JP6353225B2 - Process for producing β-glucan-containing composition from basidiomycetes - Google Patents
Process for producing β-glucan-containing composition from basidiomycetes Download PDFInfo
- Publication number
- JP6353225B2 JP6353225B2 JP2013272400A JP2013272400A JP6353225B2 JP 6353225 B2 JP6353225 B2 JP 6353225B2 JP 2013272400 A JP2013272400 A JP 2013272400A JP 2013272400 A JP2013272400 A JP 2013272400A JP 6353225 B2 JP6353225 B2 JP 6353225B2
- Authority
- JP
- Japan
- Prior art keywords
- glucan
- enzyme
- yield
- treatment
- containing composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
本発明は、担子菌を原料としたβ−グルカン含有組成物の製造方法に関する。 The present invention relates to a method for producing a β-glucan-containing composition using basidiomycetes as a raw material.
β−グルカンは、グルコースがβ−結合により多数連結した多糖であり、植物や菌類等によって生産される。β−グルカンは免疫賦活作用を有することが知られており、臨床的にも利用されている。例えば霊芝(マンネンタケ)は、マンネンタケ科に属する担子菌の一種であり、古くから薬用として用いられており、免疫賦活作用、抗癌作用、血液降下作用等の多くの生理活性を有するとされている。これまでの研究で霊芝の示す生理作用の活性本体の一つが多糖体の一種であるβ−グルカンであることが明らかとなってきている(例えば、非特許文献1参照)。 β-glucan is a polysaccharide in which many glucoses are linked by β-bonds, and is produced by plants, fungi, and the like. β-glucan is known to have an immunostimulatory action and is also used clinically. For example, Ganoderma is a kind of basidiomycete belonging to the family Ganoderma, and has been used for medicinal purposes since ancient times, and has many physiological activities such as immunostimulatory action, anticancer action and blood lowering action. Yes. Previous studies have revealed that one of the active bodies of physiological action exhibited by Ganoderma is β-glucan, a type of polysaccharide (see, for example, Non-Patent Document 1).
一般に多糖の水に対する溶解性は低く、また、天然物に含まれるβ−グルカンは他成分と結合することにより細胞壁などの構成成分となっていることから、通常の熱水処理などでは十分な抽出効率を得ることはできない。したがって、担子菌を原料にして効率的にβ−グルカンを得るためには、適切な方法で抽出処理を実施する必要があった。 In general, the solubility of polysaccharides in water is low, and β-glucan contained in natural products is a constituent component such as cell walls by combining with other components. You cannot get efficiency. Therefore, in order to efficiently obtain β-glucan using basidiomycetes as a raw material, it is necessary to carry out an extraction process by an appropriate method.
このような問題に対して、例えば霊芝からβ−グルカンを抽出する方法として、下記特許文献1には、飽和蒸気圧以上の圧力で加圧し抽出温度まで加熱した加圧熱水を鹿角霊芝に接触させて加水分解してβ−グルカンを抽出する方法が開示されている。また、下記特許文献2には、霊芝を熱温水に浸して含水させ、アルカリ水等を使用した加圧熱水抽出と、その抽出後の含水固形分に対する飽和水蒸気による加圧熱処理と、加圧熱処理した含水固形分に対する再度の加圧熱水抽出とを組み合わせてβ−グルカンを抽出する方法が開示されている。また、下記特許文献3には、鹿角霊芝を爆砕処理し、続いて微粉砕した後、微アルカリ性緩衝液中でプロテアーゼの存在下又は非存在下で加温処理してβ−グルカンを抽出する方法が開示されている。 For example, as a method for extracting β-glucan from ganoderma, for example, Japanese Patent Application Laid-Open Publication No. 2004-259542 discloses pressure hot water pressurized at a pressure equal to or higher than the saturated vapor pressure and heated to the extraction temperature. And a method for extracting β-glucan by contacting it with water. In Patent Document 2 below, ganoderma is soaked in hot water to contain water, extraction with pressurized hot water using alkaline water or the like, pressure heat treatment with saturated steam on the water-containing solid content after the extraction, A method for extracting β-glucan in combination with repressurized hot water extraction for hydrous solids subjected to hydrothermal treatment is disclosed. Further, in Patent Document 3 below, deer horned turf is crushed and then finely pulverized, followed by heating in a slightly alkaline buffer in the presence or absence of protease to extract β-glucan. A method is disclosed.
しかしながら、上記特許文献1の方法では、優れた抽出効率を得るためには、2.0〜5.0MPaの高圧で加圧熱水を霊芝に接触させて加水分解する必要があり、(特許文献1の実施例)、その高圧状態に加圧する特殊な装置が必要であった。また、上記特許文献2の方法では、加圧熱水抽出と、その抽出後の含水固形分に対する飽和水蒸気による加圧熱処理と、更に再度の加圧熱水抽出とを繰り返す操作が煩雑であった。また、上記特許文献3の方法では、原料を爆砕処理し、続いて微粉砕する必要があり、原料の前処理の工程が煩雑であった。また、特殊な爆砕装置を要し、その安全運転面でも労力を要するものであった。 However, in the method of Patent Document 1, in order to obtain an excellent extraction efficiency, it is necessary to hydrolyze pressurized hot water in contact with ganoderma at a high pressure of 2.0 to 5.0 MPa. Example of Document 1), a special device for pressurizing the high pressure state was necessary. Further, in the method of Patent Document 2, the operation of repeating the pressurized hot water extraction, the pressurized heat treatment with saturated steam for the water-containing solid content after the extraction, and the repeated pressurized hot water extraction is complicated. . Further, in the method of Patent Document 3, the raw material needs to be crushed and subsequently finely pulverized, and the raw material pretreatment process is complicated. In addition, a special blasting device is required, and labor is required for safe driving.
本発明の目的は、上記従来技術に鑑み、特殊装置を必要とせず、簡便な操作で効率的かつ安全にβ−グルカン含量の高い抽出物を得ることができる、担子菌を原料としたβ−グルカン含有組成物の製造方法を提供することにある。 An object of the present invention is to provide a β-bacteria made from basidiomycetes as a raw material, which does not require a special apparatus and can obtain an extract having a high β-glucan content efficiently and safely by a simple operation in view of the above-described conventional technology. It is providing the manufacturing method of a glucan containing composition.
上記目的を達成するため、本発明のβ−グルカン含有組成物の製造方法は、担子菌の菌糸体及び/又は子実体に抽出溶媒を加えて加圧処理した後、該加圧処理物に酵素を添加して酵素処理し、該酵素処理物の液部にβ−グルカンを溶出させることを特徴とする。 In order to achieve the above object, the method for producing a β-glucan-containing composition of the present invention comprises subjecting a mycelium and / or fruiting body of a basidiomycete to an extraction solvent and pressurizing it, and then subjecting the pressurized product to an enzyme. Is added, the enzyme treatment is performed, and β-glucan is eluted in the liquid part of the enzyme-treated product.
本発明のβ−グルカン含有組成物の製造方法によれば、担子菌の菌糸体及び/又は子実体に抽出溶媒を加えて加圧処理するので、これにより担子菌の細胞壁の構成成分に酵素が作用しやすい状態となり、これに酵素を添加して酵素処理するので、その酵素処理物の液部にβ−グルカンが溶出されやすい。よって、特殊装置を必要とせず、簡便な操作で効率的かつ安全に、β−グルカン含量の高い抽出物を得ることができる。 According to the method for producing a β-glucan-containing composition of the present invention, an extraction solvent is added to the mycelium and / or fruiting body of basidiomycete and subjected to pressure treatment, so that an enzyme is contained in the constituent components of the cell wall of basidiomycete. Since the enzyme is treated by adding an enzyme thereto, β-glucan is easily eluted in the liquid part of the enzyme-treated product. Therefore, an extract having a high β-glucan content can be obtained efficiently and safely with a simple operation without requiring a special apparatus.
本発明のβ−グルカン含有組成物の製造方法においては、前記担子菌が霊芝であることが好ましい。 In the method for producing a β-glucan-containing composition of the present invention, the basidiomycete is preferably ganoderma.
また、前記加圧処理を、温度100〜200℃、圧力0.1〜1.0MPaで行うことが好ましい。 The pressure treatment is preferably performed at a temperature of 100 to 200 ° C. and a pressure of 0.1 to 1.0 MPa.
また、前記酵素処理を、グルカナーゼ単独、又はグルカナーゼ及びキチナーゼを含む酵素を用いて行うことが好ましい。 The enzyme treatment is preferably performed using glucanase alone or an enzyme containing glucanase and chitinase.
また、前記加圧処理に先立って、前記担子菌の菌糸体及び/又は子実体を微粉砕処理することが好ましい。 Moreover, it is preferable to pulverize the mycelium and / or fruit body of the basidiomycete prior to the pressure treatment.
また、前記酵素処理の後、固液分離して抽出液を回収し、次いで、得られた不溶性残渣に、第2の抽出溶媒を加えて撹拌し、再び固液分離して抽出液を回収することが好ましい。 In addition, after the enzyme treatment, the extract is recovered by solid-liquid separation, and then the second extraction solvent is added to the obtained insoluble residue and stirred, and the extract is recovered again by solid-liquid separation. It is preferable.
本発明のβ−グルカン含有組成物の製造方法によれば、担子菌を原料とし、特殊装置を必要とせず、簡便な操作で効率的かつ安全にβ−グルカン含量の高い抽出物を得ることができる。 According to the method for producing a β-glucan-containing composition of the present invention, an extract having a high β-glucan content can be obtained efficiently and safely with a simple operation, using basidiomycetes as a raw material, without requiring a special device. it can.
本発明に用いられる担子菌としては、菌体の構成成分としてβ−グルカンを含むものであればよく、例えば、霊芝(マンネンタケ)、カワラタケ、スエヒロタケ、シイタケ、マイタケ、エノキタケ、シメジタケ、ヒラタケ、ヤマブシタケ、ハナビラタケ、タモギタケ、メシマコブ、サルノコシカケ、アガリクス、エリンギ、ブナハリタケなど各種のものが挙げられる。特に霊芝が好ましい。 The basidiomycete used in the present invention is not limited as long as it contains β-glucan as a constituent component of the cell body. , Hanabiratake, Tamogitake, Meshimakobu, Sarnoshokutake, Agaricus, Eringi, Beechaharitake and various other examples. Ganoderma is particularly preferable.
担子菌の形態としては、菌糸体であってもよく子実体であってもよい。一般に子実体にはβ−グルカンが豊富に含まれているので、子実体であることがより好ましい。 The basidiomycete may be a mycelium or a fruit body. In general, since the fruiting body is rich in β-glucan, the fruiting body is more preferable.
本発明に用いられる抽出溶媒としては、β−グルカンを抽出できるものであればよく、例えば、水、pH調整された緩衝液、あるいは水にエタノール、メタノール、プロパノール、1,3−ブチレングリコール等のアルコール系溶媒、アセトン等のケトン系溶媒などの1種または2種以上を混合してなる含水有機溶媒などが挙げられる。後述する酵素処理の好適条件への調整を容易にするためには、酵素の阻害因子を含まないことが好ましく、無機イオン、塩、有機溶媒などは、それらを含まないか又は高濃度に含まないことが好ましい。特に水が好ましい。 The extraction solvent used in the present invention may be any solvent that can extract β-glucan, such as water, pH-adjusted buffer solution, or water such as ethanol, methanol, propanol, 1,3-butylene glycol. Examples thereof include a water-containing organic solvent obtained by mixing one or more alcohol solvents and ketone solvents such as acetone. In order to facilitate adjustment to suitable conditions for enzyme treatment described below, it is preferable not to contain enzyme inhibitors, and inorganic ions, salts, organic solvents, etc. do not contain them or do not contain high concentrations. It is preferable. Water is particularly preferable.
本発明に用いられる酵素としては、担子菌からβ−グルカンを抽出するのを容易ならしめるものであればよく、例えば、グルカナーゼ、キチナーゼ、セルラーゼ、ヘミセルラーゼ、アミラーゼ、プロテアーゼ、リゾチーム、グルコシダーゼ、N−アセチルグルコサミニダーゼ、キシラナーゼ、マンノシダーゼ、キシロシダーゼ、ガラクトシダーゼ、リパーゼ、エステラーゼ、ペルオキシダーゼ、ラッカーゼなどが挙げられる。酵素は1種を単独で用いてもよく2種以上を同時的に若しくは順次的に併用してもよい。特にグルカナーゼ単独もしくは、グルカナーゼとキチナーゼを併用することが好ましい。 The enzyme used in the present invention may be any enzyme that facilitates the extraction of β-glucan from basidiomycetes. For example, glucanase, chitinase, cellulase, hemicellulase, amylase, protease, lysozyme, glucosidase, N- Examples include acetylglucosaminidase, xylanase, mannosidase, xylosidase, galactosidase, lipase, esterase, peroxidase, laccase and the like. One enzyme may be used alone, or two or more enzymes may be used simultaneously or sequentially. In particular, it is preferable to use glucanase alone or a combination of glucanase and chitinase.
担子菌の菌糸体及び/又は子実体は、原料としていずれの形態のものを用いてもよく特に制限はない。例えば担子菌の菌糸体は、適当な培地で固体培養あるいは液体培養し又は適当な発酵条件にて生育させた後に、菌体を分離し又は分離しないで用いることができる。また、担子菌の子実体は、採取した状態のままのもの又は採取した後に乾燥したものを用いることができる。保存性や取り扱いの容易性の観点からは、原料は、乾燥物を用いることが好ましい。 The mycelium and / or fruiting body of the basidiomycete may be used in any form as a raw material, and there is no particular limitation. For example, the mycelium of basidiomycetes can be used after solid culture or liquid culture in an appropriate medium or growth under appropriate fermentation conditions, with or without separation of the mycelia. Moreover, the fruit body of basidiomycete can be used as it is collected or dried after being collected. From the viewpoint of storage stability and ease of handling, it is preferable to use a dried product as the raw material.
担子菌の菌糸体及び/又は子実体は、抽出効率の観点から、粉砕されたものあるいは粉末形態のものを用いることが好ましい。例えば、JIS規格による標準篩を用いて3.5メッシュ(目開き5.5mm)をパスする形態のものを用いることが好ましく、6メッシュ(目開き3.35mm)をパスする形態のものを用いることがより好ましい。更に、後述する実施例で示すように、微粉砕したものを用いることが最も好ましい。この場合は、例えば、JIS規格による標準篩を用いて、全体の90質量%以上が16メッシュ(目開き1.0mm)をパスし、且つ全体の50質量%以上が20メッシュ(目開き0.85mm)をパスする程度に微粉砕したものを用いることが好ましく、全体の90質量%以上が100メッシュ(目開き0.15mm)をパスし、且つ全体の50質量%以上が150メッシュ(目開き0.1mm)をパスする程度に微粉砕したものを用いることがより好ましい。微粉砕の手段としては、機械的粉砕処理が有効であり、具体的には、ハンマーミル、グラインダー、カッターミル、ボールミル、ロールミル、ディスクミル、ホモミキサー、ピンミル、ジェットミルなどを用いることができる。 The mycelium and / or fruiting body of the basidiomycete is preferably pulverized or powdered from the viewpoint of extraction efficiency. For example, it is preferable to use the one that passes 3.5 mesh (aperture 5.5 mm) using a standard sieve according to JIS standard, and the one that passes 6 mesh (aperture 3.35 mm) is used. It is more preferable. Further, it is most preferable to use a finely pulverized product as shown in the examples described later. In this case, for example, by using a standard sieve according to JIS standard, 90% by mass or more of the whole passes 16 mesh (aperture 1.0 mm), and 50% by mass or more of the whole passes 20 mesh (aperture 0. 85 mm) is preferably finely pulverized, 90% by mass or more of the whole passes 100 mesh (aperture 0.15 mm), and 50% by mass or more of the mesh is 150 mesh (aperture) It is more preferable to use a finely pulverized product that passes 0.1 mm). As a means for fine pulverization, mechanical pulverization is effective. Specifically, a hammer mill, a grinder, a cutter mill, a ball mill, a roll mill, a disk mill, a homomixer, a pin mill, a jet mill, and the like can be used.
本発明においては、担子菌の菌糸体及び/又は子実体に抽出溶媒を加えて加圧処理する。担子菌の菌糸体及び/又は子実体の固形分100質量部に加える、抽出溶媒の割合は、300〜3000質量部であることが好ましく、500〜2000質量部であることがより好ましい。加圧条件としては、温度100〜200℃、圧力0.1〜1.0MPaで、0.5〜5時間行うことが好ましく、温度110〜150℃、圧力0.11〜0.5MPaで、1〜3時間行うことがより好ましい。加圧処理の手段としては、特に限定されないが、例えば、密閉型の加熱装置、オートクレーブ、蓋付きの釜炒り用の釜などを用いることができる。なお、この加圧処理の前に及び/又は後には、常圧40〜100℃程度で加温処理を施してもよい。 In the present invention, an extraction solvent is added to the mycelium and / or fruiting body of basidiomycete and subjected to pressure treatment. The ratio of the extraction solvent added to 100 parts by mass of the solid content of the basidiomycete mycelium and / or fruiting body is preferably 300 to 3000 parts by mass, and more preferably 500 to 2000 parts by mass. As pressurization conditions, it is preferable to carry out for 0.5 to 5 hours at a temperature of 100 to 200 ° C. and a pressure of 0.1 to 1.0 MPa, and at a temperature of 110 to 150 ° C. and a pressure of 0.11 to 0.5 MPa. More preferably, it is performed for 3 hours. The means for the pressure treatment is not particularly limited, and for example, a hermetic heating device, an autoclave, a kettle with a lid and a pot for frying can be used. In addition, before and / or after this pressurization process, you may heat-process at a normal pressure of about 40-100 degreeC.
本発明においては、上記の加圧処理後の加圧処理物に、酵素を添加して酵素処理する。その加圧処理物は、加圧処理後のものをそのまま用いて、これに酵素を添加してもよく、酵素反応に影響を与える因子、例えば加圧処理物中の担子菌の菌糸体及び/又は子実体の含有濃度、pH、塩濃度、ミネラル濃度などを適宜調整してから、これに酵素を添加してもよい。酵素の反応条件は、用いる酵素の種類に応じて適宜設定すればよいが、典型的に言えば、用いられた担子菌の菌糸体及び/又は子実体の固形分100質量部に対する添加量として酵素を0.1〜10.0質量部添加し、温度30〜60℃、pH3〜10で、1〜48時間反応させることなどが例示できる。酵素反応時には撹拌や振とうを行ってもよい。 In the present invention, the enzyme treatment is performed by adding an enzyme to the pressure-treated product after the pressure treatment. The pressure-treated product may be used as it is after being pressure-treated, and an enzyme may be added thereto. Factors affecting the enzyme reaction, such as mycelia of basidiomycetes in the pressure-treated product and / or Alternatively, the enzyme may be added to the fruit body after the content concentration, pH, salt concentration, mineral concentration and the like are appropriately adjusted. The enzyme reaction conditions may be set as appropriate according to the type of enzyme used. Typically, the enzyme is added as an amount added to 100 parts by mass of the solid body of the mycelium and / or fruiting body of the basidiomycete used. Can be exemplified by adding 0.1 to 10.0 parts by mass, and reacting at a temperature of 30 to 60 ° C. and a pH of 3 to 10 for 1 to 48 hours. Stirring and shaking may be performed during the enzyme reaction.
本発明においては、上記の酵素処理物の液部にβ−グルカンを溶出させる。ここで、β−グルカンとは、グルコースがβ1,3結合により多数連なった多糖を意味している。ただしその構造以外の構造を伴うものを除く趣旨ではない。例えばグルコースのβ1,4結合や1,6結合などによりに側鎖や分岐などを有するβ−グルカンや、β−グルカンの構成糖のヒドロキシル基の一部に硫酸基、リン酸基、アセチル基、糖鎖等が結合したものも含まれる。また、β−グルカンを溶出させるとは、用いられた担子菌の菌糸体及び/又は子実体から遊離したβ−グルカンを、上記の酵素処理物の液部に回収することを意味している。 In the present invention, β-glucan is eluted in the liquid part of the enzyme-treated product. Here, β-glucan means a polysaccharide in which a large number of glucoses are linked by β1,3 bonds. However, this is not intended to exclude things involving structures other than the structure. For example, β-glucan having a side chain or a branch due to β1,4 bond or 1,6 bond of glucose, or the like, sulfate group, phosphate group, acetyl group, Those having a sugar chain or the like are also included. The elution of β-glucan means that β-glucan released from the mycelium and / or fruiting body of the basidiomycete used is recovered in the liquid part of the enzyme-treated product.
そして、ろ過、遠心などにより固液分離することにより、用いられた担子菌の菌糸体及び/又は子実体から遊離していない部分(成分)を除くことができる。このようにして得られたβ−グルカン含有組成物には、β−グルカンを固形分中に10〜60質量%含有していることが好ましく、15〜50質量%含有していることがより好ましく、20〜40質量%含有していることが最も好ましい。なお、β−グルカン量は、試料中のグルカンを分解酵素(例えばexo-1,3-β-グルカナーゼとβ-グルコシダーゼ)でグルコースまで分解して、そのグルコース量を定量して求めた総グルカン量から、別途試料中のα−グルカンを特異的に分解する酵素(例えばアミログルコシダーゼ)でグルコースまで分解して、そのグルコース量を定量して求めたα−グルカン量を差し引くことにより算出したり、試料中のα−グルカンを特異的に分解する酵素(例えばアミログルコシダーゼ)でグルコースまで分解して、80%エタノール沈殿により不溶物を回収してそれを硫酸で加水分解して生成するグルコース量を定量してβ−グルカン量を求めたりする方法などにより、定量することができる。 And the part (component) which is not free | released from the mycelium and / or fruiting body of the basidiomycete used can be removed by carrying out solid-liquid separation by filtration, centrifugation, etc. The β-glucan-containing composition thus obtained preferably contains 10-60% by mass of β-glucan in the solid content, more preferably 15-50% by mass. It is most preferable to contain 20-40 mass%. The amount of β-glucan is the total amount of glucan obtained by degrading glucan in a sample to glucose with a degrading enzyme (for example, exo-1,3-β-glucanase and β-glucosidase) and quantifying the amount of glucose. From the above, it can be calculated by subtracting the amount of α-glucan obtained by degrading to glucose with an enzyme (for example, amyloglucosidase) that specifically degrades α-glucan in the sample and quantifying the amount of glucose. The amount of glucose produced is determined by degrading to glucose with an enzyme that specifically degrades α-glucan (for example, amyloglucosidase), recovering insoluble matter by 80% ethanol precipitation, and hydrolyzing it with sulfuric acid. The amount of β-glucan can be determined.
以下に実施例を挙げて本発明について更に具体的に説明する。なお、これらの実施例は本発明の範囲を限定するものではない。また、以下の比較例、実施例において、β−グルカン含量は、β-グルカン測定キット「mushrooom and yeast beta−glucan assay kit」(商品名、Megazyme社)を使用して算出した。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, these Examples do not limit the scope of the present invention. In the following Comparative Examples and Examples, the β-glucan content was calculated using a β-glucan measurement kit “Mushroom and yeast beta-glucan assay kit” (trade name, Megazyme).
<比較例1>
霊芝子実体をミキサーで粉砕し、6メッシュ(目開き3.35mm)を使用して篩過した。この粉砕霊芝子実体5gに対し、50mlの水を添加し、沸騰湯浴中で2時間熱水処理した後に、残査と抽出液を分離した。その後、水35mlを残査に添加し、10分攪拌して均一化した後に、残査と洗浄液を分離した。これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Comparative Example 1>
Ganoderma fruiting bodies were pulverized with a mixer and sieved using 6 mesh (aperture 3.35 mm). To 5 g of this ground ganoderma fruit body, 50 ml of water was added and hydrothermally treated in a boiling water bath for 2 hours, and then the residue and the extract were separated. Thereafter, 35 ml of water was added to the residue, and the mixture was stirred for 10 minutes to homogenize, and then the residue and the cleaning solution were separated. After integrating these extracts and washings, Bx solid yield, dry yield, β-glucan content per dry yield, and β-glucan yield were calculated.
<比較例2>
比較例1と同様に調製した粉砕霊芝子実体5gに対し、50mlの水を添加し、加圧処理(120℃達温後2時間、圧力0.11〜0.12MPa)を行なった後に、残査と抽出液を分離した。その後、水35mlを残査に添加し、10分攪拌して均一化した後に、残査と洗浄液を分離した。これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Comparative example 2>
After adding 50 ml of water to 5 g of ground ganoderma fruit bodies prepared in the same manner as in Comparative Example 1, pressure treatment (2 hours after reaching 120 ° C., pressure 0.11 to 0.12 MPa), The residue and the extract were separated. Thereafter, 35 ml of water was added to the residue, and the mixture was stirred for 10 minutes to homogenize, and then the residue and the cleaning solution were separated. After integrating these extracts and washings, Bx solid yield, dry yield, β-glucan content per dry yield, and β-glucan yield were calculated.
<比較例3>
比較例1と同様に調製した粉砕霊芝子実体5gに対し、50mlの水を添加し、使用した粉砕霊芝重量の1%のβ−グルカナーゼ及び同重量の1%のキチナーゼを添加し、50℃で16時間処理した。反応液を10分煮沸し、酵素を失活した後、比較例2と同様の加圧処理(120℃達温後2時間、圧力0.11〜0.12MPa)を行なった。その後は比較例1と同様にして、抽出液と洗浄液を得、これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Comparative Example 3>
To 5 g of ground ganoderma fruit bodies prepared in the same manner as in Comparative Example 1, 50 ml of water was added, 1% β-glucanase of the ground ganoderma weight used and 1% chitinase of the same weight were added, 50 Treated at ° C for 16 hours. After boiling the reaction liquid for 10 minutes and deactivating the enzyme, the same pressure treatment as in Comparative Example 2 (2 hours after reaching 120 ° C., pressure 0.11 to 0.12 MPa) was performed. Thereafter, in the same manner as in Comparative Example 1, an extract and a washing solution were obtained, and after these extracts and the washing solution were integrated, Bx solid yield, dry yield, β-glucan content per dry yield, and β-glucan yield Was calculated.
<実施例1>
比較例1と同様に調製した粉砕霊芝子実体5gに対し、50mlの水を添加し、加圧処理(120℃達温後2時間、圧力0.11〜0.12MPa)を行なった。その後、使用した粉砕霊芝重量の1%のβ−グルカナーゼを添加し、50℃で16時間処理した。反応液を10分煮沸し、酵素を失活した後、比較例1と同様にして、抽出液と洗浄液を得、これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Example 1>
50 ml of water was added to 5 g of ground ganoderma fruit bodies prepared in the same manner as in Comparative Example 1, and pressure treatment (2 hours after reaching 120 ° C., pressure 0.11 to 0.12 MPa) was performed. Thereafter, β-glucanase of 1% by weight of the ground ganoderma used was added and treated at 50 ° C. for 16 hours. After boiling the reaction solution for 10 minutes and deactivating the enzyme, an extract and a washing solution were obtained in the same manner as in Comparative Example 1. After these extracts and the washing solution were integrated, Bx solid yield, dry yield, drying The β-glucan content per yield and the β-glucan yield were calculated.
<実施例2>
比較例1と同様に調製した粉砕霊芝子実体5gに対し、50mlの水を添加し、加圧処理(120℃達温後2時間、圧力0.11〜0.12MPa)を行なった。その後、使用した粉砕霊芝重量の1%のβ−グルカナーゼ及び同重量の1%のキチナーゼを添加し、50℃で16時間処理した。反応液を10分煮沸し、酵素を失活した後、比較例1と同様にして、抽出液と洗浄液を得、これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Example 2>
50 ml of water was added to 5 g of ground ganoderma fruit bodies prepared in the same manner as in Comparative Example 1, and pressure treatment (2 hours after reaching 120 ° C., pressure 0.11 to 0.12 MPa) was performed. Thereafter, 1% β-glucanase and 1% chitinase of the same weight of ground ganoderma used were added and treated at 50 ° C. for 16 hours. After boiling the reaction solution for 10 minutes and deactivating the enzyme, an extract and a washing solution were obtained in the same manner as in Comparative Example 1. After these extracts and the washing solution were integrated, Bx solid yield, dry yield, drying The β-glucan content per yield and the β-glucan yield were calculated.
<実施例3>
霊芝子実体に対し、ジェットミル装置(日本ニューマチック工業株式会社製)で微粉砕処理を施し、メディアン径4.3μmの微粉を調製した。この微粒子霊芝を使用した以外は、実施例2と同様にして、抽出液と洗浄液を得、これら抽出液と洗浄液とを統合した後、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量を算出した。
<Example 3>
The reishi fruit body was finely pulverized with a jet mill apparatus (manufactured by Nippon Pneumatic Industry Co., Ltd.) to prepare a fine powder having a median diameter of 4.3 μm. Except for the use of this fine particle ganoderma, an extract and a washing solution were obtained in the same manner as in Example 2, and after the extraction solution and the washing solution were integrated, Bx solid yield, dry yield, β-per dry yield The glucan content and β-glucan yield were calculated.
比較例1〜3及び実施例1〜3の結果を表1に示す。 The results of Comparative Examples 1 to 3 and Examples 1 to 3 are shown in Table 1.
表1に示すとおり、比較例1と比較例2との比較から、粉砕霊芝子実体に対し加圧処理を行なうことで、熱水処理と比較し、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.6倍、1.6倍、1.3倍、及び2.1倍に上昇した。 As shown in Table 1, from comparison between Comparative Example 1 and Comparative Example 2, by performing pressure treatment on the ground ganoderma fruit body, Bx solid yield, dry yield, dry yield compared with hydrothermal treatment The per β-glucan content and the β-glucan yield increased by about 1.6 times, 1.6 times, 1.3 times, and 2.1 times, respectively.
表1に示すとおり、比較例2と実施例1との比較から、粉砕霊芝子実体を加圧処理した後、グルカナーゼを作用させることで、グルカナーゼを作用させない場合に比べ、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.2倍、0.9倍、1.4倍、及び1.3倍となり、β−グルカン含量の上昇を伴った収率の増加がみられた。 As shown in Table 1, from the comparison between Comparative Example 2 and Example 1, after pressure-treating the ground ganoderma fruit body, by making glucanase act, compared to the case where glucanase is not acted, Bx solid yield, The dry yield, β-glucan content per dry yield, and β-glucan yield were about 1.2 times, 0.9 times, 1.4 times, and 1.3 times, respectively. A concomitant increase in yield was observed.
表1に示すとおり、実施例1と実施例2との比較から、粉砕霊芝子実体を加圧処理した後、グルカナーゼに加えてキチナーゼを併用することで、グルカナーゼ単独の場合に比べ、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.0倍、1.4倍、1.0倍、及び1.4倍となり、乾燥収量の上昇を伴った収率の増加がみられた。そして、酵素を作用させなかった比較例2との比較では、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.2倍、1.3倍、1.3倍、及び1.8倍であり、熱水処理のみの比較例1との比較では、それぞれ約1.9倍、2.1倍、1.8倍、及び3.6倍であった。 As shown in Table 1, the comparison between Example 1 and Example 2 shows that after crushing the ground ganoderma fruit body, by using chitinase in combination with glucanase, Bx solids compared to the case of glucanase alone. Yield, dry yield, β-glucan content per dry yield, and β-glucan yield were about 1.0 times, 1.4 times, 1.0 times, and 1.4 times, respectively. Increase in yield was observed. In comparison with Comparative Example 2 in which the enzyme was not allowed to act, the Bx solid yield, the dry yield, the β-glucan content per dry yield, and the β-glucan yield were about 1.2 times and 1.3 times, respectively. Times, 1.3 times, and 1.8 times, respectively, in comparison with Comparative Example 1 with only hot water treatment, about 1.9 times, 2.1 times, 1.8 times, and 3.6 times, respectively. Met.
表1に示すとおり、比較例3と実施例2との比較から、グルカナーゼとキチナーゼを、粉砕霊芝子実体に対して加圧処理を行なった後に作用させることで、加圧処理の前に作用させる場合に比べ、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.1倍、1.4倍、1.4倍、及び1.9倍となり、乾燥収量及びβ−グルカン含量の上昇を伴った収率の増加がみられた。 As shown in Table 1, from the comparison between Comparative Example 3 and Example 2, glucanase and chitinase acted after pressurizing the ground ganoderma fruit body to act before pressurizing. Bx solid yield, dry yield, β-glucan content per dry yield, and β-glucan yield are about 1.1 times, 1.4 times, 1.4 times, and 1.9, respectively. Doubled, an increase in dry yield and yield with increasing β-glucan content was observed.
表1に示すとおり、実施例2と実施例3との比較から、霊芝に対して微粉砕処理を施すことで、粗砕の場合に比べ、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約1.3倍、0.9倍、1.2倍、及び1.1倍となり、β−グルカン含量は試験例中最大の28%に達した。そして、熱水処理のみの比較例1との比較では、Bx固形収率、乾燥収量、乾燥収量あたりのβ−グルカン含量、及びβ−グルカン収量は、それぞれ約2.5倍、1.9倍、2.1倍、及び4.0倍であった。
As shown in Table 1, from the comparison between Example 2 and Example 3, Bx solid yield, dry yield, per dry yield compared to coarse crush by performing fine grinding treatment on Ganoderma turf The β-glucan content and β-glucan yield were about 1.3 times, 0.9 times, 1.2 times, and 1.1 times, respectively, and the β-glucan content reached 28%, the maximum among the test examples. did. In comparison with Comparative Example 1 in which only hydrothermal treatment was performed, the Bx solid yield, the dry yield, the β-glucan content per dry yield, and the β-glucan yield were about 2.5 times and 1.9 times, respectively. 2.1 times and 4.0 times.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013272400A JP6353225B2 (en) | 2013-12-27 | 2013-12-27 | Process for producing β-glucan-containing composition from basidiomycetes |
CN201410169318.2A CN104744603A (en) | 2013-12-27 | 2014-04-25 | Preparation method of composition containing [beta]-glucan with basidiomycetes as raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013272400A JP6353225B2 (en) | 2013-12-27 | 2013-12-27 | Process for producing β-glucan-containing composition from basidiomycetes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015123072A JP2015123072A (en) | 2015-07-06 |
JP6353225B2 true JP6353225B2 (en) | 2018-07-04 |
Family
ID=53534263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013272400A Expired - Fee Related JP6353225B2 (en) | 2013-12-27 | 2013-12-27 | Process for producing β-glucan-containing composition from basidiomycetes |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6353225B2 (en) |
CN (1) | CN104744603A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101817017B1 (en) * | 2016-10-10 | 2018-01-09 | 경북대학교 산학협력단 | Extracting method of beta-glucan from Ganoderma lucidum |
JP6499740B2 (en) * | 2016-10-13 | 2019-04-10 | フォーデイズ株式会社 | Food composition |
KR102526878B1 (en) * | 2020-08-21 | 2023-04-28 | 주식회사 에코비오스 | Prebiotics composition rich in dietary fiber including mushroom extract and probiotics composition including thereof |
CN115232220A (en) * | 2022-03-27 | 2022-10-25 | 美尔健(深圳)生物科技有限公司 | Ganoderma lucidum polysaccharide and extraction method and application thereof |
JP7289385B1 (en) | 2022-04-04 | 2023-06-09 | 鴻盛投資股▲分▼有限公司 | Method for purifying fungal cell wall composition |
CN117487036B (en) * | 2023-10-12 | 2024-05-31 | 上海市农业科学院 | Lentinan rich in beta-glucan and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2908356B2 (en) * | 1995-12-25 | 1999-06-21 | 長岡 均 | Method for extracting useful components from mycelium-containing medium |
JP2001269163A (en) * | 2000-03-24 | 2001-10-02 | Hisao Sone | AGARICUS MYCELIUM POWDER, POWDER CONTAINING AGARICUS MYCELIUM beta-GLUCANS, AND METHOD FOR PRODUCING THE SAME |
KR100491186B1 (en) * | 2003-09-29 | 2005-05-25 | (주)에이치케이바이오텍 | THE ISOFLAVONE-β-D-GLUCAN PRODUCED BY AGARICUS BLAZEI IN THE SUBMERGED LIQUID CULTUR AND THE PRODUCING METHOD THERE OF |
JP2006037016A (en) * | 2004-07-29 | 2006-02-09 | Shiriusu:Kk | METHOD FOR EXTRACTION OF beta-GLUCAN FROM DEER HORN AND GANODERMA LUCIDUM |
JP4697858B2 (en) * | 2005-02-28 | 2011-06-08 | 株式会社雪国まいたけ | Pretreatment of mushroom waste bed and conversion to sugar and ethanol by using it |
JP5249559B2 (en) * | 2006-11-09 | 2013-07-31 | 株式会社ミゾタ | Extraction method and apparatus of useful substances from Kazuno Ganoderma |
JP2014042512A (en) * | 2012-08-29 | 2014-03-13 | Nagase Chemtex Corp | Enzyme preparation for decomposing mushroom |
-
2013
- 2013-12-27 JP JP2013272400A patent/JP6353225B2/en not_active Expired - Fee Related
-
2014
- 2014-04-25 CN CN201410169318.2A patent/CN104744603A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN104744603A (en) | 2015-07-01 |
JP2015123072A (en) | 2015-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6353225B2 (en) | Process for producing β-glucan-containing composition from basidiomycetes | |
Jooste et al. | Enzymatic hydrolysis of spent coffee ground | |
JP5172095B2 (en) | Method for producing polysaccharides from coffee beans and / or coffee extraction residue | |
CN101889677B (en) | Method for extracting dietary fiber from tartary buckwheat bran | |
CN102824377A (en) | Method for extracting functional ingredients from lucid ganoderma sporocarp | |
JP2002262820A (en) | Method for extracting active ingredient of mushrooms | |
Zhao et al. | Extracting xylooligosaccharides in wheat bran by screening and cellulase assisted enzymatic hydrolysis | |
JP2015006998A (en) | Method for producing lignin decomposed product | |
KR101345729B1 (en) | Method of extracting arabinoxylan from rice bran | |
KR20090121824A (en) | Producing process for water soluble beta-glucan | |
JP6182369B2 (en) | Method for producing lignin degradation product | |
JP2008228676A (en) | METHOD FOR EFFICIENTLY EXTRACTING beta-GLUCAN FROM MUSHROOM | |
KR101662185B1 (en) | - Method for preparing inonotus obliquus extract comprising high concentrations of -glucan | |
KR20040096000A (en) | Extraction method of beta Glucan from Phellinus Linteus through cell destruction and enzyme fermentation method | |
WO2021140789A1 (en) | Method for decomposing chitin and method for producing chitin oligosaccharide-containing composition | |
JP4930939B2 (en) | Saccharification method using solid-liquid mixture of lignocellulosic plant material | |
JP2006271325A (en) | Method for extracting and separating mushroom essence component | |
CZ20031404A3 (en) | Isolation method of immuno-stimulating glucan from oyster cap mushroom | |
JP2871585B2 (en) | Complete decomposition method of mushrooms with enzymes | |
KR101546861B1 (en) | The actinidia extracts by Mechanochemical processing and enzyme treatment method | |
JP2012235720A (en) | Method for manufacturing reducing sugar | |
KR102670019B1 (en) | METHOD FOR EXTRACTION GINSENOSIDE COMPOUND k | |
US10006068B2 (en) | Method for producing pulverulent ceramide | |
JPS62259564A (en) | Production of powder of fomes japonicus extract | |
WO2024202346A1 (en) | METHOD FOR PRODUCING β-GLUCAN DERIVED FROM GRIFOLA FRONDOSA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6353225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |