JP6353187B2 - Thermoelectric material manufacturing method - Google Patents

Thermoelectric material manufacturing method Download PDF

Info

Publication number
JP6353187B2
JP6353187B2 JP2012274134A JP2012274134A JP6353187B2 JP 6353187 B2 JP6353187 B2 JP 6353187B2 JP 2012274134 A JP2012274134 A JP 2012274134A JP 2012274134 A JP2012274134 A JP 2012274134A JP 6353187 B2 JP6353187 B2 JP 6353187B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
thermoelectric
phase transition
transition temperature
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012274134A
Other languages
Japanese (ja)
Other versions
JP2014120588A (en
Inventor
博司 川上
博司 川上
美和 齋藤
美和 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2012274134A priority Critical patent/JP6353187B2/en
Publication of JP2014120588A publication Critical patent/JP2014120588A/en
Application granted granted Critical
Publication of JP6353187B2 publication Critical patent/JP6353187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、スピネル型構造を有する酸化物を用い、熱エネルギーを電気エネルギーに変換する熱電材料の製造方法に関するものである。 The present invention is an oxide having a spinel structure, a method of manufacturing a thermoelectric materials that converts thermal energy into electrical energy.

クリーンエネルギーの開発が急がれる中、熱エネルギーを電気エネルギーに変換する熱電変換技術が注目されている。   In the urgent need of developing clean energy, thermoelectric conversion technology that converts thermal energy into electrical energy has attracted attention.

このような熱電変換システムに用いられる熱電素子としては、例えば、Bi−Te系(常温から500Kまで)、Pb−Te系(常温から800Kまで)、Si−Ge系(常温から1000Kまで)、スクッテルダイト化合物(Zn−Sb系、Co−Sb系、Fe−Sb系等)などの化合物半導体が挙げられる。   Examples of the thermoelectric element used in such a thermoelectric conversion system include a Bi-Te system (from room temperature to 500K), a Pb-Te system (from room temperature to 800K), a Si-Ge system (from room temperature to 1000K), a scooter. Compound semiconductors such as terdite compounds (Zn—Sb, Co—Sb, Fe—Sb, etc.) can be mentioned.

Bi−Te系とPb−Te系は、Te、Pbの毒性が非常に高いため、環境負荷が高いという点で代替素材の開発が求められている。   Bi-Te system and Pb-Te system are highly toxic to Te and Pb, and therefore, development of alternative materials is required in view of high environmental load.

Si−Ge系は、Geが高価格であるため、作製コストが増加し、高温での生成が必要になるため、量産性の点で劣るだけでなく、高温で酸化するため、熱電特性が変化してしまい、熱電特性の安定性に欠ける。   The Si-Ge system is expensive because Ge is expensive, and it requires production at a high temperature, so it is not only inferior in mass productivity, but also oxidizes at a high temperature, so the thermoelectric properties change. As a result, the thermoelectric properties are not stable.

スクッテルダイト化合物は、母体となる材料がp型であるため、p型とn型で熱電性の温度依存性が異なるだけでなく、Sbが結晶の構成元素に含まれるため、環境負荷が高い上、高温でのSbの蒸発により、熱電特性が変化してしまうため、高温での性能の安定性に欠ける。   Since the base material of the skutterudite compound is p-type, not only the temperature dependence of thermoelectricity differs between p-type and n-type, but also Sb is included in the constituent elements of the crystal, so the environmental load is high. Furthermore, since the thermoelectric characteristics change due to the evaporation of Sb at high temperature, the performance at high temperature is not stable.

環境負荷が低い熱電材料としては、β−FeSi系材料が挙げられる。 An example of a thermoelectric material with a low environmental load is a β-FeSi 2 -based material.

ところが、β−FeSi系材料の含まれる元素の組成、特に、FeとSiの組成の変化により、熱電性能の高いβ−FeSi以外に、熱電性能が低く、金属的性質を示す、α−FeSiやε−FeSiが生成される場合があるため、熱電性に大きな影響が現れ、結果として熱電性能が低下する場合があり、熱電特性の安定性に欠ける。 However, due to changes in the composition of elements contained in the β-FeSi 2 -based material, in particular, the composition of Fe and Si, in addition to β-FeSi 2 having high thermoelectric performance, the thermoelectric performance is low and the metallic properties are exhibited. Since Fe 2 Si 5 and ε-FeSi may be generated, the thermoelectricity is greatly affected, and as a result, the thermoelectric performance may be deteriorated, and the thermoelectric characteristics are not stable.

このような状況下において、例えば、特許文献1には、耐熱性及び熱電特性の安定性に優れ、かつ量産性及び簡便性にも優れた熱電材料として、組成がCoFe3−x(式中、xは1<x≦3)であり、p型の電気伝導性を示す、スピネル型構造を有する酸化物からなる熱電材料が開示されている。 Under such circumstances, for example, Patent Document 1 discloses that the composition is Co x Fe 3-x O 4 as a thermoelectric material that is excellent in stability of heat resistance and thermoelectric properties, and also excellent in mass productivity and simplicity. (Wherein x is 1 <x ≦ 3) and a thermoelectric material made of an oxide having a spinel structure and exhibiting p-type conductivity is disclosed.

特開2008−41871号公報JP 2008-41871 A

熱電材料の特性を評価する指標としては、一般的に、性能指数Z(K−1)(=Sσ/κ)が用いられる。ここで、Sは1Kの温度差によって生じる起電力の大きさを表すゼーベック係数である(単位はVK−1)。熱電材料は、それぞれ固有のゼーベック係数を持っており、ゼーベック係数が正であるもの(p型)と、負であるもの(n型)に大別される。σは電気伝導度である(単位はScm−1)。κは、自由電子に基づく熱伝導と格子振動に基づく熱伝導との和によって表される熱伝導率である(単位はWcm−1−1)。 As an index for evaluating the characteristics of the thermoelectric material, a figure of merit Z (K −1 ) (= S 2 σ / κ) is generally used. Here, S is a Seebeck coefficient representing the magnitude of the electromotive force generated by the temperature difference of 1K (unit: VK −1 ). Thermoelectric materials each have their own Seebeck coefficient, and are broadly classified into those having a positive Seebeck coefficient (p-type) and those having a negative Seebeck coefficient (n-type). σ is electrical conductivity (unit is Scm −1 ). κ is a thermal conductivity represented by the sum of thermal conduction based on free electrons and thermal conduction based on lattice vibration (unit: Wcm −1 K −1 ).

高い性能指数を実現するためには、高い出力因子と低い熱伝導率が求められるが、出力因子が熱電材料として取り出せる最大電力の指標として考えられている。   In order to achieve a high figure of merit, a high output factor and low thermal conductivity are required, but the output factor is considered as an index of the maximum power that can be extracted as a thermoelectric material.

しかしながら、特許文献1に記載された熱電材料は、十分な出力因子が得られていないという問題点があった。   However, the thermoelectric material described in Patent Document 1 has a problem that a sufficient output factor is not obtained.

本発明の目的とするところは、高い出力因子が得られる熱電材料を製造することができる、熱電素子の製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing a thermoelectric element that can manufacture a thermoelectric material that can provide a high output factor.

本発明の発明者は、前記課題を解決するため、鋭意検討を重ねた結果、組成がACo3−x(但し、Aは、Ni、Zn、Agからなる群から選択されたいずれかの元素であり、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法が上記目的を達成することを見出して、本発明をするに至った。 Any inventor of the present invention is to solve the above problems, the results of extensive study, composition A x Co 3-x O 4 ( where, A is selected Ni, Zn, from the group consisting of Ag Wherein x is 0 <x ≦ 0.3), and a method for producing a thermoelectric material using an oxide having a spinel structure and exhibiting p-type conductivity is described above. It has been found that the object is achieved, and has led to the present invention.

即ち、本発明の第一の熱電材料の製造方法は、組成がNi Co 3−x (但し、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とする。 That is, in the first method for producing a thermoelectric material of the present invention, the composition is represented by Ni x Co 3-x O 4 (where x is 0 <x ≦ 0.3) , and p-type electric A method for producing a thermoelectric material using an oxide having a spinel structure that exhibits conductivity, wherein a raw material obtained by mixing metal ions constituting the thermoelectric material at a predetermined blending ratio is subjected to a firing treatment, and a rock salt structure After the above sintered body , annealing is performed in the atmosphere at the phase transition temperature of −300 K to the phase transition temperature of +100 K based on the phase transition temperature from the rock salt type structure to the spinel type structure obtained by differential thermal analysis. To form an oxide having a spinel structure.

本発明の第二の熱電材料の製造方法は組成がA Co 3−x (但し、Aは、Zn又はAgであり、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とするProducing how the second thermoelectric material of the present invention, composition A x Co 3-x O 4 ( where, A is Zn or Ag, x is 0 <x ≦ 0.3.) Is a method of manufacturing a thermoelectric material using an oxide having a spinel structure and exhibiting p-type electrical conductivity, wherein the metal ions constituting the thermoelectric material are mixed at a predetermined mixing ratio. After firing to form a rock salt type sintered body, based on the phase transition temperature from the rock salt type structure to the spinel type structure obtained by differential thermal analysis, the phase transition temperature is -300K to the phase transition temperature. An annealing process is performed in the atmosphere at +100 K to form an oxide having a spinel structure .

本発明の第三の熱電材料の製造方法は、組成がZnIn the third method for producing a thermoelectric material of the present invention, the composition is Zn 0.10.1 CoCo 2.92.9 O 4 又はAgOr Ag 0.20.2 CoCo 2.82.8 O 4 で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とする。Is a method of manufacturing a thermoelectric material using an oxide having a spinel structure and exhibiting p-type electrical conductivity, wherein the metal ions constituting the thermoelectric material are mixed at a predetermined mixing ratio. After firing to form a rock salt type sintered body, based on the phase transition temperature from the rock salt type structure to the spinel type structure obtained by differential thermal analysis, the phase transition temperature is -300K to the phase transition temperature. An annealing process is performed in the atmosphere at +100 K to form an oxide having a spinel structure.

本発明により得られた熱電材料は、高い出力因子が得られ、800K以上においても優れた熱電特性を発揮するという利点がある。 The thermoelectric material obtained by the present invention has an advantage that a high output factor is obtained and excellent thermoelectric characteristics are exhibited even at 800K or higher.

本発明により、高い出力因子が得られ、800K以上においても優れた熱電特性を発揮する高温型の熱電材料を低コストで大量生産することが可能になるという利点がある。 More this onset bright, obtain high power factor, there is an advantage that the high temperature of the thermoelectric material to exhibit excellent thermoelectric properties at least 800K can be mass-produced at low cost.

Co3−xにおける電気伝導度σとゼーベック係数Sの関係を表したグラフである。It is a graph showing the relationship between the electric conductivity σ and Seebeck coefficient S in N i x Co 3-x O 4. Co3−xにおけるxの値とゼーベック係数Sの関係を表したグラフである。It is a graph showing the relationship between the value and the Seebeck coefficient S of x of N i x Co 3-x O 4. 0.05Co2.95のXRDパターンを示した図である。Is a diagram showing the XRD pattern of the N i 0.05 Co 2.95 O 4.

以下、本発明をさらに詳細に説明する。本発明の熱電材料の製造方法は、組成がA Co 3−x (但し、Aは、Ni、Zn、Agからなる群から選択されたいずれかの元素であり、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とするものである。 Hereinafter, the present invention will be described in more detail. Method for producing a thermoelectric material of the present invention, composition A x Co 3-x O 4 ( where, A is, Ni, Zn, is any element selected from the group consisting of Ag, x is 0 < x ≦ 0.3.) and a method for producing a thermoelectric material using an oxide having a spinel structure and exhibiting p-type conductivity, wherein metal ions constituting the thermoelectric material are predetermine. The raw material mixed at the blending ratio is fired to form a sintered body having a rock salt structure, and then annealed in the atmosphere to obtain an oxide having a spinel structure.

本発明においては、Ni、Zn、Agからなる群から選択されたいずれかの金属イオン(酸化物など)とCoの金属イオン(四酸化三コバルトなど)を所定の配合比で混合して原料とする。混合後の状態は、特に限定されないが、微細粉末が好ましい。なお、混合後の状態が粉体、粒体などの場合には、プレス成形などの成形処理を行って原料とすることが好ましい。 In the present invention, any one of metal ions selected from the group consisting of Ni, Zn, and Ag (such as oxides) and Co metal ions (such as tricobalt tetroxide) are mixed at a predetermined mixing ratio, To do. The state after mixing is not particularly limited, but a fine powder is preferable. In addition, when the state after mixing is a powder, a granule, etc., it is preferable to perform forming processing, such as press molding, as a raw material.

本発明における組成Co3−x Aは、イオン半径がCo3+と近いイオンとなるという理由から、Ni、Zn、Agからなる群から選択されたいずれかの元素である。 A composition A x Co 3-x O 4 in the present invention, the reason that the ion radius is Co 3+ and close ion, is any of elements selected Ni, Zn, from the group consisting of Ag.

本発明における組成Co3−x (但し、Aは、Ni、Zn、Agからなる群から選択されたいずれかの元素である。)の0.7を超えると、以下のシュミュレーションの結果から十分な出力因子が得られないと考えられる。 Composition in the present invention A x Co 3-x O 4 ( where, A is, Ni, Zn, selected from a group consisting of Ag is any element.) X of exceeds 0.7, the following It is thought that sufficient output factors cannot be obtained from the simulation results.

例えば、NiCo3−xについていうと、Niの量(xの値)が増加すると、電気伝導度が増加し、ゼーベック係数が減少する。電気伝導度σを横軸、ゼーベック係数Sを縦軸としたグラフを作成すると、直線関係(S=−86.849σ+612.82)が得られ(図1参照)、Niの量を横軸、ゼーベック係数Sを縦軸としたグラフを作成しても、直線関係(S=−1058.8x+612.62)が得られる(図2参照)。 For example, regarding Ni x Co 3-x O 4 , when the amount of Ni (value of x) increases, the electrical conductivity increases and the Seebeck coefficient decreases. When a graph with the electrical conductivity σ on the horizontal axis and the Seebeck coefficient S on the vertical axis is created, a linear relationship (S = −86.849σ + 612.82) is obtained (see FIG. 1), and the amount of Ni is plotted on the horizontal axis. Even if a graph with the coefficient S as the vertical axis is created, a linear relationship (S = −1058.8x + 612.62) is obtained (see FIG. 2).

図1の直線関係(S=−86.849σ+612.82)をS=p(q−lnσ)=−p×lnσ+p×qに当てはめると、p=86.85μV、q=7.16となる。   When the linear relationship (S = −86.849σ + 612.82) in FIG. 1 is applied to S = p (q−lnσ) = − p × lnσ + p × q, p = 86.85 μV and q = 7.16.

出力因子はSσである。SσにS=p(q−lnσ)を代入すると、Sσ=(p(q−lnσ))×σとなる。ここで、出力因子の最大値(Sσ)maxは(p(q−lnσ))×σを微分すれば求めることができる。Sσを微分すると、(Sσ)max=4pexp(q−2)となり、上述したp=86.85μV、q=7.16を代入すると、(Sσ)max=527μWm−1−2が得られる。出力因子の最大値527μWm−1−2から電気伝導度の最適値σoptとゼーベック係数の最適値Soptを求めると、それぞれ174Scm−1と174μVK−1となる。 The output factor is S 2 σ. Substituting S = p (q-lnσ) to S 2 sigma, the S 2 σ = (p (q -lnσ)) 2 × σ. Here, the maximum value (S 2 σ) max of the output factor can be obtained by differentiating (p 2 (q−lnσ) 2 ) × σ. When S 2 σ is differentiated, (S 2 σ) max = 4p 2 exp (q−2) is obtained. When p = 86.85 μV and q = 7.16 are substituted, (S 2 σ) max = 527 μWm − 1 K -2 is obtained. When the maximum value 527μWm -1 K -2 output factors determining the optimum value S opt of the optimum value sigma opt and Seebeck coefficient of electrical conductivity, a respective 174Scm -1 and 174μVK -1.

ゼーベック係数の最適値Sopt(174μVK−1)を、図2のグラフに当てはめてみると、xoptは0.41となる。 When the optimum value S opt (174 μVK −1 ) of the Seebeck coefficient is applied to the graph of FIG. 2, x opt is 0.41.

発明においては、出力因子以外の要素も考慮しなければならない。アニール処理の温度も重要な要素であり、アニール処理の最適温度を考慮すると、本発明における組成Co3−x (但し、Aは、Ni、Zn、Agからなる群から選択されたいずれかの元素である。)のは0<x≦0.3である。 In the present invention , factors other than the output factor must be considered. The temperature of the annealing process is also an important factor, and considering the optimum temperature of the annealing process, the composition A x Co 3-x O 4 in the present invention (where A is selected from the group consisting of Ni, Zn, and Ag) X of any element) is 0 <x ≦ 0.3.

本発明における焼成処理は、原料を焼成して岩塩型構造(CoO)の焼結体とする。 In the firing treatment in the present invention , the raw material is fired to obtain a sintered body having a rock salt structure (CoO).

焼成処理としては、例えば、大気中において、1373〜1573Kで1時間以上焼成する方法、大気中において、1273Kで仮焼成をした後、1473Kで本焼成をする方法などが挙げられるが、これらに限定されない。   Examples of the firing treatment include a method of firing at 1373 to 1573K for 1 hour or longer in the air, a method of temporarily firing at 1273K in the air, and then performing a main firing at 1473K, but are not limited thereto. Not.

焼成温度、焼成時間、焼成回数は、(実測密度/理論密度)×100から計算した相対密度が90%以上になるように適宜決定するのが好ましい。ここにいう実測密度は、焼成処理により得られた焼結体の重さ/焼成処理により得られた焼結体の体積であり、相対密度は、組成から求めた単位格子の重さ/XRDパターンより求めた単位格子の体積である。   The firing temperature, firing time, and number of firings are preferably determined appropriately so that the relative density calculated from (actual density / theoretical density) × 100 is 90% or more. The actual density mentioned here is the weight of the sintered body obtained by the firing treatment / the volume of the sintered body obtained by the firing treatment, and the relative density is the weight of the unit cell obtained from the composition / XRD pattern. It is the volume of the unit cell obtained from the above.

本発明においては、アニール処理により、岩塩型構造(CoO)の焼結体がスピネル型構造(Co)の酸化物に転換する。 In the present invention, the sintered body having a rock salt structure (CoO) is converted into an oxide having a spinel structure (Co 3 O 4 ) by annealing.

アニール処理の温度は、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、相転移温度−300K〜相転移温度+100Kで行う。アニール処理の温度が相転移温度−300K未満であると、相転移にかなりの長時間が必要となるだけでなく、相転移が完全に行われないこともあるからであり、逆に、相転移温度+100Kを超えると、相転移が起こらないからである。なお、アニール処理は、相転移温度−50K〜相転移温度+10Kで行うのが好ましい。   The annealing temperature is a phase transition temperature of −300 K to a phase transition temperature of +100 K based on the phase transition temperature from the rock salt type structure to the spinel type structure obtained by the differential thermal analysis. If the annealing temperature is less than the phase transition temperature of −300 K, not only does it take a considerable amount of time for the phase transition, but the phase transition may not be performed completely. This is because the phase transition does not occur when the temperature exceeds + 100K. The annealing treatment is preferably performed at a phase transition temperature of −50K to a phase transition temperature of + 10K.

アニール処理の時間は、スピネル型構造(Co)を有する酸化物に転換するという目的を達成すれば特に限定されないが、5時間以上が望ましく、通常10時間以上行い、スピネル型構造(Co)を有する酸化物への転換が不十分な場合には、回数を増やし、時間を決定する。 The annealing treatment time is not particularly limited as long as the purpose of converting to an oxide having a spinel structure (Co 3 O 4 ) is achieved, but it is preferably 5 hours or more, usually 10 hours or more, and the spinel structure (Co If the conversion to oxides with 3 O 4 ) is insufficient, the number is increased and the time is determined.

本発明により得られた熱電材料は、スピネル型構造を有し、立方晶で対称性がよく、基本骨格がCoで、4配位のCo2+サイトと6配位のCo3+サイトからなり、p型の電気伝導性を示すものである。 The thermoelectric material obtained by the present invention has a spinel structure, is cubic and has good symmetry, has a basic skeleton of Co 3 O 4 , and consists of a 4-coordinate Co 2+ site and a 6-coordinate Co 3+ site. That is, p-type conductivity is exhibited.

本発明により得られた熱電材料は、p型の電気伝導性を示すため、ゼーベック係数は正である。 Since the thermoelectric material obtained by the present invention exhibits p-type conductivity, the Seebeck coefficient is positive.

本発明により得られた熱電材料は、通常、n型の電気伝導性を示す熱電材料と接合し、一般に熱電素子と呼ばれる接合対の状態で使用される。熱電素子の性能指数は、p型の電気伝導性を示す熱電材料の性能指数Z、n型の電気伝導性を示す熱電材料の性能指数Z、p型の電気伝導性を示す熱電材料の形状及びn型の電気伝導性を示す熱電材料の形状に依存する。従って、p型の電気伝導性を示す熱電材料の形状及びn型の電気伝導性を示す熱電材料の形状が最適化された場合には、性能指数Z及び性能指数Zの高い熱電材料を用いることが重要である。 The thermoelectric material obtained by the present invention is usually joined to a thermoelectric material exhibiting n-type electrical conductivity, and used in a state of a joined pair generally called a thermoelectric element. The figure of merit of the thermoelectric element is the figure of merit Z p of the thermoelectric material exhibiting p-type conductivity, the figure of merit Z n of the thermoelectric material exhibiting n-type conductivity, and the thermoelectric material exhibiting p-type conductivity. Depends on the shape and the shape of the thermoelectric material exhibiting n-type electrical conductivity. Therefore, if the shape of the thermoelectric material exhibiting electrical conductivity in the shape and n-type thermoelectric material exhibiting p-type conductivity is optimized, a high thermal conductive material figure of merit Z p and performance index Z n It is important to use.

(実施例1)
9.8447gのCo(純度99.9%)と0.1553gのNiO(純度99.9%以上)をボールミルに投入し、20時間撹拌し、混合微細粉末1aを得た。混合微細粉末1aを一軸プレス(4.9MPa)と液圧プレス(196MPa)を用いて成形し、原料1bを得た。原料1bを、大気中で、1273K、10時間の仮焼成をした後、1473K、10時間の本焼成をして焼成処理を行い、岩塩型構造(CoO)の焼結体1cを得た。焼結体1cの重さと体積を測定して相対密度を計算してみたところ、焼結体1cの相対密度は90%以上であった。焼結体1cを、大気中で、1073K、20時間のアニール処理を行い、本発明により得られたNi0.05Co2.95で表され、スピネル型構造(Co)を有する熱電材料1を得た。
Example 1
9.8447 g of Co 3 O 4 (purity 99.9%) and 0.1553 g of NiO (purity 99.9% or more) were put into a ball mill and stirred for 20 hours to obtain a mixed fine powder 1a. The mixed fine powder 1a was molded using a uniaxial press (4.9 MPa) and a hydraulic press (196 MPa) to obtain a raw material 1b. The raw material 1b was calcined in air at 1273K for 10 hours, and then fired at 1473K for 10 hours to obtain a rock salt structure (CoO) sintered body 1c. When the relative density was calculated by measuring the weight and volume of the sintered body 1c, the relative density of the sintered body 1c was 90% or more. The sintered body 1c is annealed in air at 1073K for 20 hours, and expressed by Ni 0.05 Co 2.95 O 4 obtained according to the present invention, a spinel structure (Co 3 O 4 ). The thermoelectric material 1 which has was obtained.

(実施例2)
9.6891gのCo(純度99.9%)と0.3109gのNiO(純度99.9%以上)をボールミルに投入し、20時間撹拌し、混合微細粉末2aを得た。混合微細粉末2aを一軸プレス(4.9MPa)と液圧プレス(196MPa)を用いて成形し、成形原料2bを得た。成形原料2bを、大気中で、1473K、10時間の焼成処理を行い、岩塩型構造(CoO)の焼結体2cを得た。焼結体2cの重さと体積を測定して相対密度を計算してみたところ、焼結体2cの相対密度は90%以上であった。焼結体2cを、大気中で、1073K、20時間のアニール処理を行い、本発明により得られたNi0.1Co2.9で表され、スピネル型構造(Co)を有する熱電材料2を得た。
(Example 2)
9.6891 g of Co 3 O 4 (purity 99.9%) and 0.3109 g of NiO (purity 99.9% or more) were put into a ball mill and stirred for 20 hours to obtain mixed fine powder 2a. The mixed fine powder 2a was molded using a uniaxial press (4.9 MPa) and a hydraulic press (196 MPa) to obtain a forming raw material 2b. The forming raw material 2b was fired in air at 1473K for 10 hours to obtain a sintered body 2c having a rock salt structure (CoO). When the relative density was calculated by measuring the weight and volume of the sintered body 2c, the relative density of the sintered body 2c was 90% or more. The sintered body 2c is annealed in air at 1073K for 20 hours, and is represented by Ni 0.1 Co 2.9 O 4 obtained by the present invention, and has a spinel structure (Co 3 O 4 ). A thermoelectric material 2 was obtained.

(実施例3)
9.6891gのCo(純度99.9%)と0.3109gのNiO(純度99.9%以上)をボールミルに投入する代わりに、9.5331gのCo(純度99.9%)と0.4006gのNiO(純度99.9%以上)をボールミルに投入した以外は、実施例2と同様の操作を繰り返し、本発明により得られたNi0.15Co2.85で表され、スピネル型構造(Co)を有する熱電材料3を得た。
(Example 3)
Instead of charging 9.6891 g Co 3 O 4 (purity 99.9%) and 0.3109 g NiO (purity 99.9% or more) into the ball mill, 9.5331 g Co 3 O 4 (purity 99.9) %) And 0.4006 g of NiO (purity 99.9% or more) were charged into the ball mill, and the same operation as in Example 2 was repeated to obtain Ni 0.15 Co 2.85 O 4 obtained according to the present invention. And a thermoelectric material 3 having a spinel structure (Co 3 O 4 ) was obtained.

(実施例4)
9.6891gのCo(純度99.9%)と0.3109gのNiO(純度99.9%以上)をボールミルに投入する代わりに、9.3767gのCo(純度99.9%)と0.6233gのNiO(純度99.9%以上)をボールミルに投入した以外は、実施例2と同様の操作を繰り返し、本発明により得られたNi0.2Co2.8で表され、スピネル型構造(Co)を有する熱電材料4を得た。
Example 4
Instead of charging 9.6891 g Co 3 O 4 (purity 99.9%) and 0.3109 g NiO (purity 99.9% or more) into the ball mill, 9.3767 g Co 3 O 4 (purity 99.9) %) And 0.6233 g of NiO (purity of 99.9% or more) were added to the ball mill, and the same operation as in Example 2 was repeated to obtain Ni 0.2 Co 2.8 O 4 obtained by the present invention. And a thermoelectric material 4 having a spinel structure (Co 3 O 4 ) was obtained.

(実施例5)
9.6891gのCo(純度99.9%)と0.3109gのNiO(純度99.9%以上)をボールミルに投入する代わりに、9.6622gのCo(純度99.9%)と0.3378gのZnO(純度99.9%以上)をボールミルに投入した以外は、実施例2と同様の操作を繰り返し、本発明により得られたZn0.1Co2.9で表され、スピネル型構造(Co)を有する熱電材料5を得た。
(Example 5)
Instead of charging 9.6891 g Co 3 O 4 (purity 99.9%) and 0.3109 g NiO (purity 99.9% or more) into the ball mill, 9.6622 g Co 3 O 4 (purity 99.9) %) And 0.3378 g of ZnO (purity 99.9% or more) were added to the ball mill, and the same operation as in Example 2 was repeated, and Zn 0.1 Co 2.9 O 4 obtained by the present invention was obtained. And a thermoelectric material 5 having a spinel structure (Co 3 O 4 ) was obtained.

(実施例6)
9.6891gのCo(純度99.9%)と0.3109gのNiO(純度99.9%以上)をボールミルに投入する代わりに、9.0652gのCo(純度99.9%)と0.9347gのAgO(純度99.9%以上)をボールミルに投入した以外は、実施例2と同様の操作を繰り返し、本発明により得られたAg0.2Co2.8で表され、スピネル型構造(Co)を有する熱電材料6を得た。
(Example 6)
Instead of charging 9.6891 g Co 3 O 4 (purity 99.9%) and 0.3109 g NiO (purity 99.9% or more) into the ball mill, 9.0652 g Co 3 O 4 (purity 99.9). %) And 0.9347 g of Ag 2 O (purity 99.9% or more) were added to the ball mill, and the same operation as in Example 2 was repeated to obtain Ag 0.2 Co 2.8 obtained by the present invention. It is represented by O 4, to obtain a thermoelectric material 6 having a spinel structure (Co 3 O 4).

(試験例1)出力因子
出力因子はゼーベック係数の二乗と電気伝導度との積(S×σ)から求めることができる。熱電材料1〜6について、873Kにおける電気伝導度とゼーベック係数を測定して、出力因子を計算した。ここで、電気伝導度は、低圧He中で直流4端子法を用い、ULVAC―RIKOのZEM−3を用いて測定した。ゼーベック係数は、測定対象の熱電材料に温度差をつけ、ULVAC―RIKOのZEM−3を用い、温度差と熱起電力の関係からを測定した。
Test Example 1 Output Factor The output factor can be obtained from the product (S 2 × σ) of the square of the Seebeck coefficient and the electrical conductivity. About the thermoelectric materials 1-6, the electrical conductivity in 873K and a Seebeck coefficient were measured, and the output factor was calculated. Here, the electrical conductivity was measured using a DC 4 terminal method in a low pressure He and using ULVAC-RIKO ZEM-3. The Seebeck coefficient was measured from the relationship between the temperature difference and the thermoelectromotive force using a ULVAC-RIKO ZEM-3 with a temperature difference in the thermoelectric material to be measured.

表1に熱電材料1〜6の873Kにおける電気伝導度、ゼーベック係数及び出力因子の値を示す。   Table 1 shows values of the electric conductivity, Seebeck coefficient, and output factor at 873 K of the thermoelectric materials 1 to 6.

以上の結果から、本発明により得られた熱電材料1〜6は、いずれも、p型の電気伝導性を示し(ゼーベック係数が正)、高い出力因子が得られることがわかった。 From the above results, it was found that each of the thermoelectric materials 1 to 6 obtained by the present invention showed p-type conductivity (positive Seebeck coefficient) and a high output factor was obtained.

(実施例7)
1073K、20時間のアニール処理を973K、20時間のアニール処理に代えた以外は、実施例1と同様の操作を繰り返し、本発明により得られたNi0.05Co2.95で表され、p型の電気伝導性を示し、スピネル型構造(Co)を有する熱電材料7を得た。
(Example 7)
The same operation as in Example 1 was repeated except that the annealing treatment at 1073 K for 20 hours was replaced with the annealing treatment at 973 K for 20 hours, and represented by Ni 0.05 Co 2.95 O 4 obtained by the present invention. A thermoelectric material 7 exhibiting p-type conductivity and having a spinel structure (Co 3 O 4 ) was obtained.

(実施例8)
1073K、20時間のアニール処理を873K、20時間のアニール処理に代えた以外は、実施例1と同様の操作を繰り返し、本発明により得られたNi0.05Co2.95で表され、p型の電気伝導性を示し、スピネル型構造(Co)を有する熱電材料8を得た。
(Example 8)
The same operation as in Example 1 was repeated except that the annealing treatment at 1073 K for 20 hours was replaced with the annealing treatment at 873 K for 20 hours, and represented by Ni 0.05 Co 2.95 O 4 obtained by the present invention. A thermoelectric material 8 exhibiting p-type conductivity and having a spinel structure (Co 3 O 4 ) was obtained.

(試験例2)XRDパターン
熱電材料1、7及び8について、CuKα放射線を用いた粉末XRDのパターンを求めた。その結果を図3に示す。
Test Example 2 XRD Pattern For thermoelectric materials 1, 7 and 8, a pattern of powder XRD using CuKα radiation was determined. The result is shown in FIG.

図3から、Ni0.05Co2.95の場合、示差熱分析で得られた岩塩型構造(CoO)からスピネル型構造(Co)への相転移温度は1062Kであるが、アニール処理の温度が873K、973K、1073KのそれぞれのXRDのパターンには、熱電特性が低下すると考えられるCoO型のピーク(記号△)が現れていないため、広いアニール処理温度域をもつことがわかった。 From FIG. 3, in the case of Ni 0.05 Co 2.95 O 4 , the phase transition temperature from the rock salt type structure (CoO) to the spinel type structure (Co 3 O 4 ) obtained by differential thermal analysis is 1062K. In addition, the XRD patterns with annealing temperatures of 873K, 973K, and 1073K do not have a CoO type peak (symbol Δ), which is considered to deteriorate the thermoelectric characteristics, and therefore may have a wide annealing temperature range. all right.

本発明により得られた熱電材料は、長期間に渡り高温状態となる高出力の熱電発電モジュールに用いるp型の熱電材料として有用であり、本発明の熱電材料の製造方法は、長期間に渡り高温状態となる高出力の熱電発電モジュールに用いるp型の熱電材料を大量生産する手法として有用である。 The thermoelectric material obtained by the present invention is useful as a p-type thermoelectric material used in a high-power thermoelectric power generation module that is in a high temperature state for a long period of time, and the method for producing the thermoelectric material of the present invention is for a long period of time. This is useful as a technique for mass-producing p-type thermoelectric materials used in high-power thermoelectric power generation modules that reach high temperatures.

Claims (3)

組成がNiComposition is Ni x CoCo 3−x3-x O 4 (但し、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、(Where x is 0 <x ≦ 0.3), and is a method for producing a thermoelectric material using an oxide having a spinel structure and exhibiting p-type conductivity,
前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とする熱電材料の製造方法。After firing the raw material in which the metal ions constituting the thermoelectric material are mixed at a predetermined mixing ratio to obtain a sintered body of a rock salt type structure, the rock salt type structure obtained by differential thermal analysis is changed to a spinel type structure. A method for producing a thermoelectric material, characterized in that an oxide having a spinel structure is formed by annealing in the atmosphere at a phase transition temperature of −300 K to a phase transition temperature of +100 K with reference to a phase transition temperature.
組成がAComposition is A x CoCo 3−x3-x O 4 (但し、Aは、Zn又はAgであり、xは、0<x≦0.3である。)で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、(Where A is Zn or Ag, and x is 0 <x ≦ 0.3), and is a thermoelectric element using an oxide having a spinel structure and exhibiting p-type conductivity. A method of manufacturing a material,
前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とする熱電材料の製造方法。After firing the raw material in which the metal ions constituting the thermoelectric material are mixed at a predetermined mixing ratio to obtain a sintered body of a rock salt type structure, the rock salt type structure obtained by differential thermal analysis is changed to a spinel type structure. A method for producing a thermoelectric material, characterized in that an oxide having a spinel structure is formed by annealing in the atmosphere at a phase transition temperature of −300 K to a phase transition temperature of +100 K with reference to a phase transition temperature.
組成がZnComposition is Zn 0.10.1 CoCo 2.92.9 O 4 又はAgOr Ag 0.20.2 CoCo 2.82.8 O 4 で表され、p型の電気伝導性を示す、スピネル型構造を有する酸化物を用いた熱電材料の製造方法であって、A method for producing a thermoelectric material using an oxide having a spinel structure and having p-type conductivity,
前記熱電材料を構成する金属イオンを所定の配合比で混合した原料に焼成処理を行い、岩塩型構造の焼結体とした後、示差熱分析で得られた岩塩型構造からスピネル型構造への相転移温度を基準とし、該相転移温度−300K〜該相転移温度+100Kで、大気中においてアニール処理を行い、スピネル型構造を有する酸化物とすることを特徴とする熱電材料の製造方法。After firing the raw material in which the metal ions constituting the thermoelectric material are mixed at a predetermined mixing ratio to obtain a sintered body of a rock salt type structure, the rock salt type structure obtained by differential thermal analysis is changed to a spinel type structure. A method for producing a thermoelectric material, characterized in that an oxide having a spinel structure is formed by annealing in the atmosphere at a phase transition temperature of −300 K to a phase transition temperature of +100 K with reference to a phase transition temperature.
JP2012274134A 2012-12-14 2012-12-14 Thermoelectric material manufacturing method Expired - Fee Related JP6353187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274134A JP6353187B2 (en) 2012-12-14 2012-12-14 Thermoelectric material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274134A JP6353187B2 (en) 2012-12-14 2012-12-14 Thermoelectric material manufacturing method

Publications (2)

Publication Number Publication Date
JP2014120588A JP2014120588A (en) 2014-06-30
JP6353187B2 true JP6353187B2 (en) 2018-07-04

Family

ID=51175188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274134A Expired - Fee Related JP6353187B2 (en) 2012-12-14 2012-12-14 Thermoelectric material manufacturing method

Country Status (1)

Country Link
JP (1) JP6353187B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291903A (en) * 1991-03-20 1992-10-16 Tdk Corp Manufacture of thermistor
JP2782579B2 (en) * 1994-04-08 1998-08-06 工業技術院長 Method for producing oxide-based semiconductor fine powder
JP3443641B2 (en) * 2000-02-10 2003-09-08 独立行政法人産業技術総合研究所 Composite oxides with high Seebeck coefficient and high electrical conductivity
JP2008041871A (en) * 2006-08-04 2008-02-21 Univ Waseda Thermoelectric material, method of manufacturing the same, and thermoelectric element
JP2010228927A (en) * 2009-03-25 2010-10-14 National Institute Of Advanced Industrial Science & Technology Cobalt-manganese compound oxide
JP2011198989A (en) * 2010-03-19 2011-10-06 Sumitomo Chemical Co Ltd Thermoelectric conversion material, method of manufacturing the same, and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2014120588A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
Choi et al. Oxide-based thermoelectric power generation module using p-type Ca3Co4O9 and n-type (ZnO) 7In2O3 legs
Lim et al. A power-generation test for oxide-based thermoelectric modules using p-type Ca 3 Co 4 O 9 and n-type Ca 0.9 Nd 0.1 MnO 3 legs
CN106062978B (en) The manufacture of stabilized electrodes/diffusion impervious layer of thermoelectricity filled skutterudite device
US7435896B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element
Nag et al. Doping induced high temperature transport properties of Ca1− xGdxMn1− xNbxO3 (0≤ x≤ 0.1)
JP5877275B2 (en) Method for producing thermoelectric conversion material
JP6353187B2 (en) Thermoelectric material manufacturing method
CN103262272B (en) There is the metal material of N-shaped thermoelectricity conversion performance
Roy et al. Colossal change in thermopower with temperature-driven p–n-type conduction switching in LaxSr2− xTiFeO6 double perovskites
WO2012033116A1 (en) Thermoelectric conversion material
Kanas et al. Time-enhanced performance of oxide thermoelectric modules based on a hybrid p–n junction
Culebras et al. La 1− x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JP5949347B2 (en) Metal material having n-type thermoelectric conversion performance
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP2010228927A (en) Cobalt-manganese compound oxide
JP6847410B2 (en) Thermoelectric conversion material and thermoelectric conversion module
CN109503147B (en) Ga element doped In2O3(ZnO)3Thermoelectric material and preparation method and application thereof
Le Segmented Thermoelectric Oxide-Based Module
KR20190050018A (en) Copper-doped thermoelectric material
Ono et al. Fabrication and performance of an oxide thermoelectric power generator
US20140361212A1 (en) Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
JP4460861B2 (en) Thermoelectric conversion material
Rahman Fabrication of Thermoelectric Module from Efficient Earth Abundant Thermoelectric Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180608

R150 Certificate of patent or registration of utility model

Ref document number: 6353187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees