forming micropores>
There are no particular limitations on the method of forming the micropores, and any dry process, wet process, top-down process, or bottom-up process can be used as long as the above-described micropore structure can be formed on the surface of the metal material. It doesn't matter. Examples of these include anodic oxidation (porous chemical conversion), photolithography, ion etching, chemical etching, electrolytic etching, and the like. In addition, a metal material having a metal oxide or metal hydroxide including a natural oxide film on the surface of the metal material, or a metal oxide or metal hydroxide is formed on the surface in the process of forming a microporous structure. Are also included in the present invention.

<水分の除去方法>
本発明では、微細孔構造を有する金属材料表面に有機分子中間層を形成する際、基材表面の水分除去が必須となる。水分が微細孔内をはじめ基材表面に残存していると、吸着性有機分子の自己縮合が促進され、凝集体が基材表面上に形成されるだけでなく、微細孔内の均一な有機分子中間層の形成が阻害される。また、表面に水和酸化物が形成した金属材料の場合、加熱などにより水分が離脱し、吸着性有機分子が凝集体を形成する要因となることもある。
<Moisture removal method>
In the present invention, when the organic molecular intermediate layer is formed on the surface of the metal material having a microporous structure, it is essential to remove moisture from the substrate surface. If moisture remains on the surface of the substrate, including inside the micropores, self-condensation of the adsorptive organic molecules is promoted, and not only aggregates are formed on the surface of the substrate, but also a uniform organic in the micropores. Formation of the molecular interlayer is inhibited. Further, in the case of a metal material having a hydrated oxide formed on the surface, moisture may be released by heating or the like, and the adsorbing organic molecules may cause aggregation.

水分を除去する方法は、特に限定されないが、加熱、減圧、湿度の制御があげられる。例えば、電気炉で加熱する場合、加熱温度は100℃以上300℃以下が好ましい。この温度であれば、基板表面上の水分は蒸発し、また基材への影響もない。加熱時間は、1時間以上が好ましい。100℃未満では、吸着水は蒸発するが、その速度は遅く、長時間の保持が必要となり、経済的でない。300℃超では、陽極酸化により形成した微細孔構造では、熱酸化によって一部でクラックが生じたりすることがある。加えて、減圧化や乾燥空気下で加熱することも、脱水を促進する手段となる。加熱以外では、真空乾燥機による減圧、酸素プラズマ洗浄、オゾンプラズマ洗浄、真空紫外光照射で微細孔内の表面吸着水を除去する手法があげられる。プラズマ洗浄や真空紫外光を用いる手法であれば、表面の水分を除去できるだけでなく、表面に付着する有機物の分解や表面水酸基が生成するため、より均一な有機分子中間層の形成において有利である。   A method for removing moisture is not particularly limited, and examples thereof include heating, decompression, and humidity control. For example, when heating in an electric furnace, the heating temperature is preferably 100 ° C. or higher and 300 ° C. or lower. If it is this temperature, the water | moisture content on a board | substrate surface will evaporate and there will be no influence on a base material. The heating time is preferably 1 hour or longer. Below 100 ° C., the adsorbed water evaporates, but its speed is slow and needs to be maintained for a long time, which is not economical. Above 300 ° C, the microporous structure formed by anodic oxidation may cause some cracks due to thermal oxidation. In addition, reducing the pressure or heating in dry air is also a means for promoting dehydration. Other than heating, there is a method of removing surface adsorbed water in the micropores by depressurization with a vacuum dryer, oxygen plasma cleaning, ozone plasma cleaning, or vacuum ultraviolet light irradiation. The method using plasma cleaning or vacuum ultraviolet light not only removes moisture on the surface, but also is advantageous in the formation of a more uniform organic molecular intermediate layer because it decomposes organic substances adhering to the surface and generates surface hydroxyl groups. .

<有機分子中間層の形成方法>
有機分子中間層の形成方法は、特に限定されるものではないが、液相法と気相法の二つがある。例えば、液相法では、吸着性有機分子が溶解した有機溶媒中に、基材を浸漬して形成することができる。さらに浸漬後に、未反応の吸着性有機分子と基材を反応させるため、加熱することもある。一方、気相法では、例えば、密閉容器中に吸着性有機分子と金属基材を入れ、一定時間加熱することで、気化した吸着性有機分子を基材と反応させる手法がある。液相法、気相法のいずれも、基材表面の水酸基と吸着性有機分子が反応し、吸着性有機分子が基材表面に自己組織化することで有機分子層が形成する。このとき、形成する有機分子膜は、水分の影響を受けやすい。これは吸着性の有機分子が微量の水によって加水分解し、吸着性有機分子同士が自己縮合してしまうためであり、均一な有機分子中間層を形成するためには、金属材料の水分除去のみならず、液相法では脱水した有機溶媒を用いたり、気相法であれば密閉容器内を低湿度に保持したりするなど、反応場中の水分量が制御された条件で行うことが望ましい。微細孔構造表面に有機分子中間層を形成するまでの水分管理が重要となる。
<Formation method of organic molecular intermediate layer>
The method for forming the organic molecular intermediate layer is not particularly limited, and there are two methods, a liquid phase method and a gas phase method. For example, in the liquid phase method, the substrate can be formed by immersing it in an organic solvent in which the adsorptive organic molecules are dissolved. Furthermore, after immersion, in order to make a base material react with an unreacted adsorptive organic molecule, it may heat. On the other hand, in the vapor phase method, for example, there is a method in which an adsorbing organic molecule and a metal substrate are placed in a closed container and heated for a predetermined time to react the vaporized adsorbing organic molecule with the substrate. In both the liquid phase method and the gas phase method, the hydroxyl group on the substrate surface reacts with the adsorbing organic molecules, and the adsorbing organic molecules self-assemble on the substrate surface to form an organic molecular layer. At this time, the organic molecular film to be formed is easily affected by moisture. This is because the adsorptive organic molecules are hydrolyzed by a small amount of water, and the adsorbing organic molecules self-condense with each other. To form a uniform organic molecule intermediate layer, only water removal of the metal material is required. In addition, it is desirable to use a dehydrated organic solvent in the liquid phase method or to keep the inside of the sealed container at a low humidity in the gas phase method under conditions where the amount of water in the reaction field is controlled. . It is important to manage moisture until the organic molecular intermediate layer is formed on the surface of the microporous structure.

<ふっ素系潤滑剤層の形成方法>
ふっ素系潤滑剤層の形成方法は、特に限定されるものではないが、有機分子中間層を形成した微細孔構造表面にふっ素系潤滑剤を塗布することで、基材表面に担持すれば良い。有機分子中間層により金属材料表面の表面張力が低下していれば、ふっ素系潤滑剤は毛管現象により容易に微細孔構造表面に浸透させることができる。基材表面全体に塗布する方法としては、例えば、ふっ素系潤滑剤の基板上への滴下や、ふっ素系潤滑剤中への金属材料の浸漬といった手法をはじめ、バーコーター、ロールコーター、刷毛を使った手法などがあげられる。ふっ素系潤滑剤の粘度が高く、基材表面全体にわたって潤滑剤を浸透させにくい場合は、減圧することで微細孔内へふっ素系潤滑剤の浸透を促進することも有効となる。
<Method for forming fluorine-based lubricant layer>
The formation method of the fluorine-based lubricant layer is not particularly limited, but it may be supported on the surface of the base material by applying the fluorine-based lubricant to the surface of the fine pore structure on which the organic molecular intermediate layer is formed. If the surface tension on the surface of the metal material is reduced by the organic molecular intermediate layer, the fluorine-based lubricant can easily penetrate into the surface of the microporous structure by capillary action. Examples of methods for applying to the entire surface of the base material include using a bar coater, roll coater, and brush, including techniques such as dropping a fluorine-based lubricant onto a substrate and immersing a metal material in the fluorine-based lubricant. Techniques. When the fluorine-based lubricant has a high viscosity and it is difficult for the lubricant to permeate the entire surface of the substrate, it is also effective to promote the permeation of the fluorine-based lubricant into the micropores by reducing the pressure.

以下、本発明を実施例により具体的に説明する。ただし、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.

<金属板の種類>
金属材料としては、アルミニウム板(純度99.99%、300 μm厚)、チタン板(純度99.5%、500 μm厚)、鉄板(純度99.99%、200 μm厚)、ステンレス鋼板(SUS304、SUS430、50 μm厚)を、アセトン中で超音波脱脂処理を施した後、使用した。
<Type of metal plate>
Metal materials include aluminum plate (purity 99.99%, 300 μm thickness), titanium plate (purity 99.5%, 500 μm thickness), iron plate (purity 99.99%, 200 μm thickness), stainless steel plate (SUS304, SUS430, 50 μm thickness) ) Was used after ultrasonic degreasing treatment in acetone.

<微細孔構造の作製方法>
金属材料表面への微細孔の形成は、陽極酸化(ポーラス化成)または電解エッチングにより行い、対極(陰極)には白金板を用いた。
アルミニウム板は、陽極酸化の場合、15℃の0.3 mol dm-3しゅう酸水溶液中もしくは15℃の0.3 mol dm-3りん酸水溶液中、10−200 Vの範囲で定電圧電解を行い、基材表面に酸化物の微細孔構造を形成した。その後、30℃の5 wt% りん酸水溶液中に、金属材料を浸漬して化学溶解することで、孔径を制御した。また、電解エッチングの場合、80℃の塩酸(0.23 mol dm-3)および硫酸(1.88 mol dm-3)およびアルミニウムイオン(0.37 mol dm-3)の混合溶液中、0.2 A cm-2の定電流電解を行い、基材表面に微細孔構造を形成した。
チタン板は、160℃の0.6 mol dm-3りん酸水素カリウムと0.2 mol dm-3りん酸カリウムを含むグリセリン溶液中、3−120 Vの範囲で定電位電解した。
鉄板は、20℃の0.1 mol dm-3のふっ化アンモニウムを含むエチレングリコール溶液中、0.1−0.5 mol dm-3の範囲で水を添加し、10−150 Vの範囲で定電位電解を行った。
ステンレス鋼板は、0.1 mol dm-3ふっ化アンモニウムを含むエチレングリコール溶液中、0.1−0.5 mol dm-3の範囲で水を添加し、10−150 V範囲で定電位電解した。
電解したアルミニウム板、チタン板、鉄板、ステンレス鋼板は、直ちに試料を水洗し、乾燥させた。
<Preparation method of micropore structure>
Micropores were formed on the surface of the metal material by anodic oxidation (porous formation) or electrolytic etching, and a platinum plate was used as the counter electrode (cathode).
In the case of anodizing, the aluminum plate is subjected to constant voltage electrolysis in the range of 10-200 V in a 0.3 mol dm -3 oxalic acid aqueous solution at 15 ° C or in a 0.3 mol dm -3 phosphoric acid aqueous solution at 15 ° C. A fine pore structure of oxide was formed on the surface. Thereafter, the pore size was controlled by immersing and chemically dissolving the metal material in a 5 wt% phosphoric acid aqueous solution at 30 ° C. In the case of electrolytic etching, a constant current of 0.2 A cm -2 in a mixed solution of hydrochloric acid (0.23 mol dm -3 ), sulfuric acid (1.88 mol dm -3 ) and aluminum ion (0.37 mol dm -3 ) at 80 ° C. Electrolysis was performed to form a microporous structure on the substrate surface.
The titanium plate was subjected to constant potential electrolysis in a range of 3-120 V in a glycerin solution containing 0.6 mol dm -3 potassium hydrogen phosphate and 0.2 mol dm -3 potassium phosphate at 160 ° C.
The iron plate was subjected to constant potential electrolysis in the range of 10-150 V by adding water in the range of 0.1-0.5 mol dm -3 in an ethylene glycol solution containing 0.1 mol dm -3 ammonium fluoride at 20 ° C. .
The stainless steel plate was subjected to constant potential electrolysis in the range of 0.1 to 0.5 mol dm −3 in an ethylene glycol solution containing 0.1 mol dm −3 ammonium fluoride and in the range of 10 to 150 V.
The electrolyzed aluminum plate, titanium plate, iron plate, and stainless steel plate were immediately washed with water and dried.

<細孔径、細孔長、多孔度の判定>
微細孔構造の細孔径、細孔長、多孔度の測定は走査型電子顕微鏡(JEOL社、JSM-6500F)観察により行い、1000倍〜5万倍の表面あるいは断面観察において測定した。陽極酸化により形成した微細孔構造の細孔径は、表面SEM観察において、任意の視野で観察された20個以上の孔についてnm単位で測定した孔径の平均値を算出した。細孔長は、断面SEM観察において、任意の視野で観察された20個以上の孔についてnm単位で測定した細孔長の平均値を算出し、1桁目を四捨五入して求めた。多孔度は、表面SEM観察において、任意の10視野で測定された、1視野あたりの微細孔の占有面積の平均値から算出した。電解エッチングにより形成した微細孔構造の細孔径は、表面SEM観察において、任意の視野で観察された100個以上の孔についてnm単位で測定した孔径の平均値を算出した。細孔長は、断面SEM観察において、任意の視野で観察された100個以上の孔についてnm単位で測定した細孔長の平均値を算出し、1桁目を四捨五入して求めた。多孔度は、表面SEM観察において、任意の10視野で測定された、1視野あたりの微細孔の占有面積の平均値から算出した。
<Determination of pore diameter, pore length, porosity>
The pore diameter, pore length, and porosity of the fine pore structure were measured with a scanning electron microscope (JEOL, JSM-6500F), and measured with a surface or cross-sectional observation of 1000 to 50,000 times. As the pore diameter of the fine pore structure formed by anodization, the average value of pore diameters measured in nm units was calculated for 20 or more pores observed in an arbitrary field of view in surface SEM observation. The pore length was obtained by calculating the average value of pore lengths measured in nm units for 20 or more pores observed in an arbitrary field of view in cross-sectional SEM observation, and rounding off to the first digit. The porosity was calculated from the average value of the area occupied by the micropores per field, which was measured in 10 arbitrary fields during surface SEM observation. For the pore diameter of the micropore structure formed by electrolytic etching, an average value of pore diameters measured in nm units for 100 or more pores observed in an arbitrary field of view in surface SEM observation was calculated. The pore length was obtained by calculating the average value of pore lengths measured in nm units for 100 or more pores observed in an arbitrary field of view in cross-sectional SEM observation, and rounding off to the first digit. The porosity was calculated from the average value of the area occupied by the micropores per field, which was measured in 10 arbitrary fields during surface SEM observation.

<基板の水分除去>
微細孔構造を形成した金属材料は、水分除去のため、大気中もしくは窒素(露点-70℃以下、流量5 L/min)雰囲気中、80、100、200、300、350℃で1時間加熱した。
あるいは、プラズマクリーナー(Harrick Plasma製、PDC-32G)を用いて、1時間以上、真空下に保持した後、5分間プラズマ洗浄を行った。
<Moisture removal from substrate>
The metal material with a microporous structure was heated at 80, 100, 200, 300, 350 ° C for 1 hour in air or nitrogen (dew point -70 ° C or less, flow rate 5 L / min) atmosphere to remove moisture. .
Alternatively, a plasma cleaner (manufactured by Harrick Plasma, PDC-32G) was used for 1 minute or longer, and then plasma cleaning was performed for 5 minutes.

<有機分子中間層の形成>
有機分子中間層の形成は、吸着性有機分子を溶解した脱水エタノール溶液中に、金属材料を一日間浸漬することで形成した。吸着性有機分子にはn-dodecylphosphonic acid、1H,1H',2H,2H'-perfluorodecyl-1-phosphonic acid、1H,1H',2H,2H'-perfluorodecyl phosphate、1H,1H',2H,2H'-perfluorododecyl-1-phosphonic acidを用い、それぞれを1 wt%の濃度で脱水エタノール溶液中に溶解させた。浸漬後は脱水エタノールで洗浄し、温風乾燥した。また、比較のため、同様に加熱乾燥処理した金属材料をn-octyltriethoxysilaneを1 wt%溶解したヘキサン溶液中にも一日間浸漬した。浸漬後、ヘキサンで洗浄した後、乾燥炉中150℃で一時間加熱処理し、残存する溶媒を除去した。
<Formation of organic molecular interlayer>
The organic molecule intermediate layer was formed by immersing the metal material for one day in a dehydrated ethanol solution in which the adsorbing organic molecules were dissolved. Adsorbable organic molecules include n-dodecylphosphonic acid, 1H, 1H ', 2H, 2H'-perfluorodecyl-1-phosphonic acid, 1H, 1H', 2H, 2H'-perfluorodecyl phosphate, 1H, 1H ', 2H, 2H' Each of -perfluorododecyl-1-phosphonic acid was dissolved in a dehydrated ethanol solution at a concentration of 1 wt%. After immersion, it was washed with dehydrated ethanol and dried with warm air. For comparison, the metal material similarly heat-dried was also immersed in a hexane solution in which 1 wt% of n-octyltriethoxysilane was dissolved for one day. After immersion, the substrate was washed with hexane and then heat-treated at 150 ° C. for 1 hour in a drying furnace to remove the remaining solvent.

<ふっ素系潤滑剤層の形成>
ふっ素系潤滑剤層には、市販のふっ素系溶剤であるDuPont社製 Krytox100、Krytox103もしくは、3M社製Fluorinert FC-70、FC-43を用いた。ふっ素系潤滑剤は、マイクロピペットで有機分子中間層を形成した微細孔構造を有する金属材料表面に微量滴下したのち、刷毛で試料全面に塗り拡げた。
<Formation of fluorine-based lubricant layer>
For the fluorine-based lubricant layer, commercially available fluorine-based solvents such as Krytox 100 and Krytox 103 manufactured by DuPont, or Fluorinert FC-70 and FC-43 manufactured by 3M were used. A small amount of the fluorine-based lubricant was dropped on the surface of a metal material having a fine pore structure in which an organic molecular intermediate layer was formed with a micropipette, and then spread over the entire surface of the sample with a brush.

<吸着性有機分子の自己縮合による凝集体の析出について>
有機分子中間層の形成において、吸着性有機分子の自己縮合による凝集体の析出について調査するため、評価試験1を行った。凝集物が析出している場合、有機分子中間層を形成した金属材料表面に白色の模様が生じることがわかっており、微細孔を有する金属材料の水分除去の有無、および吸着性有機分子の種類が、有機分子中間層の形成に及ぼす影響について評価した(表1)。その結果、有機分子中間層を形成する吸着性有機分子が有機シランの場合、微細孔を有する金属材料表面に化学吸着しても、表面に白色模様が認められ、有機シラン分子の凝集物が金属材料上に生成した(実験No.1-7)。また、吸着性有機分子が有機ホスホン酸の場合であっても、適切な基板の乾燥処理を行わなかった場合、表面の一部で白色の模様が確認された(実験No.8-14)(図3)。一方、微細孔を形成した金属材料を乾燥窒素雰囲気中もしくは大気中100-300℃で加熱乾燥により水分除去を行うと、吸着性有機分子を形成しても、目視観察では白色模様の発生は見られなかった(実験No.15-21、25-30、34-36)(図4)。ただし、加熱温度が100℃未満の場合においては白色の模様が見られたり、300℃を超える場合においては皮膜にクラックの発生が認められることがあった。(実験No.22-24、31-33)。また、加熱乾燥による水分除去だけでなく、プラズマ洗浄により微細孔を有する基材を処理しても、有機分子中間層を形成した際、表面に白色模様は確認されなかった(実験No.37-39)。ただし、プラズマ洗浄による表面水酸基の生成効果ついては、本評価試験では確認できなかった。以上のことから、吸着性有機分子にりん系官能基を有する有機アルキル分子を用い、かつ、微細孔を有する金属材料を適切に乾燥処理すれば、凝集物の発生を抑制して有機分子中間層を形成できることがわかった。
<Precipitation of aggregates by self-condensation of adsorptive organic molecules>
In order to investigate the precipitation of aggregates due to self-condensation of adsorptive organic molecules in the formation of the organic molecular intermediate layer, evaluation test 1 was conducted. When aggregates are deposited, it is known that a white pattern is generated on the surface of the metal material on which the organic molecule intermediate layer is formed. Whether or not moisture is removed from the metal material having micropores, and the type of adsorptive organic molecules (Table 1) evaluated the effect of sucrose on the formation of organic molecular interlayers. As a result, when the adsorptive organic molecule that forms the organic molecule intermediate layer is organosilane, even if it is chemically adsorbed on the surface of the metal material having micropores, a white pattern is observed on the surface, and the aggregate of the organosilane molecule is a metal Produced on the material (Experiment No. 1-7). In addition, even when the adsorptive organic molecule is an organic phosphonic acid, a white pattern was confirmed on a part of the surface when the appropriate substrate drying treatment was not performed (Experiment No. 8-14) ( (Figure 3). On the other hand, when water is removed from a metal material with fine pores by drying in a dry nitrogen atmosphere or at 100-300 ° C in the air, white patterns are observed by visual observation even if adsorbing organic molecules are formed. (Experiment No. 15-21, 25-30, 34-36) (FIG. 4). However, when the heating temperature was less than 100 ° C., a white pattern was observed, and when the heating temperature exceeded 300 ° C., cracks were sometimes observed in the film. (Experiment No. 22-24, 31-33). In addition to removing moisture by heat drying, even when the substrate having micropores was processed by plasma cleaning, no white pattern was observed on the surface when the organic molecular intermediate layer was formed (Experiment No. 37- 39). However, the effect of generating surface hydroxyl groups by plasma cleaning could not be confirmed in this evaluation test. From the above, if organic alkyl molecules having phosphorus functional groups are used as the adsorbing organic molecules and the metal material having fine pores is appropriately dried, the generation of aggregates can be suppressed and the organic molecule intermediate layer can be suppressed. It was found that can be formed.

<自己修復性および持続性について>
表2は、評価試験1により有機分子中間層が凝集することなく形成できる条件で有機分子中間層を形成し、さらにふっ素系潤滑剤層を形成した金属材料について、自己修復性および持続性を評価するため、評価試験2〜4を行った結果を示したものである。ここで、評価試験2は、微細孔上に有機分子中間層を介して、ふっ素系潤滑剤層を保持した金属材料にカッターナイフで切り込み疵を入れたときの自己修復性を確認するためのものであり、自己修復性が発現すれば、疵部にもふっ素系潤滑剤が浸透することで撥水撥油性は維持される。評価試験3は、評価試験2と同様に自己修復性を確認するものであるが、摩耗試験により疵部の面積を大きくすることで、評価試験2よりもさらに厳しい条件で自己修復性について調査したものである。また、評価試験4は撥水撥油効果の持続性を確認するため、高温の水中に金属材料を浸漬させたときの、ふっ素系潤滑剤層の散逸および蒸発について調査したものである。
<About self-healing and sustainability>
Table 2 shows the self-healing properties and sustainability of metal materials in which organic molecular interlayers are formed under conditions that allow organic molecular interlayers to form without agglomeration in Evaluation Test 1 and then a fluorine-based lubricant layer is formed. Therefore, the results of the evaluation tests 2 to 4 are shown. Here, the evaluation test 2 is for confirming the self-repairing property when a cutting knife is cut with a cutter knife into a metal material holding a fluorine-based lubricant layer on a fine hole through an organic molecular intermediate layer. If self-healing properties are manifested, the water and oil repellency is maintained by the penetration of the fluorine-based lubricant into the buttocks. Evaluation test 3 confirms self-healing properties in the same way as evaluation test 2, but the self-healing properties were investigated under conditions more severe than evaluation test 2 by increasing the area of the buttocks by the wear test. Is. Evaluation test 4 was conducted to investigate the dissipation and evaporation of the fluorine-based lubricant layer when a metal material was immersed in high-temperature water in order to confirm the durability of the water / oil repellent effect.

表2より、微細孔の孔径が10 nm以上300 nm以下および孔長が100 nm以上である場合、評価試験2〜4に対する評点はいずれも2以上となった(実験No.41-42, 44-47)。特に、微細孔構造の孔径が50 nm以上300 nm以下のとき、評価試験2の水滴に対して、評点は3となった。ただし、孔径が50 nm以上であっても、孔長が100 nm以下のとき、評価試験3および4に対して、いずれも評点は1となった(実験No.43)。また、孔径が10 nm以下の場合も評価試験3および4は評点1となり(実験No.40)、300 nm超の場合は、評価試験2および3は評点2以上であったが、評価試験4では、油滴に対して評点1となった(実験No.48)。この傾向は、微細孔構造を陽極酸化ではなく電解エッチングにて形成した場合(実験No.49)、金属基材が鉄系金属やチタンの場合も、同様の傾向が見られた(実験No.50-61)。ふっ素系潤滑剤は、パーフルオロアミンやパーフルオロカーボン、粘度・揮発性の異なるパーフルオロエーテルにおいても自己修復性や持続性が確認された(実験No.62-70)。   From Table 2, when the pore diameter of the micropore is 10 nm or more and 300 nm or less and the pore length is 100 nm or more, the scores for the evaluation tests 2 to 4 are all 2 or more (Experiment No. 41-42, 44 -47). In particular, when the pore diameter of the fine pore structure was 50 nm or more and 300 nm or less, the score was 3 for water droplets in Evaluation Test 2. However, even if the pore diameter was 50 nm or more, when the pore length was 100 nm or less, the scores for evaluation tests 3 and 4 were both 1 (experiment No. 43). In addition, evaluation tests 3 and 4 were rated 1 even when the pore diameter was 10 nm or less (Experiment No. 40), and evaluation tests 2 and 3 were rated 2 or more when the pore diameter was more than 300 nm. Then, it was rated 1 for oil droplets (Experiment No. 48). This tendency was observed when the microporous structure was formed by electrolytic etching instead of anodic oxidation (Experiment No. 49), and the same tendency was observed when the metal substrate was an iron-based metal or titanium (Experiment No. 50-61). Fluorine-based lubricants were confirmed to be self-healing and durable even in perfluoroamines, perfluorocarbons, and perfluoroethers with different viscosities and volatility (Experiment No. 62-70).

また、孔長が1 μmを超えるとき、評価試験2の評点は4以上となり、さらに多孔度も10%以上40%以下であるとき、評価試験3における水滴に対する評点が4以上となった(実験No.71-77)。これは多孔度が適正範囲にあり、孔長が増大することで、基材表面でのふっ素系潤滑剤の保持量が増えたことと、疵が生じても、その下部に微細孔が残存していることにより、高い自己修復性を示したためと推定される。   In addition, when the pore length exceeds 1 μm, the score of evaluation test 2 is 4 or more, and when the porosity is 10% or more and 40% or less, the score for water droplets in evaluation test 3 is 4 or more (experimental). No.71-77). This is because the porosity is in the proper range and the pore length increases, so that the amount of fluorine-based lubricant retained on the surface of the base material has increased, and even if wrinkles occur, micropores remain in the lower part. This is presumed to be due to high self-healing properties.

また、多孔度が10%以上40%以下で孔長が1 μm未満のとき、評価試験2、および評価試験3における水滴に対する評点が3以上となった(実験No.79-82)。さらに、多孔度が20%以上30%以下のとき、評価試験3における菜種油に対する評点は3以上となり、多孔度が10%未満40%超である場合に比べて、評価試験3での評点が高かった(実験No.80-81)。この多孔度の範囲では、基材の強度を保ちつつ、基材上のふっ素系潤滑剤の量が多くなることで、疵部へのふっ素系潤滑剤の染み出しによる補修が容易に行われたためと推定される。   When the porosity was 10% or more and 40% or less and the pore length was less than 1 μm, the score for water drops in Evaluation Test 2 and Evaluation Test 3 was 3 or more (Experiment No. 79-82). Furthermore, when the porosity is 20% or more and 30% or less, the score for rapeseed oil in Evaluation Test 3 is 3 or more, and the score in Evaluation Test 3 is higher than when the porosity is less than 10% and more than 40%. (Experiment No. 80-81). In this range of porosity, the amount of fluorine-based lubricant on the base material increases while maintaining the strength of the base material, so that repair by oozing out of the fluorine-based lubricant to the buttocks was easily performed. It is estimated to be.

<有機分子中間層を形成する吸着性有機分子について>
表3は、有機分子中間層を形成する吸着性有機分子に、ふっ素化した有機ホスホン酸またはりん酸を用いた場合の結果について示したものである。有機分子中間層がふっ素化していることで、評価試験4における評点が4以上となった(実験No.84-92)。これは、ふっ素系潤滑剤層に対する物理的な相互作用が増すことで、ふっ素系潤滑剤の保持力が増したためと考えられる。また、ふっ素系潤滑剤層を形成するふっ素系潤滑剤が、より揮発性の低いパーフルオロアルキルエーテルであるとき、評価試験4における評点はいずれも5となった。これは、ふっ素系潤滑剤の散逸や蒸発による損失が減少したためと考えられる。
<Adsorptive organic molecules forming the organic molecular interlayer>
Table 3 shows the results when fluorinated organic phosphonic acid or phosphoric acid is used as the adsorptive organic molecule forming the organic molecular interlayer. Since the organic molecular intermediate layer was fluorinated, the score in Evaluation Test 4 was 4 or more (Experiment No. 84-92). This is presumably because the retention of the fluorine-based lubricant increased due to an increase in the physical interaction with the fluorine-based lubricant layer. In addition, when the fluorine-based lubricant forming the fluorine-based lubricant layer is a perfluoroalkyl ether having lower volatility, the scores in the evaluation test 4 are all 5. This is thought to be due to a decrease in loss due to dissipation and evaporation of the fluorine-based lubricant.

<評価試験1の方法と判定方法>(表1)
評価試験1は、有機分子中間層の形成において、吸着性有機分子の自己縮合による凝集体の析出について調査したものである。凝集物が析出している場合、有機分子中間層を形成した金属材料表面に白色の模様が生じることから、微細孔を有する金属材料の水分除去の有無、および吸着性有機分子の種類による影響について調査した。凝集物の析出有無については、有機分子中間層の形成した金属材料表面を目視で観察することで評価した。評点3を合格とした。
評点3:基材表面に斑状の模様の発生なし
評点2:基材表面に斑状の模様が一部で発生
評点1:基材表面に斑状の模様がほぼ全面で発生
<Method and Evaluation Method of Evaluation Test 1> (Table 1)
Evaluation test 1 is an investigation of the precipitation of aggregates due to self-condensation of adsorptive organic molecules in the formation of an organic molecule intermediate layer. When aggregates are deposited, a white pattern is formed on the surface of the metal material on which the organic molecule intermediate layer is formed. About the influence of the presence or absence of moisture removal on the metal material with micropores and the type of adsorbing organic molecules investigated. The presence or absence of aggregates was evaluated by visually observing the surface of the metal material on which the organic molecular intermediate layer was formed. Score 3 was accepted.
Score 3: No spotted pattern on the substrate surface Score 2: Spotted pattern appears on the substrate surface Score 1: Spotted pattern appears on the entire surface

<評価試験2の方法と判定方法>(表2, 3)
評価試験2は、孔長が1 μm以上50 μm以下である微細孔上に有機分子中間層を介して、ふっ素系潤滑剤層を保持した金属材料の自己修復性を確認するため、切り込み疵を入れたときの撥水撥油性について調査したものである。評価試験2は、金属材料表面に、カッターナイフで1 mm角の間隔、切り込み深さ約0.001 mmから0.005 mmの範囲で格子状の切り込みを入れた後、切り込み上に、水または菜種油をマイクロピペットで10 μL滴下した。その後、接触角計(協和界面化学株式会社、DM-301)を用いて、金属材料を水平方向に対して1度ずつ傾け、液滴が金属材料表面上を動き始めるときの角度を測定し、作製した材料の撥水撥油性能の自己修復性について評価した。評点2以上を合格とした。
評点5:5°以下
評点4:5°超、10°以下
評点3:10°超、20°以下
評点2:20°超、45°以下
評点1:45°超
<Method and judgment method of evaluation test 2> (Tables 2 and 3)
In the evaluation test 2, in order to confirm the self-healing property of the metal material holding the fluorine-based lubricant layer on the micropores having a pore length of 1 μm or more and 50 μm or less via an organic molecular intermediate layer, a scissor flaw is used. The water and oil repellency when put in was investigated. In evaluation test 2, a grid-like cut was made on a metal material surface with a cutter knife at a 1 mm square interval and a cut depth in the range of about 0.001 mm to 0.005 mm, and then water or rapeseed oil was micropipetted on the cut. 10 μL was added dropwise. Then, using a contact angle meter (Kyowa Interface Chemical Co., Ltd., DM-301), tilt the metal material by 1 degree with respect to the horizontal direction, measure the angle when the droplet starts to move on the metal material surface, The self-healing property of the water and oil repellency of the produced material was evaluated. A score of 2 or higher was accepted.
Score 5: 5 ° or less Score 4: Over 5 °, 10 ° or less Score 3: Over 10 °, 20 ° or less Score 2: Over 20 °, 45 ° or less Score 1: Over 45 °

<評価試験3の方法と判定方法>(表2, 3)
評価試験3は、多孔度が10%以上40%以下である微細孔上に有機分子中間層を介して、ふっ素系潤滑剤層を保持した金属材料の自己修復性を確認するため、摺動試験により疵部の面積を大きくすることで、評価試験2よりもさらに厳しい条件で自己修復性について調査したものである。評価試験3は、金属材料表面に、摩耗試験機(CSM社、TRB-S-DU-0000)を用いて、SUS304ボール、ボールサイズ6 mmφ、荷重1 N、移動距離5 m、10 mm s-1の速度で500秒間往復動させて金属材料表面を摩耗させた後、摩耗部に水または菜種油をマイクロピペットで10 μL滴下した。その後、接触角計(協和界面化学株式会社、DM-301)を用いて、金属材料を水平方向に対して1度ずつ傾け、液滴が金属材料表面上を動き始めるときの角度を測定し、作製した材料の撥水撥油性能の自己修復性について評価した。評点2以上を合格とした。
評点5:5°以下
評点4:5°超、10°以下
評点3:10°超、20°以下
評点2:20°超、45°以下
評点1:45°超
<Method and evaluation method of Evaluation Test 3> (Tables 2 and 3)
Evaluation test 3 is a sliding test to confirm the self-healing property of the metal material holding the fluorine-based lubricant layer on the micropores with a porosity of 10% or more and 40% or less via the organic molecular intermediate layer. The self-healing property was investigated under conditions more severe than those in the evaluation test 2 by increasing the area of the buttocks. Evaluation test 3 uses a wear tester (CSM, TRB-S-DU-0000) on a metal material surface, SUS304 ball, ball size 6 mmφ, load 1 N, travel distance 5 m, 10 mm s − The metal material surface was worn by reciprocating at a speed of 1 for 500 seconds, and then 10 μL of water or rapeseed oil was dropped onto the worn part with a micropipette. Then, using a contact angle meter (Kyowa Interface Chemical Co., Ltd., DM-301), tilt the metal material by 1 degree with respect to the horizontal direction, measure the angle when the droplet starts to move on the metal material surface, The self-healing property of the water and oil repellency of the produced material was evaluated. A score of 2 or higher was accepted.
Score 5: 5 ° or less Score 4: Over 5 °, 10 ° or less Score 3: Over 10 °, 20 ° or less Score 2: Over 20 °, 45 ° or less Score 1: Over 45 °

<評価試験4の方法と判定方法>(表2, 3)
評価試験4は、微細孔上に、種々の材料の有機分子中間層を介して、ふっ素系潤滑剤層を保持した金属材料の持続性を確認するため、高温水中に浸漬させたときの撥水撥油性を調査したものである。評価試験4は、金属材料表面を、50℃に加熱した水の中に5分間浸漬した後、金属材料上に水または菜種油をマイクロピペットで10 μL滴下した。その上で、接触角計(協和界面化学株式会社、DM-301)を用いて、金属材料を水平方向に対して1度ずつ傾け、液滴が金属材料表面上を動き始めるときの角度を測定し、作製した材料の撥水撥油性能の持続性について評価した。評点2以上を合格とした。
評点5:5°以下
評点4:5°超、10°以下
評点3:10°超、20°以下
評点2:20°超、45°以下
評点1:45°超
<Method and judgment method of evaluation test 4> (Tables 2 and 3)
Evaluation test 4 is a water repellent when immersed in high-temperature water in order to confirm the durability of the metal material holding the fluorine-based lubricant layer on the micropores through the organic molecular interlayer of various materials. The oil repellency was investigated. In evaluation test 4, the surface of the metal material was immersed in water heated to 50 ° C. for 5 minutes, and then 10 μL of water or rapeseed oil was dropped on the metal material with a micropipette. Then, using a contact angle meter (Kyowa Interface Chemical Co., Ltd., DM-301), tilt the metal material by 1 degree with respect to the horizontal direction, and measure the angle when the droplet starts to move on the metal material surface. Then, the sustainability of the water / oil repellency of the produced material was evaluated. A score of 2 or higher was accepted.
Score 5: 5 ° or less Score 4: Over 5 °, 10 ° or less Score 3: Over 10 °, 20 ° or less Score 2: Over 20 °, 45 ° or less Score 1: Over 45 °

Claims (5)

微細孔を有し、水分を含まない金属材料の表面に、有機分子中間層を介して、ふっ素系潤滑剤層を有した複合材料であって、前記微細孔の孔径が10 nm以上300 nm以下および孔長が100 nm以上であり、かつ前記有機分子中間層が、フルオロアルキル鎖またはアルキル鎖を有し、一方の末端にホスホン酸もしくはりん酸をもつ吸着性有機分子の、前記ホスホン酸基もしくは前記りん酸基前記微細孔を有する金属材料の表面とが反応して形成される層であって、かつ前記ふっ素系潤滑剤層がパーフルオロアルキルエーテルまたはパーフルオロアルキルアミンまたはパーフルオロカーボンであることを特徴とする複合材料。 A composite material having a fine lubricant and a fluorine-based lubricant layer through an organic molecular intermediate layer on the surface of a metal material that does not contain moisture, and the pore diameter of the fine pore is 10 nm or more and 300 nm or less and hole length is at 100 nm or more, and the organic molecule intermediate layer has a fluoroalkyl chain or an alkyl chain, of the absorptive organic molecules with phosphonic acid group or phosphoric acid group at one end, the phosphonic acid a layer and the base or the surface of the metal material having the fine pores and the phosphate group is formed by reaction and the fluorine-based lubricant layer is in the perfluoroalkyl ether or perfluoroalkyl amine or a perfluorocarbon A composite material characterized by being. 前記微細孔の孔長が1 μm以上50 μm以下である請求項1に記載の複合材料。   2. The composite material according to claim 1, wherein the pore length of the micropore is 1 μm or more and 50 μm or less. 前記微細孔を有する金属材料の多孔度が10%以上40%以下である請求項1〜2のいずれか一項に記載の複合材料。 Composite material according to the any of claims 1-2 porosity is 10% to 40% of a metal material having fine pores. 前記有機分子中間層を形成する吸着性有機分子が、ホスホン酸またはりん酸する炭素数6以上のフルオロアルキル鎖を有する請求項1〜3のいずれか一項に記載の複合材料。 Absorptive organic molecule forming organic molecule intermediate layer is a composite material according to claim 1 having a fluoroalkyl chain having 6 or more carbon atoms which have a phosphonic acid group or phosphoric acid group. 金属材料表面に微細孔を形成し、大気もしくは乾燥ガス雰囲気下で、100℃以上300℃以下で加熱乾燥することで前記金属材料表面の水分を除去した後、ホスホン酸基もしくはりん酸基を有するアルキル分子またはフルオロアルキル分子を、前記ホスホン酸基もしくは前記りん酸基を介して前記金属材料表面に有機分子中間層を形成させ、さらにパーフルオロアルキルエーテルまたはパーフルオロアルキルアミンまたはパーフルオロアルキルカーボンからなるふっ素系潤滑剤を前記金属材料にコーティングした複合材料の製造方法。 Micropores are formed on the surface of the metal material, and after removing moisture on the surface of the metal material by heating and drying at 100 ° C. or more and 300 ° C. or less in air or a dry gas atmosphere, it has a phosphonic acid group or a phosphoric acid group . An alkyl molecule or a fluoroalkyl molecule is formed on the surface of the metal material via the phosphonic acid group or the phosphoric acid group , and further comprises perfluoroalkyl ether, perfluoroalkylamine, or perfluoroalkylcarbon. A method for producing a composite material in which a fluorine-based lubricant is coated on the metal material.
JP2014097939A 2014-05-09 2014-05-09 Composite material having high water and oil repellency and method for producing the same Active JP6357855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097939A JP6357855B2 (en) 2014-05-09 2014-05-09 Composite material having high water and oil repellency and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097939A JP6357855B2 (en) 2014-05-09 2014-05-09 Composite material having high water and oil repellency and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015214072A JP2015214072A (en) 2015-12-03
JP6357855B2 true JP6357855B2 (en) 2018-07-18

Family

ID=54751453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097939A Active JP6357855B2 (en) 2014-05-09 2014-05-09 Composite material having high water and oil repellency and method for producing the same

Country Status (1)

Country Link
JP (1) JP6357855B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598138B2 (en) * 2016-03-23 2019-10-30 日産自動車株式会社 Antifouling structure and automobile parts provided with the antifouling structure
US10907258B1 (en) 2016-08-25 2021-02-02 Arrowhead Center, Inc. Surface modification of metals and alloys to alter wetting properties
CN109689353B (en) * 2016-09-13 2021-02-02 日产自动车株式会社 Antifouling structure
WO2019030907A1 (en) * 2017-08-10 2019-02-14 日産自動車株式会社 Antifouling structure and automobile component provided with said antifouling structure
JP2019054083A (en) 2017-09-14 2019-04-04 東芝メモリ株式会社 Template, manufacturing method thereof, and pattern formation method
JP6998012B2 (en) * 2017-11-02 2022-01-18 国立大学法人北海道大学 Aluminum composite
TWI714285B (en) * 2018-09-27 2020-12-21 日商Toto股份有限公司 Sanitary equipment parts
TW202340531A (en) * 2022-02-21 2023-10-16 日商三井化學股份有限公司 Metal component, metal-resin composite article, and method for manufacturing metal component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433196A (en) * 1987-04-25 1989-02-03 Pilot Precision Releasable lubricating coating and production thereof
JP3547993B2 (en) * 1998-04-03 2004-07-28 電化皮膜工業株式会社 Method for forming fluoropolymer thin film on metal surface
EP2047981B1 (en) * 2007-09-20 2010-11-03 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy material having an excellent sea water corrosion resistance and plate heat exchanger
JP2009091648A (en) * 2007-09-20 2009-04-30 Kobe Steel Ltd Aluminum alloy material having excellent sea water corrosion resistance and plate heat exchanger
US9353646B2 (en) * 2011-01-19 2016-05-31 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
JP6063640B2 (en) * 2012-05-14 2017-01-18 電化皮膜工業株式会社 Manufacturing method for printed products

Also Published As

Publication number Publication date
JP2015214072A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6357855B2 (en) Composite material having high water and oil repellency and method for producing the same
Ishizaki et al. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition
Shan et al. Nanocoated amphiphobic membrane for flux enhancement and comprehensive anti-fouling performance in direct contact membrane distillation
Fihri et al. Recent progress in superhydrophobic coatings used for steel protection: A review
Dong et al. Superhydrophobic modification of PVDF–SiO 2 electrospun nanofiber membranes for vacuum membrane distillation
Qing et al. Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance
Wang et al. Super-hydrophobic surface on pure magnesium substrate by wet chemical method
Zhang et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers
Wankhede et al. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion
Zhang et al. Corrosion resistance of superhydrophobic Mg–Al layered double hydroxide coatings on aluminum alloys
Wang et al. Fabrication of superhydrophobic surfaces on aluminum
KR101569460B1 (en) superamphiphobic structure and method of manufacturing the same
Ding et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning
Wu et al. Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels
Norek et al. Controlling of water wettability by structural and chemical modification of porous anodic alumina (PAA): Towards super-hydrophobic surfaces
US20220024824A1 (en) Ceramic Surface Modification Materials and Methods of Use Thereof
Nakayama et al. Fabrication of superoleophobic hierarchical surfaces for low-surface-tension liquids
Ma et al. Plasma-controlled surface wettability: Recent advances and future applications
JP5656026B2 (en) Water repellent material and method for producing the same
Mokarian et al. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes
Liang et al. Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates
Cho et al. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces
Wang et al. Ultra low water adhesive metal surface for enhanced corrosion protection
Abd Aziz et al. Self-cleaning and anti-fouling superhydrophobic hierarchical ceramic surface synthesized from hydrothermal and fluorination methods
Vazirinasab et al. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6357855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350