JP6357360B2 - Electric culture device - Google Patents

Electric culture device Download PDF

Info

Publication number
JP6357360B2
JP6357360B2 JP2014124938A JP2014124938A JP6357360B2 JP 6357360 B2 JP6357360 B2 JP 6357360B2 JP 2014124938 A JP2014124938 A JP 2014124938A JP 2014124938 A JP2014124938 A JP 2014124938A JP 6357360 B2 JP6357360 B2 JP 6357360B2
Authority
JP
Japan
Prior art keywords
electrode
counter electrode
culture
working electrode
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124938A
Other languages
Japanese (ja)
Other versions
JP2016002046A (en
Inventor
敦規 根岸
敦規 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2014124938A priority Critical patent/JP6357360B2/en
Publication of JP2016002046A publication Critical patent/JP2016002046A/en
Application granted granted Critical
Publication of JP6357360B2 publication Critical patent/JP6357360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、微生物の電気培養装置、すなわち、培養液の酸化還元電位を制御しながら化学的独立栄養細菌等の微生物を培養するために適した電気培養装置に関し、特に効率的な培養が可能な電気培養装置に関する。   The present invention relates to a microorganism electroculturing apparatus, that is, an electroculturing apparatus suitable for culturing microorganisms such as chemically autotrophic bacteria while controlling the oxidation-reduction potential of a culture solution, and enables particularly efficient culture. The present invention relates to an electric culture apparatus.

鉄酸化細菌等の化学的独立栄養細菌は、無機物の電子供与体と電子受容体の間での電子の受け渡し、すなわち酸化還元反応に伴うエネルギーを利用して二酸化炭素を固定することにより増殖している。化学的独立栄養細菌は、電子供与体を電気化学的に供給する電気培養により増殖させることができる。   Chemical autotrophic bacteria, such as iron-oxidizing bacteria, proliferate by immobilizing carbon dioxide through the transfer of electrons between inorganic electron donors and electron acceptors, that is, the energy associated with redox reactions. Yes. Chemical autotrophic bacteria can be grown by electroculturing with an electron donor supplied electrochemically.

電気培養は、培養液中に電極を設置し、化学的独立栄養細菌の増殖に必要なエネルギー源である電子供与体を適切な濃度で電気化学的に供給し続けることができるため、栄養塩と空気の供給のみの通常培養に比べて、効率的な培養が可能となるとされており、更なる技術開発が進められている。例えば、特許文献1では、電気培養による化学的独立栄養細菌の増殖プロセスを予測する方法として、菌濃度、菌濃度変化、電子供与体濃度、その消費速度、電流値等から所定の演算式を用いて予測する方法が開示されている。特許文献1の方法により、化学的独立栄養細菌の大量生産系の特性を把握でき、連続式培養の至適環境条件が把握できるとされている。   Electroculturing can be carried out by placing an electrode in the culture medium and continuously supplying an electron donor, which is an energy source necessary for the growth of chemically autotrophic bacteria, at an appropriate concentration. Compared to normal culture with only air supply, it is said that efficient culture is possible, and further technological development is underway. For example, in Patent Document 1, as a method for predicting the growth process of chemically autotrophic bacteria by electroculture, a predetermined arithmetic expression is used from the bacterial concentration, bacterial concentration change, electron donor concentration, consumption rate, current value, and the like. A method for predicting the above is disclosed. By the method of patent document 1, it is supposed that the characteristic of the mass production system of a chemical autotrophic bacterium can be grasped, and the optimal environmental condition of continuous culture can be grasped.

また、特許文献2では、培養液に電圧の印加を間欠的に行い、電圧を印加していない状態で培養液の静止電位を計測する電気培養方法が開示されている。特許文献2の方法により、従来の電極に電圧を印加し続ける方法では測定できなかった静止電位(電極間に電流が流れていないときの電極間の電位)を計測することができ、この静止電位に基づいて、培養液中の酸化還元種濃度を推定し、微生物の生育状況を正確に把握し、電圧の印加の制御にフィードバックできるうえ、一系統の電圧印加の制御回路があれば、複数の培養器について電圧制御が可能となるとされている。   Patent Document 2 discloses an electroculture method in which a voltage is intermittently applied to a culture solution and a static potential of the culture solution is measured in a state where no voltage is applied. According to the method of Patent Document 2, it is possible to measure a static potential (potential between electrodes when no current flows between the electrodes) that cannot be measured by the conventional method of continuously applying a voltage to the electrodes. Based on the above, it is possible to estimate the concentration of redox species in the culture solution, accurately grasp the growth status of microorganisms, and feed back to the control of voltage application. It is said that voltage control is possible for the incubator.

特開平11−113565号公報Japanese Patent Laid-Open No. 11-113565 特開2005−198509号公報JP 2005-198509 A

しかしながら、特許文献1の方法においては、最適な培養条件を導き出すために、電圧、電流値、及び電極間距離の調節による電位制御や、栄養塩の添加量等の要因を細かく設定し、さらにフィードバック制御により最適化するまで何回も繰り返し設定する必要がある。また、特許文献2の方法においては、装置が大掛かりになるうえ、培養条件の最適化についても特許文献1と同様にフィードバック制御の繰り返しが必要であり、複雑な制御機構が必要になる。   However, in the method of Patent Document 1, in order to derive optimal culture conditions, factors such as potential control by adjusting the voltage, current value, and distance between electrodes, and the amount of nutrient added, etc. are set in detail, and further fed back. It is necessary to set repeatedly many times until it is optimized by the control. In addition, the method of Patent Document 2 requires a large apparatus, and the optimization of culture conditions requires repeated feedback control as in Patent Document 1 and requires a complicated control mechanism.

すなわち、従来の電気培養装置では微生物のエネルギー源となる栄養塩(電子供与体等)の酸化還元電位を正確に設定するため、その電極の位置(電極間の距離)、電圧、及び電流を正確に制御する必要があり、制御系が複雑になるという問題がある。   In other words, in the conventional electroculture apparatus, the position (distance between electrodes), voltage, and current of the electrodes are accurately set in order to accurately set the oxidation-reduction potential of nutrient salts (electron donors, etc.) that serve as the energy source of microorganisms. Therefore, there is a problem that the control system becomes complicated.

さらに、例えば、2価鉄イオン(Fe2+)を栄養塩として生育する鉄酸化細菌を電気培養する場合、(i)鉄酸化細菌がFe2+から電子の供与を受け、微生物内の酸化還元反応に利用するとともに、3価鉄イオン(Fe3+)へ酸化し、(ii)Fe3+が電極において電子を受容しFe2+に還元されて、再度細菌の栄養塩となるというサイクルにより鉄酸化細菌が増殖するが、培養液の撹拌の程度や電極間の電位等の問題で、Fe3+が電極から電子を受容する前に培養液中の酸素と結合することで酸化鉄となり、電極表面に析出し付着したり、培養槽内に沈殿したりして、急激に鉄酸化細菌の増殖が減速してしまう場合がある。この場合、培養の再開のために、電極を塩酸による洗浄、析出の程度によっては電極の交換、及び培養槽の沈殿物の除去等の非常に煩雑なメンテナンスが必要となるため、時間的、コスト的に大きな問題であった。 Further, for example, when iron-oxidizing bacteria that grow using divalent iron ions (Fe 2+ ) as nutrient salts are electrocultured, (i) the iron-oxidizing bacteria receive donation of electrons from Fe 2+ and undergo oxidation-reduction reactions in the microorganism. As it is used, it is oxidized to trivalent iron ions (Fe 3+ ), and (ii) Fe 3+ accepts electrons at the electrode, is reduced to Fe 2+ , and becomes a nutrient salt of the bacteria again. However, due to problems such as the degree of agitation of the culture solution and the potential between the electrodes, Fe 3+ combines with oxygen in the culture solution before accepting electrons from the electrode, so that it becomes iron oxide and precipitates and adheres to the electrode surface. In some cases, the growth of iron-oxidizing bacteria is suddenly decelerated due to precipitation in the culture tank. In this case, in order to restart the culture, the electrode is washed with hydrochloric acid, and depending on the degree of precipitation, electrode replacement and removal of the sediment in the culture tank are necessary. It was a big problem.

したがって、本発明の目的は、培養液中に電極を配置し、電圧を印加することで微生物を培養する電気培養に用いる電気培養装置であって、酸化還元電位の複雑な制御系の必要がなく、且つ、電極に金属酸化物の付着等が生じ難く、繁雑なメンテナンスが不要で、効率的な培養が可能な培養装置を提供することにある。   Accordingly, an object of the present invention is an electroculturing apparatus used for electroculturing in which microorganisms are cultured by placing an electrode in a culture solution and applying a voltage, and there is no need for a complicated control system for redox potential. It is another object of the present invention to provide a culture apparatus capable of efficiently cultivating an electrode, in which metal oxides do not easily adhere to an electrode and complicated maintenance is not required.

本発明者らは電気培養において、栄養塩や微生物と作用極とを効率よく接触させるため、作用極として平板電極を用い電極面積を大きくすることを検討したが、培養装置の培養液の流れを阻害したり、結果的に酸化鉄等の酸化物の付着が増加したりする問題が生じることが分かった。そこで、作用極の形態を種々検討することにより、本発明に至った。   In the electric culture, the present inventors have studied to increase the electrode area by using a plate electrode as a working electrode in order to efficiently contact nutrient salts and microorganisms with the working electrode. It has been found that there is a problem that it is obstructed and as a result, adhesion of oxides such as iron oxide increases. Therefore, the present invention has been accomplished by variously examining the form of the working electrode.

すなわち、上記目的は、微生物を培養液で培養するための培養槽、該培養槽に備えられた培養液に電圧を印加するための作用極、前記培養槽とイオン交換膜によって仕切られた連通部を介して接続された対極槽、対極槽に備えられた対極、及び前記作用極と前記対極との間に電圧を印加する電圧印加手段を含む電気培養装置であって、前記作用極、対極及びイオン交換膜が、それぞれ、縦に配設されると共に、前記作用極、イオン交換膜及び対極が略水平方向に並べて配置されており、前記作用極が、前記電圧印加手段に接続する軸部及び、該軸部と電気的に接続し、複数の貫通孔が形成された平板部を有する電極であり、且つ前記作用極が、前記軸部を中心に回転する回転手段を備えることを特徴とする電気培養装置によって達成される。

That is, the object is to provide a culture vessel for culturing microorganisms in a culture solution, a working electrode for applying a voltage to the culture solution provided in the culture vessel, and a communication part partitioned by the culture vessel and an ion exchange membrane. A counter electrode tank connected via a counter electrode, a counter electrode provided in the counter electrode tank, and a voltage applying means for applying a voltage between the working electrode and the counter electrode, the working electrode, the counter electrode and The ion exchange membrane is arranged vertically, and the working electrode, the ion exchange membrane, and the counter electrode are arranged in a substantially horizontal direction, and the working electrode is connected to the voltage applying means, and a shaft portion and The electrode includes a flat plate portion electrically connected to the shaft portion and formed with a plurality of through holes, and the working electrode includes rotating means that rotates about the shaft portion. This is achieved by an electroculture device.

上記の構成の電気培養装置においては、作用極として軸部と平板部とを有し、平板部に複数の貫通孔が形成された電極を用い、その電極を回転させることで、培養槽における培養液の流れの阻害を防止すると共に、培養液の撹拌を促進することができる。これにより、栄養塩と作用極による電気化学反応が促進され、且つ、上述のような金属酸化物の付着を防止することができる。また、作用極の平板部が回転することで、作用極と対極の距離(電極間の距離)が周期的に変化することになるため、培養液中の栄養塩の酸化還元電位に係らず、電極間の距離が周期的に好適な範囲に調節されることになる。したがって、複雑な酸化還元電位の制御を行わなくても電気培養を効率よく実施することができる。   In the electroculture apparatus having the above-described configuration, an electrode having a shaft portion and a flat plate portion as a working electrode, and having a plurality of through holes formed in the flat plate portion, and rotating the electrode, the culture in the culture tank Inhibition of the flow of the liquid can be prevented and stirring of the culture liquid can be promoted. Thereby, the electrochemical reaction by a nutrient salt and a working electrode is accelerated | stimulated, and adhesion of the above metal oxides can be prevented. In addition, since the distance between the working electrode and the counter electrode (distance between the electrodes) periodically changes due to the rotation of the plate portion of the working electrode, regardless of the redox potential of the nutrient in the culture solution, The distance between the electrodes is periodically adjusted to a suitable range. Therefore, it is possible to efficiently carry out the electroculture without performing complicated control of the redox potential.

本発明の電気培養装置の好ましい態様は以下の通りである。   Preferred embodiments of the electroculture device of the present invention are as follows.

(1)前記作用極の平板部が、メッシュ状の平板である。培養槽における水の流れの阻害をより防止することができる。また、電極の表面積を増加することができ、より効率的に電気化学反応を促進することができる。   (1) The flat plate portion of the working electrode is a mesh-shaped flat plate. Inhibition of the flow of water in the culture tank can be further prevented. Moreover, the surface area of an electrode can be increased and an electrochemical reaction can be promoted more efficiently.

(2)前記対極が、前記電圧印加手段と接続する軸部と、該軸部と電気的に接続し、複数の貫通孔が形成された平板部とを有する電極であり、且つ前記対極が、前記軸部を中心に回転する回転手段を備える。対極も複数の貫通孔が形成された平板部を有する電極とし、それを回転させることにより、対極槽における液体の流れの阻害も防止し、対極における電気化学反応も促進させることができ、より効率的に電気培養を実施することができる。また、作用極と対極の距離の変化率を高めることができ、多様な培養液中の栄養塩の酸化還元電位に対応できる。   (2) The counter electrode is an electrode having a shaft portion connected to the voltage application means, and a flat plate portion electrically connected to the shaft portion and formed with a plurality of through holes, and the counter electrode is Rotating means that rotates about the shaft portion is provided. The counter electrode is also an electrode having a flat plate portion in which a plurality of through holes are formed. By rotating the electrode, the liquid flow in the counter electrode tank can be prevented from being obstructed, and the electrochemical reaction at the counter electrode can be promoted. Electroculture can be carried out automatically. In addition, the rate of change in the distance between the working electrode and the counter electrode can be increased, and it is possible to cope with the oxidation-reduction potentials of nutrient salts in various culture solutions.

(3)前記対極の平板部が、メッシュ状の平板である。対極槽における水の流れの阻害をより防止することができる。また、電極の表面積を増加することができ、より効率的に電気化学反応を促進することができる。   (3) The flat plate portion of the counter electrode is a mesh-shaped flat plate. Inhibition of the flow of water in the counter electrode tank can be further prevented. Moreover, the surface area of an electrode can be increased and an electrochemical reaction can be promoted more efficiently.

(4)前記回転手段により前記作用極を回転させたとき、前記作用極の最も対極に近い部分と前記対極の最も作用極に近い部分との距離(d)の最大値(dmax)が、距離(d)の最小値(dmin)の1.5倍以上になるように、前記作用極及び前記対極が設置されている。作用極と対極の距離(電極間の距離)の周期的な変化がより大きくなり、より多様な培養液中の栄養塩の酸化還元電位に対応できる。 (4) When the working electrode is rotated by the rotating means, the maximum value (d max ) of the distance (d) between the portion of the working electrode closest to the counter electrode and the portion of the counter electrode closest to the working electrode is The working electrode and the counter electrode are provided so as to be 1.5 times or more the minimum value (d min ) of the distance (d). Periodic changes in the distance between the working electrode and the counter electrode (distance between the electrodes) become larger, and it is possible to cope with the oxidation-reduction potentials of nutrient salts in various culture media.

(5)微生物の培養中に、培養された微生物を含む培養液を排出する排出手段、及び排出された前記培養液の量に応じて、新たに培養液を供給する供給手段を更に備える。一定の微生物濃度で連続培養することができ、より効率的な微生物生産を実施することができる。   (5) The apparatus further includes discharge means for discharging a culture solution containing the cultured microorganism during culture of the microorganism, and supply means for newly supplying the culture solution according to the amount of the discharged culture solution. Continuous culture can be performed at a constant microorganism concentration, and more efficient microorganism production can be performed.

本発明の電気培養装置によれば、作用極の複数の貫通孔が形成された平板部が回転することで、培養槽における培養液の流れの阻害を防止すると共に、培養液の撹拌を促進することができるので、栄養塩と作用極による電気化学反応が促進され、且つ、金属酸化物の付着を防止することができる。また、作用極と対極の距離(電極間の距離)が周期的に変化することになるため、培養液中の栄養塩の酸化還元電位に係らず、電極間の距離が周期的に好適な範囲に調節されることになり、複雑な酸化還元電位の制御を行わなくても電気培養を効率よく実施することができる。   According to the electroculture apparatus of the present invention, the flat plate portion in which a plurality of through holes of the working electrode are formed rotates, thereby preventing the flow of the culture solution in the culture tank and promoting the stirring of the culture solution. Therefore, the electrochemical reaction between the nutrient salt and the working electrode is promoted, and adhesion of the metal oxide can be prevented. In addition, since the distance between the working electrode and the counter electrode (distance between the electrodes) changes periodically, the distance between the electrodes is periodically in a suitable range regardless of the oxidation-reduction potential of nutrients in the culture medium. Therefore, electroculturing can be performed efficiently without complicated control of the redox potential.

本発明の電気培養装置の一例を示す概略図である。It is the schematic which shows an example of the electroculture apparatus of this invention. 本発明の電気培養装置の作用極の一例を示す概略図である。It is the schematic which shows an example of the working electrode of the electroculture apparatus of this invention. 本発明の電気培養装置の好適態様の一例を示す概略図である。It is the schematic which shows an example of the suitable aspect of the electroculture apparatus of this invention. 本発明の電気培養装置の作用極と対極との距離を説明するための概略図である。It is the schematic for demonstrating the distance of the working electrode and counter electrode of the electroculture apparatus of this invention. 本発明の電気培養装置による微生物の培養例の増殖曲線を示す図である。It is a figure which shows the growth curve of the example of culture | cultivation of the microorganisms by the electric culture apparatus of this invention.

以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の電気培養装置の一例を示す概略図である。図1の電気培養装置は、微生物を、栄養塩等を含む培養液で培養するための培養槽10、培養槽10に備えられた培養液に電圧を印加するための作用極11、培養槽10とイオン交換膜21によって仕切られた連通部20を介して接続された対極槽30、対極槽30に備えられた対極31、及び作用極11と対極31との間に電圧を印加する電圧印加手段として電位制御装置40を有する。作用極11は電位制御装置40に接続する軸部12、及び軸部12と電気的に接続し、複数の貫通孔(図1においては、メッシュ状)が形成された平板部13を有する電極である。そして、作用極11は、軸部12に回転手段としてモータ14が接続されており、軸部12を中心に回転するように設置されている。図1において、矢印により回転方向が示されているが、回転方向は特に制限されず、例えば、図1の矢印とは逆方向に回転しても良く、周期的に反転するよう設定されていても良い。また、図1においては作用極11は縦方向に設置されているが、横方向に設置されていても良い。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an example of the electroculture apparatus of the present invention. 1 includes a culture vessel 10 for culturing microorganisms in a culture solution containing nutrient salts and the like, a working electrode 11 for applying a voltage to the culture solution provided in the culture vessel 10, and a culture vessel 10. And a counter electrode 30 connected via a communication part 20 partitioned by an ion exchange membrane 21, a counter electrode 31 provided in the counter electrode 30, and a voltage applying means for applying a voltage between the working electrode 11 and the counter electrode 31 As a potential control device 40. The working electrode 11 is an electrode having a shaft portion 12 connected to the potential control device 40 and a flat plate portion 13 that is electrically connected to the shaft portion 12 and has a plurality of through holes (in a mesh shape in FIG. 1). is there. The working electrode 11 is connected to the shaft portion 12 as a rotating means, and is installed so as to rotate around the shaft portion 12. In FIG. 1, the direction of rotation is indicated by an arrow, but the direction of rotation is not particularly limited. For example, the direction of rotation may be opposite to the arrow in FIG. Also good. In FIG. 1, the working electrode 11 is installed in the vertical direction, but may be installed in the horizontal direction.

培養槽10には、通気装置15が設置されており、好気性微生物の場合は、例えば、コンプレッサー等から空気を矢印方向に送り込み、培養液中に空気を供給する。これにより、培養液に微生物の増殖に必要な酸素や二酸化炭素を供給することができる。通気装置15に酸素ボンベや二酸化炭素ボンベ等を接続しても良い。なお、培養槽10には必要に応じて、pH電極、溶存酸素計、酸化還元電位計、撹拌機等の通常の培養装置に設置される装置を設置しても良い(図示していない)。   The aeration apparatus 15 is installed in the culture tank 10, and in the case of an aerobic microorganism, for example, air is fed in the direction of an arrow from a compressor or the like, and air is supplied into the culture solution. Thereby, oxygen and carbon dioxide required for the growth of microorganisms can be supplied to the culture solution. An oxygen cylinder, a carbon dioxide cylinder or the like may be connected to the ventilation device 15. The culture tank 10 may be provided with a device installed in a normal culture device such as a pH electrode, a dissolved oxygen meter, an oxidation-reduction potentiometer, and a stirrer (not shown).

電気培養では、例えば、2価鉄イオン(Fe2+)を栄養塩として生育する鉄酸化細菌の場合は、(i)鉄酸化細菌がFe2+から電子の供与を受け、微生物内の酸化還元反応に利用するとともに、3価鉄イオン(Fe3+)へ酸化し、(ii)そのFe3+が作用極において電子を受容してFe2+に還元され、再度細菌の栄養塩となるというサイクルにより鉄酸化細菌が増殖する。この際、イオン交換膜は、鉄イオンが対極層側に流れ込み、対極と接することを防止している。また、作用極に電圧を印加する電位制御装置40はどのようなものを用いても良い。例えばガルバノ・ポテンショメーターを用いることができる。印加電圧は特に制限はなく、培養液の酸化還元電位に応じて調節することができる。 In the electric culture, for example, in the case of an iron-oxidizing bacterium that grows using divalent iron ions (Fe 2+ ) as a nutrient salt, (i) the iron-oxidizing bacterium receives an electron donation from Fe 2+ and undergoes a redox reaction in the microorganism. In addition to being oxidized to trivalent iron ions (Fe 3+ ), (ii) the Fe 3+ accepts electrons at the working electrode, is reduced to Fe 2+ , and becomes a nutrient salt of bacteria again. Grows. At this time, the ion exchange membrane prevents iron ions from flowing into the counter electrode layer and coming into contact with the counter electrode. Further, any potential control device 40 that applies a voltage to the working electrode may be used. For example, a galvano potentiometer can be used. The applied voltage is not particularly limited and can be adjusted according to the oxidation-reduction potential of the culture solution.

電気培養において、栄養塩や微生物と作用極とを効率よく接触させるため、作用極の電極面積が大きくなるように平板電極を用いた場合、培養槽における培養液の流れを阻害したり、結果的に金属酸化物の付着が増加したりする場合がある。本発明においては、上記のような平板部13に複数の貫通孔が形成された電極を用い、その電極が回転することにより培養槽10の培養液の流れを形成し、栄養塩や微生物と作用極11との接触を促進することができるとともに、金属酸化物等の付着を防止することができる。   In electrocultivation, in order to efficiently bring nutrient salts and microorganisms into contact with the working electrode, when the plate electrode is used so that the electrode area of the working electrode is increased, the flow of the culture solution in the culture tank may be hindered, and as a result In some cases, adhesion of metal oxides may increase. In the present invention, an electrode in which a plurality of through-holes are formed in the flat plate portion 13 as described above is used, and the electrode rotates to form a flow of the culture solution in the culture tank 10 to act on nutrient salts and microorganisms. Contact with the electrode 11 can be promoted, and adhesion of a metal oxide or the like can be prevented.

図2に、図1の電気培養装置で用いられた作用極11を拡大した概略図を示す。作用極11の平板部13は矩形状のメッシュ状である。軸部12と平板部13とは、溶接、はんだ付け、ボルト止め等の方法で電気的に接続されている。軸部12及び平板部13の材質は、通常、電気培養に用いられる電極と同様な安定性の高い材質を用いれば良い。例えば、白金鋼材、白金めっきチタン材等が挙げられる。軸部12の直径(φ)、平板部13の長さ(L)、幅(W)及び厚さ(T)は、培養液中で回転させたときに、変形しないような強度があれば、特に制限はなく、培養槽の大きさに合わせて設計することができる。また、平板部の形状は矩形状でなくても良く、例えば、平面図で円形、楕円形、多角形等でも良い。   FIG. 2 shows an enlarged schematic view of the working electrode 11 used in the electroculture apparatus of FIG. The flat plate portion 13 of the working electrode 11 has a rectangular mesh shape. The shaft portion 12 and the flat plate portion 13 are electrically connected by a method such as welding, soldering, or bolting. As the material for the shaft portion 12 and the flat plate portion 13, a material having high stability similar to that of the electrode used for electroculture is usually used. For example, a platinum steel material, a platinum plating titanium material, etc. are mentioned. If the diameter (φ) of the shaft portion 12 and the length (L), width (W) and thickness (T) of the flat plate portion 13 are strong enough not to be deformed when rotated in the culture solution, There is no restriction | limiting in particular, It can design according to the magnitude | size of a culture tank. Further, the shape of the flat plate portion does not have to be a rectangular shape, and may be, for example, a circle, an ellipse, or a polygon in a plan view.

平板部13は、図2においては、メッシュ状であるが、複数の貫通孔が形成されていれば良く、例えばパンチングメタル状でも良い。培養槽における培養液の流れを阻害し難く、且つ電極の表面積を増加することができ、より効率的に電気化学反応を促進することができるので、図2のようなメッシュ状の平板部13が好ましい。メッシュの大きさには特に制限はない。   In FIG. 2, the flat plate portion 13 has a mesh shape, but may have a plurality of through holes, and may have a punching metal shape, for example. Since the flow of the culture solution in the culture tank is hardly hindered, the surface area of the electrode can be increased, and the electrochemical reaction can be promoted more efficiently, the mesh-like flat plate portion 13 as shown in FIG. preferable. There is no particular limitation on the size of the mesh.

図1においては、対極31は、一般的な棒状電極であるが、図3に示したように、作用極11と同様な電極であることが好ましい。図3においては、対極31’は、電位制御装置40に接続する軸部32、及び軸部32と電気的に接続し、複数の貫通孔(図1においては、メッシュ状)が形成された平板部33を有する電極である。そして、対極31’は軸部32に回転手段としてモータ34が接続されており、軸部12を中心に回転するように設置されている。対極31’の詳細については、上述の作用極11の説明と同様である。作用極11と同様に、複数の貫通孔が形成された平板部33を有する対極31’を用い、これを回転させることにより、対極槽30における液体の流れの阻害も防止し、対極31’における電気化学反応も促進させることができ、より効率的に電気培養を実施することができる。   In FIG. 1, the counter electrode 31 is a general rod electrode, but as shown in FIG. 3, it is preferable that the counter electrode 31 is an electrode similar to the working electrode 11. 3, the counter electrode 31 ′ is electrically connected to the shaft portion 32 connected to the potential control device 40 and the shaft portion 32, and a flat plate in which a plurality of through holes (in FIG. 1, mesh shape) are formed. This is an electrode having a portion 33. The counter electrode 31 ′ is connected to the shaft portion 32 with a motor 34 as a rotating means, and is installed so as to rotate around the shaft portion 12. The details of the counter electrode 31 ′ are the same as those described for the working electrode 11. Similarly to the working electrode 11, the counter electrode 31 ′ having the flat plate portion 33 in which a plurality of through holes are formed is used, and by rotating the counter electrode 31 ′, obstruction of the liquid flow in the counter electrode tank 30 is also prevented. Electrochemical reaction can also be promoted, and electroculture can be carried out more efficiently.

対極31’の平板部33についても、対極槽30における液体の流れの阻害をより防止することができ、電極の表面積を増加することにより、更に効率的に電気化学反応を促進することができるので、作用極11の場合と同様に、メッシュ状の平板であることが好ましい。   As for the flat plate portion 33 of the counter electrode 31 ′, the liquid flow in the counter electrode tank 30 can be further prevented from being obstructed, and the electrochemical reaction can be promoted more efficiently by increasing the surface area of the electrode. As in the case of the working electrode 11, it is preferably a mesh-like flat plate.

さらに作用極11の平板部13が回転することによる、もう一つの有利な点として、作用極と対極との距離(電極間の距離)が周期的に変化することが挙げられる。図4に電極間の距離を説明するための概略図を示す。図4(a1)は、図1における作用極11が、回転した場合に、作用極11の最も対極31に近い部分と、対極31の最も作用極11に近い部分との距離(d)が最小値(dmin)となる配置を示し、図4(a2)は、距離(d)が最大値(dmax)となる配置を示す。このように、電極間の距離が周期的に変化することになるため、培養液中の栄養塩の酸化還元電位に係らず、電極間の距離が周期的に好適な範囲に至ることになる。したがって、複雑な酸化還元電位の制御を行わなくても電気培養を効率よく実施することができる。 Furthermore, another advantage of rotating the flat plate portion 13 of the working electrode 11 is that the distance between the working electrode and the counter electrode (distance between the electrodes) periodically changes. FIG. 4 is a schematic diagram for explaining the distance between the electrodes. 4A1 shows that when the working electrode 11 in FIG. 1 rotates, the distance (d) between the portion of the working electrode 11 closest to the counter electrode 31 and the portion of the counter electrode 31 closest to the working electrode 11 is minimum. An arrangement with a value (d min ) is shown, and FIG. 4 (a2) shows an arrangement with a distance (d) having a maximum value (d max ). Thus, since the distance between the electrodes changes periodically, the distance between the electrodes periodically reaches a suitable range regardless of the oxidation-reduction potential of the nutrient in the culture solution. Therefore, it is possible to efficiently carry out the electroculture without performing complicated control of the redox potential.

また、図4(b1)は、図2における作用極11が、回転した場合に、作用極11の最も対極31’に近い部分と、対極31’の最も作用極11に近い部分との距離(d)が最小値(dmin)となる配置を示し、図4(b2)は、距離(d)が最大値(dmax)となる配置を示す。対極31’が回転することで、棒状電極の対極31の場合(図1、図4(a1)、(a2))と比較して、距離(d)の最大値(dmax)と最小値(dmin)の差が大きくなり、変化率を高めることができ、より多様な培養液中の栄養塩の酸化還元電位に対応できる。 FIG. 4B1 shows the distance between the portion of the working electrode 11 closest to the counter electrode 31 ′ and the portion of the counter electrode 31 ′ closest to the working electrode 11 when the working electrode 11 in FIG. d) shows an arrangement where the minimum value (d min ) is shown, and FIG. 4B2 shows an arrangement where the distance (d) becomes the maximum value (d max ). By rotating the counter electrode 31 ′, the maximum value (d max ) and the minimum value (d max ) of the distance (d) are compared with the case of the counter electrode 31 of the rod-shaped electrode (FIG. 1, FIG. 4 (a1), (a2)). d min ) is increased, the rate of change can be increased, and more diverse redox potentials of nutrients in the culture solution can be handled.

作用極11及び対極31(又は31’)は、距離(d)の最大値(dmax)が、距離(d)の最小値(dmin)の1.5倍以上になるように、設置されていることが好ましい。これにより、作用極と対極の距離(電極間の距離)の周期的な変化がより大きくなり、より多様な培養液中の栄養塩の酸化還元電位に対応することができる。距離(d)の最大値(dmax)は、距離(d)の最小値(dmin)の1.5〜10.0倍がより好ましく、2.0〜5.0倍が更に好ましい。 The working electrode 11 and the counter electrode 31 (or 31 ′) are installed such that the maximum value (d max ) of the distance (d) is 1.5 times or more the minimum value (d min ) of the distance (d). It is preferable. Thereby, the periodic change of the distance (distance between electrodes) of a working electrode and a counter electrode becomes larger, and it can respond to the oxidation-reduction potential of the nutrient salt in a more various culture solution. The maximum value (d max ) of the distance (d) is more preferably 1.5 to 10.0 times and further preferably 2.0 to 5.0 times the minimum value (d min ) of the distance (d).

本発明の電気培養装置は、電極への金属酸化物の付着等が防止され、複雑な酸化還元電位の調節が不要なので、培養槽や電極のメンテナンスなしに長期間培養可能であり、特に連続培養システムに好適である。すなわち、本発明の電気培養装置は、微生物の培養中に、培養された微生物を含む培養液を排出する排出手段、及び排出された前記培養液の量に応じて、新たに培養液を供給する供給手段を更に備えることが好ましい。これにより、長期間の培養時間が必要な鉄酸化細菌等の化学的独立栄養細菌等の微生物を、一定の微生物濃度で連続培養することができるので、より効率的な微生物生産を実施することができる。   The electroculturing apparatus of the present invention prevents metal oxide from adhering to the electrode and does not require complicated adjustment of the redox potential, so that it can be cultured for a long time without maintenance of the culture tank and the electrode, particularly continuous culture. Suitable for the system. That is, the electric culture apparatus of the present invention supplies a culture solution newly according to the discharge means for discharging the culture solution containing the cultured microorganism and the amount of the discharged culture solution during the cultivation of the microorganism. It is preferable to further provide a supply means. As a result, microorganisms such as chemical autotrophic bacteria such as iron-oxidizing bacteria that require a long culture time can be continuously cultured at a certain microorganism concentration, so that more efficient microorganism production can be carried out. it can.

図1又は図2においては、培養槽10に、微生物を含む培養液を矢印方向に排出するための排出管17、及び新たに培養液を矢印方向に供給するための供給管16が設置されている。排出管17及び供給管16は、それぞれ培養液排出ポンプ及び培養液供給ポンプに接続されている(図示していない)。排出した微生物を含む培養液は、フィルター分離や遠心分離等により培養液を分離し、微生物を回収する。新たに供給する培養液は、培養後の微生物から分離された培養液、及び/又は新鮮な培養液を用いることができる。培養液に用いる栄養塩の使用量を最小限とするため、例えば、培養後の微生物から分離された培養液の栄養塩濃度(例えば、鉄酸化細菌の場合は、2価鉄イオン濃度等)を測定し、不足分を新鮮な培養液を混合したり、栄養塩を添加したりして、新たに供給する培養液とすることができる。このように、本発明の電気培養装置を用いて連続培養を行うことで、有用な微生物を効率よく生産することができる。特に、バイオ水銀浄化システムへ用いることができる鉄酸化細菌を、従来法に比べて効率的に培養できるので、浄化工法が効率的に実施できる。   In FIG. 1 or FIG. 2, the culture tank 10 is provided with a discharge pipe 17 for discharging the culture solution containing microorganisms in the direction of the arrow and a supply pipe 16 for newly supplying the culture solution in the direction of the arrow. Yes. The discharge pipe 17 and the supply pipe 16 are connected to a culture liquid discharge pump and a culture liquid supply pump, respectively (not shown). The culture solution containing the discharged microorganisms is separated by filtering or centrifuging to collect the microorganisms. As a newly supplied culture solution, a culture solution separated from microorganisms after culture and / or a fresh culture solution can be used. In order to minimize the amount of nutrient used in the culture solution, for example, the nutrient concentration of the culture solution separated from the microorganism after culture (for example, in the case of iron-oxidizing bacteria, the concentration of divalent iron ions, etc.) By measuring and mixing the deficiency with a fresh culture solution or adding a nutrient salt, a newly supplied culture solution can be obtained. Thus, a useful microorganism can be efficiently produced by performing continuous culture using the electrocultivation apparatus of the present invention. In particular, since iron-oxidizing bacteria that can be used in a biomercury purification system can be cultured more efficiently than conventional methods, the purification method can be carried out efficiently.

次に本発明を実施例にて具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

1.本発明の電気培養装置と従来の電気培養装置の比較
表1及び表2に示した組成の培養液(二価鉄無機塩培地)を、図3に示した本発明の電気培養装置、及び従来の棒状の作用極を備える電気培養装置に投入し、滅菌した後、鉄酸化細菌(アシディチオバチルス フェロオキシダンス(Acidithiobacillus ferrooxidans)MON−1株)を初期微生物数10個/mlになるように添加し、電気培養を行った。結果を図5に示す。
1. Comparison of the Electroculture Apparatus of the Present Invention and the Conventional Electroculture Apparatus The culture solution (divalent iron inorganic salt medium) having the composition shown in Tables 1 and 2 is used as the electroculture apparatus of the present invention shown in FIG. and the charged into the electric culture device comprising a working electrode of rod-like, after sterilization, iron oxidizing bacteria (reeds di thio Bacillus ferrooxidans (Acidithiobacillus ferrooxidans) MON-1 strain) so that the initial microbial number 10 6 cells / ml of And electroculture. The results are shown in FIG.

Figure 0006357360
Figure 0006357360

Figure 0006357360
Figure 0006357360

図5に示したように、本発明の電気培養装置を用いた場合、11日目まで対数的に微生物が増殖したのに対し、従来の電気培養装置では、11日目めで、作用極に錆の沈着が生じ、微生物の増殖が進行しなくなった。したがって、本発明の電気培養装置は、従来の電気培養装置より効率的に電気培養を行うことができることが示された。   As shown in FIG. 5, when the electroculture apparatus of the present invention was used, microorganisms grew logarithmically until the 11th day, whereas in the conventional electroculture apparatus, the working electrode rusted on the 11th day. As a result, the growth of microorganisms stopped. Therefore, it was shown that the electroculture apparatus of the present invention can perform electroculture more efficiently than the conventional electroculture apparatus.

上記本発明の電気培養装置を用いた培養においては、培養15日目以降、微生物を含む培養液を一部排出し、無菌的に微生物の回収をした後、その培養液を培養槽に戻す(減少分は新鮮な9K基本培地を補う)とともに、培養液の2価鉄濃度を測定し、培養液の2価鉄濃度が2%未満になった場合、2価鉄濃度が3%になるようにFeSO・7HOを添加するという連続培養を行い、長期間連続的に微生物を生産することができる。 In the culture using the electric culture apparatus of the present invention, after the 15th day of culture, a part of the culture solution containing the microorganisms is discharged, the microorganisms are collected aseptically, and then the culture solution is returned to the culture tank ( The decrease is supplemented with a fresh 9K basic medium), and the divalent iron concentration of the culture solution is measured. If the divalent iron concentration of the culture solution is less than 2%, the divalent iron concentration is 3%. The microorganism can be continuously produced over a long period of time by performing continuous culture in which FeSO 4 · 7H 2 O is added.

なお、本発明は上記の実施の形態及び実施例の構成に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。   In addition, this invention is not limited to the structure of said embodiment and Example, A various deformation | transformation is possible within the range of the summary of invention.

本発明の電気培養装置により、繁雑な電極のメンテナンスや複雑な酸化還元電位の制御の必要なしに、有用な微生物の大量生産を効率よく実施することができる。   The electroculture apparatus of the present invention enables efficient mass production of useful microorganisms without the need for complicated electrode maintenance and complicated control of redox potential.

10 培養槽
11 作用極
12、32 軸部
13、33 平板部
14、34 モータ
15 通気装置
16 供給管
17 排出管
20 連通部
21 イオン交換膜
30 対極槽
31,31’ 対極
40 電位制御装置
DESCRIPTION OF SYMBOLS 10 Culture tank 11 Working electrode 12, 32 Shaft part 13, 33 Flat plate part 14, 34 Motor 15 Aeration apparatus 16 Supply pipe 17 Discharge pipe 20 Communication part 21 Ion exchange membrane 30 Counter electrode tank 31, 31 'Counter electrode 40 Potential control apparatus

Claims (6)

微生物を培養液で培養するための培養槽、
該培養槽に備えられた培養液に電圧を印加するための作用極、
前記培養槽とイオン交換膜によって仕切られた連通部を介して接続された対極槽、
該対極槽に備えられた対極、及び
前記作用極と前記対極との間に電圧を印加する電圧印加手段を含む電気培養装置であって、
前記作用極、対極及びイオン交換膜が、それぞれ、縦に配設されると共に、前記作用極、イオン交換膜及び対極が略水平方向に並べて配置されており、
前記作用極が、前記電圧印加手段に接続する軸部及び、該軸部と電気的に接続し、複数の貫通孔が形成された平板部を有する電極であり、且つ前記作用極が、前記軸部を中心に回転する回転手段を備えることを特徴とする電気培養装置。
A culture vessel for culturing microorganisms in a culture solution;
A working electrode for applying a voltage to the culture medium provided in the culture tank;
A counter electrode tank connected via a communication section partitioned by the culture tank and an ion exchange membrane;
An electroculturing apparatus comprising a counter electrode provided in the counter electrode tank, and a voltage applying means for applying a voltage between the working electrode and the counter electrode,
The working electrode, the counter electrode and the ion exchange membrane are each arranged vertically, and the working electrode, the ion exchange membrane and the counter electrode are arranged in a substantially horizontal direction,
The working electrode is an electrode having a shaft portion connected to the voltage application means and a flat plate portion electrically connected to the shaft portion and having a plurality of through holes, and the working electrode is the shaft. An electroculturing apparatus comprising a rotating means that rotates about a section.
前記作用極の平板部が、メッシュ状の平板である請求項1に記載の電気培養装置。   The electroculture apparatus according to claim 1, wherein the plate portion of the working electrode is a mesh-like plate. 前記対極が、前記電圧印加手段と接続する軸部と、該軸部と電気的に接続し、複数の貫通孔が形成された平板部とを有する電極であり、且つ
前記対極が、前記軸部を中心に回転する回転手段を備える請求項1又は2に記載の電気培養装置。
The counter electrode is an electrode having a shaft portion connected to the voltage application means, and a flat plate portion electrically connected to the shaft portion and formed with a plurality of through holes, and the counter electrode is the shaft portion. The electroculture apparatus according to claim 1, further comprising a rotation unit that rotates about the axis.
前記対極の平板部が、メッシュ状の平板である請求項3に記載の電気培養装置。   The electroculture apparatus according to claim 3, wherein the flat plate portion of the counter electrode is a mesh-like flat plate. 前記回転手段により前記作用極を回転させたとき、
前記作用極の最も対極に近い部分と前記対極の最も作用極に近い部分との距離(d)の最大値(dmax)が、距離(d)の最小値(dmin)の1.5倍以上になるように、前記作用極及び前記対極が設置されている請求項1〜4のいずれか1項に記載の電気培養装置。
When the working electrode is rotated by the rotating means,
The maximum value (d max ) of the distance (d) between the portion of the working electrode closest to the counter electrode and the portion of the counter electrode closest to the working electrode is 1.5 times the minimum value (d min ) of the distance (d). The electroculture apparatus according to any one of claims 1 to 4, wherein the working electrode and the counter electrode are installed so as to be described above.
微生物の培養中に、培養された微生物を含む培養液を排出する排出手段、及び
排出された前記培養液の量に応じて、新たに培養液を供給する供給手段を更に備える請求項1〜5のいずれか1項に記載の電気培養装置。
6. A discharge means for discharging a culture solution containing the cultured microorganism during culture of microorganisms, and a supply means for newly supplying a culture solution according to the amount of the discharged culture solution. The electroculture apparatus according to any one of the above.
JP2014124938A 2014-06-18 2014-06-18 Electric culture device Active JP6357360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124938A JP6357360B2 (en) 2014-06-18 2014-06-18 Electric culture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124938A JP6357360B2 (en) 2014-06-18 2014-06-18 Electric culture device

Publications (2)

Publication Number Publication Date
JP2016002046A JP2016002046A (en) 2016-01-12
JP6357360B2 true JP6357360B2 (en) 2018-07-11

Family

ID=55221867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124938A Active JP6357360B2 (en) 2014-06-18 2014-06-18 Electric culture device

Country Status (1)

Country Link
JP (1) JP6357360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191835B (en) * 2017-06-26 2019-10-22 罗芳芳 The LED lamp of structure optimization on a kind of Spirulina cultivator
JP6968023B2 (en) * 2018-04-17 2021-11-17 株式会社安藤・間 In-situ purification method and in-situ purification device for contaminated soil or water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH567108A5 (en) * 1973-01-10 1975-09-30 Battelle Memorial Institute Process for manufacturing an enzyme-acting electrode
JPH04299980A (en) * 1991-03-27 1992-10-23 Nakano Vinegar Co Ltd High-density culture of bacterial belonging to genus thiobacillus
JP4099601B2 (en) * 1997-01-08 2008-06-11 財団法人電力中央研究所 Method and apparatus for culturing aerobic chemical autotrophic bacteria by potential controlled electrolysis
JPH10280181A (en) * 1997-04-14 1998-10-20 Ibiden Co Ltd Electrolytic treating device
JP2005279482A (en) * 2004-03-30 2005-10-13 Hitachi Kiden Kogyo Ltd Electrolytic treatment device
JP5734618B2 (en) * 2010-10-21 2015-06-17 一般財団法人電力中央研究所 Electric culture device
JP5129383B1 (en) * 2011-09-05 2013-01-30 佳子 守安 Water purification apparatus and water purification method

Also Published As

Publication number Publication date
JP2016002046A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
KR100446406B1 (en) A Membraneless And Mediatorless Microbial Fuel Cell
CN104377378B (en) A kind of microorganism electrochemical device and method for repairing groundwater azotate pollution
JP2012505733A (en) Treatment of solution or waste water
TerAvest et al. Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in Shewanella oneidensis MR‐1
Hamed et al. Effect of electrode material and hydrodynamics on the produced current in double chamber microbial fuel cells
Jones et al. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport
JP6357360B2 (en) Electric culture device
Qiao et al. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor
CN109205796A (en) O for wastewater treatment2Restore biological-cathode-electro-catalysis membrane coupled reactor
JP2009178145A (en) Method for culturing sulfate-reducing bacterium
JP2006246847A (en) Method and device for culturing anaerobic ammonia-oxidizing bacterium
WO2011011829A1 (en) A bioelectrochemical cell system
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
Fazli et al. Bioelectrochemical cell (BeCC) integrated with Granular Activated Carbon (GAC) in treating spent caustic wastewater
JP3777534B2 (en) Bacterial electroculture method in anaerobic environment
Winfield et al. Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride
JP2019110101A (en) Bioelectrochemical system
JP2006205139A (en) Method for controlling circulating water
Azwara et al. Optimal production of biohydrogen gas via Microbial Electrolysis cells (MEC) in a controlled batch reactor system
JPH10191965A (en) Culture of aerobic chemically independent nutritive bacterium by potential-controlled electrolysis and culture apparatus therefor
WO2011063450A1 (en) Methods and devices for the treatment of fluids
Pillot et al. Effect of cathode properties on the thermophilic electrosynthesis of PolyHydroxyAlkanoates by Kyrpidia spormannii
US10160669B2 (en) Methods and devices for the treatment of fluids
JP2007007514A (en) Water quality control method of circulating water
JP6919880B2 (en) Ammonia production method using microorganisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6357360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250