JP6353949B1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP6353949B1
JP6353949B1 JP2017066593A JP2017066593A JP6353949B1 JP 6353949 B1 JP6353949 B1 JP 6353949B1 JP 2017066593 A JP2017066593 A JP 2017066593A JP 2017066593 A JP2017066593 A JP 2017066593A JP 6353949 B1 JP6353949 B1 JP 6353949B1
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
flame retardant
mass
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066593A
Other languages
Japanese (ja)
Other versions
JP2018168283A (en
Inventor
勝典 今野
勝典 今野
圭太 秋葉
圭太 秋葉
潔 砂田
潔 砂田
利春 蔵田
利春 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2017066593A priority Critical patent/JP6353949B1/en
Application granted granted Critical
Publication of JP6353949B1 publication Critical patent/JP6353949B1/en
Publication of JP2018168283A publication Critical patent/JP2018168283A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】高度な難燃性を備えた熱可塑性樹脂組成物を提供する。【解決手段】(A)熱可塑性樹脂と(B)フルオロエチレン系重合体と、を含有し、マイクロスケール燃焼熱量計を用いるASTM D7309 Method Aに基づいて測定される、分解炉温度200〜600℃における最大放熱率が400W/g未満で、且つ、総発熱量が36.0kJ/g以下である熱可塑性樹脂組成物とする。【選択図】なしA thermoplastic resin composition having high flame retardancy is provided. A cracking furnace temperature of 200 to 600 ° C. is measured based on ASTM D7309 Method A using (A) a thermoplastic resin and (B) a fluoroethylene-based polymer and using a microscale combustion calorimeter. The thermoplastic resin composition has a maximum heat release rate of less than 400 W / g and a total calorific value of 36.0 kJ / g or less. [Selection figure] None

Description

本発明は、高度な難燃性を備えた熱可塑性樹脂組成物に関する。   The present invention relates to a thermoplastic resin composition having high flame retardancy.

熱可塑性樹脂は、その特性を生かし、ワープロ、パーソナルコンピュータ、プリンター、複写機等のOA機器、TV、VTR、オーディオ等の家電製品等を初めとする多岐の分野で使用されているが、係る熱可塑性樹脂に難燃剤を添加することによって、難燃性を付与する難燃化検討が行われている(特許文献1,2参照)。   Thermoplastic resins are used in various fields such as office automation equipment such as word processors, personal computers, printers, and copiers, and home appliances such as TVs, VTRs, and audios. A flame retardant study for imparting flame retardancy has been conducted by adding a flame retardant to a plastic resin (see Patent Documents 1 and 2).

特に、大型或いは固定されて用いられる複写機及びプリンターに使用される外装カバーは、防火エンクロージャとして燃焼或いは高温物質の飛散や火炎の吹き出しなどを防止する役割を担っており、高度な難燃性が要求される。   In particular, exterior covers used in large-sized or fixed copying machines and printers have a role of preventing combustion or scattering of high-temperature substances or blowing out flames as fireproof enclosures, and have high flame resistance. Required.

特開平11−217482号公報JP-A-11-217482 特開平08−283525号公報Japanese Patent Laid-Open No. 08-283525

本発明の課題は、高度な難燃性を備えた熱可塑性樹脂組成物を提供することである。   The subject of this invention is providing the thermoplastic resin composition provided with the high flame retardance.

本発明は、(A)熱可塑性樹脂と(B)フルオロエチレン系重合体と(C)臭素系難燃剤と(D)難燃助剤と、を含有し、
前記(A)熱可塑性樹脂が、ゴム変性スチレン系樹脂であり、
前記(A)熱可塑性樹脂100質量部に対して、前記(B)フルオロエチレン系重合体を0.01〜2.0質量部、前記(C)臭素系難燃剤を5〜30質量部、前記(D)難燃助剤1.0〜10.0質量部含有し、
マイクロスケール燃焼熱量計を用いるASTM D7309 Method Aに基づいて測定される、分解炉温度200〜600℃における、最大放熱率が400W/g未満で、且つ、総発熱量が36.0kJ/g以下であることを特徴とする熱可塑性樹脂組成物である。
The present invention comprises (A) a thermoplastic resin, (B) a fluoroethylene polymer, (C) a bromine flame retardant, and (D) a flame retardant aid ,
The (A) thermoplastic resin is a rubber-modified styrenic resin,
(A) 0.01-2.0 parts by mass of the (B) fluoroethylene polymer, 5-30 parts by mass of the brominated flame retardant (C), and 100 parts by mass of the thermoplastic resin. (D) containing 1.0 to 10.0 parts by mass of a flame retardant aid,
Measured based on ASTM D7309 Method A using a micro-scale combustion calorimeter, with a maximum heat release rate of less than 400 W / g and a total calorific value of 36.0 kJ / g or less at a cracking furnace temperature of 200 to 600 ° C. It is a thermoplastic resin composition characterized by being.

上記本発明は、以下の構成を好ましい態様として含む。
記ゴム変性スチレン系樹脂に含まれる4−tert−ブチルカテコールの含有量が6mg/kg以下であること
The present invention includes the following configurations as preferred embodiments.
The content of 4-tert-butylcatechol included before Symbol rubber-modified styrene resin is less than 6 mg / kg.

本発明によれば、マイクロスケール燃焼熱量計を用いて測定される最大放熱率と総発熱量とを規定することにより、高度な難燃性を有する熱可塑性樹脂組成物が得られる。よって、本発明の熱可塑性樹脂組成物を用いることによって、難燃性を要求されるOA機器や家電部品等での使用が有利になり、複写機やプリンターに使用される外装カバーにおいても、高い難燃性が実現する。   According to the present invention, a thermoplastic resin composition having a high degree of flame retardancy can be obtained by defining the maximum heat release rate and the total calorific value measured using a microscale combustion calorimeter. Therefore, by using the thermoplastic resin composition of the present invention, it is advantageous for use in OA equipment and home appliance parts that require flame retardancy, and it is also high in exterior covers used in copying machines and printers. Flame resistance is realized.

ASTM D7309に基づく測定で得られる放熱率特性曲線の一例を示す図である。It is a figure which shows an example of the heat dissipation rate characteristic curve obtained by the measurement based on ASTM D7309.

本発明者等は熱可塑性樹脂組成物の難燃性について種々検討を行った結果、マイクロスケール燃焼熱量計(MCC、Microscale Combustion Calorimeter)を用い、ASTM D7309 method Aに基づいて測定される最大放熱率と総発熱量とが、熱可塑性樹脂組成物における難燃性の指標として用いうることを知見し、本発明を達成した。   As a result of various studies on flame retardancy of the thermoplastic resin composition, the present inventors have used a microscale combustion calorimeter (MCC) and measured the maximum heat dissipation rate based on ASTM D7309 method A. And the total calorific value can be used as indicators of flame retardancy in a thermoplastic resin composition, and the present invention has been achieved.

MCCとは、ASTM D7309に基づく可燃物の燃焼特性を評価する装置であり、装置内に分解炉と燃焼炉を有している。ASTM D7309では、MCCの分解炉にサンプルを載置し、該分解炉に窒素又は窒素と酸素の混合気体を流しながら該分解炉を任意の速度で昇温し、そこから発生した分解ガスを燃焼炉へ導入し、窒素と酸素の存在下で分解ガスを燃焼させて、消費される酸素量から放熱率(Heat Release Rate、HRR)を計算する。係る方法では、サンプルの形態が限定されず、再現性がよく、燃焼特性を定量的に示すことができる。   MCC is an apparatus for evaluating the combustion characteristics of combustible materials based on ASTM D7309, and has a decomposition furnace and a combustion furnace in the apparatus. In ASTM D7309, a sample is placed in an MCC cracking furnace, and the cracking furnace is heated at an arbitrary speed while flowing a mixed gas of nitrogen or nitrogen and oxygen into the cracking furnace, and the cracked gas generated therefrom is burned. It introduce | transduces into a furnace, burns cracked gas in presence of nitrogen and oxygen, and calculates a heat release rate (Heat Release Rate, HRR) from the amount of oxygen consumed. In such a method, the form of the sample is not limited, the reproducibility is good, and the combustion characteristics can be quantitatively shown.

本発明においては、ASTM D7309 Method Aに基づいて、以下の条件で、経時的にサンプル1g当たりの放熱率(HRR)[W/g]を測定する。分解炉は一定の速度で昇温されるため、測定時刻に対応する分解炉温度を横軸に、係る時刻で測定した消費酸素量より得られた放熱率を縦軸にプロットすると、図1に示すような放熱率特性曲線が得られる。尚、図1は一例であって、本発明が係る放熱率特性曲線に限定されるものではない。
サンプル質量:3.0mg
分解炉昇温速度:1.0℃/sec
分解炉到達温度:850℃
燃焼炉温度:900℃(一定)
分解炉雰囲気:窒素(嫌気条件)(80ml/min)
燃焼炉雰囲気:酸素/窒素混合気体(酸素20ml/min、窒素80ml/min)
In the present invention, based on ASTM D7309 Method A, the heat release rate (HRR) [W / g] per 1 g of sample is measured over time under the following conditions. Since the temperature of the cracking furnace is increased at a constant rate, the temperature of the cracking furnace corresponding to the measurement time is plotted on the horizontal axis, and the heat release rate obtained from the amount of oxygen consumed measured at the time is plotted on the vertical axis. A heat dissipation characteristic curve as shown is obtained. In addition, FIG. 1 is an example and is not limited to the heat dissipation rate characteristic curve according to the present invention.
Sample mass: 3.0mg
Decomposition furnace heating rate: 1.0 ° C / sec
Decomposition furnace temperature: 850 ° C
Combustion furnace temperature: 900 ° C (constant)
Decomposition furnace atmosphere: Nitrogen (anaerobic condition) (80 ml / min)
Combustion furnace atmosphere: oxygen / nitrogen mixed gas (oxygen 20 ml / min, nitrogen 80 ml / min)

本発明の熱可塑性樹脂組成物は、上記放熱率特性曲線において、分解炉温度200〜600℃における最大放熱率が400W/g未満である。最大放熱率とは、放熱率特性曲線のピークの頂点であり、例えば図1の場合、375W/gである。   The thermoplastic resin composition of the present invention has a maximum heat release rate of less than 400 W / g at a decomposition furnace temperature of 200 to 600 ° C. in the heat release rate characteristic curve. The maximum heat dissipation rate is the peak apex of the heat dissipation rate characteristic curve. For example, in the case of FIG. 1, it is 375 W / g.

また、本発明の熱可塑性樹脂組成物は、上記放熱率特性曲線において、分解炉温度200〜600℃間の総発熱量、即ち、係る温度範囲における各測定点での放熱率に測定間隔(時間)を乗じた値の合計が、36.0kJ/g以下である。尚、図1の曲線は、横軸が分解炉温度であるが、分解炉温度は一定の速度で昇温されるため、横軸は昇温開始からの時刻に対応する。よって、横軸を時刻とした曲線において、分解炉温度が200℃及び600℃にそれぞれ達した時刻間の放熱率の積分値が分解炉温度200〜600℃間の総発熱量である。   Further, the thermoplastic resin composition of the present invention has a total heat generation amount between the decomposition furnace temperature of 200 to 600 ° C., that is, a heat release rate at each measurement point in the temperature range in the heat release rate characteristic curve. ) Is 36.0 kJ / g or less. In the curve of FIG. 1, the horizontal axis represents the cracking furnace temperature, but since the cracking furnace temperature is raised at a constant rate, the horizontal axis corresponds to the time from the start of the temperature raising. Therefore, in the curve with time on the horizontal axis, the integral value of the heat release rate during the time when the cracking furnace temperature reaches 200 ° C. and 600 ° C. is the total calorific value between 200 to 600 ° C.

本発明においては、(A)熱可塑性樹脂と(B)フルオロエチレン系重合体とを含有する熱可塑性樹脂組成物において、上記最大放熱率が400W/g未満で、且つ、総発熱量が36.0kJ/g以下の放熱率特性を有していれば、米国アンダーライターズ・ラボラトリーズ社のサブジェクト94号(UL94)で5VBに相当する高い難燃性が得られる。   In the present invention, in the thermoplastic resin composition containing (A) a thermoplastic resin and (B) a fluoroethylene polymer, the maximum heat dissipation rate is less than 400 W / g and the total calorific value is 36. If it has a heat dissipation rate characteristic of 0 kJ / g or less, a high flame retardancy equivalent to 5 VB can be obtained with Subject No. 94 (UL94) of Underwriters Laboratories, USA.

本発明において使用される(A)熱可塑性樹脂としては、熱可塑性を有する重合体であれば、特に限定されず、ポリスチレン(GPPS)、アクリロニトリル−スチレン共重合体(AS樹脂)、メチルメタクリレート−スチレン共重合体(MS樹脂)、無水マレイン酸−スチレン共重合体、アクリル酸(又はメタクリル酸)エステル・スチレン共重合体等の汎用スチレン系樹脂;耐衝撃性ポリスチレン(HIPS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−アクリルゴム−スチレン共重合体(AAS樹脂)、アクリロニトリル−エチレンプロピレン−スチレン共重合体(AES樹脂)、メチルメタクリレート−ブタジエン−スチレン共重合体(MBS樹脂)等のゴム変性スチレン系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、エチレン・プロピレン共重合体等で、炭素数2〜10のα−オレフィンの少なくとも1種からなるα−オレフィン重合体及び共重合体、並びにこれらの塩素化ポリエチレン等による変性重合体及び変性共重合体、環状オレフィン共重合体等のオレフィン系樹脂;アイオノマー、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体等のエチレン系共重合体;ポリ塩化ビニル樹脂(PVC)、エチレン・塩化ビニル重合体、ポリ塩化ビニリデン(PVDC)等の塩化ビニル系樹脂;ポリメタクリル酸メチル(PMMA)等のアクリル酸(又はメタクリル酸)エステルの1種以上を用いた重合体及び共重合体等のアクリル系樹脂;ポリアミド6、ポリアミド6,6、ポリアミド6,12等のポリアミド系樹脂(PA);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート等のポリエステル系樹脂;ポリアセタール(POM);ポリカーボネート(PC);ポリアリレート(PAR);ポリフェニレンエーテル(PPE);ポリフェニレンサルファイド(PPS);ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;液晶ポリマー;ポリイミド樹脂(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)等のイミド系樹脂;ポリエーテルケトン、ポリエーテルエーテルケトン(PEEK)等のケトン系樹脂;ポリスルホン(PSU)、ポリエーテルスルホン(PES)等のスルホン系樹脂;ウレタン系樹脂(PU);ポリ酢酸ビニル(PVAc);ポリエチレンオキシド(PEO);ポリビニルアルコール(PVA);ポリビニルエーテル;ポリビニルブチラール;フェノキシ樹脂;ポリ乳酸樹脂(PLA)等が挙げられる。これらは、1種単独で或いは2種以上を組み合わせて用いることができる。これらのうち、汎用スチレン系樹脂、ゴム変性スチレン系樹脂、オレフィン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンエーテルが好ましく、特に好ましくはゴム変性スチレン系樹脂、オレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリフェニレンエーテルであり、さらに好ましくは、ゴム変性スチレン系樹脂である。   The thermoplastic resin (A) used in the present invention is not particularly limited as long as it is a polymer having thermoplasticity. Polystyrene (GPPS), acrylonitrile-styrene copolymer (AS resin), methyl methacrylate-styrene General-purpose styrene resins such as copolymer (MS resin), maleic anhydride-styrene copolymer, acrylic acid (or methacrylic acid) ester / styrene copolymer; high impact polystyrene (HIPS), acrylonitrile-butadiene-styrene Copolymer (ABS resin), acrylonitrile-acrylic rubber-styrene copolymer (AAS resin), acrylonitrile-ethylenepropylene-styrene copolymer (AES resin), methyl methacrylate-butadiene-styrene copolymer (MBS resin), etc. Rubber-modified styrenic resin; poly Α-olefin polymers and copolymers of at least one of α-olefins having 2 to 10 carbon atoms, such as ethylene (PE), polypropylene (PP), and ethylene / propylene copolymers, and chlorinated polyethylenes thereof Olefin resins such as modified polymers and modified copolymers, cyclic olefin copolymers, etc .; ethylene copolymers such as ionomers, ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers; polyvinyl chloride Resin (PVC), ethylene-vinyl chloride polymer, polyvinyl chloride resin such as polyvinylidene chloride (PVDC); heavy weight using one or more of acrylic acid (or methacrylic acid) ester such as polymethyl methacrylate (PMMA) Acrylic resins such as coalesces and copolymers; polyamide 6, polyamide 6,6, polyamide 6,1 Polyamide resins (PA) such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester resins such as polyethylene naphthalate; polyacetal (POM); polycarbonate (PC); polyarylate (PAR); PPE); polyphenylene sulfide (PPS); fluorine resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF); liquid crystal polymer; polyimide resin (PI), polyamideimide (PAI), polyetherimide (PEI), etc. Imide resins; ketone resins such as polyether ketone and polyether ether ketone (PEEK); sulfone resins such as polysulfone (PSU) and polyether sulfone (PES); urethane Fat (PU); polyvinyl acetate (PVAc); polyethylene oxide (PEO), polyvinyl alcohol (PVA); polyvinyl ethers, polyvinyl butyral, phenoxy resin, polylactic acid resin (PLA) and the like. These can be used alone or in combination of two or more. Of these, general-purpose styrene resins, rubber-modified styrene resins, olefin resins, acrylic resins, vinyl chloride resins, polycarbonate resins, polyester resins, polyamide resins, and polyphenylene ether are preferable, and rubber modified resins are particularly preferable. Styrenic resins, olefinic resins, acrylic resins, polycarbonate resins, polyester resins, and polyphenylene ethers are preferable, and rubber-modified styrene resins are more preferable.

スチレン系樹脂とは芳香族ビニル化合物系単量体を重合して得られるものであり、ゴム状重合体を加えてゴム変性を行ったスチレン系樹脂をゴム変性スチレン系樹脂と呼ぶ。重合方法としては公知の方法、例えば、塊状重合法、塊状・懸濁二段重合法、溶液重合法等により製造することができる。芳香族ビニル化合物系単量体は、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン等の公知のものが使用できるが、好ましくはスチレンである。また、これらの芳香族ビニル化合物系単量体と共重合可能なアクリロニトリル、アクリル酸、メタクリル酸、アクリル酸(又はメタアクリル酸)エステル等のスチレン系単量体や無水マレイン酸等以外の単量体も、熱可塑性樹脂組成物の性能を損なわない程度ものであれば良い。さらに本発明ではジビニルベンゼン等の架橋剤をスチレン系単量体に対し添加して重合したものであっても差し支えない。   The styrene resin is obtained by polymerizing an aromatic vinyl compound monomer, and a styrene resin that has been rubber-modified by adding a rubbery polymer is referred to as a rubber-modified styrene resin. As the polymerization method, it can be produced by a known method, for example, a bulk polymerization method, a bulk / suspension two-stage polymerization method, a solution polymerization method or the like. As the aromatic vinyl compound monomer, known monomers such as styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene can be used, and styrene is preferable. In addition, styrene monomers such as acrylonitrile, acrylic acid, methacrylic acid, acrylic acid (or methacrylic acid) ester, maleic anhydride, etc. that are copolymerizable with these aromatic vinyl compound monomers The body may be of a level that does not impair the performance of the thermoplastic resin composition. Furthermore, in the present invention, a polymer obtained by adding a crosslinking agent such as divinylbenzene to a styrene monomer may be used.

ゴム変性スチレン系樹脂に用いるゴム状重合体としては、ポリブタジエン、スチレン−ブタジエンのランダム又はブロック共重合体、ポリイソプレン、ポリクロロプレン、スチレン−イソプレンのランダム、ブロック又はグラフト共重合体、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴムなどが挙げられるが、特にポリブタジエン、スチレン−ブタジエンのランダム、ブロック又はグラフト共重合体が好ましい。また、これらは一部水素添加されていても差し支えないし、単独或いは2種以上を組み合わせて用いても差し支えない。   The rubber-like polymer used for the rubber-modified styrene resin includes polybutadiene, styrene-butadiene random or block copolymer, polyisoprene, polychloroprene, styrene-isoprene random, block or graft copolymer, and ethylene-propylene rubber. , Ethylene-propylene-diene rubber, and the like, and in particular, random, block or graft copolymers of polybutadiene and styrene-butadiene are preferable. These may be partially hydrogenated, or may be used alone or in combination of two or more.

ゴム変性スチレン系樹脂中のゴム状重合体の含有量は、3〜15質量%が好ましい。ゴム状重合体の含有量が3〜15質量%の範囲であれば樹脂組成物の耐衝撃性を十分高めることができる。   The content of the rubbery polymer in the rubber-modified styrenic resin is preferably 3 to 15% by mass. If the content of the rubbery polymer is in the range of 3 to 15% by mass, the impact resistance of the resin composition can be sufficiently enhanced.

ゴム変性スチレン系樹脂中に含まれる4−tert−ブチルカテコール(TBC)の含有量は、6mg/kg以下が好ましい。さらに好ましくは、0.1〜5mg/kgである。TBCは重合開始剤であり、該TBCの含有量が6mg/kg以下だと難燃性の安定性が増し、好ましい。   The content of 4-tert-butylcatechol (TBC) contained in the rubber-modified styrene resin is preferably 6 mg / kg or less. More preferably, it is 0.1-5 mg / kg. TBC is a polymerization initiator, and if the content of TBC is 6 mg / kg or less, the flame retardancy stability is increased, which is preferable.

本発明において使用される(B)フルオロエチレン系重合体は、樹脂燃焼時の発熱量低減効果を付与するものであり、(A)熱可塑性樹脂中にフィブリル状に微分散させることが好ましい。フルオロエチレン系重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体及びテトラフルオロエチレン/エチレン共重合体等があり、これらをそれぞれ単独又は複数併用して使用してもよい。(B)フルオロエチレン系重合体は、水系ラテックス又はディスパージョンとして供給されることが望ましい。   The (B) fluoroethylene-based polymer used in the present invention imparts an effect of reducing the calorific value during resin combustion, and (A) is preferably finely dispersed in a fibril form in the thermoplastic resin. Specific examples of fluoroethylene polymers include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / hexafluoropropylene copolymer, and tetrafluoroethylene / ethylene copolymer, each of which is used alone or in combination. May be used. (B) The fluoroethylene polymer is desirably supplied as an aqueous latex or dispersion.

(B)フルオロエチレン系重合体の添加量について特に制限はないが、(A)熱可塑性樹脂100質量部に対して、0.01〜2.0質量部の範囲で用いることが好ましい。更に好ましくは0.1〜1.0質量部である。(B)フルオロエチレン系重合体の添加量が0.01〜2.0質量部の範囲であれば熱可塑性樹脂組成物の難燃性、耐衝撃性及び成形品外観を十分高めることができる。   (B) Although there is no restriction | limiting in particular about the addition amount of a fluoroethylene polymer, It is preferable to use in 0.01-2.0 mass parts with respect to 100 mass parts of (A) thermoplastic resins. More preferably, it is 0.1-1.0 mass part. (B) If the addition amount of a fluoroethylene-type polymer is 0.01-2.0 mass parts, the flame retardance of a thermoplastic resin composition, impact resistance, and a molded article external appearance can fully be improved.

本発明においては、さらに、(C)臭素系難燃剤と(D)難燃助剤とを含有することが好ましい。   In the present invention, it is preferable to further contain (C) a brominated flame retardant and (D) a flame retardant aid.

本発明に使用される(C)臭素系難燃剤としては、トリス(ポリブロモフェノキシ)トリアジン化合物、臭素化ジフェニルアルカン化合物、臭素化フタルイミド化合物、臭素化ポリスチレン、臭素化スチレン−ブタジエン共重合体、臭素化ポリアクリレート、臭素化ポリフェニレンエーテル、臭素化ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂の分子鎖末端のグリシジル基の一部又は全部を封止した変性物等が挙げられ、トリス(ポリブロモフェノキシ)トリアジン化合物、臭素化ジフェニルアルカン化合物、臭素化フタルイミド化合物が好適に使用される。   Examples of the (C) brominated flame retardant used in the present invention include tris (polybromophenoxy) triazine compound, brominated diphenylalkane compound, brominated phthalimide compound, brominated polystyrene, brominated styrene-butadiene copolymer, bromine Modified polyacrylates, brominated polyphenylene ethers, brominated bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, modified products in which part or all of the glycidyl groups at the molecular chain terminals are sealed, and the like. Bromophenoxy) triazine compounds, brominated diphenylalkane compounds, and brominated phthalimide compounds are preferably used.

これらの(C)臭素系難燃剤は1種又は2種以上併用することが出来る。(C)臭素系難燃剤の添加量については必要な難燃性レベルに応じて決められるが、(A)熱可塑性樹脂100質量部に対して、5〜30質量部の範囲で用いることが好ましい。更に好ましくは10〜20質量部である。   These (C) brominated flame retardants can be used alone or in combination of two or more. (C) The amount of brominated flame retardant added is determined according to the required flame retardant level, but it is preferably used in the range of 5 to 30 parts by mass with respect to 100 parts by mass of (A) thermoplastic resin. . More preferably, it is 10-20 mass parts.

(D)難燃助剤は、(C)臭素系難燃剤の難燃効果を更に高める働きをするものであり、例えば酸化アンチモンとして三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等、ホウ素系化合物としてホウ酸亜鉛、メタホウ酸バリウム、無水ホウ酸亜鉛、無水ホウ酸等、スズ系化合物として酸化第二スズ、スズ酸亜鉛、ヒドロキシスズ酸亜鉛等、モリブデン系化合物として酸化モリブデン、モリブデン酸アンモニウム等、ジルコニウム系化合物として酸化ジルコニウム、水酸化ジルコニウム等、また亜鉛系化合物として硫化亜鉛等が挙げられる。なかでも三酸化アンチモンを使用することが特に好ましい。(D)難燃助剤の添加量について特に制限はないが、(A)熱可塑性樹脂100質量部に対して、1.0〜10.0質量部の範囲で用いることが好ましい。   (D) The flame retardant aid functions to further enhance the flame retardant effect of the brominated flame retardant (C), for example, as antimony oxide, antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium antimonate, etc. Zinc borate, barium metaborate, anhydrous zinc borate, anhydrous boric acid, etc. as boron compounds, stannic oxide, zinc stannate, zinc hydroxystannate, etc. as tin compounds, molybdenum oxide, molybdenum as molybdenum compounds Examples of the ammonium compound include zirconium oxide and zirconium hydroxide as the zirconium compound, and zinc sulfide as the zinc compound. Among them, it is particularly preferable to use antimony trioxide. (D) Although there is no restriction | limiting in particular about the addition amount of a flame-retardant adjuvant, It is preferable to use in the range of 1.0-10.0 mass parts with respect to 100 mass parts of (A) thermoplastic resins.

また、本発明の熱可塑性樹脂組成物には、本発明の効果が得られる範囲で各種添加物、例えば染顔料、着色防止剤、滑剤、酸化防止剤、老化防止剤、光安定剤、帯電防止剤、充填剤、相溶化剤等の公知の添加剤、酸化チタンやカーボンブラックなどの着色剤などの改質剤を添加できる。これらの添加方法は特に限定される訳では無く、公知の方法、例えば、使用するスチレン系樹脂の重合開始前、重合途中の反応液に対して、又は重合終了後、及び難燃剤、難燃助剤を配合する際、更には、押出機や成形機においても添加することができる。   In addition, the thermoplastic resin composition of the present invention has various additives such as dyes, pigments, anti-coloring agents, lubricants, antioxidants, anti-aging agents, light stabilizers, antistatic agents to the extent that the effects of the present invention are obtained. Known additives such as additives, fillers and compatibilizers, and modifiers such as colorants such as titanium oxide and carbon black can be added. These addition methods are not particularly limited, and known methods, for example, before the start of polymerization of the styrenic resin to be used, with respect to the reaction solution in the middle of the polymerization, or after the completion of the polymerization, and flame retardants, flame retardant aids. When blending the agent, it can also be added in an extruder or a molding machine.

本発明の熱可塑性樹脂組成物の混合方法は、公知の混合技術を適用することが出来る。例えばミキサー型混合機、V型ブレンダー、及びタンブラー型混合機等の混合装置であらかじめ予備混合しておいた混合物を、溶融混練することで均一な樹脂組成物とすることが出来る。溶融混練機に特段の制限は無い。好適な溶融混練機として、バンバリー型ミキサー、ニーダー、ロール、単軸押出機、特殊単軸押出機、及び二軸押出機等がある。更に押出機等の溶融混練装置の途中から難燃剤等の添加剤を別途に添加する方法がある。   A known mixing technique can be applied to the method for mixing the thermoplastic resin composition of the present invention. For example, a uniform resin composition can be obtained by melt-kneading a mixture preliminarily mixed with a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer. There are no particular restrictions on the melt kneader. Suitable melt kneaders include Banbury mixers, kneaders, rolls, single screw extruders, special single screw extruders, and twin screw extruders. Furthermore, there is a method of separately adding an additive such as a flame retardant from the middle of a melt-kneading apparatus such as an extruder.

本発明の樹脂組成物から成形品を得る成形法には射出成形等がある。   Examples of a molding method for obtaining a molded product from the resin composition of the present invention include injection molding.

以下に本発明を実施例及び比較例によって詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(A)熱可塑性樹脂
ゴム変性した耐衝撃性ポリスチレン樹脂(ゴム状重合体がポリブタジエンゴム、マトリックス部分のゴム状重合体含有量9.4質量%、ゴム状重合体の体積平均粒子径2.8μm、シス1,4結合を90モル%以上の比率で含有するハイシスポリブタジエンゴム、マトリックス部分のTBC含有量2.0mg/kg)
(A) Thermoplastic resin Impact-modified polystyrene resin modified with rubber (the rubber-like polymer is polybutadiene rubber, the content of the rubber-like polymer in the matrix portion is 9.4% by mass, the volume average particle diameter of the rubber-like polymer is 2.8 μm) , High-cis polybutadiene rubber containing cis 1,4 bonds in a proportion of 90 mol% or more, TBC content of the matrix part 2.0 mg / kg)

〈ゴム状重合体含有量の測定〉
試料をクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え暗所に約1時間放置後、15質量%のヨウ化カリウム溶液と純水50mlを加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量から算出した。
<Measurement of rubbery polymer content>
Dissolve the sample in chloroform, add a certain amount of iodine monochloride / carbon tetrachloride solution, leave it in the dark for about 1 hour, add 15% by weight potassium iodide solution and 50 ml of pure water, and add excess iodine monochloride. The solution was titrated with 0.1N sodium thiosulfate / ethanol aqueous solution and calculated from the amount of added iodine monochloride.

〈ゴム状重合体の体積平均粒子径の測定〉
試料をジメチルホルムアミドに溶解させ、レーザー回析方式粒度分布装置(ベックマン・コールター社製レーザー回析方式粒子アナライザー「LS−230型」)にて測定した。
<Measurement of volume average particle diameter of rubbery polymer>
The sample was dissolved in dimethylformamide and measured with a laser diffraction particle size distribution apparatus (Laser diffraction particle analyzer “LS-230” manufactured by Beckman Coulter, Inc.).

〈TBC含有量の測定〉
テトラヒドロフラン(THF)100mlに試料2gを溶解させ、遠心分離機(コクサン社製「H−2000B」(ローター:H))にてゴム状分散粒子を除去し、その上澄み液を10mlに採取し、そこにN,O−ビス(トリメチルシリル)トリフルオロアセトアミド200μlを添加し、ガスクロマトグラフ/質量分析装置(GC/MS)にて試料中のTBC含有量を測定した。
装置:Agilent Technologies社製「HP7890/HP5974」
カラム:Agilent Technologies社製「DB−5MS」
オーブン:50℃
注入口:300℃
キャリア:ヘリウム、1ml/min
検出器:質量分析計
<Measurement of TBC content>
Dissolve 2 g of the sample in 100 ml of tetrahydrofuran (THF), remove the rubber-like dispersed particles with a centrifuge (“H-2000B” (rotor: H) manufactured by Kokusan Co., Ltd.), and collect the supernatant to 10 ml. 200 μl of N, O-bis (trimethylsilyl) trifluoroacetamide was added to the sample, and the TBC content in the sample was measured with a gas chromatograph / mass spectrometer (GC / MS).
Apparatus: “HP7890 / HP5974” manufactured by Agilent Technologies
Column: “DB-5MS” manufactured by Agilent Technologies
Oven: 50 ° C
Inlet: 300 ° C
Carrier: helium, 1 ml / min
Detector: Mass spectrometer

(B)フルオロエチレン系重合体
ポリテトラフルオロエチレンの水性ディスパージョン(三井・デュポンフロロケミカル社製「PTFE 31−JR」)
(B) Fluoroethylene-based polymer Aqueous dispersion of polytetrafluoroethylene (“PTFE 31-JR” manufactured by Mitsui DuPont Fluorochemicals)

(C)臭素系難燃剤
C−1:デカブロモジフェニルエタン(アルベマール社製「SAYTEX 8010」)
C−2:エチレンビステトラブロモフタルイミド(アルベマール社製「SAYTEX BT−93」
C−3:2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン(第一工業製薬社製「ピロガード SR245」)
(C) Brominated flame retardant C-1: Decabromodiphenylethane (“SAYTEX 8010” manufactured by Albemarle)
C-2: Ethylenebistetrabromophthalimide ("SAYTEX BT-93" manufactured by Albemarle)
C-3: 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine ("Pyroguard SR245" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)

(D)難燃助剤
三酸化アンチモン(鈴裕化学社製「AT−3CN」)
(D) Flame retardant auxiliary antimony trioxide ("AT-3CN" manufactured by Suzuhiro Chemical Co., Ltd.)

上記(A)熱可塑性樹脂、(B)フルオロエチレン系重合体、(C)臭素系難燃剤、(D)難燃助剤を表1に示す質量部にて配合し、ヘンシェルミキサー(日本コークス工業社製「FM20B」)にて予備混合した後、二軸押出機(東芝機械社製「TEM26SS」)に供給してストランドとし、水冷後ペレタイザーへ導きペレット化した。この際、シリンダー温度230℃、供給量30kg/時間とした。   The above (A) thermoplastic resin, (B) fluoroethylene polymer, (C) bromine flame retardant, and (D) flame retardant aid are blended in parts by mass shown in Table 1, and Henschel mixer (Nippon Coke Industries, Ltd.). After being premixed with “FM20B” manufactured by the company, it was supplied to a twin screw extruder (“TEM26SS” manufactured by Toshiba Machine Co., Ltd.) to form a strand, which was cooled to water and led to a pelletizer to be pelletized. At this time, the cylinder temperature was 230 ° C. and the supply amount was 30 kg / hour.

得られたペレットを用いて、MCC(DETAK製「MCC−3」)を用い、ASTM D7309 Method Aに基づいて、前記した条件で放熱率[W/g]を測定し、分解炉温度200〜600℃における最大放熱率[W/g]と総発熱量[kJ/g]をそれぞれ求めた。また、得られたペレットを用いて、下記に示す方法で難燃性を評価した。結果を表1に示す。   Using the obtained pellet, MCC ("MCC-3" manufactured by DETAK) was used, and based on ASTM D7309 Method A, the heat dissipation rate [W / g] was measured under the above-described conditions, and the cracking furnace temperature was 200 to 600. The maximum heat release rate [W / g] and total calorific value [kJ / g] at 0 ° C. were obtained. Moreover, flame retardance was evaluated by the method shown below using the obtained pellet. The results are shown in Table 1.

〈難燃性〉
射出成形機(日本製鋼所株式会社製「J100E−P」)を用いて、長さ127mm×幅12.7mm×厚さ2.5mmの燃焼用試験片を成形した。この際、射出成形機のシリンダー温度は220℃、金型温度は45℃とした。該試験片を用いて、UL94の垂直燃焼試験方法に準拠し、燃焼性を評価した。この試験方法でV−2に満たなかった場合はNGとした。
<Flame retardance>
A test piece for combustion having a length of 127 mm, a width of 12.7 mm, and a thickness of 2.5 mm was molded using an injection molding machine (“J100E-P” manufactured by Nippon Steel Works). At this time, the cylinder temperature of the injection molding machine was 220 ° C., and the mold temperature was 45 ° C. Using this test piece, the combustibility was evaluated in accordance with the vertical combustion test method of UL94. When this test method did not satisfy V-2, it was determined as NG.

Figure 0006353949
Figure 0006353949

表1より、最大放熱率が400W/g未満で総発熱量が36.0kJ/g以下である実施例では、いずれも5VBレベルの高い難燃性が得られた一方、比較例では、難燃性が実施例より劣っていた。   From Table 1, in Examples where the maximum heat dissipation rate is less than 400 W / g and the total calorific value is 36.0 kJ / g or less, high flame retardancy of 5 VB level was obtained, while in Comparative Examples, flame retardancy was obtained. The properties were inferior to those of the examples.

Claims (2)

(A)熱可塑性樹脂と(B)フルオロエチレン系重合体と(C)臭素系難燃剤と(D)難燃助剤と、を含有し、
前記(A)熱可塑性樹脂が、ゴム変性スチレン系樹脂であり、
前記(A)熱可塑性樹脂100質量部に対して、前記(B)フルオロエチレン系重合体を0.01〜2.0質量部、前記(C)臭素系難燃剤を5〜30質量部、前記(D)難燃助剤1.0〜10.0質量部含有し、
マイクロスケール燃焼熱量計を用いるASTM D7309 Method Aに基づいて測定される、分解炉温度200〜600℃における、最大放熱率が400W/g未満で、且つ、総発熱量が36.0kJ/g以下であることを特徴とする熱可塑性樹脂組成物。
(A) a thermoplastic resin, (B) a fluoroethylene polymer, (C) a brominated flame retardant, and (D) a flame retardant aid ,
The (A) thermoplastic resin is a rubber-modified styrenic resin,
(A) 0.01-2.0 parts by mass of the (B) fluoroethylene polymer, 5-30 parts by mass of the brominated flame retardant (C), and 100 parts by mass of the thermoplastic resin. (D) containing 1.0 to 10.0 parts by mass of a flame retardant aid,
Measured based on ASTM D7309 Method A using a micro-scale combustion calorimeter, with a maximum heat release rate of less than 400 W / g and a total calorific value of 36.0 kJ / g or less at a cracking furnace temperature of 200 to 600 ° C. A thermoplastic resin composition characterized in that it is present.
前記ゴム変性スチレン系樹脂に含まれる4−tert−ブチルカテコールの含有量が6mg/kg以下であることを特徴とする請求項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 , wherein the content of 4-tert-butylcatechol contained in the rubber-modified styrene resin is 6 mg / kg or less.
JP2017066593A 2017-03-30 2017-03-30 Thermoplastic resin composition Active JP6353949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066593A JP6353949B1 (en) 2017-03-30 2017-03-30 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066593A JP6353949B1 (en) 2017-03-30 2017-03-30 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP6353949B1 true JP6353949B1 (en) 2018-07-04
JP2018168283A JP2018168283A (en) 2018-11-01

Family

ID=62779858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066593A Active JP6353949B1 (en) 2017-03-30 2017-03-30 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP6353949B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885750A (en) * 1994-09-16 1996-04-02 Asahi Chem Ind Co Ltd Flame-retardant rubber-modified polystyrene resin composition
JPH11124484A (en) * 1997-08-21 1999-05-11 Asahi Chem Ind Co Ltd Flame-retardant resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885750A (en) * 1994-09-16 1996-04-02 Asahi Chem Ind Co Ltd Flame-retardant rubber-modified polystyrene resin composition
JPH11124484A (en) * 1997-08-21 1999-05-11 Asahi Chem Ind Co Ltd Flame-retardant resin composition

Also Published As

Publication number Publication date
JP2018168283A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
TWI225081B (en) Polycarbonate resin composition
EP2674458A1 (en) Flame retarder, flame retardant resin composition and method of producing the flame retarder
KR20140103470A (en) Flame Retardant Thermoplastic Resin Composition
JP6353949B1 (en) Thermoplastic resin composition
JP2014118523A (en) Styrenic flame-retardant resin composition and molded body comprising the same
JP4771566B2 (en) Resin composition and resin molded article excellent in slidability and flame retardancy
JP6353950B1 (en) Thermoplastic resin composition
JP6353948B1 (en) Thermoplastic resin composition
JP2014012776A (en) Styrenic flame-retardant resin composition excellent in hinge properties and formed article consisting of the same
JP6518438B2 (en) Flame retardant resin composition and injection molded article comprising the same
JPH11323064A (en) Flame-retardant styrene-based resin composition
JP2016204399A (en) Tracking-resistant resin composition and injection-molded article comprising the same
JP2018087261A (en) Regenerated polystyrene resin composition and method for producing the same
JP2011256230A (en) Rubber-modified polystyrene based flame-retardant resin composition
JP2016199654A (en) Styrene resin composition and molding
JP6328404B2 (en) Styrenic flame retardant resin composition and molded article comprising the same
JP3659740B2 (en) Resin composition and molded resin
JP6408261B2 (en) Styrene flame-retardant resin resin composition and molded article using the same
JPH0733929A (en) Flame-retardant resin composition
JPH08120169A (en) Flame-retardant polycarbonate resin composition
JP4080592B2 (en) Rubber-modified styrenic resin composition
JPH05117514A (en) Flame-resistant resin composition
JP2000044767A (en) Flame-retardant resin composition
JPH0598144A (en) Flame-retardant resin composition
JP6440972B2 (en) Styrene flame-retardant resin composition and molded article using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6353949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250