JP6357720B2 - Simulation method of behavior of water-insoluble liquid in unsaturated soil - Google Patents
Simulation method of behavior of water-insoluble liquid in unsaturated soil Download PDFInfo
- Publication number
- JP6357720B2 JP6357720B2 JP2014109802A JP2014109802A JP6357720B2 JP 6357720 B2 JP6357720 B2 JP 6357720B2 JP 2014109802 A JP2014109802 A JP 2014109802A JP 2014109802 A JP2014109802 A JP 2014109802A JP 6357720 B2 JP6357720 B2 JP 6357720B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- napl
- phase
- liquid
- insoluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 99
- 239000002689 soil Substances 0.000 title claims description 90
- 239000007788 liquid Substances 0.000 title claims description 74
- 238000004088 simulation Methods 0.000 title claims description 22
- 239000012071 phase Substances 0.000 claims description 103
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 90
- 239000012530 fluid Substances 0.000 claims description 61
- 239000002245 particle Substances 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 19
- 230000035699 permeability Effects 0.000 claims description 17
- 239000007791 liquid phase Substances 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 230000003542 behavioural effect Effects 0.000 claims description 3
- 230000004069 differentiation Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 38
- 239000003921 oil Substances 0.000 description 19
- 238000001764 infiltration Methods 0.000 description 18
- 230000008595 infiltration Effects 0.000 description 18
- 239000003673 groundwater Substances 0.000 description 17
- 238000011109 contamination Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 4
- -1 NAPL Substances 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005206 flow analysis Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003900 soil pollution Methods 0.000 description 2
- 229950011008 tetrachloroethylene Drugs 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 238000005085 air analysis Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
本発明は、不飽和土壌中の非水溶性液体の挙動シミュレーション方法に関する。 The present invention relates to a method for simulating the behavior of a water-insoluble liquid in unsaturated soil.
1982年に実施された環境庁による全国規模の地下水汚染調査を契機に、トリクロロエチレン、テトラクロロエチレン、1,1,1−トリクロロエタンなどの揮発性有機塩素化合物や、ガソリン、灯油、軽油、重油(油類)などによる土壌・地下水汚染が都市部を中心に全国的に存在することが確認されている。 In response to the nationwide groundwater contamination survey conducted by the Environment Agency in 1982, volatile organic chlorine compounds such as trichlorethylene, tetrachloroethylene, 1,1,1-trichloroethane, gasoline, kerosene, light oil, heavy oil (oils) It has been confirmed that soil and groundwater contamination due to such factors exists nationwide, especially in urban areas.
一方、このような汚染土壌・地下水を効果的且つ効率的に浄化、修復するためには、汚染物質の挙動、すなわち拡散域、濃度分布などをできるだけ正確に捉えることが重要になる。特に、トリクロロエチレンやテトラクロロエチレン、ガソリン、軽油、灯油などのNAPL(非水溶性液体:Non-Aqueous Phase Liquid)は、長期にわたって地盤中に滞留し、深刻な汚染を引き起こすおそれがあるため、その挙動を正確に捉えることが重要である。 On the other hand, in order to effectively and efficiently purify and repair such contaminated soil and groundwater, it is important to capture the behavior of the pollutant, that is, the diffusion region and concentration distribution as accurately as possible. In particular, NAPL (Non-Aqueous Phase Liquid) such as trichlorethylene, tetrachlorethylene, gasoline, light oil, and kerosene can stay in the ground for a long time and cause serious pollution. It is important to capture
そして、従来、地盤中での汚染物質の挙動を予測する技術手法として、1)飽和地盤中の水の浸透現象を解析する手法(単相)、2)任意の2相の浸透現象を解析する手法(2相)、3)水−NAPL−空気の浸透現象を解析する手法(3相)が用いられている。 Conventionally, as a technique for predicting the behavior of pollutants in the ground, 1) a technique for analyzing water infiltration in a saturated ground (single phase), and 2) analyzing an arbitrary two-phase infiltration phenomenon Techniques (two phases), 3) Techniques (three phases) for analyzing water-NAPL-air seepage phenomena are used.
1)飽和地盤中の水の浸透現象を解析する手法(単相)は、地下水面以深など土粒子間隙が水で満たされた飽和地盤中の間隙水(地下水)の浸透(移動)現象をシミュレートする手法である。土粒子間隙が単一の流体で満たされた状態での浸透現象をDarcy則と連続式(間隙水の質量保存則)を支配方程式とし、有限要素法や差分法あるいは有限体積法により空間離散化して解くことにより、地下水の挙動、ひいては地下水に含まれた汚染物質の挙動を精度よくシミュレートすることができる。 1) The method (single phase) of analyzing the infiltration phenomenon of water in saturated ground simulates the infiltration (movement) phenomenon of pore water (groundwater) in saturated ground where the soil particle gap is filled with water, such as deeper than the groundwater surface. It is a technique to do. The permeation phenomenon in the state where the soil particle gap is filled with a single fluid is discretized by the finite element method, the finite difference method, or the finite volume method using the Darcy law and the continuity equation (mass conservation law of pore water) as governing equations. By solving the above, it is possible to accurately simulate the behavior of groundwater, and hence the behavior of pollutants contained in the groundwater.
2)任意の2相の浸透現象を解析する手法(2相)は、例えば、地下水面以浅など、土粒子の間隙に水と空気が介在する不飽和地盤中の間隙水及び間隙空気の浸透(移動)現象をシミュレートする手法である。水−空気の浸透現象を解析する手法としては、間隙水と間隙空気それぞれのDarcy則と質量保存則に加え、水相及び空気相の圧力と飽和度の関係を与える水分特性曲線、各相の飽和度と透水・透気係数の関係、空気相の状態方程式(理想気体を仮定)を支配方程式とし、有限要素法や差分法により解く水−空気2相連成浸透解析手法が提案、実用化されている。
なお、水相及び空気相の圧力と飽和度の関係を与える水分特性曲線としてはvan Genuchtenの式(非特許文献1参照)やBrooks-Coreyの式(非特許文献2参照)がよく用いられている。また、各相の飽和度と透水・透気係数の関係にはMualemの式(非特許文献3参照)などを用いる手法が幾つか提案されている。
また、間隙流体の組み合わせが異なる2相系の水−NAPLあるいはNAPL−空気の浸透現象は、間隙流体の界面張力の違いに考慮して水−空気の水分特性曲線をスケーリングした間隙流体の圧力と飽和度の関係を用いて、水‐空気の浸透現象とほぼ同様の手法により解析されており、水−NAPLの解析は飽和地盤中、NAPL−空気の解析は乾燥地盤中のNAPLの浸透(移動)の解析に用いられている。
2) The method of analyzing any two-phase seepage phenomenon (two-phase) is, for example, the penetration of pore water and pore air in unsaturated ground where water and air are present in the gap between soil particles, such as shallower than the groundwater surface ( This is a method of simulating the (movement) phenomenon. In addition to the Darcy and mass conservation laws for pore water and air, respectively, the water-air seepage phenomenon is analyzed using a moisture characteristic curve that gives the relationship between the pressure and saturation of the water phase and air phase. Proposed and put into practical use a water-air two-phase coupled permeation analysis method that solves by the finite element method or the finite difference method using the relationship between saturation and permeability / air permeability coefficient, and the state equation of air phase (assuming ideal gas) as the governing equation. ing.
Note that van Genuchten's equation (see Non-Patent Document 1) and Brooks-Corey's equation (see Non-Patent Document 2) are often used as moisture characteristic curves that give the relationship between the water phase and air phase pressure and saturation. Yes. Further, several methods using the Mualem formula (see Non-Patent Document 3) and the like have been proposed for the relationship between the saturation of each phase and the water permeability / air permeability coefficient.
In addition, the two-phase water-NAPL or NAPL-air permeation phenomenon with different pore fluid combinations is based on the pore fluid pressure and scaled water-air moisture characteristic curves taking into account the difference in interfacial tension between pore fluids. The saturation relationship is used to analyze the water-air infiltration phenomenon in almost the same way. Water-NAPL analysis is performed in saturated ground, NAPL-air analysis is performed in the infiltration (movement) of NAPL in dry ground. ).
多相の浸透現象の数値解析手法には、有限要素法や有限差分法、有限体積法が多用されているが、間隙中に複数の流体が存在する地盤の浸透現象は飽和度変化に伴う相対透過度の変化が大きく、非線形性が強い問題となるため、支配方程式の離散化手法や数値計算技術に関する検討も続けられてきた。 The finite element method, finite difference method, and finite volume method are often used as numerical analysis methods for multiphase infiltration phenomena, but the infiltration phenomenon of ground where multiple fluids exist in the gap is relative to the saturation change. Since the change in permeability is large and nonlinearity becomes a problem, studies on discretization of governing equations and numerical calculation techniques have been continued.
そして、1990年代には2相系の浸透流の解析手法の開発が進められ、Celia and Bouloutas(非特許文献4参照)は水−空気の不飽和浸透の解析について、空間離散化する支配方程式を圧力で表示して解くと質量保存則(マスバランス)が満たされず数値振動が発生すること、圧力と飽和度で表示した混合型方程式で解くと質量保存則は満足されるものの数値振動が発生することを示すとともに、混合型方程式にPicard法を適用する修正Picard法を用いれば質量保存則が満たされ、圧力の振動も起こらないことを示した。さらに、日比ら(非特許文献5参照)は水−NAPL2相系の浸透解析手法について、Fully upwind法(非特許文献6参照)などの解析手法の適用性の比較を行い、修正Picard法による解法は、水−NAPL2相系の浸透解析に対しても質量保存則が満たし、圧力の振動も起こさない合理的な手法であることを示した。 In the 1990s, the development of two-phase permeate flow analysis techniques was promoted, and Celia and Bouloutas (see Non-Patent Document 4) developed a spatially discrete governing equation for the analysis of water-air unsaturated permeation. When the pressure is displayed and solved, the law of conservation of mass (mass balance) is not satisfied and numerical vibration occurs. When the mixed equation expressed by pressure and saturation is solved, the law of conservation of mass is satisfied, but numerical vibration occurs. It was shown that if the modified Picard method applying the Picard method to the mixed equation is used, the law of conservation of mass is satisfied and pressure oscillation does not occur. Furthermore, Hibi et al. (See Non-Patent Document 5) compared the applicability of analysis methods such as the Fully upwind method (see Non-Patent Document 6) with respect to the water-NAPL two-phase permeation analysis method, and applied the modified Picard method. The solution method was shown to be a rational method that satisfies the law of conservation of mass for infiltration analysis of water-NAPL two-phase system and does not cause pressure oscillation.
3)水−NAPL−空気の浸透現象を解析する手法(3相)は、NAPLが地表付近で漏洩し、水や空気と混ざり合うことなく地盤中に浸透し、水相、空気相と独立した流れを形成するような場合において、土粒子の間隙に水と空気、NAPLが介在する多相地盤中の水、NAPL及び空気の多相浸透(移動)現象をシミュレートする手法である。 3) The method of analyzing the water-NAPL-air infiltration phenomenon (three phases) is that NAPL leaks near the ground surface and penetrates into the ground without mixing with water and air, and is independent of the water and air phases. This is a method for simulating the multiphase infiltration (movement) phenomenon of water, NAPL and air in multiphase ground where water and air and NAPL intervene in the gap between soil particles when forming a flow.
そして、この水−NAPL−空気の浸透現象を解析する手法では、水相、空気相とNAPL相それぞれのDarcy則と質量保存則に加え、3相の間隙流体の圧力と飽和度の関係、及び各相の飽和度と透水・透NAPL(油)・透気係数(あるいは相対透過度)の関係、並びに空気相の状態方程式(理想気体の圧縮特性)を支配方程式として有限要素法などにより解く必要がある。 And in this method of analyzing the water-NAPL-air infiltration phenomenon, in addition to the Darcy law and the mass conservation law of the water phase, the air phase and the NAPL phase, respectively, the relationship between the pressure and saturation of the three-phase pore fluid, and It is necessary to solve the relationship between the saturation of each phase and water permeability, NAPL (oil), air permeability coefficient (or relative permeability), and the state equation of air phase (compression characteristics of the ideal gas) as governing equations by the finite element method etc. There is.
水−NAPL−空気3相系地盤では、水−NAPL界面、NAPL−空気界面のみが出現し、水−空気界面は出現しないとするLeverettの仮定(非特許文献7参照)を用い、Lenhard and Parkerによる水−NAPL2相系及びNAPL−空気2相系のモデルを組み合わせた式(非特許文献8参照)が用いられている。
また、Stone(非特許文献9参照)やParker and Lenhard(非特許文献10、非特許文献11、非特許文献12参照)は水−NAPL−空気3相系地盤の各相の飽和度と相対透過度の関係式を提案している。
In the water-NAPL-air three-phase ground, only the water-NAPL interface and NAPL-air interface appear, but the Leverett assumption (see Non-Patent Document 7) that the water-air interface does not appear is used. A formula (see Non-Patent Document 8) combining a water-NAPL two-phase system and a NAPL-air two-phase model is used.
In addition, Stone (see Non-Patent Document 9) and Parker and Lenhard (see Non-Patent Document 10, Non-Patent Document 11, and Non-Patent Document 12) are saturation and relative transmission of each phase of water-NAPL-air three-phase ground. A degree relation is proposed.
水−NAPL−空気3相系地盤の浸透解析においても、2相系と同様に、圧力を未知数とした支配方程式を離散化するとマスバランスが維持されない(質量保存則が満たされない)という課題が指摘されたが、Oostrom et al. (非特許文献13参照)はFully upwind型の有限差分法による解析手法により、日比・藤縄(非特許文献14参照)は修正Picard法を3相系に適用することにより、それぞれマスバランスを維持した解析を実現している。 In the infiltration analysis of water-NAPL-air three-phase system ground, as in the case of two-phase system, the problem is pointed out that the mass balance is not maintained (the law of conservation of mass is not satisfied) if the governing equation with pressure unknown is discretized. However, Oostrom et al. (See Non-Patent Document 13) uses the analysis method based on the Fully upwind type finite difference method, and Hibiki and Fujinawa (see Non-Patent Document 14) apply the modified Picard method to the three-phase system. As a result, analysis that maintains mass balance is realized.
しかしながら、上記従来の水−NAPL−空気3相系の浸透解析では、各相の質量保存則とDarcy則及び圧力−飽和度(p−S)関係、飽和度−相対透過度(S−k)関係から得られる支配方程式を有限要素法や有限体積法などにより空間離散化するが、圧力−飽和度関係を与える既往のモデルではNAPL(非水溶性流体)の圧力が比較的小さい状態、すなわちNAPLの飽和度が低い条件下における3相の圧力−飽和度関係を正しく捉えることができないという問題があった。 However, in the conventional water-NAPL-air three-phase permeation analysis, the mass conservation law, Darcy law and pressure-saturation (p-S) relationship, saturation-relative permeability (Sk) of each phase. The governing equation obtained from the relation is spatially discretized by the finite element method, the finite volume method, etc., but in the past model that gives the pressure-saturation relationship, the pressure of NAPL (water-insoluble fluid) is relatively small, that is, NAPL There was a problem that the three-phase pressure-saturation relationship could not be correctly grasped under the condition that the degree of saturation was low.
そして、従来の水−NAPL−空気3相系の解析手法では、NAPLの圧力が比較的低い条件下でNAPLの飽和度を極端に過小評価するため、NAPL相の相対透過度も過小評価することになる。このため、NAPLが地中に侵入する際、あるいはNAPLを地盤中から排出(浄化など)する際の圧力−飽和度関係及び飽和度−固有透過度関係を正しく捉えることができないという問題があった。 In the conventional water-NAPL-air three-phase analysis method, the NAPL saturation is extremely underestimated under relatively low NAPL pressure conditions, so the relative permeability of the NAPL phase must be underestimated. become. For this reason, there is a problem that the pressure-saturation relationship and the saturation-specific permeability relationship cannot be correctly grasped when NAPL enters the ground or discharges NAPL from the ground (such as purification). .
言い換えれば、上記従来の水−NAPL−空気3相連成浸透解析手法においては、NAPLが浸透する際に飽和度が低い状況で圧力−飽和度関係を適切に表せるモデルがなく、また、NAPLの圧力が比較的低い条件でNAPLの侵入・排出時のヒステリシスを考慮することができない。このため、不飽和地盤中にNAPLが侵入する際、あるいはNAPLで汚染された土壌を浄化する際の水−NAPL−空気3相浸透現象を精度よくシミュレートすることができないという問題があった。 In other words, in the conventional water-NAPL-air three-phase coupled infiltration analysis method described above, there is no model that can properly express the pressure-saturation relationship in a situation where the saturation is low when NAPL permeates, and the pressure of NAPL However, the hysteresis at the time of NAPL intrusion / discharge cannot be considered under relatively low conditions. For this reason, there has been a problem that it is impossible to accurately simulate the water-NAPL-air three-phase infiltration phenomenon when NAPL enters the unsaturated ground or when the soil contaminated with NAPL is purified.
本発明は、上記事情に鑑み、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることができ、土壌汚染の拡がりや程度の予測や、土壌汚染の浄化対策の効果をより正確に評価・検証することを可能にする不飽和土壌中の非水溶性液体の挙動シミュレーション方法を提供することを目的とする。 In view of the above circumstances, the present invention can accurately simulate the infiltration phenomenon of pore fluid in a multiphase ground where water, air, and a water-insoluble fluid (NAPL) are interposed in the gap of soil particles. The purpose is to provide a method for simulating the behavior of water-insoluble liquids in unsaturated soil, which makes it possible to more accurately evaluate and verify the extent and extent of pollution and the effects of soil pollution remediation measures. .
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.
本発明の不飽和土壌中の非水溶性液体の挙動シミュレーション方法は、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤の不飽和土壌中での非水溶性液体の挙動をシミュレーションする方法であって、下記の式(1)、式(2)のように、土粒子の間隙に水、空気、非水溶性流体が介在する多相系地盤での間隙流体の浸透現象を表すモデルを構成するとともに、下記の式(3)、式(4)、式(5)のように水−空気−NAPLの3相流の支配方程式を設定し、式(3)、式(4)、式(5)に対し、空間をガラーキン有限要素法、時間を後退差分法で離散化し、修正Picard法を適用することによって得られる下記の式(6)、式(7)、式(8)を用いて非水溶性液体の挙動を解析することを特徴とする。 The method for simulating the behavior of a water-insoluble liquid in unsaturated soil according to the present invention is a method for water-insoluble in an unsaturated soil in a multiphase ground where water, air, and a water-insoluble fluid (NAPL) are interposed in the gaps between soil particles. The method of simulating the behavior of an ionic liquid , as shown in the following formulas (1) and (2), a gap in a multiphase ground where water, air, and a water-insoluble fluid are interposed in a gap between soil particles In addition to constructing a model representing the permeation phenomenon of the fluid, a governing equation for the three-phase flow of water-air-NAPL is set as shown in the following equations (3), (4), and (5), and the equation (3 ), (4), and (5), the space is discretized by the Galerkin finite element method, the time is discretized by the backward difference method, and the modified Picard method is applied, and the following equations (6) and (7) ), And the behavior of the water-insoluble liquid is analyzed using the formula (8).
ここで、
n:地盤の間隙率、S:飽和度、p:圧力、kr:比透水係数、K:飽和透過係数、γ:単位体積重量、Kv:体積圧縮係数、q:流量、ρ:密度、b:物体力、μr:非粘性係数、Ej i:∂Si/∂pj、
[上付き/下付きのw, a, n, l]:[それぞれ水、空気、非水溶性液体(NAPL)、液体(水+NAPL]、[上付きのm、k]:[それぞれ時間ステップ、繰り返しステップ]、[・]:時間微分、[−(上付き)]:要素内の平均値、[−(下付き)]:境界における値
を示す。
here,
n: Soil porosity, S: Saturation, p: Pressure, kr : Relative permeability coefficient, K: Saturation permeability coefficient, γ: Unit volume weight, Kv : Volume compression coefficient, q: Flow rate, ρ: Density, b: object force, μ r : inviscidity coefficient, E j i : ∂S i / ∂p j ,
[Superscript / Subscript w, a, n, l]: [Water, Air, Water-insoluble liquid (NAPL), Liquid (Water + NAPL), [Superscript m, k]: [Time step, respectively] [Repetition step], [•]: time differentiation, [-(superscript)]: average value in element, [-(subscript)]: value at boundary.
また、本発明の不飽和土壌中の非水溶性液体の挙動シミュレーション方法においては、土粒子の間隙中での水、空気、非水溶性流体の任意の2相と3相の移り変わりを、下記の式(9)で表される中間流体圧係数μを用い、下記の式(10)、式(11)、式(12)のように0から1の変数で表し、且つ、下記の式(13)を満足するβw、βlとμの関係をベジエ曲線により与え、水−空気のサクションsawに、μにより定まる水相と、水及び非水溶性流体の液体相のスケール変数βw、βlを乗じて、下記の式(14)のvan Genuchtenの式に代入することにより、水相と液体相の飽和度を示す特性曲線を得ることが望ましい。 In the method for simulating the behavior of a water-insoluble liquid in unsaturated soil according to the present invention, the transition between any two phases and three phases of water, air, and a water-insoluble fluid in a gap between soil particles is expressed as follows. Using the intermediate fluid pressure coefficient μ expressed by the equation (9), it is expressed by a variable from 0 to 1 as in the following equations (10), (11), and (12), and the following equation (13) Β w , β l and μ satisfying) are given by a Bezier curve, and the water-air suction s aw is a scale variable β w of the water phase determined by μ and the liquid phase of water and water-insoluble fluids, It is desirable to obtain a characteristic curve indicating the degree of saturation of the water phase and the liquid phase by multiplying β l and substituting it into the van Genuchten equation of the following equation (14).
ここで、Sは飽和度、Smax、Sminはそれぞれ最大,最小飽和度である。sはサクションで、pを圧力とするとsij=pi−pjである(添え字i、jは2相のうちそれぞれ濡れ性の低い流体、高い流体を示す)。 Here, S is the saturation, and S max and S min are the maximum and minimum saturations, respectively. s is a suction, and p is a pressure, and s ij = p i -p j (subscripts i and j indicate a low wettability fluid and a high fluid, respectively, of the two phases).
さらに、本発明の不飽和土壌中の非水溶性液体の挙動シミュレーション方法においては、水相と液体相の流出入履歴を反映した状態変数Iw、Ilを、水及び液体の流入過程で1、排出過程で−1にそれぞれ近づく関係を満たす下記の式(15)で与え、下記の式(16)のように、水及び液体の流出入履歴を考慮したIw、Ilでμをμw *、μl *に修正するようにしたことを特徴とする。 Furthermore, in the method for simulating the behavior of a water-insoluble liquid in an unsaturated soil of the present invention, state variables I w and I l reflecting the inflow and outflow history of the water phase and the liquid phase are set to 1 in the inflow process of water and liquid. The following equation (15) that satisfies the relationship of approaching −1 in the discharge process is given by the following equation (15), and μ is expressed as I w and I l taking into account the inflow / outflow history of water and liquid as in the following equation (16): w *, and said that it has to be fixed for μ l *.
ここで、iには水相w及び液体相lが対応する。ζw、ζlは水と液体の飽和度変化に対するIw、Ilの変化率を決めるパラメータである。miは流出入時のヒステリシスの影響の強さを決めるパラメータである。 Here, i corresponds to the water phase w and the liquid phase l. ζ w and ζ l are parameters that determine the rate of change of I w and I l with respect to the saturation change of water and liquid. m i is a parameter that determines the strength of the effect of the hysteresis of the outflow Nyutoki.
本発明の不飽和土壌中の非水溶性液体の挙動シミュレーション方法においては、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることが可能になる。 In the method for simulating the behavior of water-insoluble liquid in unsaturated soil of the present invention, the permeation phenomenon of pore fluid in the multiphase ground where water, air, and water-insoluble fluid (NAPL) are interposed in the gap of soil particles. It becomes possible to simulate with high accuracy.
以下、図1から図4を参照し、本発明の第1実施形態に係る不飽和土壌中の非水溶性液体の挙動シミュレーション方法(挙動解析方法)について説明する。ここで、本実施形態は、土粒子の間隙に水、空気、NAPL(非水溶性流体)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることができ、土壌汚染の拡がりや程度の予測や、土壌汚染の浄化対策の効果をより正確に評価・検証することを可能にする不飽和土壌中の非水溶性液体の挙動シミュレーション方法に関するものである。 Hereinafter, the behavior simulation method (behavior analysis method) of the water-insoluble liquid in the unsaturated soil according to the first embodiment of the present invention will be described with reference to FIGS. Here, this embodiment can accurately simulate the permeation phenomenon of pore fluid in the multiphase ground where water, air, and NAPL (non-aqueous fluid) are interposed in the gap between the soil particles. The present invention relates to a method for simulating the behavior of a water-insoluble liquid in unsaturated soil, which makes it possible to more accurately evaluate and verify the effect of the countermeasures for soil contamination, and the prediction of the spread and degree of soil contamination.
はじめに、NAPLによる土壌汚染現象やその後の浄化問題を解くには、地盤の浸透特性や流体保持特性を適切に考慮した数値解析手法が必要である。特に、浅い不飽和地盤のNAPL汚染では、土中に混在する水−NAPL−空気3相の圧力と飽和度の関係を精度よく反映した特性曲線とそれに基づく多相流解析手法が有効である。
従来の3相系特性曲線としては、水−NAPL及びNAPL−空気の2相特性曲線を用いたLenhard and Parkerのモデル(非特許文献10、11、12:以下、この従来のモデルを「LPモデル」という)が簡便で、初期値問題の解析にもよく用いられてきた。同モデルは、次の式(17)、式(18)に示すように、水飽和度は水圧とNAPL圧、液体飽和度(水飽和度+NAPL飽和度)はNAPL圧と空気圧を変数として与えている。
First, in order to solve the soil contamination phenomenon by NAPL and subsequent purification problems, a numerical analysis method that properly considers the infiltration characteristics and fluid retention characteristics of the ground is necessary. In particular, for NAPL pollution in shallow unsaturated ground, a characteristic curve that accurately reflects the relationship between the pressure and saturation of the water-NAPL-air three phases mixed in the soil and a multiphase flow analysis method based thereon are effective.
As a conventional three-phase system characteristic curve, Lenhard and Parker's model using water-NAPL and NAPL-air two-phase characteristic curves (Non-Patent Documents 10, 11, 12: hereinafter, this conventional model is referred to as “LP model”. ") Is simple and has been often used to analyze initial value problems. In the model, as shown in the following equations (17) and (18), water saturation is given by water pressure and NAPL pressure, and liquid saturation (water saturation + NAPL saturation) is given by taking NAPL pressure and air pressure as variables. Yes.
ここで、本実施形態において、使用する記号は以下のように定義する。
n:間隙率、S:飽和度、p:圧力、kr:比透水係数、K:飽和透過係数、γ:単位体積重量、Kv:体積圧縮係数、q:流量、ρ:密度、b:物体力、μr:非粘性係数、Ej i:∂Si/∂pj、
[上付き/下付きのw, a, n, l]:[それぞれ水、空気、NAPL、液体(水+NAPL]、[上付きのm、k]:[それぞれ時間ステップ、繰り返しステップ]、[・]:時間微分、[−(上付き)]:要素内の平均値、[−(下付き)]:境界における値
Here, in this embodiment, the symbols used are defined as follows.
n: Porosity, S: Saturation, p: Pressure, kr : Specific permeability coefficient, K: Saturation permeability coefficient, γ: Unit volume weight, Kv : Volume compression coefficient, q: Flow rate, ρ: Density, b: Body force, μ r : inviscid coefficient, E j i : ∂S i / ∂p j ,
[Superscript / Subscript w, a, n, l]: [Water, Air, NAPL, Liquid (Water + NAPL], [Superscript m, k]: [Time step, Repeat step, respectively], [・]: Time derivative, [-(superscript)]: Average value in element, [-(subscript)]: Value at boundary
この式(17)、式(18)に示すように、LPモデルでは、水飽和度及び液体飽和度がそれぞれ空気圧及び水圧と無関係に与えられており、各相の相互作用を考慮していない。すなわち、水−空気の相互作用を無視して、水−NAPL、及びNAPL−空気の2相特性曲線で簡便に表現している。このため、NAPLの飽和度が低く、水−空気の2相系に近い状態にある地盤中の飽和度分布(3相地盤の圧力−飽和度関係)を適切に表現することができず、NAPLによる不飽和地盤の汚染メカニズムやその浄化過程を正確に解くことができない(後述する図9参照)。
なお、式(17)、式(18)における4つの偏微分係数Eは、例えば後述の式(32)で算出することができる。
As shown in the equations (17) and (18), in the LP model, the water saturation and the liquid saturation are given independently of the air pressure and the water pressure, respectively, and the interaction between the phases is not taken into consideration. That is, the interaction between water and air is ignored, and the two-phase characteristic curves of water-NAPL and NAPL-air are simply expressed. For this reason, the saturation degree of NAPL is low and the saturation distribution in the ground that is close to the water-air two-phase system (pressure-saturation relationship of the three-phase ground) cannot be expressed properly. It is not possible to accurately solve the pollution mechanism and the purification process of unsaturated ground due to (see FIG. 9 described later).
Note that the four partial differential coefficients E in the equations (17) and (18) can be calculated by, for example, an equation (32) described later.
これに対し、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法(挙動シミュレーション方法)では、次の式(19)、式(20)を用いてモデルを構成し、各相の圧力の相互作用を考慮した3相系特性曲線によって、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を、精度よくシミュレートできるようにする。 On the other hand, in the behavior analysis method (behavior simulation method) of the water-insoluble liquid in the unsaturated soil of the present embodiment, a model is constructed using the following equations (19) and (20), Accurately simulate pore fluid permeation phenomenon in multiphase ground where water, air, and water-insoluble fluid (NAPL) are interspersed in the gap between soil particles, using a three-phase characteristic curve that takes pressure interaction into account. It can be so.
具体的に、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法では、地盤内の多相流れの支配方程式として、質量保存則と間隙流体の飽和度変化を記述する特性曲線(式(19)、式(20))を考えるとともに、各相の浸透現象がそれぞれDarcy則に従うものとする。
ここで、飽和度と比透過係数の関係はMualemの式(非特許文献3)を用いる。そして、水、NAPLは非圧縮流体、空気は理想気体と仮定すると、水−空気−NAPL3相流の支配方程式は次の式(21)、式(22)、式(23)のようになる。
Specifically, in the method for analyzing the behavior of a water-insoluble liquid in an unsaturated soil according to the present embodiment, a characteristic curve describing a mass conservation law and a change in the degree of saturation of pore fluid as a governing equation of multiphase flow in the ground ( It is assumed that the equations (19) and (20) are considered, and the permeation phenomenon of each phase follows the Darcy law.
Here, the relationship between the saturation and the specific transmission coefficient uses the Mualem equation (Non-Patent Document 3). Assuming that water and NAPL are incompressible fluids and air is an ideal gas, the governing equations of water-air-NAPL three-phase flow are as shown in the following equations (21), (22), and (23).
そして、式(21)、式(22)、式(23)に対し、空間をガラーキン有限要素法、時間を後退差分法で離散化して、修正Picard法を適用することにより、次の式(24)、式(25)、式(26)を得る。 Then, for the equations (21), (22), and (23), the space is discretized by the Galerkin finite element method, the time is discretized by the backward difference method, and the modified Picard method is applied. ), Formula (25), and formula (26) are obtained.
次に、Sw m+1,k+1、Sn m+1,k+1、Sa m+1,k+1をpw、pn、paでテーラー展開して整理すると、次の式(27)、式(28)、式(29)が得られる。 Next, organized by Taylor expansion with S w m + 1, k + 1, S n m + 1, k + 1, S a m + 1, k + 1 to p w, p n, p a , the following equation (27), equation (28), wherein (29) is obtained.
ここで、δm+1,k+1=pm+1,k+1−pm+1,kであり、δを未知変数としてδ≒(ニアリーイコール)0 となるまで繰り返し計算を行う。 Here, δ m + 1, k + 1 = pm + 1, k + 1− pm + 1, k , and δ is an unknown variable and calculation is repeated until δ≈ (nearly equal) 0.
なお、式(27)〜式(29)中の行列は下記の式(30)で与えられる。
次に、上記のように修正Picard法を用いて定式化した本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法による計算例(シミュレーション結果)について説明する。 Next, a description will be given of a calculation example (simulation result) by the behavior analysis method of the water-insoluble liquid in the unsaturated soil of the present embodiment formulated using the modified Picard method as described above.
ここでは、登坂らの2次元解析(登坂ら:地下水学会誌,38(3),pp.167-180,1996.)を参考にし、地下水面を持つ不飽和地盤中に地表からNAPLが流入する現象のシミュレーションを行っている。
具体的に、解析モデルは、図1、図2に示すような2次元断面であり、地下水面以浅には2箇所、3相いずれも浸透しない不透過層を設けている。
Here, NAPL flows into the unsaturated ground with the groundwater surface, referring to the two-dimensional analysis of Tosaka et al. (Tosaka et al .: Journal of Groundwater Science, 38 (3), pp.167-180, 1996.) The phenomenon is simulated.
Specifically, the analysis model has a two-dimensional cross section as shown in FIGS. 1 and 2, and is provided with an impermeable layer that does not penetrate both two and three phases below the groundwater surface.
また、主な物性値を表1に示す。 The main physical property values are shown in Table 1.
そして、本シミュレーションでは、表1に示す水より軽いLNAPLと、水より重いDNAPLの2種類について計算を行っている。また、NAPLの侵入は流量制御で与え、その流量を単位奥行当たり2.0×10−4m2/secで一定とした。さらに、境界条件として、側方境界では地下水面を一定に保ち、NAPLについては侵入箇所を除いて流量0の位置を境界とした。 In this simulation, the calculation is performed for two types of LNAPL lighter than water and DNAPL heavier than water shown in Table 1. Moreover, the penetration of NAPL was given by flow rate control, and the flow rate was constant at 2.0 × 10 −4 m 2 / sec per unit depth. Furthermore, as the boundary condition, the groundwater surface was kept constant at the lateral boundary, and the position of zero flow rate was used as the boundary for NAPL, excluding the entry point.
図3、図4はシミュレーション結果であり、NAPLの飽和度分布の変化を示している。
図3及び図4に示すように、NAPLは地表面から流入すると不透過層に滞留しつつ徐々に下方へ浸透し、且つ、水より軽いLNAPLに比べ、水より重いDNAPLが早く流下する結果が得られた。また、NAPLの比重による差異は地下水面に到達してからより明確になり、LNAPLは地下水面付近に滞留して水平方向に広がるのに対し、DNAPLは地下水面上に滞留せず、水との密度差により地下水面下に侵入して底部に滞留する結果が得られた。さらに、LNAPLは地下水面上に滞留する際に、地下水面をやや押し下げる様子も確認された。
すなわち、図1に示すLNAPL、DNAPLの浸透現象をよく捉えていた。
3 and 4 show simulation results and show changes in the saturation distribution of NAPL.
As shown in FIGS. 3 and 4, when NAPL flows from the ground surface, it stays in the impervious layer and gradually penetrates downward, and DNAPL heavier than water flows down faster than LNAPL, which is lighter than water. Obtained. Also, the difference due to the specific gravity of NAPL becomes clearer after reaching the groundwater surface, while LNAPL stays near the groundwater surface and spreads in the horizontal direction, whereas DNAPL does not stay on the groundwater surface and does not stay with the water. Due to the difference in density, the result was that it entered the groundwater surface and stayed at the bottom. Furthermore, it was confirmed that LNAPL pushed down the water table slightly when it stayed on the water table.
That is, the penetration phenomenon of LNAPL and DNAPL shown in FIG. 1 was well captured.
このように、従来、地表付近でDNAPL(水より重い非水溶性流体、トリクロロエチレンなど)やLNAPL(水より軽い非水溶性流体、重油・軽油・灯油など)が漏洩した際の汚染流体の拡がりは、ボーリング調査などにより離散的にしか把握することができなかったが、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法によれば、既往の調査法と組み合わせることにより、精度よく地盤中での汚染の拡がりを特定することができる。 In this way, the spread of contaminated fluid when DNAPL (water-insoluble fluid heavier than water, trichlorethylene, etc.) or LNAPL (water-insoluble fluid lighter than water, heavy oil, light oil, kerosene, etc.) leaks in the vicinity of the ground surface in the past However, according to the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil according to the present embodiment, it can be accurately obtained by combining with the existing investigation method. It is possible to identify the spread of pollution in the ground.
なお、本実施形態では2次元の結果を計算例として示したが、本発明の解析方法は基本的に1次元でも3次元でも解くことが可能である。 In the present embodiment, a two-dimensional result is shown as a calculation example. However, the analysis method of the present invention can basically be solved in one or three dimensions.
したがって、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法においては、式(21)、式(22)、式(23)のように水−空気−NAPLの3相流の支配方程式を設定し、空間をガラーキン有限要素法、時間を後退差分法で離散化して、修正Picard法を適用し、式(24)、式(25)、式(26)のように定式化したことで、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることが可能になる。 Therefore, in the behavior analysis method of the water-insoluble liquid in the unsaturated soil according to the present embodiment, the control of the three-phase flow of water-air-NAPL as shown in Equation (21), Equation (22), and Equation (23). The equation was set, the space was discretized by the Galerkin finite element method, the time was discretized by the backward difference method, the modified Picard method was applied, and it was formulated as shown in Equation (24), Equation (25), Equation (26) Therefore, it is possible to accurately simulate the permeation phenomenon of the pore fluid in the multiphase ground where water, air, and a water-insoluble fluid (NAPL) are interposed in the gap between the soil particles.
また、NAPLで汚染された地盤を浄化処理する際に、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法を用いてその浄化効果等を予め検証することにより、より合理的な浄化対策法の選定が可能になる。 In addition, when purifying the soil contaminated with NAPL, it is more rational by preliminarily verifying the purification effect etc. using the behavior analysis method of the water-insoluble liquid in the unsaturated soil of this embodiment. It becomes possible to select a purification measure law.
次に、図5から図9を参照し、本発明の第2実施形態に係る不飽和土壌中の非水溶性液体の挙動解析方法について説明する。
ここで、本実施形態は、第1実施形態と同様、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることができ、土壌汚染の拡がりや程度の予測や、土壌汚染の浄化対策の効果をより正確に評価・検証することを可能にする不飽和土壌中の非水溶性液体の挙動解析方法に関し、特に、従来の解析手法では捉えることができなかった水−NAPL−空気3相系の圧力−飽和度関係から、水−空気2相系の圧力-飽和度関係まで連続的に精度よく捉えることを可能にする不飽和土壌中の非水溶性液体の挙動解析方法に関するものである。
なお、本実施形態では、第1実施形態と同様の事項に対し、その詳細な説明を省略する。
Next, with reference to FIG. 5 to FIG. 9, a behavior analysis method for a water-insoluble liquid in unsaturated soil according to a second embodiment of the present invention will be described.
Here, this embodiment, like the first embodiment, accurately simulates the permeation phenomenon of pore fluid in a multiphase ground where water, air, and a water-insoluble fluid (NAPL) are interposed in the gap between soil particles. A method for analyzing the behavior of water-insoluble liquids in unsaturated soil, which can predict the extent and extent of soil contamination, and more accurately evaluate and verify the effects of soil contamination purification measures, In particular, from the pressure-saturation relationship of the water-NAPL-air three-phase system, which could not be grasped by the conventional analysis method, to the pressure-saturation relationship of the water-air two-phase system, continuously and accurately. The present invention relates to a method for analyzing the behavior of a water-insoluble liquid in unsaturated soil.
In the present embodiment, detailed description of the same matters as in the first embodiment is omitted.
はじめに、van Genuchtenの式を任意の2相系流体に拡張させた特性曲線(非特許文献12)は、次の式(31)で与えられる。 First, a characteristic curve (Non-Patent Document 12) obtained by expanding the van Genuchten equation to an arbitrary two-phase fluid is given by the following equation (31).
そして、Lenhard and Parker(非特許文献11)は、図5に示すように、間隙中の3相流体について、濡れ性が高い水、NAPL、空気の順に土粒子の接触点近傍を満たすというLeverettの仮定に則って、それぞれの境界に注目し、次の式(32)で表されるように、水飽和度を水−NAPLの2相特性曲線、水とNAPLの飽和度の和(液体飽和度)をNAPL−空気の2相特性曲線で与えている。 And, as shown in FIG. 5, Lenhard and Parker (Non-Patent Document 11) says that the three-phase fluid in the gap satisfies the vicinity of the contact point of soil particles in the order of water, NAPL, and air with high wettability. Based on the assumptions, pay attention to each boundary, and as shown in the following equation (32), the water saturation is the water-NAPL two-phase characteristic curve, the sum of water and NAPL saturation (liquid saturation) ) Is given by the NAPL-air two-phase characteristic curve.
そして、この式(32)から分かるように、LPモデルは2相特性曲線を用いる点で簡便であるが、Sw anw> Sl anwとなり、NAPL飽和度が負になるときは、便宜的に場合分けし、NAPLが消失してSw anw= Sl anwとみなし、Sw anwとSl anwを水−空気2相特性曲線で与えるようにしている。 As can be seen from this equation (32), the LP model is simple in that it uses a two-phase characteristic curve. However, when S w anw > S l anw and NAPL saturation is negative, it is convenient. In each case, NAPL disappears and S w anw = S l anw is considered, and S w anw and S l anw are given by a water-air two-phase characteristic curve.
また、LPモデルでは、式(31)に着目すると、NAPL圧が水圧と一致するとき、NAPLは水に支配されて消失し、水−空気の2相系になる。さらに、NAPL圧がpw<pn<paを満たすとき、水−空気−NAPLの3相系になる。さらに、NAPL圧が空気圧に一致するとき、NAPLは空気を消失させて、水−NAPLの2相系になる。 In the LP model, focusing on the equation (31), when the NAPL pressure coincides with the water pressure, the NAPL is controlled by water and disappears to become a water-air two-phase system. Furthermore, NAPL pressure when satisfying p w <p n <p a , water - becomes 3-phase system of air -NAPL. Furthermore, when the NAPL pressure matches the air pressure, NAPL loses air and becomes a water-NAPL two-phase system.
一方、本願の発明者らは、このような任意の2相と3相の移り変わりを、新たに次の式(33)で定義し、次の式(34)、式(35)、式(36)のように中間流体圧係数μによって0から1の変数で表すことができるようにした。すなわち、μを用いて、前述した間隙の状態を示すと次の式(34)、式(35)、式(36)となる。 On the other hand, the inventors of the present application newly define such transition between any two phases and three phases by the following formula (33), and the following formula (34), formula (35), formula (36) ) So that it can be expressed by a variable from 0 to 1 by the intermediate fluid pressure coefficient μ. That is, when the state of the gap described above is shown by using μ, the following equations (34), (35), and (36) are obtained.
ここで、式(34)〜(36)の関係を得るためには、関数β(μ)は式(37)を満足する必要がある。 Here, in order to obtain the relationships of the equations (34) to (36), the function β (μ) needs to satisfy the equation (37).
本実施形態では、式(37)を満たすβw、βlはそれぞれ3次のベジエ曲線で与える。そして、ベジエ曲線を描くには3つの制御点r1、r2、r3が必要になるが、βw、βlそれぞれに、図6に示す(μ,β)平面上の制御点r1 w、r2 w、r3 w、及びr1 l、r2 l、r3 lを用いる。ベジエ曲線は両端でr1とr3を通り、その間の制御点r2で曲率が決まる。また、曲線はr1とr3での接線がそれぞれr1−r2及びr2−r3と平行になり、滑らかに接続する。ベジエ曲線上の任意の点rは次の式(38)のような線形和で与えられる。 In the present embodiment, β w and β l satisfying Expression (37) are each given by a cubic Bezier curve. In order to draw a Bezier curve, three control points r 1 , r 2 , and r 3 are required, and control points r 1 on the (μ, β) plane shown in FIG. 6 are respectively provided for β w and β l . w , r 2 w , r 3 w , and r 1 l , r 2 l , r 3 l are used. The Bezier curve passes through r 1 and r 3 at both ends, and the curvature is determined by the control point r 2 between them. In addition, the tangent lines at r 1 and r 3 are parallel to r 1 -r 2 and r 2 -r 3 , respectively, so that the curves are smoothly connected. An arbitrary point r on the Bezier curve is given by a linear sum as in the following equation (38).
k1、k2、k3は媒介変数t(0≦t≦1)で次の式(39)のように与えられる。 k 1 , k 2 , and k 3 are parameters t (0 ≦ t ≦ 1) and are given by the following equation (39).
なお、t=0でrはr1、t=1でrはr3となる。ここではベジエ曲線の曲率を調整できるように、曲率のパラメータa(−2≦a≦2)を導入し、式(39)の代わりに次の式(40)を用いる。 In addition, r at t = 0 and r is the r 3 with r 1, t = 1. Here, a curvature parameter a (−2 ≦ a ≦ 2) is introduced so that the curvature of the Bezier curve can be adjusted, and the following equation (40) is used instead of equation (39).
また、k0からk3は次の式(41)で与える。 K 0 to k 3 are given by the following equation (41).
そして、任意の2相と3相の移り変わりを新たな式(33)で定義するようにし、式(33)〜式(41)で得られるβl、βwとsawを次の式(42)に代入することにより、式(19)、式(20)の6つの偏微分係数Eを与えることができる。 Then, transition between any two phases and three phases is defined by a new equation (33), and β l , β w and s aw obtained by equations (33) to (41) are expressed by the following equation (42) ), It is possible to give the six partial differential coefficients E of the equations (19) and (20).
なお、μを通してLPモデルの特徴を考察すると、まず、式(33)を式(32)に代入して変形すると次の式(43)を得る。
さらに、式(43)は式(44)のように簡潔に表現できる。
Considering the features of the LP model through μ, first, the following equation (43) is obtained by substituting equation (33) into equation (32).
Furthermore, Expression (43) can be expressed simply as Expression (44).
そして、式(44)から、この図7(a)に示す通り、LPモデルは水−空気の2相系と水−空気−NAPLの3相系において別々の式で規定しているため、両者の移行する点において必ずしも連続とならない。また、μ=0のときではなくβl>βwのときに水−空気の2相系となる。 From the equation (44), as shown in FIG. 7 (a), the LP model is defined by separate equations for the two-phase system of water-air and the three-phase system of water-air-NAPL. It is not always continuous at the point of transition. The water at the time of β l> β w not when the mu = 0 - the two-phase system of air.
これに対し、本実施形態のように、式(37)を満足するβw、βlとμの関係を、ベジエ曲線を用いて図7(b)のように与えることで、3相系と水−空気2相系の移行を滑らかに表すことができる。また、図7(b)に示すように、μが0に近づくときβwとβlはともに1に近づき、水飽和度と液体飽和度が接近してNAPL飽和度が0に向かう。
したがって、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法を用いることにより、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を精度よくシミュレートすることが可能になる。
On the other hand, as in the present embodiment, the relationship between β w , β l and μ satisfying the equation (37) is given as shown in FIG. The transition of the water-air two-phase system can be expressed smoothly. Further, as shown in FIG. 7B, when μ approaches 0, both β w and β l approach 1, and the water saturation and the liquid saturation approach each other and the NAPL saturation approaches 0.
Therefore, by using the behavior analysis method of the water-insoluble liquid in the unsaturated soil of this embodiment, the gap in the multiphase ground where water, air, and the water-insoluble fluid (NAPL) are interposed in the gap between the soil particles. It is possible to accurately simulate the fluid penetration phenomenon.
次に、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法を用いて行ったシミュレーションを、棚橋らの3相系のカラム実験(棚橋秀行,佐藤健,小西純一:土木学会論文集C Vol.62 No.2, pp. 320-334, 2006.)と比較し、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法の優位性を確認した結果について説明する。 Next, a simulation performed using the method for analyzing the behavior of a water-insoluble liquid in unsaturated soil according to the present embodiment was performed using a three-phase column experiment by Tanahashi et al. (Hideyuki Tanahashi, Ken Sato, Junichi Konishi: Proceedings of the Japan Society of Civil Engineers) C Vol.62 No.2, pp. 320-334, 2006.), the result of confirming the superiority of the behavior analysis method of the water-insoluble liquid in the unsaturated soil of this embodiment will be described.
棚橋らによるカラム実験では、模型地盤内に設けた井戸の水面上に油(NAPL)を溜めた際の長時間経過後の地盤内の3相の飽和度分布を観察している。地中の圧力分布は長時間経過後の定常状態を想定し、密度を勾配として図8に示すような線形分布を仮定している。 In the column experiment by Tanahashi et al., We observed the saturation distribution of the three phases in the ground after a long period of time when oil (NAPL) was accumulated on the surface of the well in the model ground. The ground pressure distribution assumes a steady state after a long time, and assumes a linear distribution as shown in FIG.
図9は、カラム実験の実験値と、LPモデル、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法による解析値を比較した結果を示している。 FIG. 9 shows the result of comparison between the experimental value of the column experiment and the analytical value obtained by the LP model and the behavioral analysis method of the water-insoluble liquid in the unsaturated soil of the present embodiment.
まず、図9(a)に示すように、カラム実験では油層厚が小さい場合でも油面上に油が拡がることが確認されている。このことから、汚染サイトの原位置の観測井では数cmオーダーの油層厚の検出が推測され、油面以浅での土壌の汚染が懸念させる。 First, as shown in FIG. 9A, in the column experiment, it was confirmed that the oil spreads on the oil surface even when the oil layer thickness is small. From this, it is estimated that the oil well thickness of the order of several centimeters is detected at the observation well at the site of the contaminated site, and there is a concern about soil contamination below the oil level.
これに対し、図9(b)に示すように、LPモデルでは油面以浅の油の存在が算出されず、油飽和度が過小評価され、実際の土壌汚染に対して危険側の解を与えることが確認された。他方、図9(c)に示すように、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法では油面上の地中の油の存在を算出しており、カラム実験の実験値をよく捉えている。 In contrast, as shown in FIG. 9 (b), the LP model does not calculate the presence of oil shallower than the oil level, underestimates the oil saturation, and gives a dangerous solution for actual soil contamination. It was confirmed. On the other hand, as shown in FIG. 9 (c), in the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil according to the present embodiment, the presence of the oil in the ground on the oil surface is calculated. I capture the value well.
したがって、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法においては、中間流体圧係数μに基づいたモデルを用いることで、棚橋らのカラム実験を精度よく再現できることが実証された。 Therefore, in the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil of the present embodiment, it was proved that the column experiment of Tanahashi et al. Can be accurately reproduced by using a model based on the intermediate fluid pressure coefficient μ. .
よって、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法によれば、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を、より精度よくシミュレートすることができ、土壌汚染の拡がりや程度の予測や、土壌汚染の浄化対策の効果を、より正確に評価・検証することが可能になる。 Therefore, according to the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil according to the present embodiment, the pore fluid in the multiphase ground where water, air, and the water-insoluble fluid (NAPL) are interposed in the gap between the soil particles. It is possible to more accurately simulate the infiltration phenomenon of soil, and to more accurately evaluate and verify the effect of soil pollution spread and degree prediction and soil contamination purification measures.
次に、図10、図11を参照し、本発明の第3実施形態に係る不飽和土壌中の非水溶性液体の挙動解析方法について説明する。なお、本実施形態では、第1、第2実施形態と同様の事項について、その詳細な説明を省略する。 Next, with reference to FIG. 10, FIG. 11, the behavior analysis method of the water-insoluble liquid in the unsaturated soil which concerns on 3rd Embodiment of this invention is demonstrated. In the present embodiment, detailed description of the same matters as in the first and second embodiments is omitted.
ここで、第2実施形態では、中間流体圧係数μに基づいたモデルを用いることで、棚橋らのカラム実験をよく再現できることを実証した。一方で、第2実施形態では、流体間のサクションsと各相の飽和度Sに一義的な関係を与えたことで、NAPLの流入や排出に伴うヒステリシス現象を考慮していない。
このため、本実施形態では、水相及び液体相(水相とNAPL相の和)の流出入を規定する状態変数を新たに導入し、ヒステリシス現象も考慮できるようにした。
Here, in the second embodiment, it was demonstrated that the column experiment of Tanahashi et al. Can be well reproduced by using a model based on the intermediate fluid pressure coefficient μ. On the other hand, in the second embodiment, since a unique relationship is given to the suction s between the fluids and the saturation S of each phase, the hysteresis phenomenon associated with inflow and discharge of NAPL is not considered.
For this reason, in this embodiment, a state variable that defines the inflow and outflow of the aqueous phase and the liquid phase (the sum of the aqueous phase and the NAPL phase) is newly introduced so that the hysteresis phenomenon can be considered.
具体的に、第2実施形態に示した通り、中間流体圧係数μ(=(pn−pw)/(pa−pw))は3相流体の圧力の相対的関係を表す変数で、0から1への変化が水−空気2相系から水−NAPL−空気3相系、水−NAPL2相系への移り変わりに対応する。そして、第2実施形態では、水−空気のサクションsawに、μにより定まる水相と液体相のスケール変数βw、βlを乗じて、van Genuchtenの式に代入することにより、水相と液体相の飽和度を得る特性曲線モデルにすることを説明した。すなわち、この第2実施形態のモデルでは3相の圧力の変数であるsawとμに対して飽和度を唯一に決めるので、圧力履歴に依存した応答が反映されていない。 Specifically, as shown in the second embodiment, the intermediate fluid pressure coefficient μ (= (p n −p w ) / (p a −p w )) is a variable representing the relative relationship of the pressures of the three-phase fluid. The change from 0 to 1 corresponds to the transition from the water-air two-phase system to the water-NAPL-air three-phase system and the water-NAPL two-phase system. In the second embodiment, the water-air suction s aw is multiplied by the water phase and liquid phase scale variables β w , β l determined by μ, and is substituted into the van Genuchten's formula, The characteristic curve model for obtaining the saturation degree of the liquid phase was explained. That is, in the model of the second embodiment, since the saturation is uniquely determined with respect to the three-phase pressure variables s aw and μ, the response depending on the pressure history is not reflected.
これに対し、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法では、水相と液体相の流出入履歴を反映した状態変数Iw、Ilも考慮してβw、βlを与えることでヒステリシス現象を表現する。 On the other hand, in the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil of the present embodiment, β w , β taking into account the state variables I w , I l reflecting the inflow / outflow history of the water phase and the liquid phase. The hysteresis phenomenon is expressed by giving l .
まず、Iw、Ilは水及び液体の流入過程で1、排出過程で−1にそれぞれ近づくとする。このような関係を満たす発展則として次の式(45)を与える。 First, I w and I l are assumed to approach 1 in the inflow process of water and liquid and to −1 in the discharge process, respectively. The following formula (45) is given as an evolution rule satisfying such a relationship.
そして、履歴依存性は、水及び液体の流出入履歴を考慮したIw、Ilでμをμw *、μl *に修正することにより、次の式(46)のように表現する。 The history dependency is expressed as in the following equation (46) by correcting μ to μ w * and μ l * with I w and I l taking into account the inflow and outflow history of water and liquid.
ここで、miは流出入時のヒステリシスの影響の強さを決めるパラメータである。つまり、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法では3相の圧力に対して唯一に決まるμに代わり、状態変数Iw、Ilで補正した水及び液体の係数μw *、μl *を用いることで履歴依存性を考慮している。 Here, m i is a parameter that determines the strength of the effect of the hysteresis of the outflow Nyutoki. That is, in the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil of this embodiment, the coefficient μ of the water and liquid corrected by the state variables I w and I l instead of μ determined uniquely for the three-phase pressure. w *, and taking into account the history dependence by using the μ l *.
図10は、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法による計算過程を示している。この図10の左上、左下の図は、μに対して履歴依存性を反映した状態変数Iw、Ilによりヒステリシスを考慮したμw *、μl *を得る過程である。Ii=0のときμi=μi *(45度の破線)となり、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法のモデルはヒステリシスを考慮しない第1実施形態のモデルと同じ解を与える(図10の黒点線)。
また、図10の中段左図は、μw *、μl *と水相及び液体相のスケール変数βw、βlの関係を示している。μw *、μl *には履歴依存性の影響が既に反映されている。
最後に、図10の中段右図のようにβw、βlをsawに乗じてvan Genuchten式に代入し、水と液体の飽和度Sw、Slを求める。
FIG. 10 shows a calculation process by the behavior analysis method of the water-insoluble liquid in the unsaturated soil of the present embodiment. The upper left and lower left diagrams of FIG. 10 are processes for obtaining μ w * and μ l * in consideration of hysteresis by state variables I w and I l reflecting the history dependence with respect to μ. When I i = 0, μ i = μ i * (45 degree broken line), and the model of the behavior analysis method of the water-insoluble liquid in the unsaturated soil of the present embodiment is the model of the first embodiment that does not consider hysteresis Gives the same solution (black dotted line in FIG. 10).
Further, the middle left of FIG. 10, μ w *, μ l * and scale variables beta w water phase and a liquid phase, shows a relationship between beta l. The influence of history dependence is already reflected in μ w * and μ l * .
Finally, β w and β l are multiplied by s aw and substituted into the van Genuchten equation as shown in the middle right diagram of FIG. 10 to obtain water and liquid saturations S w and S l .
これにより、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法では、第2実施形態の長所をそのままに、状態変数Iiを媒介変数としてヒステリシス現象を確実に反映させることができる。 Thereby, in the behavioral analysis method of the water-insoluble liquid in the unsaturated soil of the present embodiment, the hysteresis phenomenon can be reliably reflected with the state variable I i as a mediator variable while maintaining the advantages of the second embodiment. .
次に、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法を用いたシミュレーションについて説明する。 Next, the simulation using the behavior analysis method of the water-insoluble liquid in the unsaturated soil of this embodiment will be described.
ここでは、地下水面の上に薄くNAPL(Ln=0.067m)を張った井戸のカラム実験を初期状態として、油面を井戸の上端(Ln=1.6m)まで上昇させた後、再び元の位置に戻すことで、NAPLを流入出させた。 Here, after the column experiment of a well in which NAPL (L n = 0.067 m) is thinly stretched on the groundwater surface, the oil level is raised to the top of the well (L n = 1.6 m), By returning to the original position again, NAPL was made to flow in and out.
そして、この本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法によるモデル(第3実施形態のモデル)と、Lenhard & Parkerのモデル(LPモデル)及びヒステリシスを考慮しないモデル(第2実施形態のモデル)でそれぞれシミュレーションを行い、その結果を比較した。なお、圧力分布は長時間経過後の定常状態を想定して静水圧、静油圧分布としている。 A model based on the behavior analysis method of the water-insoluble liquid in the unsaturated soil according to the present embodiment (model of the third embodiment), a Lenhard & Parker model (LP model), and a model not considering hysteresis (second Each model) was simulated and the results were compared. The pressure distribution is assumed to be a hydrostatic pressure and a hydrostatic pressure distribution assuming a steady state after a long time.
図11は、上段がLenhard & Parkerのモデル(LPモデル)、中段がヒステリシスを考慮しないモデル(第2実施形態のモデル)、下段が本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法のモデルによる解析結果の一例を示している。また、左列が流入過程、右列が流出過程のLn=0.8mでの地中の飽和度分布を示している。 FIG. 11 shows a model of Lenhard & Parker (LP model) in the upper stage, a model that does not take hysteresis into consideration (model of the second embodiment), and an analysis of the behavior of the water-insoluble liquid in the unsaturated soil in the lower stage. An example of an analysis result by a method model is shown. Further, the left column shows the saturation distribution in the ground at L n = 0.8 m in the inflow process and the right column in the outflow process.
そして、図11に示すように、Lenhard & Parkerのモデル(上段)は、同じ油層厚に対して、ヒステリシスによる水飽和度の分布の違いを算出するが、NAPL飽和度が極端に過小評価されている。 And as shown in FIG. 11, the Lenhard & Parker model (upper) calculates the difference in water saturation distribution due to hysteresis for the same oil layer thickness, but NAPL saturation is extremely underestimated. Yes.
また、ヒステリシスを考慮しないモデル(中段)は、既往実験でも報告された薄いNAPL層厚下でのNAPL飽和度の分布をよく捉えているが、履歴特性を考慮していないため、流入・流出過程で全く同じ解になってしまう。 In addition, the model that does not consider hysteresis (middle stage) captures the distribution of NAPL saturation under the thin NAPL layer thickness reported in previous experiments, but does not consider hysteresis characteristics, so the inflow / outflow process It becomes exactly the same solution.
これに対し、実施形態の不飽和土壌中の非水溶性液体の挙動解析方法によるモデル(下段)は、NAPLの流入過程よりもNAPLの流出過程でNAPL飽和度が高い様子を算出しており、NAPL侵入時にはNAPL飽和度が上昇しにくく、排出時にはNAPL飽和度が下降しにくいという土壌中の流体の流出入時のヒステリシス現象をよく捉えている。 In contrast, the model (bottom) of the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil of the embodiment calculates that NAPL saturation is higher in the NAPL outflow process than in the NAPL inflow process. The NAPL saturation is difficult to increase during NAPL intrusion and NAPL saturation is difficult to decrease during discharge.
したがって、本実施形態の不飽和土壌中の非水溶性液体の挙動解析方法においては、ヒステリシス現象をよく捉え、土粒子の間隙に水、空気、非水溶性流体(NAPL)が介在する多相系地盤での間隙流体の浸透現象を、さらに精度よくシミュレートすることができる。よって、土壌汚染の拡がりや程度の予測や、土壌汚染の浄化対策の効果を、さらに正確に評価・検証することが可能になる。 Therefore, in the method for analyzing the behavior of the water-insoluble liquid in the unsaturated soil of this embodiment, the hysteresis phenomenon is well understood, and water, air, and a water-insoluble fluid (NAPL) are interspersed between the soil particles. It is possible to more accurately simulate the phenomenon of pore fluid penetration in the ground. Therefore, it becomes possible to more accurately evaluate and verify the prediction of the extent and degree of soil contamination and the effect of soil contamination purification measures.
以上、本発明に係る不飽和土壌中の非水溶性液体の挙動シミュレーション方法(挙動解析方法)の実施形態について説明したが、本発明は上記の第1、第2、第3実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although embodiment of the behavior simulation method (behavior analysis method) of the water-insoluble liquid in the unsaturated soil which concerns on this invention was described, this invention is limited to said 1st, 2nd, 3rd embodiment. However, the present invention can be changed as appropriate without departing from the spirit of the invention.
Claims (3)
下記の式(1)、式(2)のように、土粒子の間隙に水、空気、非水溶性流体が介在する多相系地盤での間隙流体の浸透現象を表すモデルを構成するとともに、
下記の式(3)、式(4)、式(5)のように水−空気−NAPLの3相流の支配方程式を設定し、
式(3)、式(4)、式(5)に対し、空間をガラーキン有限要素法、時間を後退差分法で離散化し、修正Picard法を適用することによって得られる下記の式(6)、式(7)、式(8)を用いて非水溶性液体の挙動を解析することを特徴とする不飽和土壌中の非水溶性液体の挙動シミュレーション方法。
n:地盤の間隙率、S:飽和度、p:圧力、kr:比透水係数、K:飽和透過係数、γ:単位体積重量、Kv:体積圧縮係数、q:流量、ρ:密度、b:物体力、μr:非粘性係数、Ej i:∂Si/∂pj、
[上付き/下付きのw, a, n, l]:[それぞれ水、空気、非水溶性液体(NAPL)、液体(水+NAPL]、[上付きのm、k]:[それぞれ時間ステップ、繰り返しステップ]、[・]:時間微分、[−(上付き)]:要素内の平均値、[−(下付き)]:境界における値
を示す。 A method for simulating the behavior of water-insoluble liquid in unsaturated soil of multiphase ground where water, air, and water-insoluble fluid (NAPL) are interspersed between the soil particles ,
As shown in the following formulas (1) and (2), a model representing a permeation phenomenon of pore fluid in a multiphase ground where water, air, and a water-insoluble fluid are interposed in the gap between soil particles,
Set the governing equations of the three-phase flow of water-air-NAPL as in the following formula (3), formula (4), formula (5),
For the equations (3), (4), and (5), the following equation (6) obtained by discretizing the space with the Galerkin finite element method, discretizing the time with the backward difference method, and applying the modified Picard method: A behavioral simulation method of a water-insoluble liquid in unsaturated soil, characterized in that the behavior of the water-insoluble liquid is analyzed using the equations (7) and (8).
n: Soil porosity, S: Saturation, p: Pressure, kr : Relative permeability coefficient, K: Saturation permeability coefficient, γ: Unit volume weight, Kv : Volume compression coefficient, q: Flow rate, ρ: Density, b: object force, μ r : inviscidity coefficient, E j i : ∂S i / ∂p j ,
[Superscript / Subscript w, a, n, l]: [Water, Air, Water-insoluble liquid (NAPL), Liquid (Water + NAPL), [Superscript m, k]: [Time step, respectively] [Repetition step], [•]: time differentiation, [-(superscript)]: average value in element, [-(subscript)]: value at boundary.
土粒子の間隙中での水、空気、非水溶性流体の任意の2相と3相の移り変わりを、下記の式(9)で表される中間流体圧係数μを用い、下記の式(10)、式(11)、式(12)のように0から1の変数で表し、
且つ、下記の式(13)を満たすβw、βlとμの関係をベジエ曲線により与え、
水−空気のサクションsawに、μにより定まる水相と、水及び非水溶性流体の液体相のスケール変数βw、βlを乗じて、下記の式(14)に代入することにより、水相と液体相の飽和度を示す特性曲線を得るようにしたことを特徴とする不飽和土壌中の非水溶性液体の挙動シミュレーション方法。
Using the intermediate fluid pressure coefficient μ expressed by the following equation (9), the transition between any two and three phases of water, air, and water-insoluble fluid in the gap between the soil particles is expressed by the following equation (10 ), Expression (11), and expression (12) as 0 to 1 variables,
In addition, a relationship between β w , β l and μ satisfying the following expression (13) is given by a Bezier curve,
By multiplying the water-air suction s aw by the water phase determined by μ and the scale variables β w and β l of the liquid phase of water and water-insoluble fluid, and substituting them into the following equation (14), A method for simulating the behavior of a water-insoluble liquid in unsaturated soil, characterized in that a characteristic curve indicating the degree of saturation of the phase and the liquid phase is obtained.
水相と液体相の流出入履歴を反映した状態変数Iw、Ilを、水及び液体の流入過程で1、排出過程で−1にそれぞれ近づく関係を満たす下記の式(15)で与え、
下記の式(16)のように、水及び液体の流出入履歴を考慮したIw、Ilでμをμw *、μl *に修正するようにしたことを特徴とする不飽和土壌中の非水溶性液体の挙動シミュレーション方法。
State variables I w and I l reflecting the inflow and outflow history of the water phase and the liquid phase are given by the following equation (15) that satisfies a relationship approaching 1 in the inflow process of water and liquid and −1 in the discharge process, respectively.
Unsaturated soil characterized in that μ is corrected to μ w * and μ l * with I w and I l taking into account the inflow and outflow history of water and liquid as in the following equation (16) Simulation method for water-insoluble liquids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014109802A JP6357720B2 (en) | 2014-05-28 | 2014-05-28 | Simulation method of behavior of water-insoluble liquid in unsaturated soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014109802A JP6357720B2 (en) | 2014-05-28 | 2014-05-28 | Simulation method of behavior of water-insoluble liquid in unsaturated soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015225494A JP2015225494A (en) | 2015-12-14 |
JP6357720B2 true JP6357720B2 (en) | 2018-07-18 |
Family
ID=54842191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014109802A Expired - Fee Related JP6357720B2 (en) | 2014-05-28 | 2014-05-28 | Simulation method of behavior of water-insoluble liquid in unsaturated soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6357720B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6959270B2 (en) * | 2001-05-24 | 2005-10-25 | UNIVERSITé LAVAL | Method for modeling the transport of ions in hydrated cement systems |
JP2010214282A (en) * | 2009-03-16 | 2010-09-30 | Ritsumeikan | Method for estimating microorganism distribution of contaminated soil and nutrient salinity distribution |
JP5726460B2 (en) * | 2010-08-24 | 2015-06-03 | 学校法人 名城大学 | A method for predicting the movement of chemical substances in soil gas, a method for calculating the removal period of chemical substances in soil gas, and a method for determining the arrangement of suction wells for removing chemical substances in soil gas |
-
2014
- 2014-05-28 JP JP2014109802A patent/JP6357720B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015225494A (en) | 2015-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brooks et al. | Fundamental changes in in situ air sparging how patterns | |
Nikolaev et al. | Experimental investigation of soil thermal conductivity over a wide temperature range | |
Sharma et al. | An experimental investigation of LNAPL migration in an unsaturated/saturated sand | |
Nouri et al. | Quantitative assessment of LNAPL retention in soil porous media | |
Gasda et al. | Upscaling relative permeabilities in a structured porous medium | |
Gharedaghloo et al. | Characterizing the immiscible transport properties of diesel and water in peat soil | |
Pasha et al. | Numerical simulations of a light nonaqueous phase liquid (LNAPL) movement in variably saturated soils with capillary hysteresis | |
Teramoto et al. | Impact of water table fluctuations on the seasonal effectiveness of the pump-and-treat remediation in wet–dry tropical regions | |
Matos de Souza et al. | Simulation of subsurface multiphase contaminant extraction using a bioslurping well model | |
Mao et al. | Investigation of relative permeability, saturation and capillary pressure relations of NAPL-contaminated sands | |
Mohammadmoradi et al. | Interfacial areas in athabasca oil sands | |
Papafotiou et al. | From the pore scale to the lab scale: 3-D lab experiment and numerical simulation of drainage in heterogeneous porous media | |
JP6357720B2 (en) | Simulation method of behavior of water-insoluble liquid in unsaturated soil | |
Soto et al. | Determination of specific LNAPL volumes in soils having a multimodal pore-size distribution | |
Bohy et al. | Transport of a mixture of chlorinated solvent vapors in the vadose zone of a sandy aquifer: experimental study and numerical modeling | |
Tsai | Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging | |
Boudouch et al. | Influence of soil air permeability change on soil vapour extraction systems design | |
De Neef et al. | Analysis of DNAPL infiltration in a medium with a low-permeable lens | |
Praseeja et al. | Numerical simulation on LNAPL migration in vadose zone and its prevention using natural fibre | |
Thakur et al. | Two-dimensional solute transport with exponential initial concentration distribution and varying flow velocity | |
Jain et al. | Transient design of landfill liquid addition systems | |
Peche et al. | Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone | |
Coene et al. | A numerical model for the performance assessment of hydrophobic meshes used for oil spill recovery | |
Latifi et al. | Numerical assessment of Electrokinetic Barrier with coupled flow modeling approach | |
Cole et al. | Analytical simulation of two dimensional advection dispersion equation of contaminant transport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180601 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6357720 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |