JP6353781B2 - Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same - Google Patents

Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same Download PDF

Info

Publication number
JP6353781B2
JP6353781B2 JP2014258162A JP2014258162A JP6353781B2 JP 6353781 B2 JP6353781 B2 JP 6353781B2 JP 2014258162 A JP2014258162 A JP 2014258162A JP 2014258162 A JP2014258162 A JP 2014258162A JP 6353781 B2 JP6353781 B2 JP 6353781B2
Authority
JP
Japan
Prior art keywords
supply nozzle
gas supply
optical fiber
gas
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014258162A
Other languages
Japanese (ja)
Other versions
JP2016117615A (en
Inventor
慎二 西川
慎二 西川
朋也 岡崎
朋也 岡崎
齋藤 和也
和也 齋藤
晴彦 関谷 Edson
晴彦 関谷 Edson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota School Foundation
Toyota Motor Corp
Nissei Electric Co Ltd
Original Assignee
Toyota School Foundation
Toyota Motor Corp
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota School Foundation, Toyota Motor Corp, Nissei Electric Co Ltd filed Critical Toyota School Foundation
Priority to JP2014258162A priority Critical patent/JP6353781B2/en
Publication of JP2016117615A publication Critical patent/JP2016117615A/en
Application granted granted Critical
Publication of JP6353781B2 publication Critical patent/JP6353781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、MCVD法によって光ファイバ母材を製造する装置に用いられる、原料ガスの供給ノズルに関するものである。 The present invention relates to a source gas supply nozzle used in an apparatus for manufacturing an optical fiber preform by MCVD.

光ファイバ、特に石英を主成分とする光ファイバは、コア及びクラッドが形成された棒状の光ファイバ母材を製造し、この母材を加熱線引きすることで製造される。この光ファイバ用母材を合成する方法の1つにMCVD法(Modified Chemical Vapor Deposition)がある。 An optical fiber, particularly an optical fiber mainly composed of quartz, is manufactured by manufacturing a rod-shaped optical fiber preform on which a core and a cladding are formed, and drawing the preform by heating. One method for synthesizing this optical fiber preform is an MCVD method (Modified Chemical Vapor Deposition).

MCVD法による従来の光ファイバ母材製造装置1の構成を図1に示す。
図1において、2はクラッドとなるガラス管(石英管)、3は石英管1の両端を把持するチャック、4は石英管1内にその一端部側からガラススート生成用の反応性ガス9a(原料ガス)を供給するためのガス供給ノズル、5はガス排気管、6はガラス管2を加熱するための加熱源(バーナー)、7はチャック3を支える支柱、8は支柱6を支えると共に、加熱源6が設置される基台である。
チャック3はガラス管2を回転可能とする構造をしており、加熱源6はガラス管2の長さ方向に往復移動できるよう基台8上に設けられている。
FIG. 1 shows the configuration of a conventional optical fiber preform manufacturing apparatus 1 using the MCVD method.
In FIG. 1, reference numeral 2 denotes a glass tube (quartz tube) serving as a cladding, 3 denotes a chuck for gripping both ends of the quartz tube 1, and 4 denotes a reactive gas 9a (for generating glass soot from the one end side in the quartz tube 1). A gas supply nozzle for supplying a raw material gas), 5 a gas exhaust pipe, 6 a heating source (burner) for heating the glass tube 2, 7 a column supporting the chuck 3, 8 supporting the column 6, This is a base on which the heating source 6 is installed.
The chuck 3 has a structure that allows the glass tube 2 to rotate, and the heating source 6 is provided on a base 8 so that the glass tube 2 can reciprocate in the length direction.

図2に、MCVD法による光ファイバ母材製造方法の説明図を示す。
ガラス管2を回転させながら、加熱源6をガラス管2の長さ方向に往復移動させてガラス管2を加熱し、ガラス管2の一端部側からガラススート生成用の反応性ガス9aであるSiCl 、GeCl 、Oなどを供給する。反応性ガスが加熱によって気相酸化反応を起こし、SiOやGeOなどのガラス微粒子が生成する。このガラス微粒子はガラス管2の内壁に堆積し、透明ガラス化され、光ファイバ母材のコアとなるガラス層10が形成される。
FIG. 2 is an explanatory view of an optical fiber preform manufacturing method by the MCVD method.
While rotating the glass tube 2, the heating source 6 is reciprocated in the length direction of the glass tube 2 to heat the glass tube 2, which is a reactive gas 9 a for generating glass soot from one end side of the glass tube 2. SiCl 4 , GeCl 4 , O 2 or the like is supplied. The reactive gas causes a gas phase oxidation reaction by heating, and glass fine particles such as SiO 2 and GeO 2 are generated. The glass fine particles are deposited on the inner wall of the glass tube 2 to be transparent vitrified to form a glass layer 10 serving as a core of the optical fiber preform.

反応性ガスの気相酸化反応により、Clを主体とする排ガスが生成し、この排ガスはガラス管2の他端からガス排気管5を通じて排気される。ガラス層10の堆積が終了する
と、反応性ガス9aの供給を停止し、加熱源6によりガラス管2を強熱し、ガラス管2を中心軸方向につぶして棒状の光ファイバ母材とする。
ガラス管2に供給する反応性ガスの成分、組成を変化させることにより、屈折率分布など、所望の特性を有する光ファイバ母材が得られることになる。
By the gas phase oxidation reaction of the reactive gas, exhaust gas mainly composed of Cl 2 is generated, and this exhaust gas is exhausted from the other end of the glass tube 2 through the gas exhaust pipe 5. When the deposition of the glass layer 10 is completed, the supply of the reactive gas 9a is stopped, the glass tube 2 is ignited by the heating source 6, and the glass tube 2 is crushed in the central axis direction to form a rod-shaped optical fiber preform.
By changing the components and composition of the reactive gas supplied to the glass tube 2, an optical fiber preform having desired characteristics such as a refractive index distribution can be obtained.

近年、金属加工用途などのためファイバレーザ装置の研究開発が盛んとなっている。ファイバレーザ装置においては、レーザ増幅器として、コアにYb、Erなどのレーザ活性希土類元素を添加した増幅用ファイバが使用される。
この増幅用光ファイバは高エネルギーを有するレーザに対する耐久性が要求されるため、石英ガラスが使用されることが多く、製造にはMCVD法が使用される。
In recent years, research and development of fiber laser devices have been actively performed for metal processing applications and the like. In a fiber laser device, an amplification fiber in which a laser active rare earth element such as Yb or Er is added to a core is used as a laser amplifier.
Since this amplification optical fiber is required to have durability against a laser having high energy, quartz glass is often used, and the MCVD method is used for manufacturing.

コアに希土類元素を添加するためには、ガラススート生成用の反応性ガスを供給する際に、希土類元素のガスを同時に供給する必要がある。
コアに添加剤を入れるために複数の種類のガスを供給する方法として、特許文献2に記載の方法が知られている。特許文献2においては、加熱ヒータを中心軸として、間隔をおいて内側筒部と外側筒部を同心円状に設けることで、複数のガス流路が形成されたガス供給ノズルを使用し、反応性ガスであるSiClガス、Oガスと共に、添加剤ガスであるAlClガスを供給して、ガラス層にAlを添加している。
In order to add a rare earth element to the core, it is necessary to simultaneously supply a rare earth element gas when supplying a reactive gas for generating glass soot.
As a method of supplying a plurality of types of gases to add an additive to the core, a method described in Patent Document 2 is known. In Patent Document 2, a heater is used as a central axis, and a gas supply nozzle in which a plurality of gas flow paths are formed is provided by providing a concentric circle with an inner cylinder part and an outer cylinder part spaced apart from each other. AlCl 3 gas as an additive gas is supplied together with SiCl 4 gas and O 2 gas as gases to add Al to the glass layer.

ところで、加熱源6がガス供給ノズル4に接近した際、ガス供給ノズル4の先端付近で反応性ガス9aが反応し、反応生成物がガス供給ノズル4先端に付着することがある。
付着量が多くなると、ガスの供給の妨げになる他、付着物がガス供給ノズル4から剥離する場合は、ガラス層の中に不純物として混入することもある。
特に、添加剤ガスも供給される場合は、添加剤も反応に関わることになり、反応生成物は単純なガラス微粒子とならないため、不純物としての悪影響が大きくなってしまう。
By the way, when the heating source 6 approaches the gas supply nozzle 4, the reactive gas 9 a may react near the tip of the gas supply nozzle 4, and a reaction product may adhere to the tip of the gas supply nozzle 4.
When the amount of deposition increases, gas supply is hindered, and when the deposits are peeled off from the gas supply nozzle 4, they may be mixed as impurities in the glass layer.
In particular, when an additive gas is also supplied, the additive is also involved in the reaction, and the reaction product does not become simple glass particles, so that the adverse effect as an impurity is increased.

特開2000−1328号公報JP 2000-1328 A 特開2010−155780号公報JP 2010-155780 A

本発明の課題は、MCVD法を用いて光ファイバ母材を製造する際、ガス供給ノズル先端への反応生成物の付着や、ガラス層への不純物混入を低減することにある。 An object of the present invention is to reduce adhesion of reaction products to the tip of a gas supply nozzle and contamination of impurities into a glass layer when an optical fiber preform is manufactured using the MCVD method.

本発明者は、加熱ヒータを中心軸として、間隔をおいて内側筒部と少なくとも1つの外側筒部を同心円状に設けることで、加熱ヒータと内側筒部との間の空間に形成されたガラススート生成用の反応性ガス流路と、内側筒部と外側筒部との間の空間に形成された添加剤ガス流路とが形成されたガス供給ノズルにおいて、内側筒部の先端部を、外側筒部の先端部より飛び出した位置とすることで、従来の問題を解消できることを究明した。
The inventor has provided a glass formed in a space between the heater and the inner cylindrical portion by providing the inner cylindrical portion and at least one outer cylindrical portion concentrically at intervals with the heater as the central axis. In the gas supply nozzle in which the reactive gas flow path for soot generation and the additive gas flow path formed in the space between the inner cylinder part and the outer cylinder part are formed, the tip of the inner cylinder part is It was clarified that the conventional problem can be solved by setting the position protruding from the tip of the outer cylinder.

本発明によって提供されるガス供給ノズルは、加熱ヒータを中心軸として、間隔をおいて内側筒部と少なくとも1つの外側筒部を同心円状に設けることで、加熱ヒータと内側筒部との間の空間に形成されたガラススート生成用の反応性ガス流路と、内側筒部と外側筒部との間の空間に形成された添加剤ガス流路とがそれぞれ形成されていると共に、内側筒部の先端部は、外側筒部の先端部より飛び出した位置に存在することを特徴とする。 The gas supply nozzle provided by the present invention provides a central axis between the heater and the inner cylinder part by providing the inner cylinder part and at least one outer cylinder part at intervals with the heater as the central axis . a reactive gas channel for generating glass soot formed in the space, along with and the additive gas flow path formed in the space between the inner tubular section and the outer tubular section are formed respectively, the inner tubular portion The front end of the outer cylinder is located at a position protruding from the front end of the outer cylinder.

本発明のガス供給ノズルにおいては、以下に記載した優れた効果が期待できる。

(1)内側筒部の先端部を飛び出させることにより、各ガスがガラス管に供給される位置が変化するため、外側筒部先端部から内側筒部先端部に掛けての範囲で、全てのガスが関係する反応が発生しにくくなり、ガス供給ノズル先端付近における反応生成物の付着を抑制することができる。

(2)これに伴い、ガラス層への不純物の混入も抑制できる。

(3)内側筒部の先端部が飛び出すことで、後述のキャップを容易に設けることが可能となり、このキャップが反応生成物の付着抑制効果を高めることができる。
In the gas supply nozzle of the present invention, the excellent effects described below can be expected.

(1) Since the position where each gas is supplied to the glass tube changes by jumping out the tip of the inner cylinder, all the ranges are from the outer cylinder tip to the inner cylinder tip. Reactions involving gas are less likely to occur, and adhesion of reaction products in the vicinity of the gas supply nozzle tip can be suppressed.

(2) Along with this, mixing of impurities into the glass layer can also be suppressed.

(3) Since the tip of the inner cylindrical portion protrudes, a cap described later can be easily provided, and this cap can enhance the effect of suppressing the adhesion of the reaction product.

MCVD法を使用した、従来の光ファイバ母材製造装置である。This is a conventional optical fiber preform manufacturing apparatus using the MCVD method. MCVD法による光ファイバ母材製造の説明図である。It is explanatory drawing of optical fiber preform | base_material manufacture by MCVD method. 本発明のガス供給ノズルの基本構成である。It is a basic composition of the gas supply nozzle of the present invention. 本発明のガス供給ノズルであり、キャップを設けたものである。The gas supply nozzle of the present invention is provided with a cap. 先端先細りテーパー状のキャップの一例である。It is an example of a cap with a tapered end.

以下、本発明の基本的構成を、添付図面を参照しながら説明する。
図3において、11は加熱ヒータ、12は内側筒部、13は外側筒部、14は反応性ガス流路、15は添加剤ガス流路である。
本発明で特徴的なことは、内側筒部12の先端部を、外側筒部13の先端部より飛び出させたことである。
Hereinafter, the basic configuration of the present invention will be described with reference to the accompanying drawings.
In FIG. 3, 11 is a heater, 12 is an inner cylinder part, 13 is an outer cylinder part, 14 is a reactive gas flow path, and 15 is an additive gas flow path.
What is characteristic in the present invention is that the distal end portion of the inner cylindrical portion 12 protrudes from the distal end portion of the outer cylindrical portion 13.

内側筒部12の先端部が飛び出ることにより、反応性ガス流路14の出口と添加剤ガス流路15の出口が、ガラス管2の長さ方向の異なる場所に形成され、各ガス流路を通る各ガスの、ガラス管2への供給位置が変化することになる。 When the tip of the inner cylindrical portion 12 pops out, the outlet of the reactive gas channel 14 and the outlet of the additive gas channel 15 are formed at different locations in the length direction of the glass tube 2, The supply position of each passing gas to the glass tube 2 changes.

反応性ガス流路14を通じてSiCl、GeCl、Oの混合ガス(反応性ガス9a)を、添加剤ガス流路15を通じて希土類元素ガス(添加剤ガス9b)を供給する場合、添加剤ガス流路15の出口から反応性ガス流路14の出口にかけての領域、すなわち内側筒部12が外側筒部13から飛び出している領域Aでは、内側筒部12の周囲には実質的に希土類元素ガスのみが存在する状態となる。
また加熱源6がガス供給ノズルに接近する際も、接近するのは内側筒部12の先端付近までであるので、領域Aに存在するガスは十分に加熱されず、領域Aにおいては反応が発生しにくい。
この結果、ガス供給ノズル先端付近への反応生成物の付着・堆積を抑制することができ、堆積が無くなることでガラス層への不純物混入も抑制できる。
When supplying a mixed gas (reactive gas 9a) of SiCl 4 , GeCl 4 , and O 2 through the reactive gas flow channel 14 and a rare earth element gas (additive gas 9b) through the additive gas flow channel 15, the additive gas In the region from the outlet of the flow channel 15 to the outlet of the reactive gas flow channel 14, that is, in the region A where the inner cylindrical portion 12 protrudes from the outer cylindrical portion 13, a rare earth element gas is substantially formed around the inner cylindrical portion 12. There will be a state that only exists.
In addition, when the heating source 6 approaches the gas supply nozzle, since it is close to the vicinity of the tip of the inner cylindrical portion 12, the gas existing in the region A is not sufficiently heated, and a reaction occurs in the region A. Hard to do.
As a result, adhesion / deposition of the reaction product near the tip of the gas supply nozzle can be suppressed, and impurities can be prevented from being mixed into the glass layer by eliminating deposition.

内側筒部12を飛び出させることによって、領域Aにおける反応生成物の付着を抑制できるが、加熱源6が接近し、かつ反応性ガス流路14、添加剤ガス流路15からそれぞれ供給されるガスが混合して存在する内側筒部12の先端部においては反応が起きやすく、反応生成物も付着しやすい。これを改善するために内側筒部12の先端に、キャップ16を設けるのが好ましい。
内側筒部12の先端にキャップ16を設けることで、加熱源6が接近した際に特に反応が起きやすい領域付近での反応生成物の付着を抑制できる。
By causing the inner cylindrical portion 12 to jump out, reaction product adhesion in the region A can be suppressed, but the gas that is supplied from the reactive gas flow path 14 and the additive gas flow path 15 when the heating source 6 approaches. Reaction is likely to occur at the front end portion of the inner cylindrical portion 12 where a mixture exists, and reaction products also tend to adhere. In order to improve this, it is preferable to provide a cap 16 at the tip of the inner cylindrical portion 12.
By providing the cap 16 at the tip of the inner cylinder part 12, it is possible to suppress the adhesion of the reaction product in the vicinity of the region where the reaction is particularly likely to occur when the heating source 6 approaches.

キャップ16を交換可能な状態で設けることで、長期間使用してキャップ16上への反応生成物の堆積が進行した場合でも、キャップ16の交換によって堆積した反応生成物を容易に除去することができる。 By providing the cap 16 in a replaceable state, the reaction product deposited by replacing the cap 16 can be easily removed even when the reaction product is deposited on the cap 16 after a long period of use. it can.

キャップ16の形状は図5に示すような先端先細りのテーパー状とするのが好ましい。
キャップ16の形状を先端先細りのテーパー状とすることで、反応性ガス流路14から供給されるガスと添加剤ガス流路15から供給されるガスとが、ガス供給ノズル先端付近で混合しにくくなり、ノズル先端付近における、各供給ガスが関わる不用意な反応を抑制することができる。
The shape of the cap 16 is preferably a tapered shape with a tapered tip as shown in FIG.
By making the shape of the cap 16 taper at the tip, the gas supplied from the reactive gas channel 14 and the gas supplied from the additive gas channel 15 are difficult to mix in the vicinity of the gas supply nozzle tip. Thus, an inadvertent reaction involving each supply gas in the vicinity of the nozzle tip can be suppressed.

キャップ16の材料は特に限定されないが、内側筒部12の材料よりも反応生成物が付着しにくいものが好ましく、耐熱性、加工性も考慮すると、石英ガラス製とするのが好ましい。
石英ガラス製のキャップ16とすることで、必要十分な耐熱性を確保でき、石英ガラス製光ファイバ母材の製造に用いられるMCVD装置においては、キャップ16の成分が不純物として母材に混入した場合でも、同系統の材料であるため、母材への悪影響を最小限に抑える効果も得ることができる。
なお、キャップ16の寸法は、内側筒部12の外径や、ガスの流量に応じて、適宜好ましいものとすれば良い。
The material of the cap 16 is not particularly limited, but a material to which the reaction product is less likely to adhere than the material of the inner cylinder portion 12 is preferable. Considering heat resistance and workability, it is preferably made of quartz glass.
When the quartz glass cap 16 is used, necessary and sufficient heat resistance can be ensured, and in the MCVD apparatus used for manufacturing the optical fiber preform made of quartz glass, the components of the cap 16 are mixed as impurities into the preform. However, since it is a material of the same system, an effect of minimizing adverse effects on the base material can be obtained.
In addition, the dimension of the cap 16 should just be suitably suitable according to the outer diameter of the inner cylinder part 12, and the flow volume of gas.

以下、本発明のガス供給装置を使用して、MCVD法により光ファイバ母材を製造した一例を示す。 Hereinafter, an example in which an optical fiber preform is manufactured by the MCVD method using the gas supply device of the present invention will be described.

図4に示したように、MCVD法により、石英管の内壁にガラス微粒子を堆積させてガラス層を形成し、光ファイバ母材の製造を行った。
内側筒部の先端には、基端部の内径が内側筒部の外径に略等しく、先端部の内径が内側筒部の外径の半分となっている、テーパー形状のシリカガラス製キャップを被せた。
図4に示されていない、MCVD法に必要な装置は、公知のものから適宜選択して使用する。
As shown in FIG. 4, a glass layer was formed by depositing glass particles on the inner wall of a quartz tube by MCVD, and an optical fiber preform was manufactured.
A tapered silica glass cap with an inner diameter of the proximal end portion approximately equal to an outer diameter of the inner cylindrical portion, and an inner diameter of the distal end portion being half the outer diameter of the inner cylindrical portion is provided at the distal end of the inner cylindrical portion. I covered it.
The apparatus required for the MCVD method, which is not shown in FIG. 4, is appropriately selected from known ones and used.

加熱ヒータで加熱しながら、SiCl、GeCl、Oの混合ガスを、反応性ガス流路を通じてガラス管内へ供給すると共に、希土類元素ガスとしてYbを含むガスを、添加剤ガス流路を通じてガラス管内へ供給した。
ガス中の成分濃度、ガス流量は、所望する光ファイバ母材の特性に応じて、適宜選択する。
While heating with a heater, a mixed gas of SiCl 4 , GeCl 4 , and O 2 is supplied into the glass tube through the reactive gas channel, and a gas containing Yb as a rare earth element gas is supplied to the glass through the additive gas channel. Supplied into the tube.
The component concentration in the gas and the gas flow rate are appropriately selected according to the desired characteristics of the optical fiber preform.

光ファイバ母材の製造中、図3に示した領域Aに相当する部分、及びキャップの表面を観察した所、反応生成物の付着は確認されず、内側筒部を飛び出させたこと、及びその先端にキャップを設けることによる、ガス供給ノズル先端への反応生成物付着抑制効果が確認できた。 During the production of the optical fiber preform, the portion corresponding to the region A shown in FIG. 3 and the surface of the cap were observed. It was confirmed that the reaction product adhesion to the gas supply nozzle tip was suppressed by providing a cap at the tip.

以上の方法で製造した光ファイバ母材を光ファイバへと加工し、特性を評価したところ、コア内への不純物の混入による悪影響は確認されず、ファイバレーザ装置のレーザ増幅器として使用するのに好適な増幅用光ファイバが得られた。 The optical fiber preform manufactured by the above method was processed into an optical fiber, and the characteristics were evaluated. As a result, no adverse effect due to the mixing of impurities into the core was confirmed, and it was suitable for use as a laser amplifier of a fiber laser device. An optical fiber for amplification was obtained.

以上の例は、本発明の一例に過ぎず、本発明の思想の範囲内であれば、種々の変更および応用が可能であることは言うまでもない。例えば、本発明のガス供給装置は、MCVD法に使用することを想定したものだが、ノズルが同軸状となっており、ノズル先端付近で反応が発生し、反応生成物がノズルに堆積する環境においても、中心ノズルの飛出し量、キャップの材料、形状等を適宜変更して、好ましく適用できる。 The above examples are merely examples of the present invention, and it goes without saying that various modifications and applications are possible within the scope of the idea of the present invention. For example, the gas supply apparatus of the present invention is assumed to be used for the MCVD method, but in an environment where the nozzle is coaxial, the reaction occurs near the nozzle tip, and the reaction product accumulates on the nozzle. In addition, the amount of projection of the center nozzle, the material of the cap, the shape, and the like can be appropriately changed and preferably applied.

1 光ファイバ母材製造装置
2 ガラス管
3 チャック
4 ガス供給ノズル
5 ガス排気管
6 加熱源
7 支柱
8 基台
9a 反応性ガス
9b 添加剤ガス
10 ガラス層
11 加熱ヒータ
12 内側筒部
13 外側筒部
14 反応性ガス流路
15 添加剤ガス流路
16 キャップ
DESCRIPTION OF SYMBOLS 1 Optical fiber preform manufacturing apparatus 2 Glass tube 3 Chuck 4 Gas supply nozzle 5 Gas exhaust tube 6 Heating source 7 Support column 8 Base 9a Reactive gas 9b Additive gas 10 Glass layer 11 Heater 12 Inner cylinder part 13 Outer cylinder part 14 Reactive gas flow path 15 Additive gas flow path 16 Cap

Claims (5)

MCVD法によって光ファイバ母材を製造する装置に使用されるガス供給ノズルであって、該ガス供給ノズルは、加熱ヒータを中心軸として、間隔をおいて内側筒部と少なくとも1つの外側筒部を同心円状に設けることで、該加熱ヒータと該内側筒部との間の空間に形成されたガラススート生成用の反応性ガス流路と、該内側筒部と該外側筒部との間の空間に形成された添加剤ガス流路とがそれぞれ形成されており、該内側筒部の先端部は、該外側筒部の先端部より飛び出した位置に存在することを特徴とする、ガス供給ノズル。 A gas supply nozzle used in an apparatus for manufacturing an optical fiber preform by an MCVD method, wherein the gas supply nozzle includes an inner cylindrical portion and at least one outer cylindrical portion spaced apart from each other with a heater as a central axis. By providing concentric circles, a reactive gas flow path for generating glass soot formed in a space between the heater and the inner cylinder part, and a space between the inner cylinder part and the outer cylinder part The gas supply nozzle is characterized in that each of the additive gas flow paths formed on the inner cylinder part is formed, and the tip part of the inner cylinder part is present at a position protruding from the tip part of the outer cylinder part. 該内側筒部の先端に、キャップが設けられていることを特徴とする、請求項1に記載のガス供給ノズルThe gas supply nozzle according to claim 1, wherein a cap is provided at a tip of the inner cylindrical portion. 該キャップの先端が先細りのテーパー状になっていることを特徴とする、請求項2に記載のガス供給ノズルThe gas supply nozzle according to claim 2, wherein a tip of the cap has a tapered shape. 該キャップが石英ガラス製であることを特徴とする、請求項2または3に記載のガス供給ノズルThe gas supply nozzle according to claim 2 or 3 , wherein the cap is made of quartz glass. 請求項1〜4のいずれかに記載のガス供給ノズルを使用した光ファイバ母材製造装置。
An optical fiber preform manufacturing apparatus using the gas supply nozzle according to claim 1.
JP2014258162A 2014-12-22 2014-12-22 Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same Expired - Fee Related JP6353781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258162A JP6353781B2 (en) 2014-12-22 2014-12-22 Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258162A JP6353781B2 (en) 2014-12-22 2014-12-22 Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2016117615A JP2016117615A (en) 2016-06-30
JP6353781B2 true JP6353781B2 (en) 2018-07-04

Family

ID=56243704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258162A Expired - Fee Related JP6353781B2 (en) 2014-12-22 2014-12-22 Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP6353781B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582171B2 (en) * 1979-07-24 1983-01-14 日本電信電話株式会社 Manufacturing method of optical fiber base material
US4826288A (en) * 1987-04-09 1989-05-02 Polaroid Corporation, Patent Department Method for fabricating optical fibers having cores with high rare earth content
CN1307544A (en) * 1998-06-30 2001-08-08 Sdl股份有限公司 Method and apparatus for manufacturing a rare-earth metal doped optical fiber preform
JP5580085B2 (en) * 2010-03-05 2014-08-27 三菱電線工業株式会社 Optical fiber manufacturing method

Also Published As

Publication number Publication date
JP2016117615A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP5880532B2 (en) Method for producing glass particulate deposit and method for producing glass base material
US11370691B2 (en) Enhanced particle deposition system and method
CN104125933A (en) Method for manufacturing fine glass particle deposit and method for manufacturing glass base material
JP2007230813A (en) Burner made of quartz glass
JP2008280237A (en) Device and method for manufacturing optical preform
JP6353781B2 (en) Gas supply nozzle of optical fiber preform manufacturing apparatus and optical fiber preform manufacturing apparatus using the same
WO2012008406A1 (en) Method for producing deposit of fine glass particles, and method for producing glass body
US8252387B2 (en) Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique
JP2015093816A (en) Manufacturing method for glass fine particle deposit and manufacturing method for glass preform
US9994480B2 (en) Method for etching a primary preform
JP6086168B2 (en) Method for producing glass particulate deposit and method for producing glass base material
JP5678467B2 (en) Glass base material manufacturing method
JP5737241B2 (en) Fine glass particle deposit and method for producing glass matrix
JP2021035891A (en) Production method of optical fiber preform and production method of optical fiber using the same
JP2020090427A (en) Burner for porous body synthesis and method of manufacturing porous body
US11981595B2 (en) Burner for producing glass fine particle deposited body, and device and method for producing glass fine particle deposited body
US20130036770A1 (en) Method for producing glass base material
JP5720585B2 (en) Manufacturing method of glass base material
JP5682577B2 (en) Fine glass particle deposit and method for producing glass matrix
JP5737239B2 (en) Manufacturing method of glass base material
JP2004051464A (en) Method and apparatus for manufacturing glass preform
JP2005104745A (en) Method for manufacturing optical fiber preform
WO2012039227A1 (en) Process for producing base glass material
JP2012131685A (en) Burner for synthesis of glass perform, and method for manufacturing glass perform
JPH09235133A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6353781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees